Algum conteúdo deste aplicativo está indisponível no momento.
Se esta situação persistir, por favor entre em contato conoscoFale conosco & Contato
1. (WO2019046233) A METHOD TO MONITOR PHARMACODYNAMIC RESPONSES MEDIATED BY IN VIVO ADMINISTRATION OF GLUCOCORTICOIDS
Nota: O texto foi obtido por processos automáticos de reconhecimento ótico de caracteres.
Para fins jurídicos, favor utilizar a versão PDF.

A METHOD TO MONITOR PHARMACODYNAMIC RESPONSES MEDIATED BY IN VIVO ADMINISTRATION OF GLUCOCORTICOIDS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of US Provisional

Application Ser. No. 62/551839, filed August 30, 2017; the disclosure of which is incorporated herein by reference.

Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

FIELD OF THE INVENTION

The present invention relates generally to a method of monitoring

pharmacodynamic responses mediated by in vivo administration of glucocorticoids.

BACKGROUND OF THE INVENTION

Glucocorticoids (GCs) are effective anti-inflammatory drugs that are used

extensively to treat many human diseases, including rheumatoid arthritis (RA), inflammatory bowel diseases, psoriasis, asthma, and systemic lupus

erythematosus (SLE) (Buttgereit F. Bull NYU Hosp Jt Dis 2012;70 Suppl 1 :S26- 9). However, their utility is limited by the toxicities of these drugs which include diabetes, osteoporosis, muscle wasting, fat redistribution, and suppression of the hypothalamic-pituitary-adrenal gland (HP A) axis (Desmet SJ, et.al., J Clin

Invest 2017; 127: 1136-45). The risk for harmful side effects increases with

higher doses and more prolonged use (Bijlsma JWJ, et.al. Rheumatology 2016;55 Suppl 2:ii3-5; Ruiz-Arruza I, et.al. Rheumatology 2014;53 : 1470-6). Despite the potential for adverse effects, Glucocorticoids remain a key standard-of-care treatment.

Glucocorticoids mediate their biologic effects via interactions with a nuclear

hormone receptor, glucocorticoid receptor alpha (GR). Glucocorticoid receptor alpha is a ligand-activated transcription factor that induces transcription by

binding as a homodimer to glucocorticoid-responsive elements (Weikum ER, et.al. Nat Rev Mol Cell Biol 2017; 18: 159-74). Many GR-activated genes have anti-inflammatory activity (Colotta F, et.al. Science 1993;261 :472-5; Abraham

SM, et.al. J Exp Med 2006;203 : 1883-9; Beaulieu E, et.al. Nat Rev Rheum

2011;7:340-8). However, transactivated genes are also associated with side

effects (Cain DW, et.al. Nat Rev Immunol 2017;17:233-47). GR has also been shown to inhibit the activity of several pro-inflammatory transcription factors including NF-κΒ, AP-1, IR3F, CREB, NFAT, STAT, T-Bet, and Gata-3,

independently of DNA binding in a process referred to as transrepression

(Greulich F, et.al. Steroids 2016; 114:7-15). Several synthetic glucocorticoids have been developed with reduced transactivation but intact transrepression

activity in an attempt to broaden the therapeutic window (Strehl C, et.al., Exp

Opin Invest Drugs 2017;26: 187-95).

In addition to the risk of developing damaging effects, chronic glucocorticoid use is also associated with tissue-specific resistance (Rodriguez JM, et.al., Steroids

2016;115: 182-92). Several resistance mechanisms have been described, including downregulation of GR expression as well as upregulation of a dominant negative isoform of the receptor (Dendoncker K, et.al. Cytokine Growth Factor Rev 2017;35:85-96). Polymorphisms of the GR that modulate sensitivity to agonists have also been described (Straub RH, et.al. Rheumatology 2016;55 Suppl 2:ii6-14). Given the heterogeneity of clinical responses to glucocorticoids, it would be extremely valuable to have a companion biomarker of glucocorticoid biologic activity.

