Некоторое содержание этого приложения в настоящий момент недоступно.
Если эта ситуация сохраняется, свяжитесь с нами по адресуОтзывы и контакты
1. (WO2019044969) MICROPLATE READER
Document

明 細 書

発明の名称 マイクロプレートリーダー

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006   0007   0008  

課題を解決するための手段

0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025  

発明の効果

0026  

図面の簡単な説明

0027  

発明を実施するための形態

0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101  

符号の説明

0102  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25  

明 細 書

発明の名称 : マイクロプレートリーダー

技術分野

[0001]
 本発明は、マイクロプレートのウェルに収容された試料に対して光学的測定を行うマイクロプレートリーダーに関する。

背景技術

[0002]
 従来、例えばアクリル、ポリエチレン、ポリスチレン、ガラス等からなり、多数の窪み(ウェル)が設けられた平板状のマイクロプレートを用いて、試薬の分離、合成、抽出、分析、細胞培養などが行われている。例えば、抗体が固定された各ウェルに抗原を含む試薬を注入することにより発生する抗体抗原反応(酵素免疫反応)に関する測定(例えば、ELISA法による測定)が、マイクロプレートを用いて行われる。
 マイクロプレートの各ウェルに収容された試料に対しては、例えば、当該試料の光学的性質が測定される。この測定は、上記試料に対して光学的測定を行う測定装置であるマイクロプレートリーダーによって行われる。マイクロプレートリーダーは、例えば、吸光、蛍光、化学発光、蛍光偏光等の光学的性質を測定可能である。
[0003]
 従来のマイクロプレートリーダーとして、例えば特許文献1(特開2014-41121号公報)に記載の技術がある。特許文献1(特開2014-41121号公報)に記載のマイクロプレートリーダーは、試料に対して光照射を行ったり、光照射された試料からの発光を観測し光測定を行ったりするための光学的測定/検出装置(測定ヘッド)を有する。測定ヘッドからマイクロプレートへの光照射は、マイクロプレートの各ウェルの下方向から行われ、測定ヘッドは、各ウェルの上方へ放出される観測光を測定する。測定ヘッドは固定されており、マイクロプレートは、マイクロプレートリーダーの駆動機構により、測定ヘッドの検出軸(マイクロプレートに垂直な方向の軸(Z軸))にウェルが位置するように、2次元方向(X方向、Y方向)に走査される。
[0004]
 また、特許文献2(特開2009-103480号公報)には、携帯可能な程度に小型化されたマイクロプレートリーダーが開示されている。特許文献2(特開2009-103480号公報)に記載のマイクロプレートリーダーは、8つのウェルが一列に配置された8連のマイクロプレートを挿入可能な空間を有し、当該空間内をマイクロプレートがスライド可能に構成されている。このマイクロプレートリーダーは、上記空間の上部かつ、マイクロプレートのウェル上面に対向する位置から、当該ウェルに保持される試料へ光が照射される構成を有する。また、上記空間の下部には、上記試料から放出される光を検出するフォトダイオードが設けられている。マイクロプレートリーダーは、マイクロプレートを上記空間内においてスライドさせながら光測定を行う。

先行技術文献

特許文献

[0005]
特許文献1 : 特開2014-41121号公報
特許文献2 : 特開2009-103480号公報

発明の概要

発明が解決しようとする課題

[0006]
 しかしながら、上記特許文献1(特開2014-41121号公報)に記載されたマイクロプレートリーダーは、1回の測定で1枚のマイクロプレートの各ウェルに収容された試料全てについて測定を行うことはできない。各ウェルに収容された試料全てについて測定を行うには、マイクロプレートを走査させて複数回の光測定を行う必要があり、測定に時間がかかる。また、特許文献1(特開2014-41121号公報)に記載されたマイクロプレートリーダーでは、1回の光測定毎に都度、マイクロプレートを走査させるための駆動機構が必須となり、装置自体が大がかりとなる。
 そのため、ライフサイエンス分野におけるポイントオブケア(POCT)検査のような分野で要請される装置の小型化への対応は難しい。
[0007]
 また、上記特許文献2(特開2009-103480号公報)に記載されたマイクロプレートリーダーは、携帯可能な程度に小型化されてはいるが、特許文献1(特開2014-41121号公報)に記載されたマイクロプレートリーダーと同様に、1回の測定でマイクロプレートの各ウェルに収容された試料全てについて光測定を行うことはできない。8連のマイクロプレートリーダーを、1回の光測定毎、1次元方向に走査させる必要があるため、測定に時間がかかる。また、2次元方向にウェルが配置されたマイクロプレートには対応できない。
 さらに、マイクロプレートを挿入する空間に対して外光がノイズ光として入射するおそれがあり、各ウェルに収容されている試料の光測定を高精度に行うことができない。
[0008]
 そこで、本発明は、小型化が可能であり、マイクロプレートの各ウェルに収容された試料全ての光測定を短時間で高精度に行うことができるマイクロプレートリーダーを提供することを課題としている。

