Некоторое содержание этого приложения в настоящий момент недоступно.
Если эта ситуация сохраняется, свяжитесь с нами по адресуОтзывы и контакты
1. (WO2019066620) ANTI-C-MET ANTIBODY AND USES THEREOF
Примечание: Текст, основанный на автоматизированных процессах оптического распознавания знаков. Для юридических целей просьба использовать вариант в формате PDF
【명세서】

【발명의 명칭】

항 c-Met 항체 및

【기술분야】

본 출원은 2017년 9월 29일에 출원된 대한민국 특허출원 제 10-2017-0128287호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.

본 발명은 항 c— Met 항체 및 이의 용도에 관한 것으로, 보다 상세하게는 인간 유래 c— Met 단백질에 특이적으로 결합하는 항체 또는 그 단편, 이의 생산방법, 이를 이용한 c-Met 특이적 검출 방법, 이를 이용한 순환암세포 (Ci rculat ing Tumor Cel l , CTC) 검출 방법 및 이를 유효성분으로 포함하는 순환암세포 검출용 키트에 관한 것이다.

【배경기술】

c-Met는 세포 표면에 존재하는 대표적인 RTK(Receptor Tyrosine Kinase)로써, 그 리간드인 HGF/SF(Hepatocyte Growth Factor/Scattering Factor)와 결합하여 세포 내 신호전달을 촉진시켜 세포의 성장을 촉진할 뿐 아니라 많은 종류의 암세포에 과 발현되어 암 발생, 암 전이, 암세포 이동, 암세포 침투, 신생 혈관 형성에도 광범위하게 관여한다. 또한 리간드의 이름이 의미하듯, HGF/SF를 통한 c-Met signal ing은 거의 모든 종류의 epi thel ial tumor의 cel l-cel l contact를 약화시켜 scatter ing을 야기하는 대표적인 암 전이 초기단계의 단백질이다 (Nat Rev Cancer . 2012 Jan 24; 12(2) :89-103) . 특히, c-Met 유전자의 upstream에는 hypoxi aresponse element들이 존재하여, 산소결핍 상황에서 그 유전자의 발현이 증가함은 잘 알려져 있다 (Oral Oncol . 2006 Jul ; 42(6): 593-8) . 또한, c-Met는 개시로부터 진행을 통해 전이까지 암 발생의 여러 단계에 기여하기 때문에, c-Met 및 그의 리간드 HGF는 표적화 암 요법을 위한 선도적인 후보가 되어 왔다 ( [Comogl io et al . 2008. Nat Rev Drug Di scov 7 : 504] ; [Knudsen and Vande Woude 2008. Curr Opin Genet Dev 18 : 87] ) · 특히 c-Met는 기존에 알려진 항암제의 작용 기작에서 약물 내성에 관여됨이 알려지면서 더욱 더 개인맞춤형 치료에 중요성이 인식되고 있으며, c-Met는

항암제와 관련하여 다수의 제약사들이 주목하고 있는 표적 분자가 되고 있다.

한편, 순환암세포 (Circulat ing Tumor Cel ls , CTCs)는 일차 종양 (Primary tumor cel l s)으로부터 분리되어 혈액을 따라 신체를 순환하는 암세포로, 암이 다른 장기로 전이되는데 핵심적인 역할을 한다고 알려져 있다. 암의 재발을 예측할 수 있는 치료 예후인자로써 활용이 가능하고, 치료제를 투여하면서 동시에 효능 및 평가를 모니터링 할 수 있는 유용한 수단이며, 임상적으로는 진단이 어려운 미세암전이 (Micrometastasi s)의 확인이 가능한 유용한 바이오마커로써 활용이 가능하다. 순환암세포에서 DNA 및 단백질을 추출하여, 다양한 Downstream Analysi s Technique를 활용하여 분석이 가능하기에, 보다 폭넓은 분석 Data를 확보할 수 있다. 하지만, 순환암세포는 혈액에 극미량으로 존재 (혈구 세포 10억개 당 1~10개)하기 때문에, 환자의 혈액에서 순환암세포를 검출하기 위해서는 정확성과 빠른 분리 기술을 토대로 한 첨단 분리기술이 필수적으로 확보되어야 한다.

따라서, c-Met에 보다 높은 친화도를 가지고 특이적으로 결합할 수 있고, 인간 유래 서열로 이루어져 체내 투여 시 면역반웅 유발 가능성이 낮으며, 보다 다양한 활성을 나타내는 c— Met 항체에 대한 개발이 요구되며, 환자의 체내에 존재하는 혈중 종양 세포를 검출할 수 있는 높은 민감성을 나타내는 진단 방법에 대한 개발이 요구된다.

【발명의 상세한 설명】

【기술적 과제】

이에, 본 발명자들은 c-Met을 표적으로 하면서도 다양한 생리활성을 나타내는 항체를 개발하기 위하여 예의 노력한 결과, c-Met을 표적으로 하도록, c-Met에 특이적으로 결합하는 인간으로부터 유래된 상보성 결정영역 (CDR)과 프레임 워크 영역 (FR)으로 구성된 인간항체가 HGF와 유사한 활성을 나타내며, 이러한 c-Met 항체가 혈액 내에서 순환암세포와 결합하는 것을 확인하여 본 발명을 완성하게 되었다.

따라서 본 발명의 목적은 인간 유래 c-Met 단백질에 특이적으로 결합하는

항체 또는 그 단편올 제공하

본 발명의 다른 목적은 상기 항체 또는 그 단편을 암호화 폴리뉴클레오티드, 백터 및 백터로 형질 전환된 세포를 제공하는 것이다.

본 발명의 또 다른 목적은 인간 c-Met에 결합하는 항체 또는 그 단편의 생산방법 및 c-Met 특이적 검출 방법을 제공하는 것이다.

본 발명의 또 다른 목적은 상기 항체 또는 그 단편을 이용한 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출 방법, 검출용 조성물 및 검출용 키트를 제공하는 것이다.

본 발명의 또 다른 목적은 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 제제를 제조하기 위한 상기 항체 또는 그 단편의 용도를 제공하는 것이다.

【기술적 해결방법】

상기와 같은 목적을 달성하기 위하여, 본 발명은 서열번호 1로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L1 , 서열번호 2로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L2 및 서열번호 3으로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L3를 포함하는 항체 경쇄가변영역 (VL) 및 서열번호 4로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) HI , 서열번호 5로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) H2 및 서열번호 6으로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) H3를 포함하는 항체 중쇄가변영역 (VH)을 포함하는 인간 유래 c-Met 단백질에 특이적으로 결합하는 항체 또는 그 단편을 제공한다.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 항체 또는 그 단편을 암호화 하는 폴리뉴클레오티드를 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 폴리뉴클레오티드를 포함하는 백터를 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 백터로 전환된 세포를 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 세포를 폴리뉴클레오티드가 발현되는 조건하에서 배양하여, 경쇄 및 중쇄가변영역을 포함하는 폴리펩타이드를 생산하는 단계 및 상기 세포 또는 이를 배양한 배양 배지로부터 상기 폴리펩타이드를 회수하는 단계를 포함하는 인간 c-Met에 결합하는 항체 또는 그 단편의 생산방법을 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 항체 또 단편을 시료와 접촉시키는 단계 및 상기 항체 또는 그 단편을 검출하 포함하는 c— Met 특이적 검출 방법을 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 a) 개체로부터 수득한 시료와 상기의 항체를 접촉시키는 단계; b) 상기 시료에 상기의 항체가 결합하여 형성된 복합체 (complex)를 복합체가 형성되지 않은 부분과 분리시키는 단계; 및 c) 상기 b) 단계에서 분리한 복합체를 수득하는 단계를 포함하는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출 방법을 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 항체 또는 그 단편을 유효성분으로 포함하는 순환암세포 (Ci rcul at ing Tumor Cel l , CTC) 검출용 조성물을 제공한다.

또한 본 발명은 상기 항체 또는 그 단편으로 구성되는 순환암세포 (Ci rculat ing Tumor Cel l , CTC) 검출용 조성물을 제공한다.

또한 본 발명은 상기 항체 또는 그 단편으로 필수적으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 조성물을 제공한다.

본 발명의 또 다른 목적올 달성하기 위하여, 본 발명은 상기 항체 또는 그 단편을 유효성분으로 포함하는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

또한 본 발명은 상기 항체 또는 그 단편으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

또한 본 발명은 상기 항체 또는 그 단편으로 필수적으 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

본 발명의 또 다른 목적을 달성하기 위하여, 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 제제를 제조하기 위한 상기 항체 또는 그 단편의 용도를 제공한다.

이하 본 발명을 상세히 설명한다.

본 발명은 서열번호 1로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L1, 서열번호 2로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L2 및 서열번호 3으로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) L3를 포함하는 항체 경쇄가변영역 (VL) 및 서열번호 4로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) HI , 서열번호 5로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) H2 및 서열번호 6으로 표시되는 아미노산 서열을 포함하는 상보성 결정부위 (CDR) H3를 포함하는 항체 중쇄가변영역 (VH)을 포함하는 인간 유래 c-Met 단백질에 특이적으로 결합하는 항체 또는 그 단편을 제공한다.

