Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020161953 - DISPOSITIF DE CAPTEUR DE CHAMP PHOTOMAGNÉTIQUE DE TYPE À INTERFÉRENCE

Document

明 細 書

発明の名称 干渉型光磁界センサ装置

技術分野

0001  

背景技術

0002  

発明の概要

0003   0004   0005   0006   0007   0008   0009   0010   0011  

図面の簡単な説明

0012  

発明を実施するための形態

0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072  

請求の範囲

1   2   3   4   5   6  

図面

1   2   3   4   5   6   7   8   9  

明 細 書

発明の名称 : 干渉型光磁界センサ装置

技術分野

[0001]
 本開示は、干渉型光磁界センサ装置に関する。

背景技術

[0002]
 光ファイバ先端にファラデー回転子を設けたプローブ型センサを磁界センサ素子として使用し、磁界センサ素子を透過した光を光電変換してファラデー回転子に印加される磁界に応じた検出信号を生成する干渉型光磁界センサ装置が知られている(例えば、「ガーネット単結晶を用いたリング干渉型光磁界センサ」(田村仁志ら、Journal of the Magnetics Society of Japan Vol. 34, No. 4, 2010、以下、非特許文献1と称する)を参照)。非特許文献1に記載される干渉型光磁界センサ装置は、磁界センサ素子が有するファラデー回転子として希土類鉄ガーネット結晶(TbY)IGを使用することで、磁界センサ素子に対して平行な磁界に加えて垂直な磁界が測定可能になる。

発明の概要

[0003]
 しかしながら、非特許文献1に記載される干渉型光磁界センサ装置は、磁界センサ素子を透過した光を直接光電変換して検出信号を生成するため、生成される検出信号は、ファラデー回転子に印加される磁界にかかわらず一定値となる直流成分を多く含むことになる。生成される検出信号に含まれる直流成分は、ファラデー回転子に印加される磁界の検出に寄与しない雑音成分となる。非特許文献1に記載される干渉型光磁界センサ装置は、検出される磁界の検出に寄与しない雑音成分を多く含むので、検出信号のSN比が低くなり、検出感度が低くなるおそれがある。
[0004]
 一態様では、このような課題を解決するものであり、磁界を検出する検出信号のSN比が高い干渉型光磁界センサ装置を提供することを目的とする。
[0005]
 実施形態に係る干渉型光磁界センサ装置は、第1直線偏波光を出射する発光部と、入射された前記第1直線偏波光に応じて、第1直線偏光と前記第1直線偏光に直交する第2直線偏光を出射し、且つ、入射された第3直線偏光と前記第3直線偏光と直交する第4直線偏光に応じて、第2直線偏波光を出射する第1光学素子と、少なくともその一部が所定の磁界内に配置可能な磁界センサ素子と、前記第1光学素子及び前記磁界センサ素子に接続され、前記第1直線偏光及び前記第4直線偏光を伝搬する第1光路、及び、前記第2直線偏光及び前記第3直線偏光を伝搬する第2光路を有する光路部と、入射された前記第2直線偏波光をS偏光成分光及びP偏光成分光に分離し、前記S偏光成分光及び前記P偏光成分光を受光して電気信号に変換することで、前記磁界センサ素子に印加される磁界に応じた検出信号を出力する検出信号発生部と、前記第1直線偏波光を前記光路部へ透過させ、且つ、前記第2直線偏波光を前記検出信号発生部へ分岐する光分岐部と、を有し、前記磁界センサ素子は、前記光路部を伝搬された前記第1直線偏光及び前記第2直線偏光を入射光とし、前記第1直線偏光に応じた前記第3直線偏光及び前記第2直線偏光に応じた前記第4直線偏光を戻り光として出射する。
[0006]
 さらに、実施形態に係る干渉型光磁界センサ装置では、光路部は、第2光路に配置され、第3直線偏波と第4直線偏波との間の位相差が90度になるように、第2直線偏波及び第3直線偏波の位相を調整する第2光学素子を更に有することが好ましい。
[0007]
 さらに、実施形態に係る干渉型光磁界センサ装置では、第1光学素子は、発光部から入射された第1直線偏波光の偏光面方位角が22.5度になるように配置された1/2波長板であることが好ましい。
[0008]
 さらに、実施形態に係る干渉型光磁界センサ装置では、発光部、第1光学素子、光路部、磁界センサ素子及び検出信号発生部との間は、偏波保持ファイバによって接続されることが好ましい。
[0009]
 さらに、実施形態に係る干渉型光磁界センサ装置では、第1光路及び第2光路は、偏波保持ファイバを有することが好ましい。
[0010]
 さらに、実施形態に係る干渉型光磁界センサ装置では、偏波保持ファイバは、何れもPANDAファイバであることが好ましい。
[0011]
 実施形態に係る干渉型光磁界センサ装置は、偏光面が45度回転された直線偏波光をS偏光成分及びP偏光成分に分離し、S偏光成分及びP偏光成分を受光して検出信号を生成するので、磁界を検出する検出信号のSN比を高くすることができる。