SUMMARY OF INVENTION

The inventors developed a gene signature based on genes modulated by treatment of peripheral blood mononuclear cells (PBMCs) from normal healthy volunteer (NHV) donors with prednisolone. Sensitivity of this signature was confirmed by analyzing whole-blood gene expression in healthy participants post-dosing with either prednisolone or a partial GR agonist. Expression of the signature was higher in healthy subjects dosed with prednisolone than in those who received the partial agonist, in alignment with the transactivation potential of the compound. Expression of the signature in whole blood from patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) correlated with known glucocorticoid-mediated

pharmacodynamic effects, including higher levels of peripheral blood neutrophils and lower levels of peripheral blood lymphocytes. Expression of the signature also aligned with reported use and dose of prednisolone in these cohorts.

The invention comprises a method to determine a person's response to glucocorticoids comprising administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSL1, DUSP1 indicates a response to the glucocorticoid.

The invention comprises a method to determine a person's response to glucocorticoids comprising administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSL1, DUSP1, PHC2, TLR2, TSC22D3, SLA, CRISPLD2, MAN2A2, FAR2, CEBPD, SPTLC2, HSPA6 indicates a response to the

glucocorticoid.

The invention comprises a method to determine a person's response to glucocorticoids comprising administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECFIDC3, IL1R2 indicates a response to the glucocorticoid.

The invention comprises a method to determine a person's response to glucocorticoids comprising administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3 indicates a response to the glucocorticoid.

In an embodiment of the invention, the glucocorticoid of interest is cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, triamcinolone, betamethasone budesonide, fluticasone, and/or synthetic

glucocorticoids.

In an embodiment of the invention, the control gene signature score is derived from blood collected from the same person pre-glucocorticoid-administration and/or blood collected from normal healthy controls not administered the glucocorticoid.

In an embodiment of the invention, the blood sample is collected from the person administered the glucocorticoid of interest 4 hours post-administration.

In an embodiment of the invention, the person who responds to the

glucocorticoid of interest has a gene signature score at least 1.5-fold greater than the control.

In an embodiment of the invention, the person who responds to the

glucocorticoid of interest has a gene signature score at least 2-fold greater than the control.

The invention comprises a method of treating a person diagnosed with SLE or

RA comprising 1) determining the person's response to glucocorticoids by administering the glucocorticoid of interest to the person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and 2) comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSLl, DUSPl indicates the person will respond to the glucocorticoid of interest and 3) administering the glucocorticoid to the person.

The invention comprises a method of treating a person diagnosed with SLE or RA comprising 1) determining the person's response to glucocorticoids by administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and 2) comparing the gene signature score post-administration with a control gene signature score, wherein in increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSLl, DUSPl, PHC2, TLR2, TSC22D3, SLA, CRISPLD2, MAN2A2, FAR2, CEBPD, SPTLC2, HSPA6 indicates the person will respond to the glucocorticoid of interest and 3) administering the glucocorticoid to the person.

The invention comprises a method of treating a person diagnosed with SLE or RA comprising 1) determining the person's response to glucocorticoids by administering the glucocorticoid of interest to said person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and 2) comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECFIDC3, IL1R2, indicates the person will respond to the glucocorticoid of interest and 3) administering the glucocorticoid to the person.

The invention comprises a method of treating a person diagnosed with SLE or

RA comprising 1) determining the person's response to glucocorticoids by administering the glucocorticoid of interest to said person, drawing blood from the person

administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and 2) comparing the gene signature score post-administration with a control gene signature score, wherein an increase in the gene signature score for FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, indicates the person will respond to the glucocorticoid of interest and 3) administering the glucocorticoid to the person.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A-1D shows the glucocorticoid (GC)-regulated genes. Peripheral blood mononuclear cells (PBMCs) from normal healthy volunteers (NHVs) were cultured in vitro for 6 hours with either 1 μΜ prednisolone or DMSO vehicle alone. RNA was analyzed for gene expression using Affymetrix profiling. Analyses of genes modulated by prednisolone as compared with vehicle are shown. Axes represent the FDR-adjusted log 10 P value versus fold change. Genes upregulated (1A) and downregulated (IB) >2- fold by prednisolone versus vehicle with an FDR-adjusted P value of <0.05 are shown. ssGSEA scores for upregulated (1C) and downregulated (ID) genes for whole blood

samples stimulated with increasing concentrations of prednisolone in vitro. ** .Ρ=0.005, *** O.001.