본 발명의 '항체' , '항 c-Met 항체' , '인간화 항 c-Met 항체' 인간화 항 c-Met 항체' , 'ant i-c-Met ant ibody' 는 본 발명에서

광의의 의미로 사용되며, 구체적으로 단일클론 항체 (모노클로날 항체, 완전 길이 단일클론항체 포함), 다클론 항체 (폴리클로날 항체), 다중특이 항체 (예를 들어 이중특이 항체), 및 항체 단편 (예를 들어. 가변 영역 및 목적하는 생물 활성 (예를 들어 c-Met와의 결합)을 나타내는 항체의 다른 부분)을 포함한다.

본 발명의 항체는 c-Met와 선택적으로 결합할 수 있도록 특정 아미노산 서열이 경쇄 및 중쇄 CDR에 포함되어 있는 항체로 모노클로날 항체 및 폴리클로날 항체를 모두 포함하며, 바람직하게는 모노클로날 항체일 수 있다. 또한 본 발명의 항체는 키메라 항체, 인간화된 항체, 인간항체를 모두 포함하며 바람직하게는 인간항체 일 수 있다.

본 발명의 모노클로날 항체는 실질적으로 동질 항체의 집단으로부터 수득된 항체를 나타내며, 즉, 집단을 구성하는 개개의 항체는 소량으로 존재할 수 있는 가능한 천연적으로 존재하는 돌연변이를 제외하고는 동일하다. 모노클로날 항체는 단일 항원 에피토프에 매우 특이적으로 결합한다.

본 발명에서 '모노클로날' 이라는 말은 항체가 실질적인 상동성 집단으로부터 수득되는 것과 항체의 특성을 나타내는 말이며, 반드시 항체를 특정 방법에 의해 생산해야 한다는 것은 아니다 .예를 들어, 본 발명의 모노클로날 항체는 문헌 (Kohler et al . (1975) Nature 256: 495) )에 처음 기재된 하이브리도마 방법에 의해 제조할 수 있거나, 또는 재조합 DNA 방법 (참조: 미국 특허 제 4,816 , 567호)에 의해 제조할 수 있다. 또한, 예를 들어, 문헌 (참조: Clackson et al . (1991) Nature 352 : 624-628 및 Marks et al . ( 1991) J . Mol . Biol . 222: 581-597 및 Presta (2005) J . Al lergy Cl in. Immunol . 116 : 731)에 기술된 기술을 사용하여 파아지 항체 라이브러리로부터 분리할 수 있다.

본 발명의 항체는 구체적으로 키메라 항체를 포함하며, 이 경우 중쇄 및 /또는 경쇄의 일부는 특정 종으로부터 기원하거나 또는 특정 항체의 상응하는 서열과 동일하거나 상동성을 보이지만, 나머지 부분은 본 발명의 항체가 바람직한 생물학적 활성 (예를 들어 NRS와의 선택적 결합)을 나타내는 한, 다른 종으로부터

기원하거나 또는 다른 항체의 상웅하는 서열과 동일하거나 상동성을 나타내는 것이어도 무방하다 (미국 특허 제 4, 816,567호; 및 Morrison et al . , (1984) Proc. Nat l . Acad. Sci . USA 81: 6851-6855) .

인간화된 항체는 인간 및 비 -인간 (예: 쥐, 랫트) 항체의 서열을 모두 포함하는 항체로 일반적으로, 에피토프와 결합하는 부위 (CDR)를 제외한 나머지 부분은 인간 항체의 것이며, 에피토프와 결합하는 부위 (CDR)는 비 -인간 유래의 서열을 포함할 수 있다. 완전한 인간항체는 사람 면역글로불린 단백질 서열만을 포함하는 항체를 말하며, 마우스, 마우스 세포, 또는 마우스 세포로부터 기원한 하이브리도마에서 생산하거나, 파지 디스플레이 방법으로 생산할 수 있다.

생체에서 생산되는 천연 항체는 통상적으로, 2개의 동일한 경쇄 (L)와 2개의 동일한 중쇄 (H)로 구성된, 약 150,000 달톤의 이종-사량체성 당단백질이다. 각 경쇄는 1개의 공유 디설파이드 결합에 의해 중쇄와 연결되지만, 디설파이드 연쇄수는 상이한 면역글로불린 이소형의 중쇄들 간에 다양하다. 각 중쇄 및 경쇄는 규칙적으로 이격된 쇄내 디설파이드 브릿지를 또한 갖고 있다. 각 중쇄는 한 말단에 가변 도메인 (VH)에 이어 수많은 블변 도메인을 갖는다. 각 경쇄는 한 말단에 가변 도메인 (VL)을 갖고, 그의 다른 말단에 불변 도메인을 갖는데; 경쇄의 블변 도메인은 중쇄의 제 1 불변 도메인과 정렬되고, 경쇄 가변 도메인은 중쇄의 가변 도메인과 정렬된다. 특별한 아미노산 잔기가 경쇄 가변. 도메인과 중쇄 가변 도메인 간에 계면을 형성하는 것으로 여겨진다. 항체의 "가변 영역" 또는 "가변 도메인 "은 항체의 중쇄 또는 경쇄의 아미노 -말단 도메인을 지칭한다. 중쇄의 가변 영역은

"VH"로 기재하며, 경쇄의 가변 영역은 "VL"로 기재한다. 이들 도메인은 일반적으로, 항체의 가장 가변 부분이고, 항원 결합부위를 포함한다.

본 발명에서 '초가변성 (hypervariable)' 은 상기 가변 영역 내의 몇몇 서열들이 항체들간 서열에 있어서 광범위하게 상이하며 그의 특이적인 항원 결정인자들에 대한 각각의 특정 항체의 결합 및 특이성에 직접적으로 관련되는 잔기들을 포함한다는 사실을 지칭한다. 경쇄 및 중쇄 가변 영역 모두에 있어서 초가변성은 상보성 결정부위 (CDR) 또는 초가변성 루프 (HVL)로서 공지된 3 개의 분절들에 집중된다. CDR은 문헌 (Kabat 등, 1991, In: Sequences of Proteins of Immunological Interest , 5th Ed. Publ ic Health Service, Nat ional Inst itutes of Health, Bethesda, MD. )에서의 서열 비교에 의해 한정되는 반면, HVL은 문헌 (Chothia and Le나 1987, J . Mol . Biol . 196:901-917)에 개시된 바와 같이, 상기 가변 영역의 3 차원 구조에 따라구조적으로 한정된다.

상기 중쇄 및 경쇄 각각 내의 3 개의 CDR들은 를 부위 (FR)에 의해 분리되며, 상기 부위는 덜 가변적인 경향이 있는 서열들을 포함한다. 상기 중쇄 및 경쇄 가변 영역의 아미노 말단에서부터 카복시 말단까지, 상기 FR 및 CDR은 하기의 순서로 배열된다: FRl , CDR1 , FR2, CDR2, FR3, CDR3 및 FR4. 상기 FR의 큰 β 시트 배치는 상기각각의 쇄 내부의 CDR을 서로뿐만 아니라 다른 쇄로부터의 CDR에 가깝게 한다. 생성되는 형태는 항원 결합 부위에 기여하지만 (Kabat 등, 1991, NIH Publ . No. 91-3242, Vol . I , pages 647-669 참조), 모든 CDR 잔기들이 항원 결합에 직접 관여할 필요는 없다.

본 발명에서 상기 단편은 디아바디, Fab, Fab' , F(ab)2 , F(ab'

scFv로 이루어진 군에서 선택되는 단편인 것을 특징으로 한다.

본 발명에서 항체의 단편은 전체 항체의 항원 특이적 결합력올 유지하고 있는 항체의 단편을 의미하며, 바람직하게 상기 단편은 모항체의 인간 유래 c-Met 단백질 친화도의 적어도 20%, 50%, 70%, 80%, 90%, 95% 또는 100% 또는 그 이상을 보유한다. 구체적으로는 Fab, F(ab)2, Fab' , F(ab' )2, Fv, 디아바디 (diabody), scFv 등의 형태일 수 있다.

Fab( fragment ant igen-binding)는 항체의 항원 결합 단편으로, 중쇄와 경쇄 각각의 하나의 가변 도메인과 불변 도메인으로 구성되어 있다. F(ab' )2는 항체를 펩신으로 가수분해시켜서 생성되는 단편으로, 두 개의 Fab가 중쇄 경첩 (hinge)에서 이황결합 (disul f ide bond)으로 연결된 형태를 하고 있다. F(ab ' )는 F(ab' )2 단편의 이황결합을 환원하여 분리시킨 Fab에 중쇄 경첩이 부가된 형태의 단량체 항체 단편이다. FV(variable fragment )는 중쇄와 경쇄 각각의 가변영역으로만 구성된 항체 단편이다. scFv( single chain variable fragment )는 중쇄가변영역 (VH)과 경쇄가변영역 (VU이 유연한 펩티드 링커로 연결되어 있는 재조합 항체 단편이다. 디아바디 (diabody)는 scFv의 VH와 VL가 매우 짧은 링커로 연결되어 서로 결합하지

못하고, 동일한 형태의 다른 scFV의 VL와 VH와 각각 결합하여 이량체를 형성하고 있는 형태의 단편을 의미한다.

