Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

1. CN101606046 - Material metering system

Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique
材料计量系统


技术领域
本发明涉及一种通过从料斗向计量器供给粉粒体等材料对每次一定量地计量材料的材料计量系统的改进。 
背景技术
以往,如下的批量计量方法已被公知:打开设在料斗下部的挡板闸门或滑动快门等使贮存在料斗中的材料从材料排出口落下,由设置负载传感器或差动传感器、通过频率方式实现的质量计测机构的计量器阻挡,实时地计测质量并在到达一定量时对排出材料进行停止控制。 
在由该质量计量进行的计量控制方法中,因为在材料排出口和计量器间存在落差,所以即使在由质量计测机构计量的质量到达一定量而关闭材料排出口后,在计量器上也还被供给落下中的材料。因此,采取了预先计测与开口程度和材料种类等相应的落差部分的质量并以扣除了该落差值的质量为目标值进行计量控制的方法。 
但是,实测的落差量在每次计量中都变动,特别是在大开口时,如果关闭排出口则有与预测的落差值之间的误差变大的倾向,所以有人提出了在使材料排出就要停止之前的开口程度能够变得更小的多阶段计量的方案。 
该多阶段计量是,在供给初期的阶段中增大材料排出口的开口程度以供给大量的材料,基于由负载传感器实时计量的质量阶段性地使开口程度变小,在供给就要停止前因为开口程度小所以不太产生因落差值而产生的误差。因此,在该计量方法中,可以由初期的大计量实现快速的计量,且可以由最终的小计量实现精度好的计量。 
在实施该多阶段计量的系统中,是在各阶段中将作为目标 的供给质量切换值作为设定值,并在各阶段中计测供给量是否达到该设定值,如果达到就进行切换到下一阶段的控制。 
在下面的专利文献中公开了使供给量阶段性地为大、中、小的计量方法。专利文献1:日本特公平6-12288号公报 
发明内容
发明所要解决的课题
但是,在这种多阶段计量方法中,有可能产生因通过在每一阶段进行切换控制而产生的以下的问题。 
与在最后发生落差量同样,在将开口程度切换到下一阶段时,在前阶段中供给的落差部分的材料浮游着,在切换后的该阶段中的计量中,出现由切换前的开口程度产生的落差部分的材料和由切换后的开口程度产生的材料混合存在并同时落下的不稳定的时间带。总之,在除了最初的阶段以外的各阶段中的计量,在切换初期的时间带中因为受到前阶段的影响,所以在直到在该阶段中的每单位时间的落下量达到成为一定量之前需要规定的时间。 
若在这样的受到来自前阶段的影响的不稳定时间带的途中,进一步进行切换到下一阶段的那样的控制,则不能预测时间和计量的相关关系,计量的精度有可能变差。特别是,若在最终阶段的不稳定时间带中停止供给,则因落差而产生的质量与预定的落差值背离。 
因此,为了正确地进行计量,除了最初的阶段以外的各阶段的计量时间,至少需要预先设定成比该不稳定时间大的值,另一方面,为了更快速地进行计量,也需要使最初的阶段的大计量充分地长,因此,为了正确且迅速地进行计量,需要分配调整各阶段间的供给时间。 
但是,这样的各阶段的计量时间是由通过负载传感器的计量而产生的控制的结果得到的,所以,以这些计量时间调整各阶段的比例(分配)极为困难,希望一种用于使整体的计量时间变短且正确地进行计量的适当的阶段间的调整方法。 
本发明是考虑上述这样的情况而提出的方案,其目的在于提供一种能够正确且迅速地进行多阶段计量的材料计量系统。另外,其目的还在于即使在直到实现标准化之前的计量中,也能够进行无失败的安全可靠的计量。 
为了解决课题的手段