Figure 2A-2E shows the validation of the glucocorticoid gene signature using partial GR agonists. Mammalian 2-hybrid analysis of PGC1 (2A) and TIF2 (2B) recruitment by prednisolone, GR modulators BMS-791826, and BMS-776532. Data represent the mean value of triplicates normalized to the activity induced by 200 nM dexamethasone. One representative experiment of 2 is shown. Analysis of GR (2C) and TIF2 (2D) recruitment to the promoters of ANGPTL4, ALOX5AP, and LEPREL1 by 1 uM prednisolone, 1 μΜ GR modulators BMS-791826, and 2 μΜ BMS-776532 as analyzed by chromatin immunoprecipitation followed by qPCR. Values represent the mean and standard deviations of triplicate reactions. Binding values are normalized to input values. ChIP = chromatin immunoprecipitation. P values were calculated by T test. TO.01 vs prednisolone, ** P<0.01 vs prednisolone, *** PO.001 vs prednisolone, ns=not significant. (2E) GC gene signature scores for whole blood samples cultured in vitro with either DMSO vehicle, 5 μΜ prednisolone, 5 uM GR modulators BMS-791826, or 10 uM BMS- 776532. *** O.001

Figure 3A - 3B shows m vivo validation of the GC gene signature. (3A) HVs were administered an oral dose of 150 or 300 mg GR modulator BMS-791826, 10 mg prednisolone, or placebo. Blood was collected before administration and 4 hours post-dosing. Whole blood expression profiles were analyzed for the GC gene signature. * =0.027; *** O.001. (3B) NHVs were administered 5, 10 or 30 mg prednisolone or placebo (i.e. 0 mg). Blood was drawn before administration and at different times post-dosing (2, 4, 8, 48, 144, and 216 hours). Whole blood expression profiles were analyzed for the GC gene signature.

Figure 4A-4B shows the relationship of the GC gene signature to GC use in SLE and RA cohorts. (4A) Whole blood was collected from NHVs and patients with RA and SLE. RNA was isolated and used to probe Affymetrix HG-219 arrays. GC gene signature scores are divided by patients currently using GCs (true) versus patients on other standard-of-care treatments (false). Patients without treatment information are listed under 'NA' (not available). ** =0.003, *** O.001 . (4B) GC gene signature scores for baseline samples from an abatacept SLE phase II trial. Patients were categorized by GC dose (low, medium, or high). ns= not significant; **P=0.001.

Figure 5A -5Cshows GC gene signature correlates. The percentages of peripheral blood CD4+ T cells, CD8+ T cells, and CD19+ B cells from patients with SLE (5A) and RA (5B) are plotted relative to the GC gene signature score for each patient. WBC = white blood cell. (5C) Peripheral blood neutrophil counts from the abatacept SLE trial baseline samples are plotted relative to the GC gene signature score for each patient. Correlations were analyzed by the Spearman ranked test.

Figure 6A-6B shows validation of the 8-gene GC signature. (6A) GC gene signature scores using an abbreviated list of 8 genes for participants from the Prednisoline in Healthy Male cohort 2 administered placebo, 150 or 300 mg GR modulator BMS-791826, or 10 mg prednisolone. * =0.015; *** O.001. (6B) GC gene signature scores using the 8-gene list versus peripheral blood neutrophil counts for participants at baseline from the abatacept SLE study. The correlation was calculated using the Spearman ranked test.

DETAILED DESCRIPTION OF THE INVENTION

Glucocorticoids are administered as described in the Prescribing Information for each drug. In general, the initial dose is determined by the severity of the specific disease entity being treated. In situations of less severity, lower doses will generally suffice while in selected patients higher initial doses may be required. The initial dosage is typically maintained or adjusted until a satisfactory response is noted. If after a reasonable period of time, there is a lack of satisfactory clinical response, the glucocorticoid is discontinued and the patient placed on other appropriate therapy. After a favorable response is achieved, the proper maintenance dosage is determined by decreasing the initial drug dosage in small decrements at appropriate time intervals until the lowest dosage that will maintain an adequate clinical response is reached. Clearly, being able to determine how a patient is going to respond to a glucocorticoid would decrease the time required to optimize a patient's maintenance dose.

The invention comprises a method to determine a person's response to glucocorticoids by administering the glucocorticoid of interest to the person, drawing blood from the person administered the glucocorticoid of interest, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and

comparing the gene signature post-administration with a control gene signature, wherein upregulation of selected genes indicates a response to the glucocorticoid.