課題を解決するための手段

[0009]
 上記課題を解決するために、本発明に係るマイクロプレートリーダーの一態様は、筐体と、前記筐体内において、配置されるマイクロプレートの一方の側に配置され、前記マイクロプレートの1つのウェルに対応した投光部と受光部とからなる組を、少なくとも前記マイクロプレートのウェルの数だけ有する投光受光部と、前記マイクロプレートを挟んで前記投光受光部とは反対側に配置され、前記投光受光部側から前記ウェルに収容された試料を通過した光を、前記投光受光部側へ反射させる反射部材と、前記投光受光部と前記マイクロプレートとの間に配置され、前記投光部から放出される光を前記試料へ導光する投光用導光路と、前記反射部材によって反射され当該試料を通過した光を前記受光部へ導光する受光用導光路と、前記投光用導光路および前記受光用導光路を、それぞれ光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する導光部と、を備える。
[0010]
 このように、1つのウェルに投光部と受光部とがペアで設けられており、投光部と受光部との組が全てのウェルに対してそれぞれ設けられている。したがって、マイクロプレートの各ウェルに収容される試料の全ての光測定をほぼ同時に行うことが可能となり、測定時間を短縮することができる。また、従来のようなマイクロプレートを走査させるための複雑な駆動機構等が不要であるため、小型化を実現することができる。さらに、導光路を、外光や散乱光を吸収可能な顔料含有樹脂により包囲するので、外光や散乱光等が迷光(ノイズ光)となって受光部に入射されることを抑制することができる。そのため、当該迷光による測定誤差を低減することができ、高精度な測定が可能となる。
[0011]
 また、前記マイクロプレートリーダーにおいて、前記投光受光部の上方に前記導光部が配置され、前記導光部の上方に配置された前記マイクロプレートの上方に、前記反射部材が配置されていてもよい。
 このように、マイクロプレートリーダーは、投光受光部の上に導光部を配置し、導光部の上にマイクロプレートを配置し、マイクロプレートの上に反射部材を配置する構造とすることができる。この場合、投光受光部および導光部を筐体内に固定しておき、試料を収容したマイクロプレートを導光部上に載置し、マイクロプレートの上方を反射部材で覆うようにすればよい。したがって、セッティングが容易なマイクロプレートリーダーとすることができる。
[0012]
 さらに、前記マイクロプレートリーダーは、複数の前記投光部および前記受光部への給電回路を有し、前記投光部および前記受光部がそれぞれ電気的に接続された基板をさらに備えてもよい。
 この場合、複数の投光部および受光部への電力供給を、配線パターンが形成された1枚のプリント基板によって実現することができ、マイクロプレートリーダーの小型化が図れる。
[0013]
 また、前記マイクロプレートリーダーにおいて、前記投光部は、発光ダイオードであってもよい。発光ダイオード(LED)は小型であるため、投光部を適切に各ウェルに1つずつ対応させて設置することが可能である。また、LEDは比較的安価であるため、マイクロプレートリーダーを低コストで実現することができる。
 さらに、前記マイクロプレートリーダーにおいて、前記受光部は、受光センサであってもよい。この場合、受光部をカラーセンサとすることが可能であり、容易に測定データを得ることができる。
 また、前記マイクロプレートリーダーにおいて、前記受光部は、光ファイバであってもよい。この場合、複数の光ファイバによって導光された光を画像センサにより取り込み、画像データとして光測定データを取得することもできる。この場合、全ウェルに対応した光測定データを一括して同時にデータ処理することが可能となる。
[0014]
 さらに、前記マイクロプレートリーダーにおいて、前記反射部材は、前記マイクロプレートに対向する面において、前記投光用導光路および前記受光用導光路の形成位置に応じて選択的に設けられていてもよい。
 この場合、1つのウェルを通過して反射部材に到達した光の一部が当該ウェルに隣接する他のウェルに入射することを抑制することが可能となり、高精度な測定結果を得ることができる。
[0015]
 また、前記マイクロプレートリーダーにおいて、前記投光用導光路の光出射端と前記受光用導光路の光入射端との水平方向における距離が、前記投光用導光路の光入射端と前記受光用導光路の光出射端との水平方向における距離よりも短くてもよい。
 この場合、投光部から放出され、マイクロプレートのウェルを通過して反射部材により折り返された光を、再度上記ウェルを通過させて適切に受光部へ導くことができる。つまり、マイクロプレートの鉛直方向における一方の側に投光部と受光部とを配置した場合であっても(マイクロプレートを挟んで上下方向に投光部と受光部とを設けなくても)、適切に対応するウェルに収容される試料へ光を照射し、当該試料を通過した光を測定することができる。
[0016]
 さらに、前記マイクロプレートリーダーにおいて、前記投光用導光路および前記受光用導光路の光軸と鉛直方向とのなす角が0度であってもよい。この場合、導光部を容易に成形することができる。
 また、前記マイクロプレートリーダーにおいて、前記反射部材は、前記投光用導光路を通過し前記反射部材に入射する入射光を、180度折り返して前記投光受光部側へ反射させる光学素子を有してもよい。この場合、投光用導光路から放出され鉛直方向に進行する投光部からの光を、180度折り返して鉛直方向反対側に進行させ、受光用導光路を介して受光部に受光させることができる。
[0017]
 さらに、前記マイクロプレートリーダーにおいて、前記投光用導光路を通過し前記反射部材に入射する入射光の光軸と、前記反射部材により180度折り返され、前記受光用導光路に入射する折り返し光の光軸とが、所定の間隔をもって離間していていてもよい。
 この場合、投光用導光路の光軸と受光用導光路の光軸とが水平方向に所定の間隔をもって離間している場合であっても、投光用導光路から放出され鉛直方向に進行する投光部からの光を、適切に受光用導光路に入射させることができる。
[0018]
 また、前記マイクロプレートリーダーにおいて、前記反射部材は、前記鉛直方向に対して45度の角度をなす第1の反射面と、前記鉛直方向に対して-45度の角度をなす第2の反射面とを有していてもよい。
 この場合、投光用導光路を通過し反射部材に入射した入射光は、第1の反射面および第2の反射面の一方の反射面により90度折り返されて他方の反射面に入射し、当該他方の反射面により90度更に折り返される。このように、入射光を、適切に180度折り返して投光受光部側へ反射させることができる。
[0019]
 さらにまた、前記マイクロプレートリーダーにおいて、前記反射部材は、前記第1の反射面と前記第2の反射面とを有する直角プリズムであってもよい。この場合、投光用導光路を通過し反射部材に入射する入射光を、適切に180度折り返して投光受光部側へ反射させることができる。
 また、前記マイクロプレートリーダーにおいて、前記反射部材は、前記第1の反射面と前記第2の反射面とからなる凹部を有するプレート部材であってもよい。この場合、投光用導光路を通過し反射部材に入射する入射光を、適切に180度折り返して投光受光部側へ反射させることができる。
[0020]
 さらに、前記マイクロプレートリーダーにおいて、前記第1の反射面と前記第2の反射面とは、それぞれ前記ウェルの配列方向に沿って伸びていてもよい。この場合、一方向に配列された複数のウェルに対応して1つの反射部材を設ければよい。したがって、その分の部品点数を削減することができる。また、マイクロプレートと反射部材との位置合わせの工数も削減することができる。
[0021]
 また、前記マイクロプレートリーダーにおいて、前記反射部材は、前記投光用導光路を通過し前記反射部材に入射する入射光を散乱させ、180度折り返して前記投光受光部側へ反射させる平板状の散乱プレートであってもよい。
 この場合、投光用導光路の光軸と受光用導光路の光軸とが水平方向に所定の間隔をもって離間している場合であっても、投光用導光路から放出され鉛直方向に進行する投光部からの光を、適切に受光用導光路に入射させることができる。また、マイクロプレートと反射部材との位置合わせ精度も必要ない。
[0022]
 また、前記マイクロプレートリーダーにおいて、前記反射部材は、3つの反射面を有し、前記投光用導光路を通過し前記反射部材に入射する入射光を3回反射して、180度折り返して前記投光受光部側へ反射させるリトロリフレクタ型光学素子であってもよい。
 この場合、投光用導光路を通過し反射部材に入射する入射光を、適切に180度折り返して投光受光部側へ反射させることができる。
[0023]
 さらに、前記マイクロプレートリーダーにおいて、前記投光用導光路および前記受光用導光路の少なくとも一部に、前記顔料含有樹脂を構成する光透過特性を有する樹脂が充填されていてもよい。
 この場合、導光路と包囲部材との界面における光の反射や散乱を抑制することができる。したがって、より効果的に迷光による測定誤差を抑制することができる。
[0024]
 また、本発明に係るマイクロプレートリーダーユニットの一態様は、マイクロプレートの1つのウェルに対応した投光部と受光部とを有する投光受光部と、前記投光部から放出される光を、対応する前記ウェルが収容する試料へ導光する投光用導光路と、前記投光用導光路および前記試料を通過した光が折り返されて再び前記試料を通過した光を、前記受光部へ導光する受光用導光路と、前記投光用導光路および前記受光用導光路を、それぞれ光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する導光部と、を備える。
 これにより、小型化が可能であり、マイクロプレートの各ウェルに収容された試料全ての光測定を短時間で高精度に行うことができるマイクロプレートリーダーを構成することができる。
[0025]
 さらに、前記マイクロプレートリーダーユニットにおいて、前記投光用導光路および前記受光用導光路の光軸と鉛直方向とのなす角が0度であってもよい。この場合、導光部を容易に成形することができる。

発明の効果

[0026]
 本発明のマイクロプレートリーダーは、小型化が可能であり、マイクロプレートの各ウェルに収容された試料全ての光測定を短時間で高精度に行うことができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。

図面の簡単な説明

[0027]
[図1] 図1は、本実施形態におけるマイクロプレートリーダーの概略構成図である。
[図2] 図2は、マイクロプレートリーダーの主要部の分解斜視図である。
[図3] 図3は、光源およびセンサの電源ラインの一例である。
[図4] 図4は、導光路に侵入する外光について説明する図である。
[図5] 図5は、光の通過経路について説明する図である。
[図6] 図6は、マイクロプレートリーダーのセッティング方法を説明する図である。
[図7] 図7は、マイクロプレートリーダーのセッティング方法を説明する図である。
[図8] 図8は、マイクロプレートリーダーのセッティング方法を説明する図である。
[図9] 図9は、外光の影響を説明する図である。
[図10] 図10は、ミラープレートの別の例を示す図である。
[図11] 図11は、ミラープレートの別の例を示す図である。
[図12] 図12は、測定データを一括処理するための構成を示す図である。
[図13] 図13は、マイクロプレートリーダーユニットの構成を示す図である。
[図14] 図14は、マイクロプレートリーダーユニットの配置例である。
[図15] 図15は、96ウェルのマイクロプレートの測定例である。
[図16] 図16は、6ウェルのマイクロプレートの測定例である。
[図17] 図17は、第三の実施形態のマイクロプレートリーダーの概略構成図である。
[図18] 図18は、マイクロプレートリーダーの上面図である。
[図19] 図19は、図18におけるB-B断面図である。
[図20] 図20は、プリズム位置決め部材を有する反射部材の構成例である。
[図21] 図21は、光透過板を有する反射部材の構成例である。
[図22] 図22は、光透過板およびプリズム位置決め部材を有する反射部材の構成例である。
[図23] 図23は、第三の実施形態のマイクロプレートリーダーの変形例である。
[図24] 図24は、光折り返し部の構成を示す図である。
[図25] 図25は、マイクロプレートの別の例を示す図である。