为了达到上述目的,技术方案1所述的材料计量系统,通过从料斗的材料排出口向计量器供给材料,每次按一批量单位对材料进行计量;其特征在于,为了多阶段地进行一批量的计量,从最初的计量阶段到下一计量阶段顺次以使计量值阶段性地减少的方式预先区分为多个计量阶段,且对各个计量阶段设定供给质量切换值,同时,在除了最初的计量阶段以外的各计量阶段中,预先设定将从先前的阶段的过渡时的不稳定时间作为下限值的目标计量时间,具有在实行一批量的计量中计测各阶段的实际计量时间的计量时间计测机构、和实行接下来的运算处理的设定值修正机构,设定值修正机构,在实行了一批量的计量后,对于除了最初的计量阶段以外的各个计量阶段,在计测的实际时间处于被设定的目标计量时间的容许范围内时,保持被设定的供给质量切换值不变,另一方面,在处于容许范围外时,以实际计量时间接近目标计量时间的方式进行修正供给质量切换值的更新处理,而且,对于最初的计量阶段,从一批量的计量值减去由更新处理确定的各供给质量切换值中的每一个来确定供给质量切换值。 
技术方案2所述的材料计量系统的特征在于,多阶段计量通过对料斗的材料排出口的开口程度进行节流控制,使每单位时间的材料落下量减少。 
技术方案3所述的材料计量系统的特征在于,设定值修正机构通过多次修正使各阶段的供给质量切换值最佳化。 
技术方案4或5所述的材料计量系统的特征在于,设定值修正机构能够实行以实际计量时间和目标计量时间的差为基准的标准 修正、和在实际计量时间与目标计量时间背离了规定的阈值以上的情况下的比标准修正大的修正中的任一修正。 
发明的效果
根据本发明的材料计量系统,因为使得设定值修正机构能够以目标计量时间、实际计量时间和供给质量切换值为基础,按规定的算法,修正除了最初的阶段以外的每一阶段的供给质量切换值,所以能够进行使各阶段的供给质量切换值与目标计量时间接近的修正,实现用于迅速且正确地计量的各阶段的供给质量切换值的优化。
另外,根据向目标计量时间以多次进行修正的本发明,由于阶段性地逐步进行修正,所以在实现优化之前的计量中也能够进行无失败的安全可靠的计量。 
进而,根据能够实行以实际计量时间和目标计量时间的差为基准的标准修正、和实际计量时间与目标计量时间背离了规定的阈值以上的情况下的比标准修正大的修正中的任一修正的本发明,因为能够进行与状况相应的修正,所以能够缩短优化之前的时间。 
附图说明
图1是表示多阶段计量的流程的装置模式图,(a)表示大计量的阶段的状态,(b)表示中计量的阶段的状态,(c)表示小计量的阶段的状态,(d)表示小计量停止时的状态。 
图2是说明切换点的图,(a)是将负载传感器的计量质量和时间的关系进行了坐标化的图,(b)是用于说明切换时的不稳定时间带的图。 
图3是本发明系统主要部分的构成图。 
图4是表示本发明系统的概略的流程的流程图。 
图5是表示本发明系统的小计量设定值修正的动作的流程图。 
图6是表示本发明系统的中计量设定值修正的动作的流程图。 
符号说明
1:计量器 2:负载传感器 10:料斗 11:滑动快门(材料排出口) 20:计量处理装置 21:开口程度控制机构 22:计量时间计测机构 23:设定值修正机构 24:存储部 
具体实施方式
下面,在参照附图的同时对本发明的实施方式进行说明。 
实施例1
图1是表示在本发明的材料计量系统中采用的多阶段计量的概念图。在此,作为供给机的料斗10表示着在材料排出口设置了滑动快门(slide shutter)的结构,但也可以是设置了挡板闸门(flapperdamper)的结构。 
在图1中,符号10是贮存材料P的料斗,11是设置在料斗10的材料排出口的滑动快门,12是用于控制材料排出口的开口的伺服液压缸,1是具备了质量计测机构(负载传感器)2的计量器。另外,质量计测机构不限于负载传感器2,也可以使用差动传感器、通过频率方式实现的传感器。 
图1是模式性地表示多阶段计量的流程的图,(a)、(b)、(c)分别表示在大计量、中计量、小计量的各阶段的材料供给的状态,(d)表示计量的停止时。 
首先,在供给材料的最初的阶段,增大滑动快门11的开口程度,以大容量将材料投入,然后,以每当达到每个预先设定的阶段的供给质量切换值时就使开口程度变小的方式对滑动快门11进行节流控制,阶段性地减少供给量(每单位时间的材料落下量)(图1(a)~(c))。 
如果在最终阶段的小计量中达到目标值,就关闭材料排出口,但因为在滑动快门11和计量器1之间存在一定的落差,所以如图 1(d)所示,在刚关闭滑动快门11后,没有被计量的材料浮游在空中,即使在关闭滑动快门11后也由负载传感器2计数质量。将这些未被计算的浮游材料的质量称为落差量。 