The inventors discovered that the expression of the glucocorticoid gene signature is significantly elevated in peripheral blood leukocytes of normal healthy volunteers (NHVs) following oral administration of the glucocorticoid. Expression of the signature increased dose-dependently, peaked at 4 hours post administration, and returned to baseline by 48 hours post-dose. Lower expression is detected in NHVs who are administered a partial glucocorticoid receptor agonist, consistent with the reduced transactivation potential of this compound. In cohorts of patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), expression of the glucocorticoid signature is negatively correlated with percentages of peripheral blood lymphocytes and positively correlated with peripheral blood neutrophil counts, consistent with the known biology of the glucocorticoid receptor.

Identification of glucocorticoid-regulated genes

In order to monitor glucocorticoid-dependent responses in peripheral blood, genes modulated by prednisolone in human PBMCs were identified. PBMCs from 10 independent normal healthy volunteer donors were treated with either DMSO control or 1 μΜ prednisolone for 6 hours. Genes with >2-fold change and a FDR-corrected P value of <0.05 were identified as upregulated or downregulated genes.

The upregulated genes include ECHDC3, ACSL1, P2RX5, TPST1, TBC1D8,

APBA2, SESN1, RNASE1, ABLIM3, RNASE6, BLM, KIF13B, DNMBP, SAP30, SFMBT1, TMEM2, HSPH1, METTL7A, HSPA1B, SLC25A37, VIPR1, FAR2, HSPA6, PHC2, PELI1, POLR1E, SPON2, GFOD1, SPRY1, NDFIPl, MAN2A2, ISG20, RAB31; FKBP5, IL1R2, ZBTB16, IRS2, IRAK3, DUSP1, SLC04A1, TSC33D3, CD163, SLC1A3, ALOX15B, CCND3, RHOB, VSIG4, FLT3, CRISPLD2, ADORA3, RGS1, AMPH, CPM, ANG, CD93, SPTLC2, SERPF E1, ESTS2, TLR2, PERI, DNAJB1, PTK2B, CEBPD, SLA (Figure 1A).

The downregulated genes include KMO, CCR5, CXCL8, FPR3, PLA2G7, PEA15, TRAFl, CSF2RB, TRDC, OLR1, KIAA0226L, FCGR2B, ATF5, CX3CR1, MYOF, SLAMF7, CD9, IL1RN (Figure IB).

Many of these genes were known glucocorticoid- regulated genes (Chinenov Y, et.al., BMC Genomics 2014; 15:656). However, upregulated genes ECHDC3, ACSL1,

P2RX5, TPST1, TBC1D8, APBA2, SESN1, RNASE1, ABLIM3, RNASE6, BLM, KIF13B, D MBP, SAP30, SFMBT1, TMEM2, HSPH1, METTL7A, HSPA1B, SLC25A37, VIPR1, FAR2, HSPA6, PHC2, PELI1, POLR1E, SPON2, GFOD1, SPRY1, DFIP1, MAN2A2, ISG20, RAB31 have not been previously linked to glucocorticoid regulation. Several of the upregulated genes have previously been associated with anti-inflammatory activity, including DUSP1 (Abraham SM, et.al., J Exp Med 2006;203: 1883-9), TSC22D3 (Beaulieu E, et.al. Nat Rev Rheum

2011;7:340-8), IRAK3 (Miyata M, et.al., Nat Commun 2015;6:606), and CD163 (Schaer DJ, et.al., Immunogenetics 2001;53 : 170-7), while several of the downregulated genes encoded chemokines, chemokine receptors, and other pro- inflammatory mediators. Network analysis of the regulated genes indicated enrichment for immune-response pathways. Single-sample gene set enrichment analysis (ssGSEA) algorithm was used to generate a composite score (or gene signature) for enrichment of these genes in the transcriptomes of individual samples (Barbie DA, et.al. Nature

2009;462: 108- 12). Whole blood was stimulated with different concentrations of prednisolone in vitro for 5 hours, and the expression levels of up- and downregulated genes were calculated. The ssGSEA score for the upregulated genes increased dose dependently (Figure 1C). Similarly, the expression of the downregulated genes decreased in a dose-dependent manner (Figure ID). The upregulated gene module had a larger dynamic range, and therefore this gene module was utilized for all other analyses.