発明を実施するための形態

[0028]
 以下、本発明の実施形態を図面に基づいて説明する。
(第一の実施形態)
 図1は、本実施形態におけるマイクロプレートリーダー10の概略構成図である。また、図2は、マイクロプレートリーダー10の主要部の構成を示す分解斜視図である。
 マイクロプレートリーダー10は、基板11と、複数の光源12aと、複数の受光センサ12bと、導光プレート部(導光部)13と、ミラープレート(反射部材)14と、筐体15と、電源部16と、給電ケーブル17と、を備える。
[0029]
 基板11、複数の光源12a、複数の受光センサ12b、導光プレート部13、電源部16および給電ケーブル17は、上方に開口部を有する筐体15内に配置され、固定されている。本実施形態におけるマイクロプレートリーダー10は、図2に示すように、基板11の上に複数の光源12aおよび複数の受光センサ12bからなる投光受光部が設けられ、当該投光受光部の上に導光プレート部13が設けられ、筐体15内における導光プレート部13の上部にマイクロプレート20が設置可能に構成されている。
 そして、マイクロプレートリーダー10は、導光プレート部13上に設置されたマイクロプレート20の上に、ミラープレート14が配置されるよう構成されている。ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。ミラープレート14は、筐体15の開口部を塞ぎ、マイクロプレート20の上蓋として機能する。
[0030]
(マイクロプレート)
 マイクロプレート20は、例えばアクリル、ポリエチレン、ポリスチレン、ガラス等からなる平板状の部材である。図2に示すように、マイクロプレート20は、例えば長方形状の平板であり、表面に多数のウェル21が設けられている。ウェル21の形状は、例えば平底を有する円柱形状である。また、ウェル21の数は、6個、24個、96個、384個等であり、容量は数μリットル~数mリットルである。図2に示すマイクロプレート20は、8×12の96ウェルのマイクロプレートである。
[0031]
(投光受光部)
 光源12aは、光を照射する投光部であり、受光センサ12bは、光を受光する受光部である。光源12aと受光センサ12bとは、それぞれ基板11の上部表面に配置される。光源12aは、例えば発光ダイオード(LED)であり、受光センサ12bは、例えばRGBカラーセンサである。
 マイクロプレートリーダー10は、光源12aおよび受光センサ12bを、それぞれマイクロプレート20のウェル21と同じ数だけ備える。つまり、マイクロプレート20の1つのウェル21に対し、1つの光源12aおよび1つの受光センサ12bからなる1組の投光受光部が対応して設けられている。例えば図2に示すように、マイクロプレート20のウェル21が96個ある場合、基板11には、96組の投光受光部が設けられる。
[0032]
(基板)
 基板11は、光源12aが接続される光源用電源ラインと、受光センサ12bが接続されるセンサ用電源ラインとを有する。複数の光源12aは、基板11に設けられた光源用電源ラインに接続され、光源用電源ラインから電力を得ている。また、複数の受光センサ12bは、基板11に設けられたセンサ用電源ラインに接続され、センサ用電源ラインから電力を得ている。基板11の光源用電源ラインおよびンサ用電源ラインには、電源部16から給電ケーブル17を介して電力が供給される。
[0033]
 複数の光源12aは、例えば図3に示すように、光源用電源ラインに対し並列に接続されている。また、同様に複数の受光センサ12bは、例えば図3に示すように、センサ用電源ラインに対し並列に接続されている。
 光源12aおよび受光センサ12bに接続される給電用の配線部は、それぞれ2つである。そのため、本実施形態のように投光受光部が96組設けられる場合は、384個の配線が必要となる。このように膨大な配線をコンパクトにまとめるために、基板11は、上記配線のパターン(給電回路)が形成されたプリント基板として構成される。なお、基板11は、光源12aおよび受光センサ12bへの給電回路のみならず、センサ出力回路やセンサ出力の外部への通信回路等が設けられていてもよい。
[0034]
(導光プレート部)
 導光プレート部13は、基板11に設けられた光源12aから放出される光をマイクロプレート20のウェル21に導光するための投光用導光路13aと、後述するようにウェル21に収容された試料30等を通過して放出される光を受光センサ12bに導光する受光用導光路13bとを備える。
 導光プレート部13は、導光路13a、13bを、それぞれマイクロプレート20のウェル21と同じ数だけ備える。つまり、マイクロプレート20の1つのウェル21に対し、1つの投光用導光路13aおよび1つの受光用導光路13bからなる1組の導光路が対応して設けられる。例えば図2に示すように、マイクロプレート20のウェル21が96個ある場合、導光プレート部13は、96組の導光路を備える。
[0035]
 導光プレート部13の投光用導光路13aの光入射端および受光用導光路13bの光出射端は、それぞれ基板11上に設置された光源12aおよび受光センサ12bに対応する位置に配置されている。また、導光プレート部13の投光用導光路13aの光出射端および受光用導光路13bの光入射端は、それぞれ導光プレート13上に設置されたマイクロプレート20のウェル21の底面に対応する位置に配置されている。すなわち、図示を省略した位置決め手段により、マイクロプレート20は、各ウェル21の底面が、投光用導光路13aの光出射端と受光用導光路13bの光入射端とが1つずつ対向する位置に位置決めされる。
[0036]
 投光用導光路13aは、光源12aから放出される光に対して透明な樹脂(例えば、シリコーン樹脂)により構成される。同様に、受光用導光路13bは、ウェル21に収容された試料30等から放出される光に対して透明な樹脂(例えば、シリコーン樹脂)により構成される。また、投光用導光路13aおよび受光用導光路13bは、顔料含有樹脂からなる包囲部材13cにより包囲されている。ここで、顔料含有樹脂は、光透過特性を有する樹脂(例えば、シリコーン樹脂)に、迷光を吸収する特性を有する顔料を含有したものである。上記顔料は、例えば、黒色顔料であるカーボンブラック等を採用することができる。
[0037]
 本実施形態では、導光路13a、13bを構成する透明な樹脂と、顔料含有樹脂を構成する光透過性を有する樹脂との材質を同じにする。これにより、両樹脂の界面での反射および散乱が抑制される。また、顔料含有樹脂に入射した迷光は、その顔料含有樹脂で吸収され、導光路13a、13bにほとんど戻らず、迷光の複雑な多重反射がほとんど発生しない。
 図4に示すように、導光路13a、13bに侵入する外光等のノイズ光L11は、導光路13a、13bの光軸と同方向に進む成分は非常に少なく、大部分は、導光路13a、13bと顔料含有樹脂からなる包囲部材13cとの界面から顔料含有樹脂へと入射し、顔料により吸収される。このとき、上記界面での反射は、導光路13a、13bを構成する透明な樹脂と、包囲部材13cを構成する顔料含有樹脂との材質を同じとすることにより、発生しない。
[0038]
 なお、顔料に入射する外光やその散乱光は、当該顔料によりほぼ吸収されるが、わずかながら顔料表面で散乱される。しかしながら、その散乱光は、再度顔料含有樹脂からなる包囲部材13cへと入射する場合が多く、顔料含有樹脂の顔料により吸収されることになる。
 したがって、図4に示すように、投光用導光路13aから取り出される光の大部分は、投光用導光路13aの光軸に沿った直進光L1となり、受光用導光路13bから取り出される光の大部分は、受光用導光路13bの光軸に沿った直進光L2となる。
[0039]
 ところで、導光路13a、13bの断面積や光路長の設定によっては、顔料表面によりわずかながら散乱される散乱光の一部が、導光路13a、13bの光出射端から放出される場合がある。そのため、導光路13a、13bの断面積や光路長を適宜設定し、その強度を測定に影響しない程度にまで減衰することが好ましい。
 導光路の光入射端の面積が大きくなると、導光路へ入射する光量は大きくなる。よって、当該光入射端の面積が大きくなると、導光路を進む直進光の強度も、導光路の光入射端で散乱して光出射端へと散乱光として到達する外光の強度も大きくなる。
[0040]
 本発明者らは、導光路の光入射端の面積に対する直進光の強度依存性、および外光の強度依存性を調査した。その結果、導光路の直径の増加に対する外光の強度の増加量は、測定光の強度の増加量よりも大きいことがわかった。
 つまり、導光路の光入射端の面積が狭いほど、S/N比が向上することがわかった。具体的には、光入射端から光出射端までの距離(L)に対する、導光路の光入射端の面積(A)の平方根の比(√A/L)が、0.4以下であると、S/N比が十分に高い光測定が可能となることがわかった。
 したがって、導光路13a、13bの断面積や光路長を、上記の条件を満たすように設定することが好ましい。これにより、散乱光の光測定への悪影響を適切に抑制することができる。
[0041]
(ミラープレート)
 ミラープレート14のマイクロプレート20と対向する面14aは、反射面(ミラー面)となっている。そのため、各光源12aから放出され、導光プレート部13の各投光用導光路13aを通過し、マイクロプレート20の各ウェル21に収容された試料30を通過した光は、ミラープレート14に到達後、当該ミラープレート14の反射面14aにより反射される。
[0042]