図面の簡単な説明

[0012]
[図1] 実施形態に係る干渉型光磁界センサ装置を示すブロック図である。
[図2] 図1に示す磁界センサ素子の模式図である。
[図3] 図1に示す第1受光素子、第2受光素子、及び信号処理回路の回路ブロック図である。
[図4] 図1に示す干渉型光磁界センサ装置の動作を示す図(その1)である。
[図5] 図1に示す干渉型光磁界センサ装置の動作を示す図(その2)である。
[図6] 図1に示す干渉型光磁界センサ装置の動作を示す図(その3)である。
[図7] 図1に示す干渉型光磁界センサ装置の動作を示す図(その4)である。
[図8] (a)は図1に示すファラデー回転子に印加される磁界と第3直線偏波CW2及び第4直線偏波CCW2の合波のS偏光成分及びP偏光成分の光強度との関係の一例を示す図であり、(b)はファラデー回転子52に印加される磁界と(a)に示す第3直線偏波CW2及び第4直線偏波CCW2の合波のS偏光成分の光強度とP偏光成分の光強度との差分との関係を示す図である。
[図9] 実施形態に係る干渉型光磁界センサ装置の変形例を示すブロック図である。

発明を実施するための形態

[0013]
 以下図面を参照して、本発明に係る干渉型光磁界センサ装置について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
[0014]
 (実施形態に係る干渉型光磁界センサ装置の構成及び機能)
 図1は、実施形態に係る干渉型光磁界センサ装置を示すブロック図である。
[0015]
 干渉型光磁界センサ装置1は、発光部10と、サーキュレータ20と、第1光学素子30と、光路部40と、磁界センサ素子50と、検出信号発生部60とを有する。発光部10、サーキュレータ20、第1光学素子30、光路部40、磁界センサ素子50及び検出信号発生部60の間の光路は、PANDA(Polarization-maintaining AND Absorption-reducing)ファイバによって形成される。なお、第1光学素子30、光路部40、磁界センサ素子50及び検出信号発生部60の間の光路は、ボウタイ(Bow-tie)ファイバ及び楕円ジャケット(Elliptical Jacket)ファイバ等の偏波保持ファイバによって形成されてもよい。
[0016]
 発光部10は、発光素子11と、アイソレータ12と、偏光子13とを有する。発光素子11は、例えば半導体レーザ又は発光ダイオードである。具体的には、発光素子11として、ファブリペローレーザー、スーパールミネッセンスダイオード等を好ましく用いることができる。
[0017]
 アイソレータ12は、発光素子11から入射された光を光分岐部20側に透過すると共に、サーキュレータ20から入射された光を発光素子11側に透過しないことで、発光素子11を保護する。アイソレータ12は、例えば偏光依存型光アイソレータであり、偏光無依存型光アイソレータであってもよい。
[0018]
 偏光子13は、発光素子11が発した光を直線偏波光にするための光学素子であり、その種類は特に限定されない。偏光子13で得られる第1直線偏波光は、サーキュレータ20を介して第1光学素子30に入射される。
[0019]
 サーキュレータ20は、発光部10から出射された第1直線偏波光を第1光学素子30に透過すると共に、第1光学素子30から出射された第2直線偏波光を検出信号発生部60に分岐する光分岐部である。サーキュレータ20は、例えばファラデー回転子、1/2波長板、偏光ビームスプリッタ、及び反射ミラーによって形成される。
[0020]
 第1光学素子30は、例えばサーキュレータ20から入射される第1直線偏波光の偏光面に対して方位角が22.5度になるように配置された1/2波長板であり、サーキュレータ20から入射される第1直線偏波光の偏光面を45度回転し、光路部40に第1直線偏波光を出射する。第1光学素子30で偏光面が45度回転した第1直線偏波光は、P偏光である第1直線偏光CW1と、第1直線偏光CW1に直交するS偏光である第2直線偏光CCW1とを有する。
[0021]
 また、第1光学素子30は、光路部40から入射される直線偏波光である第2直線偏波光の偏光面を45度回転し、サーキュレータ20に出射する。
[0022]
 光路部40は、第1ビームスプリッタ41と、第2ビームスプリッタ42と、第1光路43と、第2光路44と、第2光学素子45とを有する。
[0023]
 第1ビームスプリッタ41は、第1直線偏光CW1を第1光路43に出射すると共に、第2直線偏光CCW1を第2光路44に出射する。また、第1ビームスプリッタ41は、第3直線偏光CW2が第2光路44から入射されると共に、第4直線偏光CCW2が第1光路43から入射される。第3直線偏光CW2及び第4直線偏光CW2は、第1光学素子30に出射される第2直線偏波光の互いに直交する偏光成分である。
[0024]
 第2ビームスプリッタ42は、第1直線偏光CW1が第1光路43から入射されると共に、第2直線偏光CCW1が第2光路44から入射される。また、第2ビームスプリッタ42は、第3直線偏光CW2を第2光路44に出射すると共に、第4直線偏光CCW2を第1光路43に出射する。