In order to provide further mechanistic evidence that this gene module accurately reflects GR activity, the activity of partial glucocorticoid receptor (GR) agonists was analyzed . n vitro and in vivo activities of two selective GR modulators, BMS-776532 and BMS-791826 have been previously described (Weinstein DS, et.al. J Med Chem 2011;54:7318-33). Both compounds bound to GR and repressed AP-1- and nuclear factor-κΒ- dependent reporters, but demonstrated significantly weaker induction of a GR-dependent reporter as compared with prednisolone. BMS-791826 was more potent in transrepression and transactivation assays as compared with BMS-776532. The GR modulates transcription via recruitment of co-regulators including TIF2 (Khan SH, et.al., Biol. Chem. 2012; 287:44546-44560) and PGCla (Knutti D, et.al., Mol. Cell. Biol. 2000; 20:2411-2422). A mammalian 2- hybrid system as well as chromatin immunoprecipitations were used to characterize the transactivation potential of these compounds. Compared to prednisolone, BMS-791826 and BMS-776532 recruited significantly less PGCla and TIF2 to the GR, peaking at 30-75% of the level recruited by prednisolone (Figure 2A, 2B). BMS-791826 recruited more TIF2 (50% vs 30%) but similar amounts of PGC1 a as compared with BMS-776532. In a chromatin

immunoprecipitation assay, both compounds recruited significantly lower amounts of GR (Figure 2C) as well as TIF2 (Figure 2D) to the promoters of three target genes as compared with prednisolone confirming the reduced transactivation potential of these compounds. Whole blood from two independent normal healthy volunteer donors was stimulated in vitro with these compounds and prednisolone for 5 hours followed by RNA isolation and Affymetrix profiling. The glucocorticoid gene signature scores for these samples aligned well with the transactivation potential of the compounds:

prednisolone > BMS-791826 > BMS- 776532 (Figure 2E).

The invention comprises a method to determine a person's response to glucocorticoids comprising stimulating whole blood collected from a person in need thereof with the glucocorticoid of interest, isolating the RNA from the stimulated blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-stimulation with a control gene signature score, wherein the gene signature comprises genes ECHDC3, ACSL1, P2RX5, TPST1, TBC1D8, APBA2, SESN1, RNASEl, ABLFM3, RNASE6, BLM, KIF13B, DNMBP, SAP30, SFMBTl, TMEM2, HSPH1, METTL7A, HSPA1B, SLC25A37, VIPR1, FAR2, HSPA6, PHC2, PELI1,

POLR1E, SPON2, GFOD1, SPRY1, NDFIP1, MAN2A2, ISG20, RAB31, wherein an increase in the gene signature score indicates a response to the glucocorticoid.

The invention comprises a method to determine a person's response to glucocorticoids comprising stimulating whole blood collected from a person in need thereof with one or more glucocorticoids selected from the group consisting of cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, triamcinolone, betamethasone budesonide, fluticasone, and synthetic glucocorticoids, isolating the RNA from the stimulated blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-stimulation with a control gene signature score, wherein the gene signature comprises genes ECHDC3, ACSL1, P2RX5, TPST1, TBC1D8, APBA2, SESN1, RNASEl, ABLFM3, RNASE6, BLM, KIF13B, DNMBP, SAP30, SFMBTl, TMEM2, HSPH1,

METTL7A, HSPA1B, SLC25A37, VIPR1, FAR2, HSPA6, PHC2, PELI1, POLR1E, SPON2, GFODl, SPRYl, NDFIPl, MAN2A2, ISG20, RAB31, wherein an increase in the gene signature score indicates a response to the glucocorticoid.

In vivo assessment of the glucocorticoid gene signature

Since the glucocorticoid (GC) signature accurately captured glucocorticoid receptor (GR) agonist activity in vitro, the behavior of the GC gene signature in vivo was tested. Normal healthy volunteers (NHV) were dosed with placebo, 10 mg prednisolone, or 150 or 300 mg GR modulator BMS- 791826. Blood was drawn before and 4 hours post-dosing, and RNA was analyzed by Affymetrix gene expression profiling. The GC signature scores for participants dosed with prednisolone were significantly elevated at the 4-hour time point relative to pre-dose and placebo (Figure 3A). The signature scores for participants dosed with BMS-791826 were higher than predose levels and for those participants given placebo, but lower than those for participants in the prednisolone group. To address the kinetics of the GC gene signature response, whole blood RNA profiles from NHVs who were administered different doses of prednisolone was analyzed. The GC gene signature score increased dose dependently and peaked at 4 hours post-dose (Figure 3B). For all but the highest dose of prednisolone, GC gene signature scores had returned to baseline levels by 8 hours post-dose. The signature score was at baseline levels in all groups by 48 hours post-dosing.