 本実施形態では、投光用導光路13aの光出射端と受光用導光路13bの光入射端との水平方向における距離は、投光用導光路13aの光入射端と受光用導光路13bの光出射端との水平方向における距離よりも短い。つまり、図1における上下方向を法線方向と規定した場合、投光用導光路13aの光軸および受光用導光路13bの光軸は、それぞれ法線方向に対して所定の角度で傾斜している。
 そのため、ミラープレート14の反射面14aにより反射された光は、再度マイクロプレート20の各ウェル21に収容された試料30を通過し、導光プレート部13の各受光用導光路13bを通過して、各受光センサ12bに入射する。
[0043]
 投光用導光路13aの光軸と法線方向とのなす角と、受光用導光路13bの光軸の法線方向とのなす角とは、光源12aから放出された光が、ミラープレート14の反射面14aによって反射されて受光センサ12bへ適切に入射されるよう適宜設定される。以下、この点について図5を参照しながら詳細に説明する。
 なお、図5においては、光路の理解を容易にするために、ミラープレート14とマイクロプレート20とは、上下方向にある程度離間して描画している。実際は、ミラープレート14は、マイクロプレート20上に載置され、マイクロプレート20の上蓋として機能し、マイクロプレート20の上方からの外光の侵入を抑制している。ただし、マイクロプレート20の上方からの外光の影響を無視できる場合には、ミラープレート14とマイクロプレート20との間には、所定の間隔を設けてもよい。
[0044]
 図5に示すように、導光路13a、13bからミラープレート14までの光が通過する経路は、複数の界面41~43を含む。ここで、界面41は、樹脂(例えば、シリコーン樹脂)からなる導光路13a、13bの端面(投光用導光路13aの光出射端、受光用導光路13bの光入射端)とマイクロプレート20の底面との間の界面である。界面42は、マイクロプレート20のウェル21の底面と試料30との間の界面である。また、界面43は、試料30と空気との界面である。各界面41~43の前後では媒質が変わるため、光の屈折が生じる。
 そこで、投光用導光路13aの光軸と法線方向とのなす角、および受光用導光路13bの光軸の法線方向とのなす角は、それぞれ上記のような光の屈折を考慮して設定しておく必要がある。
[0045]
 例えば、導光路13a、13bを構成する樹脂の材質がPDMS(ポリジメチルシロキサン)樹脂、マイクロプレート20の材質がポリスチレンである場合、導光路13a、13bの屈折率は1.41、マイクロプレート20の屈折率は、1.59である。以下、試料30の屈折率が水と同等(1.33)であるとし、空気の屈折率を1として、上記の光の屈折の影響を検討する。
[0046]
 図5において、例えば、投光用導光路13aの光軸と法線方向とのなす角をθ1とする。この場合、投光用導光路13aからマイクロプレート20への入射角はθ1である。ここで、マイクロプレート20を通る光の屈折角をθ2とすると、スネルの法則により、以下の式が成立する。
 1.41×sin(θ1)=1.59×sin(θ2) ・・・(1)
 上記(1)式において、θ1を例えば5°とすると、θ2は4.43°となる。
[0047]
 同様に、マイクロプレート20から試料30への入射角をθ2、試料30を通る光の屈折角をθ3とすると、スネルの法則により、以下の式が成立する。
 1.59×sin(θ2)=1.33×sin(θ3) ・・・(2)
 上記(2)式において、θ2は、上記(1)式により4.43°であるため、θ3は5.30°となる。
[0048]
 同様に、試料30から空気への入射角をθ3、空気を通りミラープレート14の反射面14aへ到達する光の屈折角をθ4とすると、スネルの法則により、以下の式が成立する。
 1.33×sin(θ3)=1×sin(θ4) ・・・(3)
 上記(3)式において、θ3は、上記(2)式により5.30°であるため、θ4は7.05°となる。
 このように、上記条件では、θ1とθ4とでは2°程度の角度の差が生じる。したがって、投光用導光路13aの光軸と法線方向とのなす角、および受光用導光路13bの光軸の法線方向とのなす角は、それぞれ上記の角度の差を考慮して設定しておくことが好ましい。
[0049]
 ただし、例えばマイクロプレート20のウェル21の直径を6mm~7mm程度、ウェル21の深さを10mm~11mm程度、導光プレート部13の厚みを10mm程度、マイクロプレート20に収容されている試料30の表面とミラープレート14の反射面14aとの間隔を1mm程度とすると、導光プレート部13からミラープレート14の反射面14aまでの距離は20mm程度である。つまり、光源12aからミラープレート14までの光路長、およびミラープレート14から受光センサ13bまでの光路長は、それぞれ30mm未満である。
 上記の条件では、上述したようにθ1とθ4との差は2°程度である。したがって、光路長が30mm未満と比較的短い場合には、導光プレート部13からミラープレート14までの光線経路への各界面(界面41~界面43)での屈折の影響は小さいとみなすこともできる。
[0050]
 次に、本実施形態におけるマイクロプレートリーダー10のセッティング方法について説明する。
 図6に示すように、筐体15内部に基板11、複数の光源12a、複数の受光センサ12b、導光プレート部13、電源部16および給電ケーブル17が固定された状態のマイクロプレートリーダー10に対して、作業者は、図7に示すように、各ウェル21に試料30が収容されたマイクロプレート20を設置する。このとき、マイクロプレート20は、導光プレート部13上に載置される。また、このときマイクロプレート20は、各ウェル21の底面が、投光用導光路13aの光出射端と受光用導光路13bの光入射端とが1つずつ対向する位置に位置決めされる。
[0051]
 次に、図8に示すように、作業者は、マイクロプレート20上にミラープレート14を設置する。このとき、作業者は、ミラープレート14における反射面14aとは反対の面に設けられた把持部14bを持って、ミラープレート14を、筐体15の開口部を塞ぐようにマイクロプレート20上に設置する。なお、ミラープレート14は、不図示の位置決め部材により上下方向に位置決めがなされるようにしてもよい。
 作業者は、ミラープレート14をマイクロプレート20上に設置した後、不図示の電源スイッチ等を操作して、電源部16から給電ケーブル17を介して各光源12aおよび各受光センサ12bへ電力を供給する。これにより、各光源12aから光が放出される。
[0052]
 各光源12aから放出された光は、導光プレート部13の各投光用導光路13aを通過し、マイクロプレート20の各ウェル21に収容された試料30を通過してミラープレート14に到達する。そして、ミラープレート14に到達した光は、ミラープレート14の反射面14aによって反射され、再度各ウェル21を通過する。各ウェル21を通過した光は、導光プレート部13の各受光用導光路13bを通過して受光センサ12bによって受光される。このようにして、試料30の光学特性(例えば、吸光特性)が測定される。
 受光センサ12bによる測定結果は、光強度情報として、不図示のデータ通信部を介して外部装置に送信可能であってもよい。この場合、外部装置は、上記の光強度情報をもとに、試料30の光学特性を測定する。
[0053]
 以上説明したように、本実施形態におけるマイクロプレートリーダー10は、水平配置されるマイクロプレート20の下方に配置され、マイクロプレート20の1つのウェル21に対応した光源12aと受光センサ12bとからなる組を、マイクロプレート20のウェル21の数だけ有する投光受光部を備える。また、マイクロプレートリーダー10は、マイクロプレート20の上方に配置され、投光受光部側からウェル21に収容された試料30を通過した光を、投光受光部側へ反射させるミラープレート14を備える。さらに、マイクロプレートリーダー10は、投光受光部とマイクロプレート20との間に配置され、光源12aから放出される光を試料30へ導光する投光用導光路13aと、ミラープレート14によって反射され当該試料30を通過した光を受光センサ12bへ導光する受光用導光路13bと、投光用導光路13aおよび受光用導光路13bを、それぞれ顔料含有樹脂により包囲する包囲部材13cと、を有する導光プレート部13を備える。
[0054]
 このように、本実施形態におけるマイクロプレートリーダー10によれば、マイクロプレート20の各ウェル21全てに対応して、当該ウェル21に収容される試料30に光を照射するための光源12aと、当該試料30から放出される光を計測する受光センサ12bが設けられている。
 従来、マイクロプレート20の各ウェル21全てに対応して光源および受光センサを設けるという発想はなく、1回の光測定毎に都度、マイクロプレート20を走査させ、複数回の測定によって全てのウェル21の光測定を行っていた。そのため、全てのウェル21の光測定には時間を要していた。
 本実施形態では、従来のように1回の光測定毎にマイクロプレート20を走査させることなく、1回の測定でマイクロプレート20の各ウェル21に収容される試料30の全ての光測定をほぼ同時に行うことが可能である。したがって、測定時間を短縮することができる。また、マイクロプレート20を走査させるための複雑な駆動機構等が不要であるため、装置サイズを小さくすることが可能である。
[0055]