[0025]
 第1ビームスプリッタ41及び第2ビームスプリッタ42は、入射光をP偏光成分とS偏光成分とに分離し、且つ、P偏光成分とS偏光成分とを合成し出射する。第1ビームスプリッタ41及び第2ビームスプリッタ42は、例えばプリズム型ビームスプリッタであるが、平面型ビームスプリッタ又はウェッジ型ビームスプリッタであってもよい。
[0026]
 第1光路43は、第1ビームスプリッタ41から導入された第1直線偏光CW1を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第4直線偏光CCW2を第1ビームスプリッタ41に導出する。第2光路44は、第1ビームスプリッタ41から導入された第2直線偏光CCW2を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第3直線偏光CW2を第1ビームスプリッタ41に導出する。
[0027]
 第1光路43は、一端が第1ビームスプリッタ41に光学的に接続され且つ他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。第2光路44は、一端が第1ビームスプリッタ41に光学的に接続され且つ他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。なお、第1光路43及び第2光路44は、ボウタイファイバ及び楕円ジャケットファイバ等の偏波保持ファイバであってもよい。第2光路44には、第2光学素子45が配置される。
[0028]
 第2光学素子45は、第1(1/4)波長板46と、第2(1/4)波長板47と、45度ファラデー回転子48とを有する。
[0029]
 第1(1/4)波長板46は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して光学軸が45度傾斜して配置される1/4波長板である。第1(1/4)波長板46は、直線偏光を円偏光に変換すると共に、円偏光を直線偏光に変換する。
[0030]
 第2(1/4)波長板47は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して光学軸が-45度傾斜して配置される1/4波長板である。第2(1/4)波長板47は、45度ファラデー回転子48から円偏光を直線偏光に変換すると共に、直線偏光を円偏光に変換する。
[0031]
 45度ファラデー回転子48は、第1(1/4)波長板46及び第2(1/4)波長板47のそれぞれから入射される円偏光の位相を変化させるファラデー回転子である。
[0032]
 45度ファラデー回転子48は、第2(1/4)波長板47から出射される第2直線偏光CCW1の位相が第1(1/4)波長板46に入射される直線偏光である第2直線偏光CCW1の位相から45シフトするように、第1(1/4)波長板46から入射される円偏光の位相を変化させる。また、45度ファラデー回転子48は、第1(1/4)波長板46から出射される第3直線偏光CW2の位相が第2(1/4)波長板46に入射される第3直線偏光CW2の位相から-45シフトするように、円偏光の位相を変化させる。
[0033]
 磁界センサ素子50は、1/4波長板51と、ファラデー回転子52と、ミラー素子53とを有し、PANDAファイバを介して第2ビームスプリッタ42に接続され、少なくともその一部が所定の磁界内に配置可能な素子である。磁界センサ素子50は、発光部10が出射した直線偏波光が入射光として入射されると共に、入射された入射光に応じた戻り光を出射する。
[0034]
 検出信号発生部60は、第3ビームスプリッタ61と、第1受光素子62と、第2受光素子63と、信号処理回路70とを有し、サーキュレータ20で分岐された第2直線偏波光を受光する。検出信号発生部60は、第2直線偏波光をS偏光成分及びP偏光成分に分離し、S偏光成分及びP偏光成分を受光して電気信号に変換して差動増幅することで、磁界センサ素子に印加される磁界に応じた検出信号Edを出力する。第3ビームスプリッタ61は、プリズム型、平面型、ウェッジ基板型及び光導波路型等の偏光ビームスプリッタ(PBS)であり、サーキュレータ20で分岐された第2直線偏波光をS偏光成分64とP偏光成分65とに分離する。
[0035]
 第1受光素子62及び第2受光素子63のそれぞれは、例えばPINフォトダイオードである。第1受光素子62はS偏光成分64を受光し、第2受光素子63はP偏光成分65を受光する。第1受光素子62及び第2受光素子63のそれぞれは、受光した光を光電変換して、受光した光の光量の応じた電気信号を出力する。信号処理回路70は、S偏光成分を示す電気信号及びP偏光成分を示す電気信号を差動増幅することで、磁界センサ素子に印加される磁界に応じた検出信号Edを出力する。
[0036]
 図2は、磁界センサ素子50の模式図である。
[0037]