본 발명의 목적상 항체의 단편은 인간 유래 c-Met 단백질에 대한 결합특이성을 유지하고 있는 것이라면 구조나 형태의 제한을 받지 않지만, 바람직하게 scFv일 수 있다. 본 발명에 따른 scFv는 상기한 인간 유래 c-Met 단백질에 특이적인 CDR 구성 , 또는 VH와 VL의 구성을 갖는 것으로서 VH의 C-말단과 VL의 N-말단이 링커를 통해 연결된 것이라면 그 서열이 특별히 제한되지 않는다. 상기 링커는 당 업계에 scFv에 적용되는 링커로서 알려진 것이라면 그 종류가 특별히 제한되지 않는다.

본 발명의 항체 또는 그 단편은 이의 생물학적 활성을 실질적으로 변경하지 않는 보존적 아미노산 치환 (항체의 보존적 변이체라고 함)을 포함할 수 있다.

또한 전술한 본 발명의 항체 또는 그 단편은 효소, 형광 물질, 방사선 물질 및 단백질 등과 접합된 것일 수 있으나, 이에 한정되지는 않는다. 또한, 항체에 상기 물질을 접합하는 방법은 당 업계에 잘 알려져 있다.

본 발명의 항체는 인간올 포함하는 포유동물, 조류 등을 포함한 임의의 동물로부터 유래한 것일 수 있다. 바람직하게는, 상기 항체는 인간, 생쥐, 당나귀, 양, 토끼, 염소, 기니피그, 낙타, 말 또는 닭의 항체일 수 있으며, 가장 바람직하게는 인간 또는 생쥐일 수 있다.

인간 항체는 인간 면역글로불린의 아미노산 서열을 가진 항체로서, 인간 면역글로불린 라이브러리로부터 분리된 항체 또는 하나 이상의 인간 면역글로불린에 대하여 형질 이식되고 내재적 면역글로불린은 발현하지 않는 동물로부터 분리된 항체가포함된다 (미국특허 제 5 , 939, 598호 참조) .

본 발명의 항체는 효소, 형광 물질, 방사선 물질 및 단백질 등과 접합된 것일 수 있으나, 이에 한정되지 않는다. 또한, 항체에 상기 물질을 접합하는방법은 당업계에 잘 알려져 있다.

본 발명은 상기 항체 또는 그 단편을 암호화 하는 폴리뉴클레오티드를 제공한다.

본 발명에서 '폴리뉴클레오티드' 는 올리고뉴클레오티드 또는 핵산으로 기재될 수도 있으며, DNA분자들 (예를 들어, cDNA 또는 유전체 (genomi c DNA) , RNA 분자들 (예를 들어, mRNA) , 뉴클레오티드 유사체들을 사용하여 생성된 상기 DNA또는 RNA의 유사체들 (예를 들어, 펩티드 핵산들 및 비 -자연적으로 발생하는 뉴클레오티드 유사체들) 및 이들의 하이브리드들이 포함된다. 상기 폴리뉴클레오티드는 단일-가닥 (single-stranded) 또는 이중 -가닥 (doublestranded)이 될 수 있다. 상기 폴리뉴클레오티드는 상기한 KRS N-말단 영역에 특이적인 CDR 구성, 또는 VH와 VL의 구성을 갖는 중쇄 및 경쇄로 이루어지는 항체를 암호화하는 염기서열을 의미한다.

본 발명의 폴리뉴클레오티드는 본 발명의 항체 또는 그 단편을 암호화하는 것이면 그 서열이 특별히 제한되지 아니하는 것으로서, 앞서 설명한 본 발명에 따른 항체에서 전술한 CDR 서열을 암호화하는 폴리뉴클레오티드는 그 서열이 특별히 제한되지 않으나, 바람직하게 서열번호 1(중쇄 CDR1) , 서열번호 2(중쇄 CDR2) , 서열번호 3(중쇄 CDR3) , 서열번호 4(경쇄 CDR1) , 서열번호 5(경쇄 CDR2) , 서열번호 6경쇄 CDR3)으로 표시되는 염기서열을 포함하는 것일 수 있다. 또한 본 발명에 따른 항체에서 전술한 VH와 VL을 암호화하는 폴리뉴클레오티드는 그 서열이 특별히 제한되지 않는다.

본 발명의 항체 또는 그 단편을 암호화하는 폴리뉴클레오티드는 당 업계에 잘 알려진 방법에 의하여 얻어질 수 있다. 예를 들어, 상기 항체의 중쇄 및 경쇄의 일부분 또는 전부를 코딩하는 DNA 서열 또는 해당 아미노산 서열에 근거하여, 당 분야에 잘 알려진 올리고뉴클레오타이드 합성기법, 예를 들어 중합효소 연쇄 반응 (PCR)법 등을 사용하여 합성할 수 있다.

본 발명은 상기 폴리뉴클레오티드를 포함하는 백터를 제공한다.

본 발명의 '백터 (vector)' 는 본 발명의 항체 또는 그 단편의 재조합 생산올 위하여 본 발명의 폴리뉴클레오티드의 복제 또는 발현의 목적으로 이용되며, 일반적으로 시그날 서열, 복제 기원, 하나 이상의 마커 유전자, 인핸서 요소, 프로모터 및 전사 종결 서열 중 하나 이상을 포함한다. 본 발명의 백터는 바람직하게는 발현백터일 수 있으며, 더욱 바람직하게는 조절시퀀스, 예를 들어 프로모터에 작동 가능하게 연결된 본 발명의 폴리뉴클레오티드를 포함하는 백터일 수 있다.

백터의 일종인 플라스미드 (plasmid)는 외부의 폴리뉴클레오티드 단편들이 결합될 수 있는 선형 또는 원형의 이중 나선의 DNA 분자를 의미한다. 백터의 다른 형태는 바이러스성 백터 (viral vector ; 예를 들어, 복제 -결핍 레트로바이러스 (repl icat ion defect ive retroviruses) , 아데노바이러스들 및 아데노 -연관 바이러스들 (adenoassociated viruses) )이며, 여기에서 부가의 DNA 단편들은 상기 바이러스성 게놈 (viral genome) 내로 도입될 수 있다. 특정의 백터들은 그 안으로 이들이 도입되는 숙주세포 (예를 들어, 박테리아 유래 (bacter ial origin) 및 에피좀의 포유류 백터 (episomal mammal ian vectors)를 포함하는 박테리아성 백터들 (bacterialvectors) ) 내에서의 자가복제 (autonomous repl icat ion)를 할 수 있다. 다른 백터들 (예를 들어, 비-에피좀의 포유동물 백터들 (non-epi soma 1 mammal ian vectors) )이 숙주세포 내로의 도입에 의한 숙주세포의 게놈 내로 통합 ( integrated)되고 그리고 그에 의하여 상기 숙주 게놈과 함께 복제된다.

본 발명에서 '발현백터 (expression vector)' 는 선택된 폴리뉴클레오티드의 발현할 수 있는 백터의 한 형태이다. 하나의 폴리뉴클레오티드 시뭔스는, 조절 시뭔스가 상기 폴리뉴클레오티드 시뭔스의 발현 (예를 들어, 수준, 타이밍 또는 발현의 위치)에 영향을 주는 경우, 상기 조절 시퀀스 (regulatory sequence)에 "작동가능하게 연결"된다. 상기 조절 시퀀스는 그것이 작동가능하게 연결되는 핵산의 발현 (예를 들어, 수준, 타이밍 또는 발현의 위치)에 영향을 주는 서열이다. 상기 조절 시뭔스는, 예를 들어, 조절된 핵산에 직접적으로 또는 하나 또는 그

이상의 다른 분자들 (예를 들어, 상기 조절 시뭔스 및 /또는 상기 핵산에 결합하는 폴리펩티드들)의 작용을 통하여 그의 영향이 미치도톡 할 수 있다. 상기 조절 시퀀스에는 프로모터 (promoters), 인핸서 (enhancers) 및 다른 발현 조절 요소들이 포함된다. 본 발명의 백터는 바람직하게는 p0ptiVECTM-T0P0 및 pcDNATM3.3-TOP0일 수 있다.

본 발명은 상기 백터로 형질 전환된 세포를 제공한다.

본 발명의 세포는 본 발명의 발현 백터에 포함된 항체 또는 그 단편을 암호화하는 폴리뉴클레오티드를 발현하는데 사용될 수 있는 세포라면 그 종류는 특별히 제한되지 아니한다. 본 발명에 따른 발현 백터로 형질 전환된 세포 (숙주세포)는 원핵생물 (예를 들어, 대장균), 진핵생물 (예를 들어, 효모 또는 다른 균류)ᅳ 식물 세포 (예를 들어, 담배 또는 토마토 식물 세포), 동물 세포 (예를 들어, 인간 세포, 원숭이 세포, 햄스터 (hamster) 세포, 랫 세포 (rat cell), 마우스 세포 (mouse cell), 곤층 세포 또는 이들에서 유래한 하이브리도마일 수도 있다. 바람직하게는 인간을 포함하는 포유류에서 유래한 세포일 수 있다.