 また、マイクロプレートリーダー10は、光源12aからマイクロプレート20の各ウェル21に収容された試料30へ照射され当該ウェル21を通過した光を、再度上記ウェル21を通過させて受光センサ12bへ導くようなミラープレート14を備える。そのため、光源12aと受光センサ12bとをマイクロプレート20の下方に並べて配置することが可能となり、投光部と受光部とをマイクロプレート20を挟んで上下方向に対向配置させる場合と比較して光路部の長さを短くすることが可能となる。
 さらに、投光部と受光部とをマイクロプレート20を挟んで上下方向に対向配置させる場合、マイクロプレート20の上下にそれぞれ給電用の配線基板(プリント基板)が必要となるが、本実施形態のようにミラープレート14を設けることで、マイクロプレート20の一方の側のみに配線基板を設けるだけでよい。
 したがって、装置の小型化を実現することができる。
[0056]
 また、導光プレート部13は、マイクロプレート20の各ウェル21へ光を導光する投光用導光路13aと、各ウェル21からの光を受光センサ12bへ導光する受光用導光路13bとを透明な樹脂(シリコーン樹脂)から構成し、これらの導光路13a、13bを外光や散乱光を吸収可能な顔料含有樹脂からなる包囲部材13cにより包囲した構成を有する。したがって、上記外光や散乱光からのノイズ光(迷光)の影響を抑制することが可能である。
 特に、上記透明な樹脂と、顔料含有樹脂との材質を同じにすることにより、両樹脂の界面での反射や散乱を適切に抑制することができる。つまり、顔料含有樹脂に入射した迷光は当該顔料含有樹脂により吸収され導光路に殆ど戻らず、迷光の複雑な多重反射がほとんど発生しない。また、導光路13a、13bの断面積や光路長を適宜設定することにより、外光の影響を著しく抑制することもできる。
[0057]
 すなわち、装置内部に外光が進入したとしても、導光プレート部13における各導光路13a、13bにおいて、外光の影響は著しく減衰される。よって、マイクロプレートリーダー内部の光学系に対して厳密にノイズ光対策を行う必要がなく、また、そのノイズ光対策のために装置自体が大がかりになることもない。
 以上のようなシリコーン樹脂を用いたモノリシックな光学系の技術を、SOT(Silicone Optical Technologies)と呼称する。本実施形態では、SOT構造をマイクロプレートリーダーの光学系に採用することにより、外光(ノイズ光)の影響をほぼ無視することが可能となり、装置の小型化と高精度な光測定とが実現されたマイクロプレートリーダーとすることができる。
[0058]
 また、マイクロプレートリーダー10は、マイクロプレート20を配置する筐体15を備える。筐体15は、例えば遮光性や断熱性を有する材料により構成することもできる。この場合、マイクロプレート20の側面から入射する外光の影響や温度の影響を抑制することができる。したがって、マイクロプレート20の端部に位置するウェル21の測定データの信頼性を確保することができる。
[0059]
 以上のように、本実施形態におけるマイクロプレートリーダー10は、POCT検査等の分野において携帯可能な程度に小型化され、マイクロプレート20の各ウェル21に収容された試料30全ての光測定を短時間で高精度に行うことができる。
[0060]
 なお、上述した導光プレート部13の構造により、外光(ノイズ光)の影響はほぼ無視することが可能であるが、更なるノイズ光対策を講じるようにしてもよい。例えば図9に示すように、投光用導光路13aを通過する直進光以外の成分L21がウェル21を通過し、ミラープレート14の反射面14aに到達した場合を考える。この場合、光成分L21の一部が、隣接するウェル21に入射し、受光用導光路13bを通過してノイズ光として受光センサ12bに到達することも考えられる。光源12aから放出される光(信号光)の強度が小さい場合には、微弱なノイズ光であっても測定結果に悪影響を及ぼす可能性が高いため、このようなノイズ光の影響を抑制する必要が出てくる。
[0061]
 この場合、各ウェル21を通過してきた光が再度当該ウェル21へのみへ入射するように、ミラープレート14の反射面14aの領域を制限すればよい。図10は、反射面14a領域を制限したミラープレート14の一例である。
 図10では、ミラープレート14の反射面14aは、マイクロプレート20の各ウェル21の上方にそれぞれ制限され、反射面14aの周囲は、非反射面14cとなっている。反射面14aの形状は、例えば図11に示すように円形である。反射面14aが円形である場合、反射面14aは、ミラープレート14において、円の中心が各ウェル21の中心軸と略同位置となるような位置に設けられる。
[0062]
 このように、ミラープレート14のマイクロプレート20に対向する面において、反射面14aを導光路13aおよび13bの形成位置に応じて選択的に設けるようにしてもよい。上記のように反射面14aを制限することにより、1つのウェル21を通過してミラープレート14に到達した光の一部が上記ウェル21に隣接する他のウェル21に入射することを抑制することが可能となる。したがって、高精度な測定結果が得られる。
[0063]
 また、本実施形態におけるマイクロプレートリーダー10は、上述したように、マイクロプレート20の各ウェル21全てに対して、ほぼ同時に測定データを取得することが可能である。しかしながら、測定データの処理は、必ずしも同時に行うわけではなく、例えば、1回のデータ処理は8つのウェルに対して行い、これを12回行う場合もある。この場合、データ処理時間がある程度かかってしまう。
[0064]
 そこで、マイクロプレートリーダー10は、各ウェル21に対応する測定データを、一括して同時に処理することが可能な構造であってもよい。
 この場合、図12に示すように、マイクロプレートリーダー10は、各ウェル21に収容される試料30から放出され、受光用導光路13bによって導光される光を、光ファイバ51で受光する構造であってもよい。つまり、受光部として、受光センサ12bの代わりに光ファイバ51の先端(入射端)51aを配置するようにしてもよい。
[0065]
 各ウェル21に対応した受光用導光路13bを通過した光を受光する各光ファイバ51は、光出射端側で束ねることができる。この場合、各光ファイバ51を束ねた光ファイバ束から出射される光は、画像センサ52により取り込むことができる。画像センサ52により取り込まれた画像データは、マイクロプレート20の全ウェル21に対応した光測定データであり、当該画像データを演算処理することにより、全ウェル21に対応した光測定データを一括して同時にデータ処理することが可能となる。
[0066]
 なお、本実施形態においては、マイクロプレートリーダー10は、光源12aおよび受光センサ12bからなる投光受光部の上に導光プレート部13を配置し、導光プレート部13の上にマイクロプレート20を配置し、マイクロプレート20の上にミラープレートを配置する構造である場合について説明した。つまり、上述したマイクロプレートリーダー10は、マイクロプレート20のウェル21の下方から光を照射し、ウェル21を通過した光を当該ウェル21の上方で反射させ、再度ウェル21を通過させてウェル21の底面側で受光する構造である。
 しかしながら、マイクロプレート20のウェル21の上方から光を照射し、ウェル21を通過した光を底面側で反射させ、再度ウェル21を通過させてウェル21の上方で受光する構造であってもよい。ただし、上述したようにマイクロプレート20のウェル21の底面側から光を照射する構造である方が、マイクロプレート20のセッティングが容易であるため好ましい。
[0067]
(第二の実施形態)
 次に、本発明における第二の実施形態について説明する。
 上述した第一の実施形態では、所定のウェル数(96ウェル)のマイクロプレートに対応したマイクロプレートリーダーについて説明した。第二の実施形態では、ウェル数が異なるマイクロプレートに対応したマイクロプレートリーダーについて説明する。
 例えば、マイクロプレートを用いて細胞培養を行い、培養した細胞に対する光測定を行う場合、ウェル数の少ない(例えば、6ウェル)マイクロプレートが使用される。このような異なる種類のマイクロプレートに対応するために、本実施形態では、1つのウェルのみに対応した単位ユニット(マイクロプレートリーダーユニット)を用いる。
[0068]
 図13は、マイクロプレートリーダーユニット18の構成例を示す図である。
 この図13に示すように、マイクロプレートリーダーユニット18は、光源18aと、受光センサ18bと、投光用導光路18cと、受光用導光路18dと、包囲部材18eと、を備える。ここで、光源18aおよび受光センサ18bは、上述した第一の実施形態における投光受光部を構成する光源12aおよび受光センサ12bと同様である。また、投光用導光路18c、受光用導光路18dおよび包囲部材18eは、上述した第一の実施形態における導光プレート部13を構成する投光用導光路13a、受光用導光路13bおよび包囲部材13cと同様である。
[0069]
 マイクロプレートリーダーユニット18は、基板11Aに対して着脱可能に構成されている。基板11Aは、上述した第一の実施形態における基板11と同様の基板の表面に、当該基板に形成された給電回路とマイクロプレートリーダー18の光源18aおよび受光センサ18bとそれぞれ電気的に接続可能なコネクタ部11aおよび11bを備えた構成を有する。