 1/4波長板51は、第2ビームスプリッタ42との間を光学的に接続するPANDAファイバの遅相軸及び進相軸に対して光学軸が45度傾斜して配置される1/4波長板である。1/4波長板51は、直線偏光である入射光の偏光状態を円偏光に変換すると共に、ファラデー回転子52から円偏光として入射される戻り光の偏光状態を直線偏光に変換する。
[0038]
 ファラデー回転子52は、誘電体520と、誘電体520から安定的に相分離した状態で誘電体520中に分散しているナノオーダの磁性体粒子521とを有するグラニュラー膜であり、1/4波長板51の端面に配置される。磁性体粒子521は、例えば最表層等のごく一部では酸化物が形成されていてもよいが、ファラデー回転子52の全体では、磁性体粒子521が、バインダとなる誘電体と化合物を作らずに、単独で薄膜中に分散している。ファラデー回転子52内における磁性体粒子521の分布は、完全に一様でなくてもよく、多少偏っていてもよい。誘電体520として透明性が高いものを用いれば、誘電体520中に磁性体粒子521が光の波長よりも小さいサイズで存在することにより、ファラデー回転子52は光透過性を有する。
[0039]
 ファラデー回転子52は、単層のものに限らず、グラニュラー膜と誘電体膜とが交互に積層した多層膜であってもよい。グラニュラー膜を多層膜することでファラデー回転子52を形成することで、グラニュラー膜内での多重反射によって、より大きなファラデー回転角が得られる。
[0040]
 誘電体520は、フッ化マグネシウム(MgF )、フッ化アルミニウム(AlF )、フッ化イットリウム(YF )等のフッ化物(金属フッ化物)が好ましい。また、誘電体520は、酸化タンタル(Ta )、二酸化ケイ素(SiO )、二酸化チタン(TiO )、五酸化二ニオビウム(Nb )、二酸化ジルコニウム(ZrO )、二酸化ハフニウム(HfO )、及び三酸化二アルミニウム(Al )等の酸化物であってもよい。誘電体520と磁性体粒子521との良好な相分離のためには、酸化物よりもフッ化物の方が好ましく、透過率が高いフッ化マグネシウムが特に好ましい。
[0041]
 磁性体粒子521の材質は、ファラデー効果を生じるものであればよく、特に限定されないが、磁性体粒子521の材質としては、強磁性金属である鉄(Fe)、コバルト(Co)及びニッケル(Ni)並びにこれらの合金が挙げられる。Fe、Co及びNiの合金としては、例えば、FeNi合金、FeCo合金、FeNiCo合金、NiCo合金が挙げられる。Fe、Co及びNiの単位長さ当たりのファラデー回転角は、従来のファラデー回転子に適用されている磁性ガーネットに比べて2~3桁近く大きい。
[0042]
 ミラー素子53は、ファラデー回転子52上に形成されており、ファラデー回転子52を透過した光をファラデー回転子52に向けて反射する。ミラー素子53としては、例えば、銀(Ag)膜、金(Au)膜、アルミニウム(Al)膜又は誘電体多層膜ミラー等を用いることができる。特に、反射率の高いAg膜及び耐食性が高いAu膜が成膜上簡便で好ましい。ミラー素子53の厚さは、98%以上の十分な反射率を確保できる大きさであればよく、例えばAg膜の場合には、50nm以上かつ200nm以下であることが好ましい。ミラー素子53を用いてファラデー回転子52内で光を往復させることにより、ファラデー回転角を大きくすることができる。
[0043]
 1/4波長板51からファラデー回転子52に入射した円偏光は、ファラデー回転子52を透過し、ミラー素子53で反射し、再びファラデー回転子52を透過して戻り光となる。ファラデー回転子52を透過した戻り光は、1/4波長板51に再度入射される。
[0044]
 1/4波長板51からファラデー回転子52に入射した円偏光は、ファラデー回転子52に印加される磁界に応じて位相を変化させる。また、ミラー素子53で反射した円偏光は、ファラデー回転子52に印加される磁界に応じて位相を更に変化させる。
[0045]
 図3は、第1受光素子62、第2受光素子63、及び信号処理回路70の回路ブロック図である。
[0046]
 信号処理回路70は、例えばオペアンプである増幅素子71と、抵抗素子72とを有する。第1受光素子62のアノード及び第2受光素子63のカソードは、増幅素子71のマイナス入力端子に接続され、第1受光素子62のカソードは正電源+Vに接続され、第2受光素子63のアノードは負電源-Vに接続される。
[0047]
 第1受光素子62は、第3直線偏光及び第4直線偏光の合波のS偏光成分の強度に比例する電流である第1電気信号E1を出力する。第2受光素子63は、第3直線偏光及び第4直線偏光の合波のP偏光成分の強度に比例する電流である第2電気信号E2を出力する。増幅素子71のマイナス入力端子には、S偏光成分の強度に比例する第1電気信号とP偏光成分の強度に比例する第2電気信号との差動信号(E1-E2)が入力される。
[0048]
 第3直線偏光及び第4直線偏光の合波のS偏光成分P 0及び第3直線偏光及び第4直線偏光の合波のP偏光成分P 90は、以下の式(1)及び式(2)で示される。
[0049]
[数1]


