Некоторое содержание этого приложения в настоящий момент недоступно.
Если эта ситуация сохраняется, свяжитесь с нами по адресуОтзывы и контакты
1. (WO2019024718) ANTI-COUNTERFEITING PROCESSING METHOD, ANTI-COUNTERFEITING PROCESSING APPARATUS AND ELECTRONIC DEVICE
Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179   0180   0181   0182   0183   0184   0185   0186   0187   0188   0189   0190   0191   0192   0193   0194   0195   0196   0197   0198   0199   0200   0201   0202   0203   0204   0205   0206   0207   0208   0209   0210   0211   0212   0213   0214   0215  

权利要求书

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20  

附图

1A   1B   1C   1D   1E   2   3   4A   4B   5  

说明书

发明名称 : 防伪处理方法及相关产品

[0001]
本申请要求2017年7月29日递交的发明名称为“防伪处理方法及相关产品”的申请号201710634320.6的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。

技术领域

[0002]
本申请涉及电子设备技术领域,具体涉及一种防伪处理方法及相关产品。

背景技术

[0003]
随着电子设备(手机、平板电脑等)的大量普及应用,电子设备能够支持的应用越来越多,功能越来越强大,电子设备向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。
[0004]
目前来看,多生物识别越来越受到电子设备生产厂商的青睐,尤其是虹膜识别和人脸识别,由于虹膜是人脸的一部分,因而,两者配合使用也是未来发展的一大趋势,虽然在一定程度上可增加多生物识别的安全性,但是,在多生物识别过程中,若无法分子采用伪造的人脸或者虹膜进行识别也有可能通过多生物识别,因而,如何对多生物识别进行防伪的问题亟待解决。
[0005]
发明内容
[0006]
本申请实施例提供了一种防伪处理方法及相关产品,可以进行防伪,以提升多生物识别的安全性。
[0007]
第一方面,本申请实施例提供一种电子设备,包括应用处理器AP,以及连接所述AP的虹膜识别装置和、人脸识别装置和存储器,其中:
[0008]
所述虹膜识别装置,用于获取虹膜图像;
[0009]
所述人脸识别装置,用于获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0010]
所述存储器,用于存储预设条件;
[0011]
所述AP,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0012]
第二方面,本申请实施例提供了一种防伪处理方法,应用于包括应用处理器AP,以及连接所述AP的虹膜识别装置、人脸识别装置和存储器的电子设备,其中,所述存储器用于存储预设条件,所述方法包括:
[0013]
所述虹膜识别装置获取虹膜图像;
[0014]
所述人脸识别装置获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0015]
所述AP确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0016]
第三方面,本申请实施例提供了一种防伪处理方法,包括:
[0017]
获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0018]
确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;
[0019]
在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0020]
第四方面,本申请实施例提供了一种防伪处理装置,包括:
[0021]
第一获取单元,用于获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0022]
检测单元,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;
[0023]
第一确定单元,用于在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0024]
第五方面,本申请实施例提供了一种电子设备,包括:应用处理器AP和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述AP执行,所述程序包括用于如第三方面中所描述的部分或全部步骤的指令。
[0025]
第六方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质用于存储计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第三方面中所描述的部分或全部步骤的指令。
[0026]
第七方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第三方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
[0027]
实施本申请实施例,具有如下有益效果:
[0028]
可以看出,本申请实施例中,获取人脸图像和虹膜图像,人脸图像与虹膜图像均来自于目标对象,确定虹膜图像与人脸图像之间的位置关系,以及根据虹膜图像进行活体检测,在位置关系满足预设条件且虹膜图像来自于活体时,确认目标对象为真实有效的人脸。其中,可一方面根据虹膜图像与人脸图像之间的位置进行防伪,另一方面通过虹膜活体检测 进行防伪,可提升多生物识别的安全性。

附图说明

[0029]
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0030]
图1A是本申请实施例提供的一种示例电子设备的架构示意图;
[0031]
图1B是本申请实施例提供的一种电子设备的另一结构示意图;
[0032]
图1C是本申请实施例提供的一种电子设备的另一结构示意图;
[0033]
图1D是本申请实施例公开的一种防伪处理方法的流程示意图;
[0034]
图1E是本申请实施例公开的虹膜图像与人脸图像之间的位置关系的演示示意图;
[0035]
图2是本申请实施例公开的另一种防伪处理方法的流程示意图;
[0036]
图3是本申请实施例提供的一种电子设备的另一结构示意图;
[0037]
图4A是本申请实施例提供的一种防伪处理装置的结构示意图;
[0038]
图4B是本申请实施例提供的一种防伪处理装置的另一结构示意图;
[0039]
图5是本申请实施例公开的另一种电子设备的结构示意图。