 コネクタ部11aおよび11bは、例えば96ウェルのマイクロプレートの各ウェルに対応する位置にそれぞれ配置されるよう、基板11A上に96個ずつ設けられている。具体的には、コネクタ部11aおよび11bは、基板11Aにおいて、例えば図2に示す光源12aおよび受光センサ12bに対応する位置にそれぞれ設けられている。マイクロプレートリーダーユニット18は、96ウェルのマイクロプレートの1つのウェルに相当する大きさを有し、基板11A上に、96ウェルのマイクロプレートの各ウェルにそれぞれ対応して最大96個装着可能である。
[0070]
 図14は、本実施形態におけるマイクロプレートリーダー10Aの一例を示す図であり、マイクロプレートリーダーユニット18を、基板11A上に複数隣接させて装着した場合の図である。この図14に示すように、複数のマイクロプレートリーダーユニット18を基板11Aに接続した構造は、図1に示す第一の実施形態におけるマイクロプレートリーダー10の一部(基板11、光源12a、受光センサ12bおよび導光プレート部13)と同様の構造となる。
 したがって、96個のマイクロプレートリーダーユニット18を基板11Aに接続したマイクロプレートリーダー10Aは、図1に示す第一の実施形態におけるマイクロプレートリーダー10と同様の構造となる。
[0071]
 本実施形態におけるマイクロプレートリーダー10Aは、光測定に使用するマイクロプレート20のウェル21の数および位置に応じて、マイクロプレートリーダーユニット18が適宜配置されてなるものである。
 例えば96ウェルのマイクロプレート20を使用する場合、図15に示すように、96個のマイクロプレートリーダーユニット18が、96個の各ウェル21にそれぞれ対応させた位置に配置される。これら96個のマイクロプレートリーダーユニット18は、基板11Aに形成された配線60に接続され、電力が供給可能に構成される。ここで、配線60の接続方式は、マルチドロップ接続やデイジーチェーン接続を用いることができる。
[0072]
 一方、6ウェルのマイクロプレート20を使用する場合、図16に示すように、6個のマイクロプレートリーダーユニット18が、6個の各ウェル21にそれぞれ対応させた位置に配置される。この場合にも、これら6個のマイクロプレートリーダーユニット18は、基板11Aに形成された配線60に接続され、電力が供給可能に構成される。
 なお、図16では、1つのウェル21に対して1つのマイクロプレートリーダーユニット18を配置する場合について説明したが、1つのウェル21に対して複数のマイクロプレートリーダーユニット18を配置してもよい。この場合、1つのウェル21に対応する複数のマイクロプレートリーダーユニット18の測定データの統計を、当該1つのウェル21に対する測定データとして採用してもよい。
[0073]
 以上説明したように、本実施形態におけるマイクロプレートリーダーユニット10Aは、マイクロプレート20のウェル21の数および位置に応じて、マイクロプレートリーダーユニット18を基板11A上の必要な位置に必要な数だけ配置する構成を有する。したがって、異なるウェル数のマイクロプレート20に対応したマイクロプレートリーダーとすることができる。
[0074]
 なお、本実施形態においては、マイクロプレートリーダーユニット18は、投光受光部と導光プレート部とを備える場合について説明したが、投光受光部を構成する光源18aおよび受光センサ18bにそれぞれ接続された配線を有する基板までを含むようにしてもよい。この場合、マイクロプレート20のウェル21の数および位置に対応させてマイクロプレートリーダーユニット18を配置した際に、当該ユニットを構成する上記基板が、電源部に接続された給電ケーブルに接続可能な構成であればよい。
[0075]
(第三の実施形態)
 次に、本発明における第三の実施形態について説明する。
 上述した第一の実施形態では、投光用導光路13aの光軸および受光用導光路13bの光軸が、それぞれ法線方向に対して所定の角度で傾斜している場合について説明した。第三の実施形態では、投光用導光路13aの光軸および受光用導光路13bの光軸が、それぞれ法線方向に対して傾斜していない(平行である)場合について説明する。
[0076]
 導光プレート部13を製造する場合、まず顔料含有樹脂からなる包囲部材13cを、投光用導光路13a、受光用導光路13bに相当する空洞を備えるように成形する。その後、投光用導光路13a、受光用導光路13bに相当する空洞に、光源12aから放出される光に対して透明な樹脂(例えば、シリコーン樹脂)が設けられる。
 その際、投光用導光路13a、受光用導光路13bに相当する空洞の中心軸(投光用導光路13a、受光用導光路13bの光軸に相当)と法線方向とがなす角が0度でない場合、包囲部材13cを成形することは難しい。
[0077]
 そこで、本実施形態では、導光プレート部13における投光用導光路13aの光軸と法線方向とのなす角、および受光用導光路13bの光軸の法線方向とのなす角を、それぞれ0度もしくはほぼ0度とする。
[0078]
 図17は、第三の実施形態におけるマイクロプレートリーダー10Bの概略構成図である。
 マイクロプレートリーダー10Bは、基板11と、複数の光源12aと、複数の受光センサ12bと、導光プレート部(導光部)13と、プリズム型反射部材(反射部材)140と、筐体15と、電源部16と、給電ケーブル17と、を備える。
 マイクロプレートリーダー10Bは、導光プレート部13および反射部材(第一の実施形態では、ミラープレート14)の構成が異なることを除いては、第一の実施形態におけるマイクロプレートリーダー10と同様の構成を有する。したがって、以下、マイクロプレートリーダー10と構成が異なる部分を中心に説明する。
[0079]
 導光プレート部13は、投光用導光路13aの光軸と法線方向とのなす角、および受光用導光路13bの光軸の法線方向とのなす角が、第一の実施形態におけるマイクロプレートリーダー10とは異なる。具体的には、導光プレート部13における投光用導光路13aの光軸と法線方向とのなす角、および受光用導光路13bの光軸の法線方向とのなす角は、0度となっている。つまり、投光用導光路13aの光軸および受光用導光路13bの光軸と鉛直方向とのなす角が0度である。
[0080]
 また、マイクロプレートリーダー10Bは、反射部材として、プリズム型反射部材140を備える。プリズム型反射部材140は、導光プレート部13上に設置されたマイクロプレート20の上に配置される。プリズム型反射部材140のマイクロプレート20と対向する面は、光折り返し構造となっている。プリズム型反射部材(反射部材)140は、筐体15の開口部を塞ぎ、マイクロプレート20の上蓋として機能する。
[0081]
 (プリズム型反射部材)
 図1と同様、図17における上下方向を法線方向と規定した場合、投光用導光路13aの光軸および受光用導光路13bの光軸と法線方向とのなす角度は0度である。ここで、法線方向は、水平面に対して直交する鉛直方向である。
 プリズム型反射部材140は、投光用導光路13aから放出され上側に進行する光源12aからの光を、180度折り返して下側に進行させ、受光用導光路13bを介して受光センサ12bに受光させるという光学的機能を有する光学素子である。
[0082]
 プリズム型反射部材140は、複数のプリズム140aと当該複数のプリズム140aを保持するプリズム保持フレーム140bとを有する。
 図17および図17のA方向矢視図である図18に示すように、プリズム140aは直角プリズムであり、三角柱構造を有する。プリズム140aは、ガラスや環状オレフィン樹脂等により構成することができる。このプリズム140aは、頂角が90度となる姿勢で、ウェル21の上方に配置される。
[0083]
 具体的には、プリズム140aは、マイクロプレート20の複数のウェル21に対応しており、プリズム140aの長手方向は、マイクロプレート20の各ウェルの整列方向に一致する。例えば、マイクロプレート20のウェル21が96個であって、8個のウェル21からなる1列のウェル群が12列配置されている場合、プリズム140aの長手方向は、8個のウェルまたは12個のウェルの整列方向に対応する。すなわち、プリズム140aは、8個のウェル、または12個のウェルに対応する。
[0084]
 プリズム保持フレーム140bは、マイクロプレート20の大きさに対応した四角形状の空洞部を有し、この空洞部に複数のプリズム140aが配置される。この四角形状の空洞部を取り囲む壁のうち、プリズム140aの両端部が配置される側に対応し、互いに対向する二面の壁には、所定の長さだけ内側に突出したプリズム支持部140cが設けられている。
[0085]
 図18のB-B断面図である図19に示すように、プリズム支持部140cは、プリズム保持フレーム140bにおける上記二面の壁の下端部に設けられる。各プリズム140aは、その長手方向両端部の一部が、プリズム支持部140c上に載置されることで、当該プリズム支持部140cによって支持される。このとき、各プリズム140aは、配列するウェル群の上方に位置するように配置される。
 なお、プリズム支持部140cの突出長さは、ウェル21から放出され、プリズム型反射部材140により折り返されウェル21に入射する光を遮光しないような長さに設定される。
[0086]
 プリズム型反射部材140のプリズム140aのマイクロプレート20と対向する面(底面)は、平面となっている。図17に示すように、プリズム140aの平面部(底面)から入射した光は、頂角(直角)を挟む2つの斜面により全反射され、結果的に180度折り返されて出射する。このとき、プリズム140aに入射する入射光の光軸と、プリズム140aにより180度折り返され、プリズム140aから出射する折り返し光の光軸とは、所定の間隔をもって離間する。