因此,用于使小计量的供给停止的目标设定值,需要使用考虑了由最终的目标值(计量值)在小计量结束时产生的落差量的值。此落差量,已根据经验得出:只要材料、设备相同且小计量时的材料排出口的开口程度相同,虽然存在误差,但是是大致一定的,因此能够使用已考虑了其实测值(在本说明书中是把此值称为落差值以和落差量相区别)的最终阶段的设定值来实施正确的多阶段计量。 
图2是用于说明多阶段计量的各阶段的切换点的图,(a)是将负载传感器计量的质量和经过时间的关系进行了坐标化的图,(b)是用于说明切换时的不稳定时间带,模式地表示了材料排出口的开口程度和计量质量的关系的图。 
在图2(a),W0是最终的目标值,W1是从大计量阶段向中计量阶段的切换目标值,W2是从中计量阶段向小计量阶段的切换目标值,W3是考虑了落差值的最终目标值。另外,W12是由W2-W1算出的中计量阶段的供给质量切换值(中计量中的计量目标值),W23是由W3-W2算出小计量阶段的供给质量切换值(小计量中的计量目标值)。 
在图2(a)中,虽然为了图示的方便,直线性地表示了各阶段的计量,但在除了最初的阶段以外的各阶段中,包含了受到来自上述那样的前阶段的影响的不稳定时间带,实际上,如图2(b)所示,作为除了最初的阶段以外的各阶段中的计量,是包含了在不稳定时间带的计量质量值Wd1,Wd2的计量。另外,Wd3是落差量。 
本发明的目的是能够正确且迅速地进行多阶段计量,因此,必须能够由最初的阶段的大计量来计量材料的大部分,且能够由后续的中、小计量进行正确的落差修正,因此,在本发明系统中,通过对每当完成一批量计量时就进行与除了最初的阶段以外的各阶段对 应的供给质量切换值W12、W23的修正,能够阶段性地达到最佳的供给质量切换值W12、W23,以便能够进行符合上述目的的最佳计量。 
图3是本发明系统的主要部分的构成图,图4是本发明系统的概略流程图。另外,在图5、图6中表示小计量、中计量的设定值修正的逻辑的流程图。 
本发明系统是进行一批量的多阶段计量控制步骤S1和对其后的各阶段的供给质量切换值进行修正的设定值修正步骤S2的系统(参照图4),为了实行这些步骤,在本系统中具备了计量处理装置20。该计量处理装置20具备:从伴随多阶段计量的负载传感器2读入计量质量来控制滑动快门11的开口程度的开口程度控制机构21;计测各阶段的实际计量时间的计量时间计测机构22;通过基于后述的目标计量时间、已计测的实际计量时间及种种阈值等对最近使用的供给质量切换值进行修正算出用于下一批量计量的新的供给质量切换值的设定值修正机构23。 
另外,在存储部24中,为了进行设定值修正,保存了由实验等得到的将在各阶段中的不稳定时间值作为目标下限值而规定的目标计量时间、各阶段的供给质量切换值的初期值、每批量的修正值、落差值、及其他阈值等。各阶段的供给质量切换值的初期值,只要可以由未图示的设定操作机构等输入就可以。 
另外,计量处理装置20是由未图示的CPU和各种的程序进行滑动快门11的开口程度的控制及设定值修正等处理的装置,但也可以分别由具有CPU的单个装置实行控制和处理修正。 
接着,对供给质量切换值的修正的处理内容进行说明。 
在此,例示大、中、小的三阶段计量,对修正其中的中计量的供给质量切换值(图2(a)的W23)和小计量的供给质量切换值(图2(a)的W12)的处理进行说明。另外,因为大计量的供给质量切换值是通过从最终目标值W3扣除中计量、小计量的两个供给质量切换值W12、W23算出的值,所以对其不进行直接的修正。 
修正是使用对小计量、中计量的每一阶段保存在存储部中的目标计量时间、由多阶段计量计测的实际计量时间、和在其最近的计量中使用的供给质量切换值,基于以下的条件进行。下面,以目标计量时间、对阈值所规定的数值为例进行说明。 