具体实施方式

[0040]
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
[0041]
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
[0042]
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
[0043]
本申请实施例所涉及到的电子设备可以包括各种具有无线通信功能的手持设备、车载 设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为电子设备。
[0044]
需要说明的是,本申请实施例中的电子设备可安装有多生物识别装置,即多个生物识别装置,该多个生物识别装置除了包括虹膜识别装置和人脸识别装置,还可包括以下至少一个:指纹识别装置、静脉识别装置、脑电波识别装置、心电图识别装置等等,每一生物识别装置均有对应的识别算法以及识别阈值,另外,每一生物识别装置均有与之对应的并由用户预先录入的模板,例如,指纹识别装置有与之对应的预设指纹模板,进一步地,指纹识别装置可采集指纹图像,在指纹图像与预设指纹模板之间的匹配值大于其对应的识别阈值时,则识别通过。本申请实施例中的虹膜图像可为单指虹膜区域的图像,或者,包含虹膜区域的图像(例如,一只人眼图像)。例如,在用户使用电子设备时,可通过虹膜识别装置获取虹膜图像。
[0045]
进一步地,本申请实施例中的多生物识别模式可包含两种或者两种以上的识别步骤,例如,先指纹识别,在指纹识别通过后再人脸识别,又或者,指纹识别和人脸识别同步进行。多生物识别模式与单生物识别模式(例如,仅进行指纹识别则可实现解锁)相比较,其安全性更高,因而,多生物识别模式越来越受欢迎。
[0046]
下面对本申请实施例进行详细介绍。如图1A所示的一种示例电子设备1000,该电子设备1000的虹膜识别装置可以包括红外补光灯21和红外摄像头22,在虹膜识别装置工作过程中,红外补光灯21的光线打到虹膜上之后,经过虹膜反射回红外摄像头22,虹膜识别装置采集虹膜图像,前置摄像头23可作为人脸识别装置,前置摄像头23可为双摄像头模组。
[0047]
请参阅图1B,图1B是所示的一种电子设备100的结构示意图,所述电子设备100包括:应用处理器AP110、人脸识别装置120、虹膜识别装置130、存储器140,其中,虹膜识别装置130可与人脸识别装置120集成在一起,或者,虹膜识别装置130与人脸识别装置120可独立存在,其中,所述AP110通过总线150连接人脸识别装置120、虹膜识别装置130和存储器140,进一步地,请参阅图1C,图1C为图1B所描述的电子设备100的一种变型结构,相对于图1B而言,图1C还包括环境光传感器160。
[0048]
基于图1A-图1C所描述的电子设备,可用于执行下述操作。
[0049]
可选地,所述虹膜识别装置130,用于获取虹膜图像;
[0050]
所述人脸识别装置120,用于获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0051]
所述存储器140,用于存储预设条件;
[0052]
所述AP110,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述 虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0053]
可选地,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述AP110具体用于:
[0054]
确定所述虹膜图像的中心点;
[0055]
对所述人脸图像进行轮廓提取,得到外围轮廓;
[0056]
确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[0057]
可选地,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述AP110具体用于:
[0058]
提取所述人脸图像中的关键特征;
[0059]
确定所述关键特征与所述虹膜图像之间的位置关系。
[0060]
可选地,在所述根据所述虹膜图像进行活体检测方面,所述AP110具体用于:
[0061]
对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数;
[0062]
采用预设分类器对所述P个特征点进行训练,得到P个训练值;
[0063]
从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[0064]
可选地,所述环境光传感器160用于获取当前环境亮度值;
[0065]
所述AP110,还用于确定所述当前环境亮度值对应的图像增强系数;
[0066]
在所述对所述虹膜图像进行特征提取方面,所述AP110具体用于:
[0067]
根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所述虹膜图像进行特征提取。
[0068]
可选地,在所述对所述虹膜图像进行特征提取方面,所述AP110具体用于:
[0069]
对所述虹膜图像进行二值化处理;
[0070]