[0050]
 ここで、E CW,0は検出信号発生部に入射する第3直線偏光のS偏光成分であり、E CCW,0は検出信号発生部に入射する第4直線偏光のS偏光成分である。また、E CW,90は検出信号発生部に入射する第3直線偏光のP偏光成分であり、E CCW,90は検出信号発生部に入射する第4直線偏光のP偏光成分である。また、θ Fはファラデー回転子52に印加される磁界に応じたファラデー回転角である。
[0051]
 増幅素子71のマイナス入力端子に入力される差動信号(E1-E2)は、第3直線偏光及び第4直線偏光の合波のS偏光成分P 0及びP偏光成分P 90の差分に比例するものであり、ファラデー回転角θ Fに応じた電気信号である。
[0052]
 信号処理回路70は、反転増幅回路であり、増幅素子71のマイナス入力端子に入力される差動信号(E1-E2)を反転増幅して、検出信号Edを出力する。検出信号Edは、基準光強度に相当する直流成分が除去された電気信号である。
[0053]
 (実施形態に係る干渉型光磁界センサ装置の動作)
 図4は干渉型光磁界センサ装置の動作を示す図(その1)であり、図5は干渉型光磁界センサ装置の動作を示す図(その2)であり、図6は干渉型光磁界センサ装置の動作を示す図(その3)である。図7は、干渉型光磁界センサ装置の動作を示す図(その4)である。図4は、偏光子13及び第1光学素子30の動作を示す。図5は、第1直線偏光CW1及び第3直線偏光CW2が伝送されるときの光路部40及び磁界センサ素子50の動作を示す。図6は、第2直線偏光CCW1及び第4直線偏光CCW2が伝送されるときの光路部40及び磁界センサ素子50の動作を示す。図7は、第1光学素子30が伝送されるときの第1光学素子30及び検出信号発生部60の動作を示す。
[0054]
 図4において矢印Aで示されるように、P偏光である直線偏波光401は、サーキュレータ20を介して偏光子13から出射される。次いで、図4において矢印Bで示されるように、偏光子13から出射された直線偏波光401は、第1光学素子30を透過することで、サーキュレータ20から入射される直線偏波401光の偏光面を45度回転する。偏光面が45度回転された直線偏波401光は、第1直線偏光CW1と、第2直線偏光CCW1とを有する。
[0055]
 次いで、図5において矢印Cで示されるように、第1光学素子30から出射された第1直線偏光CW1は、第1ビームスプリッタ41、第1光路43及び第2ビームスプリッタを介して磁界センサ素子50に入射される。次いで、図5において矢印Dで示されるように、磁界センサ素子50に入射した第1直線偏光CW1の偏光状態は、1/4波長板51を透過することで直線偏光から左回転の円偏光に変換される。次いで、図5において矢印Eで示されるように、1/4波長板51を透過した円偏光は、ファラデー回転子52を透過することで、ファラデー回転子52に印加される磁界に応じて位相を-θ F変化させる。
[0056]
 次いで、図5において矢印Fで示されるように、ファラデー回転子52から出射された左回転の円偏光は、ミラー素子53で反射されることで、右回転の円偏光となる。次いで、図5において矢印Gで示されるように、ミラー素子53で反射した円偏光は、ファラデー回転子52を透過することで、ファラデー回転子52に印加される磁界に応じて位相を更に-θ F変化させて合計で-2θ F変化させる。次いで、図5において矢印Hで示されるように、ファラデー回転子52を透過した戻り光の偏光状態は、1/4波長板51を透過することで右回転の円偏波からS偏光である第3直線偏光CW2に変換される。
[0057]
 次いで、図5において矢印Iで示されるように、第2ビームスプリッタ42に入射した第3直線偏波CW2の偏光状態は、第2ビームスプリッタ42を透過することで、S偏光からP偏光に変換される。次いで、図5において矢印Jで示されるように、第2光学素子45を透過した第3直線偏波CW2は、位相を-45度シフトさせる。次いで、図5において矢印Kで示されるように、第1ビームスプリッタ41に入射した第3直線偏波CW2の偏光状態は、第1ビームスプリッタ41を透過することで、P偏光からS偏光に変換される。
[0058]