(1)预先对中计量、小计量的供给质量切换值赋予较大的初期值,在每次修正处理时都进行中计量、小计量的供给质量切换值的减少修正,以便能够使实际计量时间无限地接近目标计量时间。 但是,在直到优化结束之前的过程中,为了能够进行安全正确的计量,也不是通过一次修正达到目标的,而是分成多次地进行修正。即,即使进行用于接近目标计量时间的供给质量切换值的修正,在实际的计量中也有因预测偏差而实际计量时间发生偏差的情况,但是,若由此偏差而引起不稳定的切换,则也会发生与预定的落差值不同的落差量,因此计量失败。特别是,在调整材料排出口11的开口程度的情况下,排出能力和落差量变动的情况很多。为了避免在直到这样的优化之前的过程中的计量失败,在每次计量的修正处理时都不进行使供给质量切换值增大的那样的修正,而进行考虑了安全的阶段性的修正。 
(2)在实际计量时间超过目标计量时间的情况下,也有不需要将供给质量切换值缩小到目标计量时间的情况,即(1)的例外。通过比较各阶段的实际计量时间和阈值,判别是否需要该例外处理。 例如,若只要在10秒左右内能够结束整体的计量时间,在能力方面是足够的,则在将中计量的目标计量时间作为3秒,把小计量的目标计量时间作为4秒时,在大、中计量的实际计量时间都为0的情况下,即使小计量的实际计量时间在4秒以上,只要不足10秒,则因为整体不到10秒,所以不进行将小计量的供给质量切换值缩小到目标计量时间的修正。另外,在大计量的实际计量时间为0,小计量的实际计量时间达到目标计量时间的情况下,即使中计量的实际计量时间在3秒以上,只要不到6秒,则因为整体不到10秒,所以就不进行将中 计量的供给质量切换值缩小到目标计量时间的修正。 
(3)修正量(对最近的供给质量切换值减去的质量值),因为以使实际计量时间接近目标计量时间为目的,所以以算出将其差作为基准的标准修正量为原则,但在其差比规定的阈值大的情况下,采用比上述的标准修正量大的修正量。即,在进行修正的情况下,由标准修正和比其大的修正的两种中的任一种进行。另外,用于进行此情况下的标准修正的上限值,既可以仍旧使用在(2)中使用的阈值,也可以选定其他的值。 
(4)在多次修正中,在实际计量时间比目标计量时间低时进行增加修正。因为此修正是使供给质量切换值增加的修正,所以其修正量为负值。 
(5)考虑误差,设定目标计量时间的上下限值,只要实际计量时间在该上下限值范围内就停止修正。 
用下式例示修正量的算出式。另外,以下作为小计量的修正,将标准修正记为修正1,将修正量大的修正记为修正2,将增加的修正记为修正3,至于中计量,则将标准修正记为修正4,将大的修正记为修正5,将增加的修正记为修正6。另外,在本例中,增加的修正3、修正6的修正量由与标准修正相同的算出式算出,但也可以采用其他公式。 
修正1的修正量=(实际计量时间-目标计量时间)×修正系数a...(式1) 修正2的修正量=实际计量时间×修正系数a...(式2) 修正3的修正量=(实际计量时间-目标计量时间)×修正系数a...(式3) 修正4的修正量=(实际计量时间-目标计量时间)×修正系数b...(式4) 修正5的修正量=实际计量时间×修正系数b...(式5) 修正6的修正量=(实际计量时间-目标计量时间)×修正系数b... (式6) 在此,修正系数a、b,只要能够以每单位时间的供给能力为基准预先设定就行。假设在小计量的供给能力为100g/sec,在中计量的供给能力为500g/sec,进而考虑(1)的条件按n次进行修正,则可以把小、中计量的各修正系数a、b定义为100/n,500/n。在此,作为n,为2以上,最好采用5~30的值。 
进行多次的修正的根据是因为系统的计量精度的偏差和波动(因干扰而产生的失调)。因计量精度而产生的偏差是因计量时间的计测精度(取入数据的周期等)而产生的实际计量时间的偏差和因料斗10和滑动快门11等供给机的机械精度而产生的偏差引起的,通过实验已确认整体上发生最大2~数倍的计量误差。即,例如在将供给质量切换值从200g减去10g作为190g进行计量控制的情况下,其计量结果,实际计量有可能变为180g。进而,考虑波动等不能预测的状况,为了进行更安全的计量,希望进行多次修正。 
上述的修正2(修正5)的修正量是适用于实际计量时间与目标计量时间背离得大的情况的修正量,由其算出式可知,在计算式中作为要素不包含目标计量时间。这是因为,容许修正量为比在实际计量时间接近目标计量时间时进行的修正1(修正4)大的修正量。以按多次进行修正为前提决定修正系数,即使这样地使得在修正量算出因子中不包含目标计量时间,也可以调整成安全的修正量。 