对二值化处理后的所述虹膜图像进行平滑处理;
[0071]
对平滑处理后的所述虹膜图像进行特征提取。
[0072]
基于图1A-图1C所描述的电子设备,可用于执行如下防伪处理方法,所述存储器140,用于存储预设条件;具体如下:
[0073]
所述虹膜识别装置130获取虹膜图像;
[0074]
所述人脸识别装置120获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0075]
所述AP110确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0076]
可以看出,本申请实施例中,获取人脸图像和虹膜图像,人脸图像与虹膜图像均来自于目标对象,确定虹膜图像与人脸图像之间的位置关系,以及根据虹膜图像进行活体检测,在位置关系满足预设条件且虹膜图像来自于活体时,确认目标对象为真实有效的人脸。其中,可一方面根据虹膜图像与人脸图像之间的位置进行防伪,另一方面通过虹膜活体检测进行防伪,可提升多生物识别的安全性。
[0077]
请参阅图1D,为本申请实施例提供的一种防伪处理方法的实施例流程示意图。本实施例中所描述的防伪处理方法,该方法应用于电子设备,其实物图以及结构图可参见图1A-图1C,其包括以下步骤:
[0078]
101、获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象。
[0079]
其中,电子设备可通过控制人脸识别装置获取人脸图像,以及通过控制虹膜识别装置获取虹膜图像。人脸图像与虹膜图像均来自于目标对象。
[0080]
可选地,上述步骤101中,获取人脸图像和虹膜图像,可包括如下步骤11-13,具体如下:
[0081]
11、在目标对象的角度处于预设角度范围时,获取所述人脸图像;
[0082]
12、根据所述人脸图像确定虹膜位置;
[0083]
13、根据所述虹膜位置进行虹膜采集,得到所述虹膜图像。
[0084]
其中,目标对象可为用户的人脸,预设角度范围可由系统默认或者用户自行设置。通常情况下,被拍摄物体(此处指目标对象)与电子设备之间会存在着一定的角度,当然,角度合适,则采集的人脸图像也合适,可以理解为,在目标对象的角度处于预设角度范围时,采集的人脸图像更宜于人脸识别,以及更容易采集到虹膜图像。因此,在目标对象的角度处于预设角度范围时,可获取人脸图像,进而,可根据人脸结构关系,得到虹膜位置,可控制虹膜识别装置对该虹膜位置进行对焦,以及进行虹膜采集,得到虹膜图像。
[0085]
102、确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测。
[0086]
其中,由于虹膜是人脸的一部分,两者在空间结构上存在着一定的关联性,因而,可通过虹膜图像与人脸图像之间的位置关系进行防伪。
[0087]
可选地,上述确定所述虹膜图像与所述人脸图像之间的位置关系与上述根据所述虹膜图像进行活体检测并行执行。例如,采用一个进程执行确定所述虹膜图像与所述人脸图像之间的位置关系的步骤,以及采用另一个进程执行根据所述虹膜图像进行活体检测的步骤, 又例如,采用一个线程执行确定所述虹膜图像与所述人脸图像之间的位置关系的步骤,以及采用另一个线程执行根据所述虹膜图像进行活体检测的步骤。
[0088]
可选地,上述步骤102中,确定所述虹膜图像与所述人脸图像之间的位置关系,可包括如下步骤A11-A13,具体如下:
[0089]
A11、确定所述虹膜图像的中心点;
[0090]
A12、对所述人脸图像进行轮廓提取,得到外围轮廓;
[0091]
A13、确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[0092]
其中,可采用几何方式确定虹膜图像的中心点,该中心点可为几何中心点。进一步地,可对人脸图像进行轮廓提取,得到外围轮廓,即脸型的轮廓,然后,可确定中心点与外围轮廓之间的竖直距离,竖直距离包括第一竖直距离和第二竖直距离,将第一竖直距离和第二竖直距离之间的比值作为虹膜图像与人脸图像之间的位置关系。该位置关系可为一个具体的比值,预设条件可为一个范围值,例如,第一预设范围,即若第一竖直距离和所述第二竖直距离之间的比值处于该第一预设范围,则可以认为虹膜图像与人脸图像之间的位置关系满足预设条件。如图1E所示,左边为一个人脸图像,人脸图像中可包含虹膜图像,右边的话,可由虹膜图像得到中心点,由人脸图像得到外围轮廓(轮廓提取方式),以及进一步确定基于该中心点的竖直距离,即第一竖直距离和第二竖直距离,可将第一竖直距离和第二竖直距离之间的比值作为虹膜图像与人脸图像之间的位置关系。
[0093]
可选地,上述步骤102中,确定所述虹膜图像与所述人脸图像之间的位置关系,可包括如下步骤A21-A22,具体如下:
[0094]
A21、提取所述人脸图像中的关键特征;
[0095]
A22、确定所述关键特征与所述虹膜图像之间的位置关系。
[0096]
其中,上述关键特征可为以下至少一种:人脸上的痣、伤疤、雀斑、五官等等。例如,可以根据该关键特征与虹膜图像之间的关系确定人脸图像与虹膜图像之间的位置关系。例如,关键特征为一颗痣,可将该颗痣与两只眼睛(虹膜)之间的夹角作为人脸图像与虹膜图像之间的位置关系。该位置关系可为一个具体的比值,预设条件可为一个范围值,例如,第二预设范围,即若第一竖直距离和所述第二竖直距离之间的比值处于该第二预设范围,则可以认为虹膜图像与人脸图像之间的位置关系满足预设条件。