본 목적에 적합한 원핵생물은 그람 음성 또는 그람 양성 유기체, 예를 들어 엔테로박테리아새 {Enterobacteriaceae) , 예를 들어 에스케리치 ^ Escherichi ), 예를 들어 이. 콜라이, 엔테로박터
, 에르위니아 ( >^//2/a), 클랩시엘라 7^s/e//a), 프로테우스 ( ), 살모넬라 (5a/ro/?e//a) , 예를 들어, 살모넬라 티피무륨 (5a/z?o/2e//a typhi murium) , 세라티아 (5e/Ta /a), 예를 들어, 세라티아 마르세스칸스 (5e/了 a /a marcescans) 및 시겔라 (5A/ e//a), 및 바실리 0¾c////), 예를 들어, 비. 섭틸리스 09. subtilis) 및 비. 리케니포르미스 09. licheniformis) , ^도 ΞΛ 스 Pseudomonas) , 예를 들어 피 . 애루기노사 ( aeruginosa) 및 스트랩토마이세스 (5 re;?i( ? cas)를 포함한다. 본 발명의 세포는 본 발명의 백터를 발현가능 한 것이면, 특별히 제한되지 아니하나, 바람직하게는 이. 콜라이일 수 있다.

본 발명의 세포로서 진핵생물은 사카로마이세스 세레비지아에 (5accAa/"i¾?yces cerevisiae)7\ 가장 흔히 사용된다. 그러나, 많은 다른 속, 종 및 균주, 이에 한정되지 아니하나 , 예를 들어 쉬조사카로마이세스폼베 (5 ?/ osac aroffijces pombe) , 클루이베로마이세스 숙주, 예를 들어 케이. 락티스 Of./ac /s), 케이. 프라길리스 05Γ. frag/lis)(kKC 12,424), 케이. 불가리쿠스 (X bulgaricus){kT<X 16,045), 케이. 위커라미
24,178), 케이. 왈티 (£. waJthKAKC 56,500), 케이. 드로소필라룸 Of. drosophi Jar urn) (ATCC 36,906), 케이. 테르모를레란스 thermotolerans) 및 케이 . 마르시아누스 (X marxianus); 야로위아 (ᅳ yarr /a) (EP 402,226); 피키아 파스토리스 (/V ?/a pastor is)(E? 183,070); 칸디다 ; 트리코데르마 레에시아 (7 c¾cter/ra reesiaiEP 244,234)); 뉴로스포라 3.2} } ( Neurospora crassa); ^ ti W °1 ) ^ ( Schwann iomyces) , 예醫 들어 쉬바니오마이세스 옥시덴탈리스 (occ/cfe/2 a//s); 및 필라멘트성 진균, 예를 들어 뉴로스포라, 페니실리움 (/¾2/c/7//½7), 를리포클라디
및 아스퍼질러스
숙주, 예를 들어 에이 니둘란스 C4. nidulans) 및 에이. 니거 04. niger)7\사용가능 하다. .

상기 용어 '형질전환 (transformation)'은 외래성 폴리뉴클레오티드가 도입됨에 의한 숙주 세포의 유전자형의 변형을 의미하며, 그 형질전환에 사용된 방법과 상관없이 외래성 폴리뉴클레오티드가 숙주 세포 내로 도입된 것을 의미한다. 숙주 세포 내로 도입된 외래성 폴리뉴클레오티드는 숙주 세포의 게놈 내로 통합되어 유지되거나통합되지 않고 유지될 수 있는데, 본 발명은 양자모두 포함한다.

본 발명에 따른 인간 유래 c-Met 단백질에 특이적으로 결합하는 항체 또는 그 단편을 발현할 수 있는 재조합 발현 백터는 당 업계에 공지된 방법, 예를 들어 이에 한정되지는 않으나, 일시적 형질감염 (transient transfect ion) , 미세주사, 형질도입 (transduction), 세포융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염 (liposome-niecliated transfect ion) , DEAE 덱스트란-매개된 형질감염 (DEAE dextran- mediated transfect ion), 폴리브렌―매개된 형질감염 (polybrene— mediated transfect ion), 전기천공법 (electroporat ion), 유전자 총 (gene gun) 및 세포 내로 핵산을 유입시키기 위한 공지의 방법에 의해 항체 또는 그 단편을 생산하기 위한 세포 내부로 도입하여 형질 전환할 수 있다. .

또한, 본 발명의 세포는 본 발명의 폴리뉴클레오티드 또는 이를 포함하는 백터로 형질전환되거나 또는 형질감염 (transfected)될 수 있는 배양된 세포이고, 이는 계속해서 상기 숙주세포 내에서 발현될 수 있다. 재조합 세포는 발현되어야 할 폴리뉴클레오티드로 형질전환되거나 또는 형질감염된 세포를 말한다. 본 발명의 세포는 또한 본 발명의 폴리뉴클레오티드를 포함하나, 조절 시퀀스가 상기 폴리뉴클레오티드에 작동 가능하게 연결되도록 상기 세포 내로 도입되지 않는 한 이를 원하는 수준으로 발현하지 않는 세포가 될 수 있다.

본 발명의 세포는 다양한 배지에서 배양될 수 있다. 상업적으로 이용가능한 배지, 예컨대 햄 (Ham' s) F10(Sigma-Aldrich Co. , St . Louis , MO) , 최소 필수 배지 (MEM, Sigma-Aldrich Co. ) , RPMI-1640(Sigma-Aldrich Co. ) , 및 둘베코 (Dulbecco ' s) 개질 이글 (Eagle' s) 배지 (DMEM, Sigma-Aldrich Co . )가 세포를 배양하기에 적합하다. 상기 배지는 필요하다면 호르몬 및 /또는 다른 성장 인자, 염, 완층액, 뉴클레오티드, 항생제, 미량 원소 및 글루코스 또는 동등 에너지원이 추가될 수 있다.

본 발명은 상기 세포를 폴리뉴클레오티드가 발현되는 조건하에서 배양하여, 경쇄 및 중쇄가변영역을 포함하는 폴리펩타이드를 생산하는 단계 및 상기 세포 또는 이를 배양한 배양 배지로부터 상기 폴리펩타이드를 회수하는 단계를 포함하는 인간 c-Met에 결합하는 항체 또는 그 단편의 생산방법을 제공한다.

본 발명에서 생산방법의 세포에 대하여는 상기 기술한 바와 같으며, 본 발명의 항체를 암호화하는 폴리뉴클레오티드를 포함하고 있다. 상기 생산방법의 폴리펩타이드는 본 발명의 항체 또는 그 단편 그 자체일 수 있으며, 본 발명의 항체 또는 그 단편 외 다른 아미노산서열이 추가로 결합된 것일 수 있다ᅳ

이 경우 본 기술분야의 통상의 기술자에게 잘 알려져 있는 방법을 이용하여 본 발명의 항체 또는 그 단편으로부터 제거할 수 있다. 상기 배양은 상기 세포의 종류에 따라 배지조성 및 배양 조건이 달라질 수 있으며, 이는 본 기술분야의 통상의 기술자가 적절히 선택 및 조절할수 있다.

상기 항체 분자는 세포의 세포질 내에 축적되거나, 세포로부터 분비되거나, 적절한 신호 서열에 의하여 페리플라즘 또는 세포외 배지 (supernatant )로 표적화 (targeted)될 수 있으며, 페리플라즘 또는 세포외 배지로 표적화되는 것이 바람직하다. 또한, 생산된 항체 분자를 본 기술분야의 통상의 기술자에게 잘 알려져 있는 방법을 이용하여 리폴딩 (refolding)시키고 기능적 형태 (conformat ion)를 갖도록 하는 것이 바람직하다. 상기 폴리펩타이드의 회수는 생산된 폴리펩타이드의 특성 및 세포의 특성에 따라 달라질 수 있으며, 이는 본 기술분야의 통상의 지식을 가진자가 적절히 선택 및 조절할수 있다.

상기 폴리펩타이드는 세포내, 주변 세포질 공간에 생산되거나 배지 내로 직접 분비될 수 있다. 만약 폴리펩타이드가 세포 내에서 생산되면, 이 세포는 제 1 단계로서 단백질을 방출하기 위하여 파괴될 수 있다. 입자형 파편, 숙주 세포 또는 용해된 단편은 예를 들어 원심분리 또는 한외여과에 의해 제거된다. 항체가 배지 내로 분비되는 경우, 이러한 발현 시스템으로부터의 상등액을 일반적으로 먼저 상업적으로 이용가능한 단백질 농축 필터, 예를 들어 Amicon 또는 Mi l l ipore Pel l icon 한외여과 유닛을 사용하여 농축시킨다. 단백분해를 억제하기 위하여 프로테아제 억제제, 예를 들어 PMSF가 임의의 선행 단계에 포함될 수 있고, 우발적인 오염물의 성장을 방지하기 위하여 항생제가 포함될 수 있다. 세포로부터 제조된 항체는 예를 들어 하이드톡시아파타이트 크로마토그래피, 겔 전기영동, 투석 및 친화도 크로마토그래피를 사용하여 정제될 수 있고, 본 발명의 항체는 바람직하게는 친화도 크로마토그래피를 통하여 정제할 수 있다.