The composite glucocorticoid gene signature score is a sensitive measure of in vivo responses to glucocorticoid administration.

The invention comprises a method to determine a person's response to prednisolone comprising administering prednisolone to said person, drawing blood from the person administered prednisolone 4 hours post-administration, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature score post-administration with a control gene signature score, wherein the gene signature comprises genes ECFIDC3, ACSLl, P2RX5, TPSTl, TBC1D8, APBA2, SESN1, RNASE1, ABLEVI3, RNASE6, BLM, KIF13B, DNMBP, SAP30, SFMBT1, TMEM2, HSPH1, METTL7A, HSPA1B, SLC25A37, VIPR1, FAR2, HSPA6, PHC2, PELI1, POLR1E, SPON2, GFODl, SPRYl, NDFIPl,

MAN2A2, ISG20, RAB31, wherein an increase in the gene signature score indicates a response to prednisolone.

Relationship of the glucocorticoid gene signature with reported glucocorticoid use

To determine if the glucocorticoid signature could differentiate between patients based on treatment status, expression of the signature in cross-sectional cohorts of patients with SLE or RA were analyzed. Relative to either normal healthy controls or patients treated with other standard-of- care medications, the patients with SLE or RA who were prescribed glucocorticoids had elevated signature scores (Figure 4A). While the glucocorticoid signatures were elevated, there was significant inter-patient variability in the signature scores. Baseline samples from a phase Π study of abatacept in SLE was analyzed (Fleishaker DL, et.al., BMC Musculoskelet Disord 2016; 17:29) for expression of the glucocorticoid gene signature (Figure 4B). The glucocorticoid gene signature scores generally aligned well with reported prednisone dose when categorized into high (>30 mg), medium (10-30 mg) and low (<10 mg) doses.

However, there was again significant inter-patient variability in glucocorticoid gene signature scores in all groups. This could reflect steroid resistance in some patients or compliance issues with some patients.

Correlation of the glucocorticoid gene signature with other pharmacodynamic endpoints

Glucocorticoids are known to cause redistribution of leukocyte subsets through demargination of neutrophils from the bone marrow or sequestration of lymphocyte populations in lymphoid organs (Merayo-Chalico J, et.al., Hum Immunol 2016;77:921-6; Spies CM, et.al., Arthritis Res Ther 2014; 16 Suppl 2:S3). To determine if the glucocorticoid signature correlated with these pharmacodynamic endpoints, peripheral blood of SLE and RA patients were tested for CD4+ T cells, CD8+ T cells, and CD 19+ B cells. Expression of the glucocorticoid signature was negatively correlated with the percentages of these subsets in the peripheral blood of SLE patients (Figure 5A) and RA patients (Figure 5B). In the abatacept SLE trial, the glucocorticoid signature scores were positively correlated with neutrophil counts (Figure 5C).

Therefore, expression of the glucocorticoid gene signature correlates with the known biology of glucocorticoids in both SLE and RA patients.

Refinement of the glucocorticoid gene signature

Further refinement of the 64 member gene signature would facilitate

implementation in the clinic. The list of 64 upregulated genes was refined to those upregulated genes that were induced by greater than 1.5-fold with a FDR-adjusted P value of <0.05 comparing patients dosed with prednisolone versus placebo in the Prednisoline in Healthy Male cohort 2 trial. The list was further filtered for detectable expression in the abatacept SLE trial. Of the initial 64 genes, 18 (FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSL1, DUSP1, PHC2, TLR2, TSC22D3, SLA, CRISPLD2, MAN2A2, FAR2, CEBPD, SPTLC2, HSPA6) met these criteria. The top 3 genes (FKBP5, ECHDC3 and IL1R2), top 6 genes (FKBP5, ECHDC3 IL1R2,

ZBTB16, IRS2, IRAK3) and top 8 genes (FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, ACSL1, DUSP1) from the list were then used to calculate ssGSEA scores.