[0097]
进一步地,上述步骤A22中,确定所述关键特征与所述虹膜图像之间的位置关系,可包括如下步骤:
[0098]
A221、选取所述关键特征的第一中心点,以及所述虹膜图像的第二中心点;
[0099]
A222、根据所述第一中心点与所述第二中心点确定所述虹膜图像与所述人脸图像之间 的位置关系。
[0100]
其中,可采用几何方式得到关键特征的第一中心点,以及虹膜图像的第二中心点,进一步地,可根据第一中心点与第二中心点确定虹膜图像与人脸图像之间的位置关系,例如,将第一中心点与第二中心点之间的距离作为虹膜图像与人脸图像之间的位置关系。
[0101]
可选地,上述步骤102中,根据所述虹膜图像进行活体检测,可包括如下步骤21-23,具体如下:
[0102]
21、对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数;
[0103]
22、采用预设分类器对所述P个特征点进行训练,得到P个训练值;
[0104]
23、从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[0105]
其中,电子设备可对虹膜图像进行特征提取,得到P个特征点,P为大于1的整数,上述特征提取可采用如下算法实现:Harris角点检测算法、尺度不变特征变换(scale invariant feature transform,SIFT)、SUSAN角点检测算法等等,在此不再赘述。上述预设分类器可包括但不仅限于:支持向量机(support vector machine,SVM)、遗传算法分类器、神经网络算法分类器、级联分类器(如遗传算法+SVM)等等。可采用预设分类器对P个特征点进行训练,得到P个训练值,从P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在Q与P之比大于预设阈值时,确认所述虹膜图像来自于活体,Q为小于P的正整数。预设训练阈值、预设阈值可由用户自行设置,或者系统默认。
[0106]
其中,上述预设分类器可在执行上述本申请实施例之前设置,其主要设置可包含如下步骤B1-B7:
[0107]
B1、获取正样本集,所述正样本集包含X个活体虹膜图像的特征点,所述X为正整数;
[0108]
B2、获取负样本集,所述负样本集包含Y个非活体虹膜图像的特征点,所述Y为正整数;
[0109]
B3、对所述正样本集进行特征提取,得到所述X组特征;
[0110]
B4、对所述负样本集进行特征提取,得到所述Y组特征;
[0111]
B5、采用第一指定分类器对所述X组特征进行训练,得到第一类目标分类器;
[0112]
B6、采用第二指定分类器对所述Y组特征进行训练,得到第二类目标分类器;
[0113]
B7、将所述第一类目标分类器和所述第二类目标分类器作为所述预设分类器。
[0114]
其中,X与Y均可由用户设置,其具体数量越大,则分类器分类效果越好。上述B3、B4中的特征提取的具体方式参照上述特征提取描述,另外,第一指定分类器和第二指定分类器可为同一分类器或者不同的分类器,无论是第一指定分类器还是第二指定分类器均可包括但不仅限于:支持向量机、遗传算法分类器、神经网络算法分类器、级联分类器(如 遗传算法+SVM)等等。
[0115]
可选地,电子设备还可以设置有环境光传感器,获取当前环境亮度值,并确定所述当前环境亮度值对应的图像增强系数,上述步骤21中,对所述虹膜图像进行特征提取,可按照如下方式实施:
[0116]
根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所述虹膜图像进行特征提取。
[0117]
其中,电子设备可预先存储有亮度值与图像增强系数之间的映射关系,进而,电子设备可通过环境光传感器,获取当前环境亮度值,进一步地,根据该映射关系确认与当前环境亮度值对应的图像增强系数,并根据该图像增强系数对虹膜图像进行图像增强处理,并对图像增强处理后的虹膜图像进行特征提取。图像增强系数可理解为对图像进行图像增强处理的程度参数,例如,灰度拉伸,其对应一个拉伸系数,小波变换,其对应一个小波系数,直方图均均衡化也对应一个拉伸系数等等。
[0118]
可选地,上述步骤21中,对所述虹膜图像进行特征提取,可包括如下步骤211-213,具体如下:
[0119]
211、对所述虹膜图像进行二值化处理;
[0120]
212、对二值化处理后的所述虹膜图像进行平滑处理;
[0121]
213、对平滑处理后的所述虹膜图像进行特征提取。
[0122]
其中,电子设备可将虹膜图像进行二值化处理,如此,可降低图像复杂度,进而,对虹膜图像进行平滑处理,并对平滑处理之后的虹膜图像进行特征提取。
[0123]
103、在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0124]
其中,位置关系满足预设条件且虹膜图像来自于活体时,才确认目标对象为真实有效的人脸。此处的真实有效的人脸可认为是具有生命特征的人脸,并非是照片,或者,塑胶模型。
[0125]
可选地,在位置关系满足不预设条件或且虹膜图像来自于活体时,确认目标对象不是为真实有效的人脸。