 このように、プリズム型反射部材140は、90度の頂角を挟む2つの反射面を有する直角プリズムである。ここで、2つの反射面のうち、一方の反射面は鉛直方向に対して45度の角度をなし、他方の反射面は鉛直方向に対して-45度の角度をなす。そして、これら2つの反射面は、それぞれウェル21の配列方向に沿って伸びている。
[0087]
 したがって、各光源12aから放出され、導光プレート部13の各投光用導光路13aを通過し、マイクロプレート20の各ウェル21に収容された試料30を通過した光は、プリズム型反射部材140のプリズム140aに到達すると、プリズム型反射部材140のプリズム140aの平面部(底面)から入射し、180度折り返されて当該平面部(底面)から出射する。そして、プリズム型反射部材140のプリズム140aから出射した光は、再度マイクロプレート20の各ウェル21に収容された試料30を通過し、導光プレート部13の各受光用導光路13bを通過して、各受光センサ12bに入射する。
[0088]
 なお、図20に示すように、プリズム型反射部材140は、プリズム140aをプリズム保持フレーム140bの空洞部の所定の位置に位置決めするための平板状のプリズム位置決め部材141を備えていてもよい。プリズム位置決め部材141は、プリズム140aの頂角に対応した楔状の凹部であって、プリズム140aの長手方向に沿って直線状に伸びるプリズム位置決め部141aを有する。
 プリズム位置決め部材141をプリズム型反射部材140の上部に配置し、プリズム位置決め部141aに各プリズム140aの頂角を配置することにより、各プリズム140aは所定の位置に位置決めされる。
[0089]
 これにより、プリズム140aは、その頂点位置が、導光プレート部13の投光用導光路13aの光軸と受光用導光路13bの光軸との中央位置に一致するように位置決めされる。したがって、各光源12aから放出され、導光プレート部13の各投光用導光路13aを通過し、マイクロプレート20の各ウェル21に収容された試料30を通過し、プリズム140aにより180度折り返された光は、再度マイクロプレート20の各ウェル21に収容された試料30を通過し、適切に導光プレート部13の各受光用導光路13bを通過して、各受光センサ12bに入射することができる。
[0090]
 また、プリズム140aは、プリズム保持フレーム140bのプリズム支持部140cにより支持するのではなく、図21に示すように、例えばガラス板である光透過性の光透過板140dの上に載置するようにしてもよい。光透過板140dは、例えば、プリズム保持フレーム140bの空洞部を取り囲む壁から所定の長さだけ内側に突出した光透過板支持部140eにより支持することができる。このように、光透過板140dを設けることで、プリズム140aの汚れ防止の効果が得られる。
 なお、この光透過板140dを有する構造においても、プリズム140aを所定の位置に位置決めするために、図22に示すようにプリズム位置決め部材141を用いることができる。
[0091]
(第三の実施形態の変形例)
 図23は、第三の実施形態の変形例であるマイクロプレートリーダー10Cの概略構成図である。本変形例は、投光用導光路13a放出され上側に進行する光源12aからの光を180度折り返して下側に進行させ、受光用導光路13bを介して受光センサ12bに受光させるという光学的機能を有する反射部材として、プリズム型反射部材140に代えて光折り返し部材150を用いるものである。
 図23に示すマイクロプレートリーダー10Cは、光折り返し部材150を除いては、図17に示すマイクロプレートリーダー10Bと同様の構成を有する。したがって、以下、マイクロプレートリーダー10Bと構成が異なる部分を中心に説明する。
[0092]
 光折り返し部材150は、合成樹脂、もしくは金属からなるプレート部材である。この光折り返し部材150の下面には、頂角が直角である楔状の凹部であって、マイクロプレート20のウェル21に対向する位置に、当該ウェル21の配列方向に沿って直線状に伸びる光折り返し部150aが設けられている。光折り返し部材150は、光折り返し部150aの頂点位置が、導光プレート部13の投光用導光路13aの光軸と受光用導光路13bの光軸との中央位置に一致するように位置決めして配置される。
 光折り返し部150aは、図24に示すように、法線方向に対して45度の角度をなす第1の斜面151と、法線方向に対して-45度の角度をなす第2の斜面152とを有する。第1の斜面151および第2の斜面152は、それぞれ表面に光反射コーティング部150bが設けられた反射面である。光反射コーティング部150bは、例えばアルミニウム薄膜からなり、めっき等の方法により第1の斜面151および第2の斜面152に施される。
[0093]
 これにより、第1の斜面151および第2の斜面152のうちの一方の斜面に入射する法線方向に進行する光は、90度折り返されて他方の斜面に入射し、当該他方の斜面により90度更に折り返される。このように、光折り返し部材150は、図17に示すプリズム型反射部材140と同様に、投光用導光路13aから放出され上側に進行する光源12aからの光を、180度折り返して下側に進行させることができる。
[0094]
 ただし、光折り返し部材150は、長期間の使用により光反射コーティング部150bが酸化等で劣化し、反射率が低下する場合がある。よって、劣化の度合いに応じて、光折り返し部材150は、適宜、交換が必要となる。
 これに対して、上述したプリズム型反射部材140は、ガラスや光透過性の合成樹脂からなるプリズム140aを用いるため、光を反射させるための光反射コーティング部150bを設ける必要がない。したがって、プリズム型反射部材140には、光折り返し部材150のように光反射コーティング部150bの劣化による交換作業は必要ない。
[0095]
(その他の実施形態)
 光を180度折り返す反射部材は、上記したプリズム型反射部材140、光折り返し部材150に限るものではない。例えば、反射部材は、第一の実施形態のミラープレート14と同様の平板状の構成とし、マイクロプレート20と対向する面が散乱面となる散乱板(散乱プレート)とすることも可能となる。この散乱プレートを用いる場合、反射光強度は著しく低下するものの、上記したプリズム型反射部材140、光折り返し部材150のような位置合わせは不要とすることができる。
[0096]
 また、例えば、反射部材は、3回の反射を用いたリトロリフレクタ型(例えば、コーナーキューブ・リフレクタ)の光学素子を使っても良い。プリズム型反射部材140を用いる場合、場合によっては、位置合わせのみならず、入射光に対する斜面(反射面)の角度位置を調整する必要が生じるが、このリトロリフレクタ型光学素子を用いる場合においては、位置合わせのみでよい。
[0097]
 なお、第2の実施形態におけるマイクロプレートリーダーユニット18の投光用導光路18cの光軸および受光用導光路13dの光軸と法線方向とのなす角度を0度とし、第3の実施形態における、プリズム型反射部材140、光折り返し部材150および上記した散乱板(散乱プレート)、リトロリフレクタ型光学素子のいずれかを適用したマイクロプレートリーダーユニットとすることも可能である。
[0098]
(変形例)
 上記各実施形態において、投光用導光路(13a、18c)および受光用導光路(13b、18d)を透明な樹脂により構成する場合について説明したが、これら導光路は空洞であってもよい。その場合、導光路とそれを包囲する顔料含有樹脂からなる包囲部材(13c、18e)との界面における迷光反射の抑制効果は得られないものの、顔料含有樹脂に入射した迷光は当該顔料含有樹脂によって吸収されるので、迷光の複雑な多重反射はある程度抑制される。
[0099]
 また、上記各実施形態において、マイクロプレート20のウェル底面が平板形状である場合について説明した。ウェル底面が平板形状の場合、導光プレート部13との接触性が良いため好ましいが、ウェル底面の形状は、必ずしも平板形状でなくてもよい。
 例えば図25に示すように、マイクロプレート20のウェル22の底面の形状が球面であってもよい。この場合、投光用導光路13aの光出射端とウェル22の底面との間、および受光用導光路13bの光入射端とウェル22の底面との間には、それぞれ僅かな間隙が形成されるため、外光が入射するおそれがある。しかしながら、導光路13a、13bの断面積および光路長を適宜設定することにより、外光の強度は測定結果に影響しない程度にまで減衰させることが可能である。
[0100]
 さらに、上記各実施形態においては、投光受光部(光源および受光センサ)を1組ずつ個別に駆動可能な構成であってもよい。この場合、マイクロプレートのウェル数および位置に応じて、必要な数および位置の投光受光部を選択的に駆動することもできる。これにより、ウェル数の異なるマイクロプレートに対応したマイクロプレートリーダーとすることができる。
 また、上記各実施形態においては、投光受光部数とウェル数は必ずしも一致する必要はなく、投光受光部数よりも少ないウェル数のマイクロプレートを配置することもできる。
 また、上記各実施形態においては、必ずしもマイクロプレートを水平配置して、その鉛直方向に投光受光部を配置することに限られるものではなく、例えばマイクロプレートを垂直配置したり、マイクロプレートの斜め方向に投光受光部を配置したりするなど、ウェルに収容されている試料が光測定できる範囲内で適宜変形可能である。
[0101]
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。