본 발명은 상기 항체 또는 그 단편을 시료와 접촉시키는 단계 및 상기 항체 또는 그 단편을 검출하는 단계를 포함하는 c-Met 특이적 검출 방법을 제공한다.

본 발명의 상기 검출 방법은 본 발명에 따른 항체 또는 그 단편을 시료와 접촉시키기 전에, 본 발명에 따른 항체 또는 그 단편을 이용하여 K S (또는 세포 외막으로 노출된 KRS N-말단 펩타이드)의 유무와 농도를 측정하기 위한 시료를 준비하는 단계 ( ( 1) 단계)를 포함할 수 있다.

통상의 기술자는 항체를 이용하여 단백질을 검출하는 공지의 방법을 적절하게 선택하고, 선택된 방법에 적합하게 시료를 준비할 수 있다. 또한 시료는 암 또는 암전이 여부를 진단하고자 하는 피검체에서 채취된 생검 등으로 얻어진 세포나 조직, 혈액, 전혈, 혈청, 혈장, 타액, 뇌척수액 등일 수도 있다. 상기 항체를 이용하여 단백질을 검출하는 방법이란 여기 제한되는 것은 아니나, 예를 들어 웨스턴 블랏, 면역 블랏, 닷 블랏, 면역조직화학염색 ( immunohi stochemi stry) , 효소면역분석 (ELISA) , 방사능면역검정법 (radioimmunoassay) , 경쟁적 결합 분석, 면역침전 등이 있다. 예를 들어 웨스턴 블랏을 실시하기 위하여서는 시료 또는 세포의 용해물에 전기영동에 적합한 버퍼를 첨가하여 끓이는 등의 방법으로 준비할 수 있으며, 면역조직화학염색을 위해서는 세포나 조직의 절편을 고정하고 블락킹 (blocking)하는 등의 전처리를 할수 있다.

다음으로 본 발명에 따른 항체 또는 그 단편을 전술한 단계에서 준비한 시료와 접촉시키는 단계 ( (2) 단계)를 수행한다.

본 발명에 따른 항체는 앞서 서술한 CDR, 또는 VH와 VL의 구성을 가지며 인간 유래 c-Met 단백질에 특이적으로 결합하는 항체 또는 그 단편으로서, 그 구체적 종류와서열 구성에 대해서는 전술한 바와 같다.

상기 항체 또는 그 단편은 이의 '검출 '을 위하여, 일반적으로 검출가능 모이어티 (moiety)로 표지될 수 있다. 예를 들어, 문헌 [Current Protocols in Immunology, Volumes 1 and 2 , 1991 , Col igen 등, Ed. Wi leyᅳ Inter science , New York, N. Y. , Pubs]에 기술된 기술을 이용하여, 방사성 동위원소 또는 형광표지로 표지될 수 있다. 또는 다양한 효소 -기질 표지가 이용가능하며, 상기 효소적 표지의 예는 초파리 루시러파제 및 세균 루시퍼라제 (미국 특허 게 4,737, 456호)와 같은 루시퍼라제, 루시페린 ( luci fer in) , 2 ,3-다이하이드로프탈라진디오네스, 말레이트 디하이드로게나제, 유라제 (urase) , 호스래디쉬 퍼옥시다제 (HRP0)와 같은 퍼옥시다제, 알칼라인 포스파타제, β -갈락토시다제, 글루코아밀라제, 라이소자임, 사카라이드 옥시다제 (예를 들어 글루코스옥시다제, 갈락토스 옥시다제, 및 글루코스 -6-포스페이트 디하이드로게나제) , 헤테로사이클릭 옥시다제 (예를 들어 유리카제 및 잔틴 옥시다제), 락토퍼옥시다제, 마이크로퍼옥시다제 등을 포함한다. 항체에 효소를 접합시키는 기술은 예를 들어, 문헌 [0' Sul l ivan 등, 1981, Methods for the Preparat ion of Enzyme一항체 Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (J . Langone & H. Van Vunaki s , eds . ) , Academic press , N. Y . , 73: 147-166]에 기술되어 있다. 표지는 다양한 공지된 기술을 이용하여 항체에 직접 또는 간접적으로 접합될 수 있다. 예를 들어, 항체는 바이오틴 (biot in)에 접합될 수

있고 상기에 언급된 3종의 광범위한 카테고리에 속하는 임의의 표지들이 아비딘과, 또는 그 반대로 접합될 수 있다. 바이오틴은 아비딘 (avidin)에 선택적으로 결합하고, 따라서 이 표지는 이러한 간접적 방식으로 항체에 접합될 수 있다. 또는, 항체에 표지의 간접적 접합을 달성하기 위하여, 항체는 작은 합텐 (hapten) (예를 들어, 딕옥신 [digoxin] )과 접합될 수 있고 상기에 언급된 서로 다른 유형의 표지들의 하나가 항 -합텐 항체에 접합될 수 있다 (예컨대, 항-딕옥신 항체) . 따라서, 항체에 대한 표지의 간접적 접합이 달성될 수 있다.

본 발명에서 '접촉 (contact ing)' 이라 함은 이의 일반적인 의미로 사용되는 것으로서, 2개 이상의 물질을 흔합, 결합, 또는 서로 맞닿게 하는 것을 의미한다. 상기 접촉은 시험관 내 ( in vi tro) 또는 다른 컨테이너 (container) 상에서 수행될 수 있고, 또한 인 시투 ( in si tu) , 생체 내, 개체 내, 조직 내, 세포 내에서 수행 될 수 있다.

다음으로는 상기 (2) 단계 수행 후의 시료에서 본 발명에 따른 항체 또 단편을 검출하는 단계 ( (3) 단계)를 수행한다.

상기 '검출' 은 시료 내에서 형성된 본 발명에 따른 항체 또는 그 단편과 항원의 복합체를 대상으로 하는 것으로서, 인간 c-Met의 펩타이드 (또는 이를 포함하는 단백질)의 존재 유무의 감지 또는 상기 펩타이드의 수준을 측정 (정성적 또는 정량적 측정을 모두 포함)하는 것을 의미한다. 따라서 상기 (2) 단계 수행 후 후술하는 검출 단계 ( (3) 단계) 전에, 인간 유래 c-Met 단백질과 복합체를 형성하지 않은 여분의 항체 또는 그 단편들을 제거하는 단계가추가로 포함될 수 있다.

전술한 (2) 단계에서 사용된 항체 또는 그 단편이 형광, 방사성 동위원소, 효소 등으로 직접 표지되는 등의 검출가능한 모이어티를 포함하는 경우에는 해당 모이어티를 검출하는 당 업계에 공지된 방법에 따라 검출을 수행할 수 있다. 일례로 방사능은, 예를 들어, 신틸레이션 계수 (scint i l lat ion count ing)에 의해 측정될 수 있으며, 형광은 형광계를 이용하여 정량될 수 있다.

또한 전술한 (2) 단계에서 사용된 항체 또는 그 단편이 자체로서 전술한 검출 모이어티를 포함하지 않는 경우에는, 당업계에 알려진 바와 같이 형광, 방사능,

효소 등으로 표지된 2차 항체를 이용하여 간접적으로 감지할 수 있다. 상기 2차 항체는 본 발명에 따른 항체 또는 그 단편 (1차 항체)에 결합한다.

최근 연구를 통해, HGF/SF는 또한 신경계에도 작용을 하며 특히 운동신경세포 보호 기능에 대한 많은 연구들이 보고되어 있다 (Novak et al ., Journal of Neuroscience. 20:326-337, 2000) . 또한 심장 손상 회복 (Nakamura et al . , J Cl in Invest . 106: 1511-1519, 2000)등의 일반적인 장기 손상이후의 방어적 생리학적 기작에도 중요한 기능을 담당하고 있음이 제안되었고 실제로 HGF/MET 경로가 신경 경색, 진행성 신장염, 간경화와 폐섬유증의 과정에 관계하며 HGF가 이러한 퇴행성 질병의 병변에 과발현되어 조직손상의 생리학적 방어기전으로 보호활성을 나타냄이 입증되었다 (Comogl io et al . , Nature Review Drug Discovery. 7:504-516, 2008) . 또한, HGF/c— Met 신호전달의 과다활성이 내피계열의 다양한 세포의 악성종양화와 혈관형성에 관련되고, 이러한 관점에서 c-Met을 표적으로 하는 길항성 c-Met 항체가 항암제로서의 사용될 수 있을 것이라는 가능성이 제시되었다 (Comogl io et al . , Nature Review Drug Discovery. 7:504-516, 2008) . 예를 들어, 하나의 가지를 갖는 c-Met항체가 HGF의 c— Met 이량체화에 의한 활성화를 음성적으로 조절하여 이식 마우스 모델에서 효율적으로 종양 성장을 억제함이 보고된 바 있다 (Jin et al , Cancer Research 68(11): 4360-4368, 2008; Comogl io et al . , Nature Review Drug Discovery. 7: 504-516, 2008) . 또한 T-세포 치료법에서 암세포 표면항원을 선택적으로 인식하는 T-세포 유전자조작에도 암세포에 과발현되는 항원에 대한 항체가 T 세포의 연결을 위한 종양 표적화에 활용되고 있다 (Sadelain, The Cancer Journal 15(6) :451-455, 2009) .