Analysis of the Prednisoline in Healthy Male cohort 2 study of the partial GR agonist with this abbreviated signature fully captured the behavior of the 64-gene signature (Figure 6A). Similar to the signature generated with the 64 upregulated genes, the 8-gene signature accurately reflected the transactivation potential of the partial agonist and prednisolone following in vivo administration of these compounds. The 8-gene signature also positively correlated with peripheral blood neutrophil counts from the abatacept SLE trial, with a similar P value as for the correlation generated with the 64-gene list (Figure 6B). We conclude that a quantitative polymerase chain reaction (qPCR) assay for these 8 genes would be a sensitive biomarker of glucocorticoid pharmacodynamic activity that can be implemented with a simple whole blood collection.

The invention comprises a method to determine a person's response to prednisolone comprising administering prednisolone to said person, drawing blood from the person administered prednisolone 4 hours post-administration, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature post-administration with a control gene signature, wherein the gene signature comprises genes FKBP5, ECHDC3, IL1R2, ZBTB 16, IRS2, IRAK3, ACSL1, DUSP1, wherein an increase in the gene signature score indicates a response to prednisolone.

The invention comprises a method to determine a person's response to prednisolone comprising administering prednisolone to said person, drawing blood from the person administered prednisolone 4 hours post-administration, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature post-administration with a control gene signature, wherein the gene signature comprises genes FKBP5, ECHDC3, IL1R2, ZBTB 16, IRS2, IRAK3, ACSL1, DUSP1, PHC2, TLR2, TSC22D3, SLA, CRISPLD2, MAN2A2, FAR2, CEBPD, SPTLC2, HSPA6 wherein an increase in the gene signature score indicates a response to prednisolone.

The invention comprises a method to determine a person's response to prednisolone comprising administering prednisolone to said person, drawing blood from the person administered prednisolone 4 hours post-administration, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature post-administration with a control gene signature, wherein the gene signature comprises genes FKBP5, ECHDC3, IL1R2, wherein an increase in the gene signature indicates a response to prednisolone.

The invention comprises a method to determine a person's response to prednisolone comprising administering prednisolone to said person, drawing blood from the person administered prednisolone 4 hours post-administration, isolating the RNA from the collected blood, profiling the gene expression of the isolated RNA, and comparing the gene signature post-administration with a control gene signature, wherein the gene signature comprises genes FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3, wherein an increase in the gene signature score indicates a response to prednisolone.

CONCLUSION

Glucocorticoids remain a mainstay of treatment for many autoimmune and inflammatory diseases due to their potent anti-inflammatory activity. Chronic use is, however, associated with an increased risk of toxic effects. Given this risk and the significant inter-patient variability in the clinical response to glucocorticoids, there is a need for a sensitive, objective pharmacodynamic that will facilitate proper dose selection.

The glucocorticoid gene signature of the invention was developed based on in vitro expression-profiling experiments using PBMCs derived from NHVs. Genes induced by glucocorticoid treatment, rather than downregulated genes, were focused on due to a larger dynamic range across donors. The ssGSEA algorithm was used to generate a composite score that can be applied to individual samples or patients. This algorithm appeared to sensitively detect glucocorticoid-dependent transcriptional responses based on several observations. The glucocorticoid signature score accurately reflected the transactivation potential of synthetic partial GR agonists from both in vitro whole blood profiling studies and in vivo studies using samples obtained following oral

administration of full and partial GR agonists. The signature scores also captured the dose response to glucocorticoid both in vitro and in vivo.

When the method of the invention was applied to samples from cross-sectional cohorts of patients with SLE and RA, glucocorticoid signature scores were higher in patients using glucocorticoids compared with those on other non-glucocorticoid

standard-of-care medications. In baseline samples from an abatacept SLE trial, glucocorticoid signature scores progressively increased as steroid doses increased.

The glucocorticoid gene signature of the invention has utility not only as part of clinical practice, but also in helping to determine the potential confounding effects of steroids in clinical trials. In baseline samples from the abatacept SLE trial,

glucocorticoid gene signature scores generally correlated with reported steroid dosage. However, significant inter-patient variability within each dose group was observed. The method of the invention can be used to determine if a patient is resistance to glucocorticoids or not adherent to the study protocol.