[0126]
举例说明下,有可能会存在伪造人脸(例如,塑胶模特),或者,伪造虹膜(例如,虹膜照片),因而,采用本申请实施例,可将电子设备中预先存储的人脸,确定人脸与虹膜之间的位置关系,根据该位置关系确定一个预设条件,从而,在采集到针对目标对象的人脸图像以及虹膜图像之后,一方面,可确定人脸图像与虹膜图像之间的位置关系,另一方面,则可通过虹膜图像进行活体检测,在人脸图像与虹膜图像之间的位置关系满足预设条件且虹膜来自于活体,则说明目标对象为真实有效的人脸。如此,即可活体检测,又可一定程度上对人脸进行防伪检测,提升了防伪精度,具体实现中,由于虹膜也为人脸的一部分, 两者之间便于定位以及图像处理,在一定程度上降低了算法复杂度。当然,计算无法分子戴着人皮面具,或者,制造了假体虹膜也很难被认证通过,因而,提升了多生物识别的安全性。
[0127]
可以看出,本申请实施例中,获取人脸图像和虹膜图像,人脸图像与虹膜图像均来自于目标对象,确定虹膜图像与人脸图像之间的位置关系,以及根据虹膜图像进行活体检测,在位置关系满足预设条件且虹膜图像来自于活体时,确认目标对象为真实有效的人脸。其中,可一方面根据虹膜图像与人脸图像之间的位置进行防伪,另一方面通过虹膜活体检测进行防伪,可提升多生物识别的安全性。
[0128]
请参阅图2,为本申请实施例提供的一种防伪处理方法的实施例流程示意图。本实施例中所描述的防伪处理方法,应用于电子设备,其实物图以及结构图可参见图1A-图1C,包括以下步骤:
[0129]
201、获取当前环境参数。
[0130]
其中,环境参数可为以下至少一个:环境亮度、天气、湿度、温度、磁场干扰强度、环境颜色等等。例如,可在触发解锁操作时,获取环境参数。其中,环境亮度可由环境光传感器检测得到,天气可由天气应用APP获取,磁场干扰强度可由磁场检测传感器检测得到,环境颜色可由摄像头获取。
[0131]
202、根据所述当前环境参数确定虹膜采集参数。
[0132]
其中,电子设备中可预先存储环境参数与虹膜采集参数之间的映射关系,进而,可根据该映射关系确定该当前环境参数对应的虹膜采集参数。虹膜采集参数可为以下至少一种:采集电压、采集电流,采集功率、补光灯强度、聚焦时间、是否需要变焦、光圈大小、曝光时长等等。
[0133]
203、根据所述虹膜采集参数获取虹膜图像。
[0134]
其中,电子设备可根据虹膜采集参数进行虹膜采集,得到虹膜图像。当然,这会的虹膜图像由于针对具体环境进行优化处理,得到的虹膜图像质量更高。
[0135]
204、获取人脸图像,所述虹膜图像与所述人脸图像均来自于同一目标对象。
[0136]
205、确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测。
[0137]
206、在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0138]
其中,上述步骤204-步骤206的具体描述可参照图1D所描述的防伪处理方法的对应步骤,在此不再赘述。
[0139]
可以看出,本申请实施例中,获取当前环境参数,根据当前环境参数确定虹膜采集参 数,根据虹膜采集参数获取虹膜图像,获取人脸图像,人脸图像与虹膜图像均来自于目标对象,确定虹膜图像与人脸图像之间的位置关系,以及根据虹膜图像进行活体检测,在位置关系满足预设条件且虹膜图像来自于活体时,确认目标对象为真实有效的人脸。其中,可一方面根据虹膜图像与人脸图像之间的位置进行防伪,另一方面通过虹膜活体检测进行防伪,可提升多生物识别的安全性。
[0140]
请参阅图3,图3是本申请实施例提供的一种电子设备,包括:应用处理器AP和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述AP执行,所述程序包括用于执行以下步骤的指令:
[0141]
获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0142]
确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;
[0143]
在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0144]
在一个可能的示例中,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述程序包括用于执行以下步骤的指令:
[0145]
确定所述虹膜图像的中心点;
[0146]
对所述人脸图像进行轮廓提取,得到外围轮廓;
[0147]
确定所述中心点与所述外围轮廓之间的竖直距离,将所述竖直距离作为所述位置关系。
[0148]
在一个可能的示例中,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述程序包括用于执行以下步骤的指令:
[0149]
提取所述人脸图像中的关键特征;
[0150]
确定所述关键特征与所述虹膜图像之间的位置关系。
[0151]
在一个可能的示例中,在所述根据所述虹膜图像进行活体检测方面,所述程序包括用于执行以下步骤的指令:
[0152]
在一个可能的示例中,在所述根据所述虹膜图像进行活体检测方面,所述程序包括用于执行以下步骤的指令:
[0153]