본 발명은

a) 개체로부터 수득한 시료와상기의 항체를 접촉시키는 단계;

b) 상기 시료에 상기의 항체가 결합하여 형성된 복합체 (complex)를 복합체가 형성되지 않은 부분과 분리시키는 단계; 및

c) 상기 b) 단계에서 분리한 복합체를 수득하는 단계를 포함하는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출 방법을 제공한다.

본 발명에서 a)단계는 개체로부터 수득한 시료와 상기의 항체를 접촉시키는 것을 특징으로 한다.

본 발명에서 용어 '개체 (subject )' 란 암 진단 대상이 되는 동물을 의미하는 것으로, 바람직하게는 포유동물, 특히 인간을 포함하는 동물일 수 있으며, 보다 바람직하게는 치료가 필요한 환자 (pat ient )일 수 있다.

본 발명의 '시료' 는 암이 의심되는 개체로부터 분리 수득되는 것으로서, 이에 제한되지는 않으나, 조직, 혈액, 혈청, 혈장, 타액, 점막액 및 뇨로 이루어진 군에서 선택될 수 있으며, 가장 바람직하게는 혈액, 혈청, 혈장일 수 있다.

본 발명에서 '상기의 항체' 는 비드, 마그네틱 비드 (magnet i c beads) 및 자성물질 (magnet ic mater ial )로 이루어진 군에서 선택된 것이 부착된 것을 특징으로 한다. 항체에 결합하는 자성물질은 이에 제한되지는 않으나, 자성금속 또는 자성금속 산화물일 수 있으며 바람직하게는 Co , Mn, Fe , Ni Gd, 匪' 204 및 Mx0y(M 또는 M ' =Co , Fe , Ni , Mn, Zn, Gd, Cr , x와 y는 정수를 나타낸다)일 수 있다.

본 발명에서 b)단계는 상기 시료에 상기의 항체가 결합하여 복합체 (complex)를 복합체가 형성되지 않은 부분과 분리시키는 것을 특징으로 한다.

본 발명에서 상기 '복합체 (complex)' 는 표면에 c_Met가 있는 세포와 항체가 특이적으로 결합하여 생성되는 것으로, 표적 세포와 동일하거나 유사한 밀도를 갖는 시료 내의 세포들에 비해 전체적인 밀도가 증가하는 것을 특징으로 한다. 보다 바람직하게는 순화종양세포 (CTC) 상의 c-Met에 특이적으로 결합하여 생성될 수 있다.

본 발명에서 c)단계는 상기 b) 단계에서 분리한 복합체를 수득하는 특징으로 한다.

상기 b) 단계에서 형성된 복합체를 포함하는 시료는 자기적 성질을 이용하여 복합체를 분리할 수 있으며, 상기 분리 방법을 이용하여 자동 또는 수동으로 상기 복합체만을 추출하여 실험자의 목적에 따라 다양하게 사용될 수 있다.

본 발명의 '순환암세포 (Circulating T围 or Cell, CTC)' 는 악성 종양 환자의 말초혈액에서 발견되는 종양세포이다. 기원된 종양세포에서 떨어져 나와 종양세포가 전이될 수 있는 세포 구조 변화인 상피중간엽 전환 (Epithelial to Mesenchymal Transitions: EMT) 과정을 거쳐 혈류나 생체 유동에 의해 혈관이나 림프관을 돌아다니다가 특이한 관의 벽 (염증이 있거나 상처가 발생한 표면)에 부딪혀 내피 세포 사이를 파고든다. 이 때 다시 중간엽상피 전환 (Mesenchymal to Epithelial Transitions'- MET) 과정을 거친다. EMT 과정은 세포가 상피 (epithelial)성 세포 표현형을 상실하고 이동성이 높은 중간엽 (mesenchymal)성 세포 표현형으로 전환하는 과정으로 악성 종양의 전이에 관여한다고 알려져 있다. 순환암세포는 EMT과정과도 관련이 있으며, 새로운 종양으로 전이되어서 다른 조직에서 암으로 자리 잡게 된다. 하지만, 순환암세포는 혈액에 극미량으로 존재 (혈구 세포 10억개 당 1~10개)하기 때문에 검출하기가 어렵다. 따라서, 환자의 혈액에서 순환암세포를 검출하기 위해서는 정확성과 빠른 분리 기술을 토대로 한 첨단 분리기술이 필수적으로 확보되어야 하며, 이러한 순환암세포 분리기술은 전이 발생 이전의 암치료뿐만 아니라 암환자의 임상적 관리와 진단에 있어서 유용하다.

혈액 내에서 순환암세포를 검출하기 위한 방법으로써, 세포의 특정 표지자 (antibody-based)를 이용한 분리법, 세포의 크기 (Size-based)를 이용한 분리법, 전하 (Electrical Charge— based)를 이용한 분리법, 바이러스 (Virus-based)를 이용한 분리법, 미세유체학 (Microfluidics)을 이용한 분리법 등이 있는데, 본 발명자들은 종양세포 세포막에 c-Met 단백질이 존재하는 것을 확인함을 바탕으로 하여, 본 발명의 c-Met 항체를'이용한 항원 -항체 결합반응 방법으로 순환암세포를 검출하였다.

본 발명은 상기의 항체 또는 그 단편을 유효성분으로 포함하는 순환암세포 (Circulating Tumor Cell, CTC) 검출용 조성물을 제공한다.

또한 본 발명은 상기의 항체 또는 그 단편으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 조성물을 제공한다.

또한 본 발명은 상기의 항체 또는 그 단편으로 필수적으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 조성물을 제공한다.

본 발명의 상기 항체의 순환암세포 (CTC) 결합 여부 확인, 검출 및 정량을 용이하게 하기 위하여 본 발명의 항체는 표지된 상태로 제공될 수 있으며, 검출가능한 표지에 결합되어 제공될 수 있다. 상기 검출가능한 표지는 이에 제한되지는 않으나, 자성물질 (예: 자성금속, 자경금속 산화물), 발색효소 (예: 퍼옥시다제, 알칼라인 포스파타제), 방사성 동위원소, 크로모포어 (chromophore) , 발광물질 또는 형광물질 (예: FITC, RITC, 형광 단백질 (GFP(Green Fluorescent Protein); EGFP( Enhanced Green Fluorescent Protein) , RFP(Red Fluorescent Protein); DsRed(Discosoma sp. red f luorescent protein); CFP(Cyan Fluorescent Protein) , CGFP(Cyan Green Fluorescent Protein) , YFP(Yel low Fluorescent Protein) , Cy3, Cy5 및 Cy7.5)일 수 있다.

본 발명은 상기의 항체 또는 그 단편을 유효성분으로 포함하는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

또한 본 발명은 상기의 항체 또는 그 단편으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

또한 본 발명은 상기의 항체 또는 그 단편으로 필수적으로 구성되는 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 키트를 제공한다.

본 발명의 '키트' 는 c-Met 단백질에 특이적으로 결합하는 항체를 포함하고 항원 -항체 결합반응을 통하여 혈액 내의 순환암세포 (CTC)를 검출할 수 있다. 보다 바람직하게는 항원 -항체 결합으로 인한 복합체를 형성시켜 원심분리 방법으로 검출할 수 있으며 , 필요에 따라 필터를 이용한 여과 과정을 추가로 수행할 수 있다.

본 발명의 일실시예에서 인간 재조합 c-Met 항체를 사용하여 인간 scFv

라이브러리 스크리닝을 실시하여 출력이 증가하는 샘플을 획득한 다음, ELISA 방법을 통해 결합력을 확인하여 결합신호를 나타내는 샘플을 선별하여 염기서열 분석을 실시하였다. 그 다음, 이중 상이한 서열을 갖는 hi t를 선택하여 ELISA 방법으로 결합력을 확인하여 가장 강력하게 결합하는 10개 hi t를 선별하여 인간 IgG 형태로 전환하였다 (실시예 1, 도 1 및 도 2 참조) .