 図6において矢印Lで示されるように、第1光学素子30から出射された第2直線偏光CCW1は、第1ビームスプリッタ41を介して第2光路44に出射される。第2直線偏光CCW1の偏光状態は、第1ビームスプリッタ41を透過することで、S偏光からP偏光に変換される。次いで、図6において矢印Mで示されるように、第2光学素子45を透過した第2直線偏光CCW1は、位相を45度シフトさせる。次いで、図6において矢印Nで示されるように、第2ビームスプリッタ42に入射した第2直線偏光CCW1の偏光状態は、第2ビームスプリッタ42を透過することで、P偏光からS偏光に変換される。
[0059]
 次いで、図6において矢印Oで示されるように、磁界センサ素子50に入射した第2直線偏光CCW1の偏光状態は、1/4波長板51を透過することで直線偏波から右回転の円偏波に変換される。次いで、図6において矢印Pで示されるように、1/4波長板51を透過した円偏光は、ファラデー回転子52を透過することで、ファラデー回転子52に印加される磁界に応じて位相をθ F変化させる。
[0060]
 次いで、図6において矢印Qで示されるように、ファラデー回転子52から出射された円偏光は、ミラー素子53で反射されることで、左回転の円偏光となる。次いで、図6において矢印Rで示されるように、ミラー素子53で反射した円偏光は、ファラデー回転子52を透過することで、ファラデー回転子52に印加される磁界に応じて位相を更にθ F変化させて合計で2θ F変化させる。次いで、図6において矢印Sで示されるように、ファラデー回転子52を透過した戻り光の偏光状態は、1/4波長板51を透過することで左回転の円偏波からP偏光である第4直線偏光CCW2に変換される。次いで、磁界センサ素子50から出射された第4直線偏光CCW2は、第2ビームスプリッタ42及び第1光路43を介して第1ビームスプリッタ41に入射され、第3直線偏波CW2と合波される。
[0061]
 次いで、図7において矢印Uで示されるように、第1ビームスプリッタ41で合波された第3直線偏光CW2及び第4直線偏光CCW2の合波701は、第1光学素子30を透過することで、偏光面が45度回転される。そして、図7において矢印Vで示されるように、第3直線偏光CW2及び第4直線偏光CCW2の合波701のS偏光成分711は、第3ビームスプリッタ61を介して第1受光素子62に入射する。また、図7において矢印Wで示されるように、第3直線偏光CW2及び第4直線偏光CCW2の合波701のP偏光成分712は、第3ビームスプリッタ61を介して第2受光素子63に入射する。
[0062]
 (実施形態に係る干渉型光磁界センサ装置の作用効果)
 干渉型光磁界センサ装置1では、S偏光成分の強度に比例する第1電気信号とP偏光成分の強度に比例する第2電気信号との差動信号(E1-E2)を反転増幅して検出信号Edを生成するので、検出信号は、基準光強度に相当する直流成分が除去される。干渉型光磁界センサ装置1は、基準光強度に相当する直流成分が除去された検出信号を利用するので、検出される磁界に応じた検出信号のSN比を高くすることができる。
[0063]
 図8(a)は、ファラデー回転子52に印加される磁界と第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分及びP偏光成分の光強度との関係の一例を示す図である。図8(b)は、ファラデー回転子52に印加される磁界と、図8(a)に示す第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分の光強度とP偏光成分の光強度との差分との関係を示す図である。図8(a)及び8(b)において、横軸はファラデー回転子52に印加される磁界を示し、図8(a)において、縦軸は第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分及びP偏光成分の光強度を示す。また、図8(b)において、縦軸は図8(a)に示す第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分の光強度とP偏光成分の光強度との差分を示す。図8(a)において、ひし形印は第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分を示し、正方形印は第3直線偏光CW2及び第4直線偏光CCW2の合波のP偏光成分を示す。