对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数;
[0154]
采用预设分类器对所述P个特征点进行训练,得到P个训练值;
[0155]
从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[0156]
在一个可能的示例中,所述程序还包括用于执行以下步骤的指令:
[0157]
获取当前环境亮度值;确定所述当前环境亮度值对应的图像增强系数;
[0158]
在所述对所述虹膜图像进行特征提取方面,所述程序还包括用于执行以下步骤的指令:
[0159]
根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所述虹膜图像进行特征提取。
[0160]
在一个可能的示例中,所述对所述虹膜图像进行特征提取方面,所述程序还包括用于执行以下步骤的指令:
[0161]
对所述虹膜图像进行二值化处理;
[0162]
对二值化处理后的所述虹膜图像进行平滑处理;
[0163]
对平滑处理后的所述虹膜图像进行特征提取。
[0164]
请参阅图4A,图4A是本实施例提供的一种防伪处理装置的结构示意图。该防伪处理装置应用于电子设备,防伪处理装置包括第一获取单元401、检测单元402和第一确定单元403,其中,
[0165]
第一获取单元401,用于获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0166]
检测单元402,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;
[0167]
第一确定单元403,用于在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0168]
可选地,所述检测单元402确定所述虹膜图像与所述人脸图像之间的位置关系的具体实现方式为:
[0169]
确定所述虹膜图像的中心点;
[0170]
对所述人脸图像进行轮廓提取,得到外围轮廓;
[0171]
确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[0172]
可选地,所述检测单元402确定所述虹膜图像与所述人脸图像之间的位置关系的具体实现方式为:
[0173]
提取所述人脸图像中的关键特征;
[0174]
确定所述关键特征与所述虹膜图像之间的位置关系。
[0175]
可选地,所述检测单元402根据所述虹膜图像进行活体检测的具体实现方式为:
[0176]
对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数;
[0177]
采用预设分类器对所述P个特征点进行训练,得到P个训练值;
[0178]
从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[0179]
可选地,如图4B,图4B为图4A所描述的防伪处理装置的一种变型结构,其与图4A相比较,还可以包括:第二获取单元404和第二确定单元405,具体如下:
[0180]
第二获取单元404,用于获取当前环境亮度值;
[0181]
第二确定单元405,用于确定所述当前环境亮度值对应的图像增强系数,由所述检测单元402执行所述根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所述虹膜图像进行特征提取的步骤。
[0182]
可选地,所述检测单元402对所述虹膜图像进行特征提取的具体实现方式为:
[0183]
对所述虹膜图像进行二值化处理;
[0184]
对二值化处理后的所述虹膜图像进行平滑处理;
[0185]
对平滑处理后的所述虹膜图像进行特征提取。
[0186]
可以看出,本申请实施例中所描述的防伪处理装置,获取人脸图像和虹膜图像,人脸图像与虹膜图像均来自于目标对象,确定虹膜图像与人脸图像之间的位置关系,以及根据虹膜图像进行活体检测,在位置关系满足预设条件且虹膜图像来自于活体时,确认目标对象为真实有效的人脸。其中,可一方面根据虹膜图像与人脸图像之间的位置进行防伪,另一方面通过虹膜活体检测进行防伪,可提升多生物识别的安全性。
[0187]
可以理解的是,本实施例的防伪处理装置的各程序模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
[0188]
本申请实施例还提供了另一种电子设备,如图5所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该电子设备可以为包括手机、平板电脑、PDA(personal digital assistant,个人数字助理)、POS(point of sales,销售终端)、车载电脑等任意终端设备,以电子设备为手机为例:
[0189]
图5示出的是与本申请实施例提供的电子设备相关的手机的部分结构的框图。参考图5,手机包括:射频(radio frequency,RF)电路910、存储器920、输入单元930、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、应用处理器AP980、以及电源990等部件。本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