符号の説明

[0102]
 10…マイクロプレートリーダー、11…基板、12a…光源、12b…受光センサ、13…導光プレート部、13a…投光用導光路、13b…受光用導光路、14…ミラープレート、14a…反射面、15…筐体、18…マイクロプレートリーダーユニット、20…マイクロプレート、21…ウェル、140…プリズム型反射部材、140a…プリズム、140d…光透過板、141…プリズム位置決め部材、150…光折り返し部材、150a…光折り返し部、150b…光反射コーティング部、151…第1の斜面、152…第2の斜面

請求の範囲

[請求項1]
 筐体と、
 前記筐体内において、配置されるマイクロプレートの一方の側に配置され、前記マイクロプレートの1つのウェルに対応した投光部と受光部とからなる組を、少なくとも前記マイクロプレートのウェルの数だけ有する投光受光部と、
 前記マイクロプレートを挟んで前記投光受光部とは反対側に配置され、前記投光受光部側から前記ウェルに収容された試料を通過した光を、前記投光受光部側へ反射させる反射部材と、
 前記投光受光部と前記マイクロプレートとの間に配置され、前記投光部から放出される光を前記試料へ導光する投光用導光路と、前記反射部材によって反射され当該試料を通過した光を前記受光部へ導光する受光用導光路と、前記投光用導光路および前記受光用導光路を、それぞれ光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する導光部と、を備えることを特徴とするマイクロプレートリーダー。
[請求項2]
 前記投光受光部の上方に前記導光部が配置され、
 前記導光部の上方に配置された前記マイクロプレートの上方に、前記反射部材が配置されていることを特徴とする請求項1に記載のマイクロプレートリーダー。
[請求項3]
 複数の前記投光部および前記受光部への給電回路を有し、前記投光部および前記受光部がそれぞれ電気的に接続された基板をさらに備えることを特徴とする請求項1または2に記載のマイクロプレートリーダー。
[請求項4]
 前記投光部は、発光ダイオードであることを特徴とする請求項1から3のいずれか1項に記載のマイクロプレートリーダー。
[請求項5]
 前記受光部は、受光センサであることを特徴とする請求項1から4のいずれか1項に記載のマイクロプレートリーダー。
[請求項6]
 前記受光部は、光ファイバであることを特徴とする請求項1から4のいずれか1項に記載のマイクロプレートリーダー。
[請求項7]
 前記反射部材は、前記マイクロプレートに対向する面において、前記投光用導光路および前記受光用導光路の形成位置に応じて選択的に設けられていることを特徴とする請求項1から6のいずれか1項に記載のマイクロプレートリーダー。
[請求項8]
 前記投光用導光路の光出射端と前記受光用導光路の光入射端との水平方向における距離が、前記投光用導光路の光入射端と前記受光用導光路の光出射端との水平方向における距離よりも短いことを特徴とする請求項1から7のいずれか1項に記載のマイクロプレートリーダー。
[請求項9]
 前記投光用導光路および前記受光用導光路の光軸と鉛直方向とのなす角が0度であることを特徴とする請求項1から7のいずれか1項に記載のマイクロプレートリーダー。
[請求項10]
 前記反射部材は、
 前記投光用導光路を通過し前記反射部材に入射する入射光を、180度折り返して前記投光受光部側へ反射させる光学素子を有することを特徴とする請求項9に記載のマイクロプレートリーダー。
[請求項11]
 前記投光用導光路を通過し前記反射部材に入射する入射光の光軸と、前記反射部材により180度折り返され、前記受光用導光路に入射する折り返し光の光軸とが、所定の間隔をもって離間していることを特徴とする請求項10に記載のマイクロプレートリーダー。
[請求項12]
 前記反射部材は、
 前記鉛直方向に対して45度の角度をなす第1の反射面と、前記鉛直方向に対して-45度の角度をなす第2の反射面とを有することを特徴とする請求項11に記載のマイクロプレートリーダー。
[請求項13]
 前記反射部材は、
 前記第1の反射面と前記第2の反射面とを有する直角プリズムであることを特徴とする請求項12に記載のマイクロプレートリーダー。
[請求項14]
 前記反射部材は、
 前記第1の反射面と前記第2の反射面とからなる凹部を有するプレート部材であることを特徴とする請求項12に記載のマイクロプレートリーダー。
[請求項15]
 前記第1の反射面と前記第2の反射面とは、それぞれ前記ウェルの配列方向に沿って伸びていることを特徴とする請求項12から14のいずれか1項に記載のマイクロプレートリーダー。
[請求項16]
 前記反射部材は、
 前記投光用導光路を通過し前記反射部材に入射する入射光を散乱させ、180度折り返して前記投光受光部側へ反射させる平板状の散乱プレートであることを特徴とする請求項9に記載のマイクロプレートリーダー。
[請求項17]
 前記反射部材は、
 3つの反射面を有し、前記投光用導光路を通過し前記反射部材に入射する入射光を3回反射して、180度折り返して前記投光受光部側へ反射させるリトロリフレクタ型光学素子であることを特徴とする請求項9に記載のマイクロプレートリーダー。
[請求項18]
 前記投光用導光路および前記受光用導光路の少なくとも一部に、前記顔料含有樹脂を構成する光透過特性を有する樹脂が充填されていることを特徴とする請求項1から17のいずれか1項に記載のマイクロプレートリーダー。
[請求項19]
 マイクロプレートの1つのウェルに対応した投光部と受光部とを有する投光受光部と、
 前記投光部から放出される光を、対応する前記ウェルが収容する試料へ導光する投光用導光路と、前記投光用導光路および前記試料を通過した光が折り返されて再び前記試料を通過した光を、前記受光部へ導光する受光用導光路と、前記投光用導光路および前記受光用導光路を、それぞれ光を吸収する特性を有する顔料を含有する顔料含有樹脂により包囲する包囲部材と、を有する導光部と、を備えることを特徴とするマイクロプレートリーダーユニット。
[請求項20]
 前記投光用導光路および前記受光用導光路の光軸と鉛直方向とのなす角が0度であることを特徴とする請求項19に記載のマイクロプレートリーダーユニット。






図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]