[0064]
 図8(a)に示す例では、第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分及びP偏光成分の光強度の双方は、図8(a)において破線で示される243.7μWの基準光強度を有する。図8(b)に示すように、第3直線偏光CW2及び第4直線偏光CCW2の合波のS偏光成分の光強度とP偏光成分の光強度との差分は、243.7μWである基準光強度が除去されているので、検出される磁界に応じた検出信号のSN比を高くすることができる。
[0065]
 (実施形態に係る干渉型光磁界センサ装置の変形例)
 図9は、実施形態に係る干渉型光磁界センサ装置の変形例を示すブロック図である。
[0066]
 干渉型光磁界センサ装置2は、発光部15及び検出信号発生部80を発光部10及び検出信号発生部60の代わりに有することが干渉型光磁界センサ装置1と相違する。発光部15及び検出信号発生部80以外の干渉型光磁界センサ装置2の構成要素の構成及び機能は、同一符号が付された干渉型光磁界センサ装置1の構成要素の構成及び機能と同様なので、ここでは詳細な説明は省略する。
[0067]
 発光部15は、パルス信号発生器16を有することが発光部10と相違する。パルス信号発生器16以外の発光部15の構成要素の構成要素の構成及び機能は、同一符号が付された発光部10の構成要素の構成及び機能と同様なので、ここでは詳細な説明は省略する。パルス信号発生器16は、不図示の信号処理部の指示に基づいて、発光素子11が所定のパルス幅を有する光を所定の周期で出射するように発光素子11を制御する制御信号を発光素子11に出力する。
[0068]
 発光素子11から出射されたパルス信号は、偏光子13によって偏光されて、所定のパルス幅を有する第1直線偏波光として出射される。偏光子13から出射された第1直線偏波光は、サーキュレータ20、第1光学素子30、光路部40及び磁界センサ素子50を介して、第1直線偏波光が有するパルス幅に対応したバルス幅を有する第2直線偏波光として検出信号発生部80に入射される。
[0069]
 検出信号発生部80は、第3ビームスプリッタ81と、第1光路82と、第2光路83と、フォトカプラ84と、受光素子85と、信号処理回路86とを有する。第3ビームスプリッタ81は、プリズム型、平面型、ウェッジ基板型及び光導波路型等の偏光ビームスプリッタ(PBS)である。第3ビームスプリッタ81は、サーキュレータ20で分岐された第2直線偏波光を、第2直線偏波光が有するパルス幅に対応したバルス幅を有するS偏光成分及びP偏光成分に分離する。第3ビームスプリッタ81によって分離されたS偏光成分は第1光路82に導入され、第3ビームスプリッタ81によって分離されたP偏光成分は第2光路83に導入される。
[0070]
 第1光路82及び第2光路83は、例えばPANDAファイバ等の偏波保持ファイバであり、光路長が互いに相違する。第1光路82及び第2光路83の光路長は、第2光路83に導入されたP偏光成分が第1光路82に導入されたS偏光成分よりも少なくともS偏光成分が有するパルス幅よりも遅延するように規定される。
[0071]
 フォトカプラ84は、例えば3dBカプラであり、第1光路82から導出されるS偏光成分と、第2光路83から導出されるP偏光成分とを合波して、合波した光を受光素子85に出射する。受光素子85は、例えばPINフォトダイオードであり、フォトカプラ84が合波した光を受光し、受光した光を光電変換して、受光した光の光量の応じた電気信号を出力する。
[0072]
 信号処理回路86は、受光素子85から入力される電気信号をS偏光成分を示す電気信号とP偏光成分を示す電気信号とに分離し、分離たS偏光成分を示す電気信号及びP偏光成分を示す電気信号を差動増幅することで、検出される磁界に応じた検出信号Edを出力する。信号処理回路86は、例えばパルス信号発生器16が発光素子11に出力する制御信号、並びにS偏光成分及びP偏光成分フォトカプラ84に入射されるタイミングに基づいて電気信号をS偏光成分を示す電気信号とP偏光成分を示す電気信号とに分離する。また、信号処理回路86は、例えばオペアンプ等によって形成される差動増幅回路によって、S偏光成分を示す電気信号及びP偏光成分を示す電気信号を差動増幅する。