[0190]
下面结合图5对手机的各个构成部件进行具体的介绍:
[0191]
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功 能控制有关的键信号输入。具体地,输入单元930可包括触控显示屏933、多生物识别装置931以及其他输入设备932。多生物识别装置931具体结构组成可参照上述描述,在此不过多赘述。输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理按键、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
[0192]
其中,所述AP980,用于执行如下步骤:
[0193]
获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象;
[0194]
确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;
[0195]
在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[0196]
AP980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,AP980可包括一个或多个处理单元,该处理单元可为人工智能芯片、量子芯片;可选的,AP980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到AP980中。
[0197]
此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
[0198]
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
[0199]
手机还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节触控显示屏的亮度,接近传感器可在手机移动到耳边时,关闭触控显示屏和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切 换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
[0200]
音频电路960、扬声器961,传声器962可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据播放AP980处理后,经RF电路910以发送给比如另一手机,或者将音频数据播放至存储器920以便进一步处理。
[0201]
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图5示出了WiFi模块970,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
[0202]
手机还包括给各个部件供电的电源990(比如电池),可选的,电源可以通过电源管理系统与AP980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
[0203]
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
[0204]
前述图1D或图2所示的实施例中,各步骤方法流程可以基于该手机的结构实现。
[0205]
前述图3、图4A~图4B所示的实施例中,各单元功能可以基于该手机的结构实现。
[0206]
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种防伪处理方法的部分或全部步骤。
[0207]
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种防伪处理方法的部分或全部步骤。
[0208]
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
[0209]
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
[0210]
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种 逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
[0211]
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
[0212]
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
[0213]
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
[0214]
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
[0215]
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