본 발명의 또 다른 일실시예에서 인간 IgG가 천연 c-Met에 결합하는 것을 확인하기 위하여, 293F 세포에 플라스미드로 형질감염 시킨 후, 세포를 수득하여 단백질 A 비드로 항체를 정제하여 SDS— PAGE를 실시한 결과, 상기의 10개 hit가 인간 IgG 형태로 변환되어 세포에서 발현되는 것을 확인하였으며, 경쇄 및 중쇄의 크기를 확인할 수 있었다. 그 다음 c-Met 양성 세포를 이용하여 유동세포분석을 실시한 결과, 항체의 결합 패턴 (binding pattern)이 세포에서 나타나는 가장 높은 변화와 c-Met의 발현 수준이 일치하는 4가지 항체를 선별하였다 (실시예 2, 도 3 및 4 참조) .

본 발명의 또 다른 일실시예에서 환자의 혈액을 시험관에 넣고, c-Met 항체 (C8)와 마그네틱 비드 복합체를 넣어 반응시킨 뒤, 마그네틱 컬럼 (magnet ic column)으로 분리한 결과 c-Met 항체가 순환암세포에 결합하는 것을 확인하였고, 이를 통해, c-Met 항체로 혈액 내 순환암세포를 검출할 수 있다는 것을 확인할 수 있었다 (실시예 3 참조) .

본 발명의 또 다른 목적을 달성하기 위하여, 순환암세포 (Circulat ing Tumor Cel l , CTC) 검출용 제제를 제조하기 위한상기 항체의 용도를 제공한다.

본 발명의 용어 '〜을 포함하는 (compr i sing)' 이란 '함유하는' 또는 '특징으로 하는' 과 동일하게 사용되며, 조성물 또는 방법에 있어서, 언급되지 않은 추가적인 성분 요소 또는 방법 단계 등을 배제하지 않는다. 용어 '-로 구성되는 (consi st ing of )' 이란 별도로 기재되지 않은 추가적인 요소, 단계 또는 성분 등을 제외하는 것을 의미한다. 용어 '필수적으로 구성되는 (essent ial ly consi st ing of )' 이란 조성물 또는 방법의 범위에 있어서, 기재된 성분 요소 또는 단계와 더불어 이의 기본적인 특성에 실질적으로 영향을 미치지 않는 성분 요소

또는 단계 등을 포함하는 것을 의미한다.

【발명의 효과】

따라서, 본 발명은 항 c-Met 항체 및 이의 용도를 제공한다. 본 발명의 방법은 c-Met 항체를 검출하고, 항체를 이용하여 혈액 내의 순환암세포를 검출하는 데에 유용하게 이용될 수 있다.

【도면의 간단한 설명】

도 la 및 도 lb는 인간 c-Met 재조합 단백질을 항원으로 이용한 파지 디스플레이 (a) 및 ELISA에 의한 스크리닝한 결과 (b)를 나타낸 것이다.

도 2는 ELISA 결과에 따라 선택된 히트의 결합 여부를 확인한 결과를 나타낸 것이다.

도 3은 정제한 항체의 중쇄 및 경쇄 크기를 확인하기 위하여 SDS-PAGE를 실시한 결과를 나타낸 것이다.

도 4a 및 도 4b는 A549 세포를 이용하여 유세포 분석 (f low cytometry)으로 10가지 c-Met 항체의 결합력을 확인한 결과 (a) 및 A549 및 SKBR-3 세포를 이용하여 유세포 분석 (f low cytometry)으로 c-Met 항체 (A8 , All, BIO, C8)의 결합력을 확인한 결과 (b)를 나타낸 것이다.

도 5a 및 도 5b는 SNU5 세포, CAPAN2 세포, PC3 세포, A549 세포 및 MCF7 세포를 이용하여, FACS 분석 방법으로 c-Met 항체 (B10)의 결합력을 확인한 결과를 나타낸 것이다.

【발명의 실시를 위한 형태】

이하본 발명을 상세히 설명한다.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.

실험방법

1. 시약

A549 세포주, MDA-MB231 세포주는 ATCC(American Type Culture Col lect ion, USA)에서 구입하였고, H596 세포, SKBR-3 세포는 한국세포주은행 (Krean Cel l Line Bank, KCLB)에서 구입하였다. 선별에 사용된 항원은 수용체의 1-932 아미노산 (amino acid, aa)을 포함하는 인간 c-Met 재조합 단백질이며, SinobiologicaK중국)에서 구입하였다. 또한 대조군으로는 Abeam (미국)에서 구입한 항 -c-Met 항체를 사용하였다.

2. 파지 디스플레이

인간 재조합 c-Met 단백질을 항원으로 사용하였고, 인간 scF 라이브러리는 c-Met 세포외 영역에 결합하는 히트 (hi ts) 스크리닝에 사용하였다. 항원을 농도 10 /g// 의 면역 튜브 (Nunc , USA)에 코팅하고 0/N로 배양하여 결합시켰다. 면역류브와 파지를 블로킹 버퍼 (3% mi lk in PBST)로 활성을 억제하였다. 파지를 항원이 코팅된 면역류브에 넣고 결합시켰으며, 1시간 후 PBST로 4번, PBS로 1번 세척하였다. 파지를 7~8분 동안 lOOmM TEA에 용출시킨 다음 Tris-HCKpH 8) 용액으로 중화시켰다. 용출된 파지를 대장균에 감염시켰고, 일부는 고형 LA 플레이트에서 0/N으로 배양하여 출력 역가 (output t iter)를 확인하였다. 남은 파지는 헬퍼 파지 (helper phage)를 사용하여 구제하였고, 동일한 실험을 3번 반복하였다.

3. ELISA스크리닝

4번째 패닝 후, 단일 콜로니를 각각 96웰 플레이트에서 암피실린을 포함하는 SB 150μ1에 주입하였다. 그 다음 배지가 뿌옇게 될 때까지 37°C 진탕배양기에서 배양하였다. 배양 후, 배양액을 원판에 넣고 InM IPTG로 유도한 후 30°C에서 밤새 배양하였다. c-Met 재조합 단백질을 항원으로 사용하였고, ELISA 플레이트 (corning 3690)에 lug/ml 농도로 PBS에 녹여 코팅하였고 4°C에서 밤새 배양하였다. 그 다음 날, 클론이 주입된 플레이트를 15분 동안 3000 rpm에서 원심분리하였다. 상층액을 제거하고, 펠렛을 37°C에서 IX TES 버퍼에서 5~7분 동안 재현탁시킨 다음 0.2X TES 버퍼를 첨가하여 4°C에서 30분동안 반응시켜 세포를 용해시켰다. 항원 코팅된

플레이트를 150μ1의 TBST로 3회 세척하고, 3% 스킴 밀크를 사용하여 반응을 억제하였다. 페리플라스믹 (per iplasmic) 추출물을 용해된 세포에서 수득하였고, 새 플레이트에서 6% 스킴 밀크를 이용하여 1시간 동안 반웅을 억제하였다. 그 다음 용액을 항원 코팅된 플레이트에 첨가하였고, 실온에서 1시간 동안 항온 배양한 뒤 TBST를 이용하여 3회 세척하였다. 그 다음 ant i-HA Hrp 2차 항체를 첨가하여 1시간 동안 배양한 뒤 TBST로 3회 세척하였다. 그 다음 30μ1의 ΤΜΒ를 처리하여 반응을 시작한 다음, 1N H2S04를 사용하여 반응을 억제하였으며 , 450nm에서 검출하였다.

5. 염기서열 분석 및 IgG전환

상기 ELISA 스크리닝에서 선별된 hi ts의 서열을 분석하였다 (Cosmogenetech, Korea) . 서열분석 및 ELISA 스크리닝 후에 선별된 최종 hi ts를 인간 IgG로 변환시켰다. scFv 서열을 인간 경쇄 및 중쇄 서열로 전환하였고, 클로닝에 의한 p0pt iVEC™-T0P0 및 pcDNATM3.3-T0P0(Theraof i sher , USA) 백터에 융화시켰다. 그 다음 midi prep(Macherey Nagel , Germany)을사용하여 플라스미드를 증폭시켰다.

6. 과발현 및 항체 정제

증폭된 플라스미드를 Freestyle Expression Systemdnvi trogen, USA)을 이용하여 일시적으로 발현하였다. 삼각 플라스크 (Corning, USA)에서 프리스타일 발현 배지 (Freestyle Expression Medium)에서 프리스타일 세포 (Freestyle cel l )을 해동시켰고, 배양하였다. 세포가 3.0 X 106 cel ls/ml 농도가 될 때까지 배양하여 2~3일 마다 계대배양하였으며, 4번의 계대배양 후, FreeStyle™ MAX Trans feet ion 시약 ( Invitrogen, USA)를 사용하여 중쇄 및 경쇄 플라스미드를 형질감염시켰다. 그 다음 8% C02 > 37 °C 조건의 진탕기에서 세포를 배양하였다. 형질 감염 후 7일 째에 세포를 수득하였고, 상층액을 취득하여 여과하였다. 여과 후, 크로마토그래피 칼럼 (Bio-rad, USA)에서 상층액을 MabSelect SuRe protein A beads (GE heal thcare . USA)에 적용하였다. 그 다음 SDS-PAGE 및 쿠마시 블루 (coomassie blue) 염색으로 크기를 확인하였다.