因此,不限于上述的算出式,为了满足(修正2的修正量)>(修正1的修正量)、(修正5的修正量)>(修正4的修正量),也可以作成以下公式。 修正1的修正量=(实际计量时间-目标计量时间)×修正系数a1 修正2的修正量=(实际计量时间-目标计量时间)×修正系数a2 (在此,假设修正系数a1<修正系数a2) 修正4的修正量=(实际计量时间-目标计量时间)×修正系数b1 修正5的修正量=(实际计量时间-目标计量时间)×修正系数b2 (在此,设修正系数b1<修正系数b2) 
图5、图6是表示本发明系统的小计量、中计量的各设定值修正的处理动作的流程图。这些处理动作是根据实际计量时间的阈值校验等来判断并选择修正1~3(在中计量的情况下为修正4~6)或没有修正的。下面,将顺次进行说明。 
在小计量的设定值修正中,考虑上述(2)的条件,分成以下的(a)、(b)的两种情况进行修正。在此,作为用于判别修正1、2的实际计量时间的阈值采用10秒。另外,作为用于判别是否需要修正的阈值,考虑上述(5)的条件,希望采用上下限值(目标计量时间±α)。即,只要实际计量时间在上下限值范围内,就可以不要修正。 
(a)在大计量、中计量的实际计量时间都为0的情况下(图5中的步骤101~105), 在小计量的实际计量时间<10时,不修正供给质量切换值。 在小计量的实际计量时间≥10时,由修正2的算出式(式2)求出修正量,修正供给质量切换值。 
(b)在(a)以外的情况下(图5中的步骤101、102、106~112), 在小计量的实际计量时间≥10时,由修正2的算出式(式2)求出修正量,修正供给质量切换值。 在目标计量时间上限值<小计量的实际计量时间<10时,由修正1的算出式(式1)求出修正量,修正供给质量切换值。 在小计量的实际计量时间在目标计量时间上下限值范围内时,不修正供给质量切换值。 在小计量的实际计量时间<目标计量时间下限值时,由修正3的算出式(式3)求出修正量,修正供给质量切换值。 
另外,在中计量的设定值修正中,考虑上述(2)的条件,分成以下(c)、(d)的两种情况进行修正。在此,作为用于判别修正3、4的实际计量时间的阈值采用6秒。另外,作为判别是否需要修正 的阈值,考虑上述(5)的条件,希望采用上下限值(目标计量时间±β)。即,只要实际计量时间在上下限值范围内,就可以不需要修正。 
(c)在大计量的实际计量时间=0,且小计量的实际计量时间≤目标计量时间的情况下(图6中的步骤201~205), 中计量的实际计量时间<6时,不修正供给质量切换值。 中计量的实际计量时间≥6时,由修正5的计算式(式5)求修正量,修正供给质量切换值。 
(d)在(c)以外的情况下(图6中的步骤201、202、206~212), 在中计量的实际计量时间≥6时,由修正5的算出式(式5)求出修正量,修正供给质量切换值。 在目标计量时间上限值<中计量的实际计量时间<6时,由修正4的算出式(式4)求出修正量,修正供给质量切换值。 在中计量的实际计量时间在目标计量时间上下限值范围内时,不修正供给质量切换值。 在中计量的实际计量时间<目标计量时间下限值时,由修正6的算出式(式6)求出修正量,修正供给质量切换值。 
在小计量、中计量的上述处理中,在同时成为不修正的情况下,判断为实现了供给质量切换值的优化,以该供给质量切换值实施以后的多阶段计量。另外,虽然如果优化结束就不需要实行设定值修正,但因为只要没有计量时间的计测误差,即使进行上述处理,供给质量切换值也一定,所以也可以实行。 
如以上所述,设定值修正机构23因为以使各阶段的供给质量切换值接近目标计量时间的方式,实行了分成多次地进行设定值修正的算法,所以能够安全可靠地进行正确且迅速的多阶段计量。 
另外,由于能够实行以实际计量时间和目标计量时间的差为基准的标准修正(修正1、修正3)、和在实际计量时间与目标计量时间背离了规定的阈值以上的情况下的比标准修正大的修正(修正2、 修正5)中的任一种,所以即使在大背离的情况下也能够早期实现优化。