权利要求书

[权利要求 1]
一种电子设备,其特征在于,包括应用处理器AP,以及连接所述AP的虹膜识别装置和、人脸识别装置和存储器,其中: 所述虹膜识别装置,用于获取虹膜图像; 所述人脸识别装置,用于获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象; 所述存储器,用于存储预设条件; 所述AP,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[权利要求 2]
根据权利要求1所述的电子设备,其特征在于,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述AP具体用于: 确定所述虹膜图像的中心点; 对所述人脸图像进行轮廓提取,得到外围轮廓; 确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[权利要求 3]
根据权利要求1所述的电子设备,其特征在于,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述AP具体用于: 提取所述人脸图像中的关键特征; 确定所述关键特征与所述虹膜图像之间的位置关系。
[权利要求 4]
根据权利要求1至3任一项所述的电子设备,其特征在于,在所述根据所述虹膜图像进行活体检测方面,所述AP具体用于: 对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数; 采用预设分类器对所述P个特征点进行训练,得到P个训练值; 从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[权利要求 5]
根据权利要求4所述的电子设备,其特征在于,所述电子设备设置有环境光传感器,所述环境光传感器用于获取当前环境亮度值; 所述AP,还用于确定所述当前环境亮度值对应的图像增强系数; 在所述对所述虹膜图像进行特征提取方面,所述AP具体用于: 根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所 述虹膜图像进行特征提取。
[权利要求 6]
根据权利要求4所述的电子设备,其特征在于,在所述对所述虹膜图像进行特征提取方面,所述AP具体用于: 对所述虹膜图像进行二值化处理; 对二值化处理后的所述虹膜图像进行平滑处理; 对平滑处理后的所述虹膜图像进行特征提取。
[权利要求 7]
一种防伪处理方法,其特征在于,应用于包括应用处理器AP,以及连接所述AP的虹膜识别装置、人脸识别装置和存储器的电子设备,其中,所述存储器用于存储预设条件,所述方法包括: 所述虹膜识别装置获取虹膜图像; 所述人脸识别装置获取人脸图像,所述人脸图像与所述虹膜图像均来自于目标对象; 所述AP确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测;以及在所述位置关系满足所述预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[权利要求 8]
一种防伪处理方法,其特征在于,包括: 获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象; 确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测; 在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[权利要求 9]
根据权利要求8所述的方法,其特征在于,所述确定所述虹膜图像与所述人脸图像之间的位置关系,包括: 确定所述虹膜图像的中心点; 对所述人脸图像进行轮廓提取,得到外围轮廓; 确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[权利要求 10]
根据权利要求8所述的方法,其特征在于,所述确定所述虹膜图像与所述人脸图像之间的位置关系,包括: 提取所述人脸图像中的关键特征; 确定所述关键特征与所述虹膜图像之间的位置关系。
[权利要求 11]
根据权利要求8-10任一项所述的方法,其特征在于,所述根据所述虹膜图像进行活体检测,包括: 对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数; 采用预设分类器对所述P个特征点进行训练,得到P个训练值; 从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[权利要求 12]
根据权利要求11所述的方法,其特征在于,所述方法还包括: 获取当前环境亮度值;确定所述当前环境亮度值对应的图像增强系数; 所述对所述虹膜图像进行特征提取,包括: 根据所述图像增强系数对所述虹膜图像进行图像增强处理,并对图像增强处理后的所述虹膜图像进行特征提取。
[权利要求 13]
根据权利要求11所述的方法,其特征在于,所述对所述虹膜图像进行特征提取,包括: 对所述虹膜图像进行二值化处理; 对二值化处理后的所述虹膜图像进行平滑处理; 对平滑处理后的所述虹膜图像进行特征提取。
[权利要求 14]
一种防伪处理装置,其特征在于,包括: 第一获取单元,用于获取人脸图像和虹膜图像,所述人脸图像与所述虹膜图像均来自于目标对象; 检测单元,用于确定所述虹膜图像与所述人脸图像之间的位置关系,以及根据所述虹膜图像进行活体检测; 第一确定单元,用于在所述位置关系满足预设条件且所述虹膜图像来自于活体时,确认所述目标对象为真实有效的人脸。
[权利要求 15]
根据权利要求14所述的装置,其特征在于,在所述确定所述虹膜图像与所述人脸图像之间的位置关系方面,所述检测单元具体用于: 确定所述虹膜图像的中心点; 对所述人脸图像进行轮廓提取,得到外围轮廓; 确定所述中心点与所述外围轮廓之间的竖直距离,所述竖直距离包括第一竖直距离和第二竖直距离,将所述第一竖直距离和所述第二竖直距离之间的比值作为所述虹膜图像与所述人脸图像之间的位置关系。
[权利要求 16]
根据权利要求14所述的装置,其特征在于,在所述确定所述虹膜图像与所述人脸 图像之间的位置关系方面,所述检测单元具体用于: 提取所述人脸图像中的关键特征; 确定所述关键特征与所述虹膜图像之间的位置关系。
[权利要求 17]
根据权利要求14-16任一项所述的装置,其特征在于,在所述根据所述虹膜图像进行活体检测方面,所述检测单元具体用于: 对所述虹膜图像进行特征提取,得到P个特征点,所述P为大于1的整数; 采用预设分类器对所述P个特征点进行训练,得到P个训练值; 从所述P个训练值中选取大于预设训练阈值的训练值,得到Q个训练值,在所述Q与所述P之比大于预设阈值时,确认所述虹膜图像来自于活体,所述Q为小于所述P的正整数。
[权利要求 18]
一种电子设备,其特征在于,包括:应用处理器AP和存储器;以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置成由所述AP执行,所述程序包括用于如权利要求8-13任一项方法的指令。
[权利要求 19]
一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求8-13任一项所述的方法。
[权利要求 20]
一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求8-13任一项所述的方法。

附图

[ 图 1A]  
[ 图 1B]  
[ 图 1C]  
[ 图 1D]  
[ 图 1E]  
[ 图 2]  
[ 图 3]  
[ 图 4A]  
[ 图 4B]  
[ 图 5]