7. 유세포 분석

A549 , MDA-MP231 , H596 및 SKBR-3 세포를 이용하여 유세포 분석 ( f low

cytometric analysis)을 실시하였다. 세포들은 세포 해리 버퍼 (cell dissociation buffer, Hyclone, USA)로 세포를 떼어낸 뒤, PBS를 세척한 다음, 2.0X105 개의 세포로 분리하여 튜브에 넣었다. 항체를 lyg/tube의 농도가 되도록 2% FBS가 함유된 DBPS(Wellgene)용액으로 회석하여, 세포에 첨가하였고, 1시간 동안 반웅시켰다. 대조군으로는 상업용 항 -c-Met 항체를 사용하였다. 그 다음 세포를 2번 세척하고, FITC가 결합된 2차 항체로 40분 동안 반응시켰다. 3회 세척한 후, FACS BD CaliburCBD, USA)를 사용하여 분석하였다.

8. 세포 배양 및 항체 치료

H596 세포를 10% FBS와 \ 페니실린 /스트렙토마이신 (Hyclone)을 포함하고 있는 RPMI(Wellgene)를 사용하여 배양하였다. 항체가 인산화 신호를 유도할 수 있는지 관찰하기 위하여, 6웰 플레이트에 세포를 배양하였다. 그 다음 FBS에 의한 신호의 간섭을 제거하기 위해, 하룻밤 동안 FBS가 포함되지 않은 RPMI 배지에서 배양하였다. 다음날, 배지를 제거하고, 항체 또는 HGF를 다른 농도로 함유된 용액을 1시간 동안 처리하였다.

9. 웨스턴 블랏

상기와 같이 세포를 배양한 다음, RIPA(Biosesang), 단백질 분해 효소 억제제 (protease inhibitor, Roche) 및 인산화 효소 억제제 (phosphatase inhibitor, Roche)를 함유하고 있는 용해 버퍼를 이용하여 세포를 수득하였고, 1ml 주사기를 이용하여 세포를 용해시켰다. 용해 후, 세포를 15분 동안 14000rpm으로 원심분리하였다. 그 다음 상층액을 수득하였고, BCA 분석 (Thermofisher) 방법을 통해 단백질을 정량하였다. 상층액을 5x 샘플 로딩 버퍼와 흔합한 다음 10분 동안 열을 가했다. 그 다음 SDS-PAGE를 실시한 다음, 활성화된 PVDF(polyvinylidene di fluoride) 멤브레인 (Bio-rad)에 단백질을 트랜스퍼 (transfer) 하였다. 5% BSA로 멤브레인의 활성을 억제하였고, 1차 항체로 반웅시킨 다음, Hrp가 결합된 2차 항체로 반응시켰다. 그 다음 암실에서 Ea(Amersham)을 사용하여 확인하였다.

실시예 1: c-Met에 결합하는 scFv의 스크리닝 및 동정

c-Met에 결합하는 항체를 확인하기 위하여, 항원으로서 세포외 도메인 (aa,

1-932)만 함유하는 인간 재조합 c-Met 항체를 사용하여, 상기에 기재된 방법에 따라 인간 scFv 라이브러리 스크리닝을 실시하였다. 항원을 면역튜브 ( immunotube)에 결합시키고 4사이클을 반복하였다.

그 결과 도 la에서 나타난 바와 같이, 3번째와 4번째 싸이클에서 출력 (output )이 증가하는 것으로 나타났고, 3번째와 4번째 사이클에서 획득한 샘플은 ELISA 방법을 통해 결합력을 확인하였으며, 그 결과를 도 lb에 나타냈다. 또한, 대조군 플레이트와 비교하여 신호를 나타내는 것을 선택한 뒤, 염기서열을 분석 (sequencing)하였고, 이 중 상이한 서열을 갖는 31개 후보 (hi t )들을 선택하였고, 다시 ELISA를 실시하여 결합력을 확인한 다음 가장 강력하게 결합하는 10개의 후보 (hit )를 선택하였다. 각후보는 ELISA 결과를 토대로 A8; A9, All , B8, BIO , C8, C9, D7, D12 , E10으로 명명하였다. 그 다음 상기 10개의 hit를 인간 IgG 형태로 전환하였다 (도 2) .

실시예 2: 인간 IgG형태의 천연 c-Met 결합 여부 확인

상기 실시예 1에서 제조한 인간 IgG가 천연 c-Met에 결합하는 것을 확인하기 위하여 다음과 같이 실험을 실시하였다.

먼저 상기 실험 방법에 따라 293F 세포에 플라스미드로 형질감염시켜 7일 동안 배양하였다. 그 다음 세포를 수득하여 단백질 A 비드를 사용하여 항체를 정제하였고, SDS-PAGE를 실시하였다.

그 결과 도 3에서 보이는 바와 같이, 상기 실시예 1에서 가장 강력하게 결합하는 10개의 hit가 인간 IgG 형태로 변환되어 세포에서 발현되는 것을 확인하였으며, 경쇄 및 중쇄의 크기를 확인할 수 있었다.

IgG가 전환된 것을 확인한 다음, CCLE의 정보를 기초로 하여 c-Met에 대해 양성인 세포를 선택하여, 상기 실험 방법에 따라 유동세포분석 (f low cytometry)을 실시하였다.

그 결과 도 4a에서 보이는 바와 같이, 항체의 결합 패턴 (binding pattern)은 A549 세포에서 나타나는 가장 높은 변화와 c-Met의 발현 수준이 일치하는 것으로 나타났으며, 이중 가장 비슷하게 나타난 4가지 항체를 선별하여 다른 세포주를 이용하여 동일한 실험을 실시하였다. 이 때, H596 세포주는 중간 발현 세포주이며,

SKBR-3 세포주는 음성 대조군으로 사용하였다.

그 결과 도 4b에서 보이는 바와 같이, 4가지 항체 (A8 , All , BIO , C8)의 결합 패턴은 c-Met 발현 수준과 관계가 있는 것으로 나타났으며, c-Met 음성 세포주인 SKBR-3 세포주에서는 결합 이동이 잘 보이지 않는 것으로 나타났다. 이 중 B10은 A549 , H596 및 SKBR-3 세포주에서 대조군인 Ant i -c-Met 항체의 발현 패턴이 유사한 것을 확인하였고, 다른 항체들에 비해 신호가 더 높은 것을 확인할 수 있었다.

이를 통해, 4가지 항체는 c-Met 수용체에 대하여 특이성이 있다는 것을 확인할 수 있었다.

실시예 3 : c-Met 항체를 이용한 순환암세포분리 방법

상기 실시예에서 제조한 c-Met에 특이적으로 결합하는 항체 C8이 혈액 내에서 순환암세포 (ci rculat ing tumor cel l s , CTC)만을 분리하기 위한 실험을 다음과 같이 실시하였다.

먼저 임상 시험 심사 위원회 규정을 준수해서 얻은 환자의 정상 혈액 4 를 시험관에 넣고, 유방암 세포주 MCF-7 세포 100개를 스파이크 (spiking)한 다음, 마그네틱 비드와 결합된, C-Met에 특이적으로 결합하는 항체인 C8을 첨가한 후 1시간 동안 방치하였다. 그 다음, 마그네틱 컬럼으로 분리를 수행하였다.

그 결과 c— Met에 특이적으로 결합하는 항체가 결합된 순환암세포는 마그네틱 컬럼에 붙어 있음을 확인하였다. 이를 통해, c— Met 항체를 이용하여 혈액 내의 순환암세포를 검출할수 있다는 것을 확인할수 있었다 (데이터 미도시) .

실시예 4 : c-Met 항체의 결합력 확인

상기 실시예에서 제조한 c-Met에 특이적으로 결합하는 항체 C8의 결합력을 확인하기 위한실험을 다음과 같이 실시하였다.

암 세포주인 SNU5 , CAPAN2 , PC3 , A549 , MCF7 세포주를 각각 배양하였고, 상기 실험 방법에 따라 유동세포분석 ( f low cytometry , FACS)을 실시하였다. 대조군으로는 현재 시중에서 판매되고 있는 c-Met 항체 (eBiosci ence)와 2차 항체 (2nd control )를 사용하였다.

그 결과 도 5a 및 도 5b에 나타난 바와 같이, 2차 항체의 경우에는 c-Met에 특이적으로 결합하지 않는 것으로 나타났다. 또한, 본 발명의 C8 항체가 대조군인 기존의 c-Met 항체 (eBioscience)의 발현 패턴과 유사한 것으로 나타났으며, 대조군에 비해 결합 이동이 더 활발한 것으로 나타났다.

이를 통해, 본 발명의 C8 항체가 기존의 c-Met 항체에 비하여 결합력이 높아, 보다유용하게 암세포를 검출할 수 있다는 것을 예측할 수 있다.

【산업상 이용가능성】

이상 살펴본 바와 같이 본 발명의 방법은 c-Met 항체를 검출하고, 이용하여 혈액 내의 순환암세포를 검출하는 데에 유용하게 이용될 수 있다.