請求の範囲

[請求項1]
 第1直線偏波光を出射する発光部と、
 入射された前記第1直線偏波光に応じて、第1直線偏光と前記第1直線偏光に直交する第2直線偏光を出射し、且つ、入射された第3直線偏光と前記第3直線偏光と直交する第4直線偏光に応じて、第2直線偏波光を出射する第1光学素子と、
 少なくともその一部が所定の磁界内に配置可能な磁界センサ素子と、
 前記第1光学素子及び前記磁界センサ素子に接続され、前記第1直線偏光及び前記第4直線偏光を伝搬する第1光路、及び、前記第2直線偏光及び前記第3直線偏光を伝搬する第2光路を有する光路部と、
 入射された前記第2直線偏波光をS偏光成分光及びP偏光成分光に分離し、前記S偏光成分光及び前記P偏光成分光を受光して電気信号に変換することで、前記磁界センサ素子に印加される磁界に応じた検出信号を出力する検出信号発生部と、
 前記第1直線偏波光を前記光路部へ透過させ、且つ、前記第2直線偏波光を前記検出信号発生部へ分岐する光分岐部と、を有し、
 前記磁界センサ素子は、前記光路部を伝搬された前記第1直線偏光及び前記第2直線偏光を入射光とし、前記第1直線偏光に応じた前記第3直線偏光及び前記第2直線偏光に応じた前記第4直線偏光を戻り光として出射する、
 ことを特徴とする干渉型光磁界センサ装置。
[請求項2]
 前記光路部は、前記第2光路に配置され、前記第3直線偏波と前記第4直線偏波との間の位相差が90度になるように、前記第2直線偏波及び前記第3直線偏波の位相を調整する第2光学素子を更に有する、請求項1に記載の干渉型光磁界センサ装置。
[請求項3]
 前記第1光学素子は、前記発光部から入射された前記第1直線偏波光の偏光面方位角が22.5度になるように配置された1/2波長板である、請求項1又は2に記載の干渉型光磁界センサ装置。
[請求項4]
 前記発光部、前記第1光学素子、前記光路部、前記磁界センサ素子及び前記検出信号発生部との間は、偏波保持ファイバによって接続される、請求項1~3の何れか一項に記載の干渉型光磁界センサ装置。
[請求項5]
 前記第1光路及び前記第2光路は、偏波保持ファイバを有する、請求項4に記載の干渉型光磁界センサ装置。
[請求項6]
 前記偏波保持ファイバは、何れもPANDAファイバである、請求項5に記載の干渉型光磁界センサ装置。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]