Given the strong anti-inflammatory effects of glucocorticoids, trials often include a requirement to either taper or even discontinue glucocorticoids. The glucocorticoid gene signature of the invention provides an objective method with which to assess compliance to the protocol. Calculation of the 8-gene signature score can easily be conducted with qPCR or other platforms using whole blood collections. In summary, the gene signature of the invention has broad utility for monitoring responses to glucocorticoids in the many indications for which they are prescribed.

Example 1

Identification of glucocorticoid-regulated genes

Lymphocytes were isolated from the blood of 10 independent donors using Ficoll gradient centrifugation. Cells were cultured at 5 million lymphocytes/well of a 96-well flat-bottom block plate (Qiagen, Hilden, Germany) in 500 μΐ assay media (RPMI-1640 with GlutaMAX, 10% charcoal-stripped fetal bovine serum; Gibco Laboratories, Gaithersburg, MD, USA). Cells were cultured for 6 hours with either dimethyl sulfoxide (DMSO) vehicle or 1 uM prednisolone. After 6 hours, cells were pelleted and resuspended in 1 ml nucleic acid purification lysis solution (Applied Biosystems, Foster City, CA, USA) diluted 1 :2 with calcium and magnesium-free phosphate-buffered saline (Invitrogen, Carlsbad, CA, USA). Cells were incubated in lysis buffer for 10 min at room temperature followed by storage at -80°C. RNA was isolated using the Qiagen RNeasy isolation kit according to manufacturer's instructions.

For profiling of whole blood, anticoagulant citrate dextrose solution A-containing whole blood from 4 normal healthy volunteers was cultured with either DMSO vehicle, 200nM prednisolone, ΙμΜ prednisolone, 5 μΜ prednisolone, 5 μΜ GR modulators BMS-791826, or ΙΟμΜ BMS-776532 for 5 hours, followed by transfer to a PAXgene tube. Total RNA was isolated, and then treated with DNase I and cleaned up using a Qiagen RNeasy MinElute Cleanup Kit. RNA concentrations were determined using NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA) and RNA quality was evaluated using the Experion electrophoresis system (Bio-Rad Laboratories, Hercules, CA, USA). All target labeling reagents were purchased from Affymetrix (West

Sacramento, CA, USA).

Double-stranded cDNAs were synthesized from 1 μg of total RNA through reverse transcription with an oligo-dT primer containing the T7 RNA polymerase promoter and double-strand conversion using the cDNA Synthesis System (Invitrogen, Carlsbad, CA, USA). Biotin-labeled cRNA was generated from the cDNA and used to probe a Human Genome HT HG-U133A plate (Affymetrix, Sunnyvale, CA, USA), consisting of 96 single HG-U133 A arrays in a 96-well plate. All cDNA and cRNA target preparation steps were processed on a Caliper GeneChip Array Station from

Affymetrix. Array hybridization, washing, and scanning were performed according to the manufacturer's recommendations.

Gene signature development and scoring

CEL files from the Affymetrix Array Station were processed and normalized using the Robust Multi-Array Average (RMA) algorithm (Gautier I, et.al.,

Bioinformatics 2004;20:307-15) using the "Affy" package in R (version 3.2.1; 16) and Bioconductor (Gentleman RC, et.al. Genome Biol. 2004, 5 (10):R80) with custom CDF files from BrainArray (version 18.0.0; Dai M, et.al., Nucleic Acids Res 2005;33 :el75). Differential gene expression analysis was run to compare gene expression levels in prednisolone-treated versus control samples, using a moderated t-test (Ritchie ME, et.al., Nucleic Acids Res 2015;43 :e47) in Array Studio (OmicSoft, Cary, NC, USA). P values were adjusted using the multiple test correction method which is also called false discovery rate (FDR, Benjamini Y, et.al., J. Royal Statistical Soc, Series B 1995;

57:289). Genes that were upregulated or downregulated by at least 2-fold with an adjusted P value of <0.05 across experiments were reported as the GC gene signatures.

To score an individual sample by the enrichment level of GC gene signatures, we adapted the single-sample gene set enrichment analysis (ssGSEA) algorithm

(Barbie DA, et.al., Nature 2009;462: 108- 12) to generate a composite score, which was implemented using the Gene Set Variation Analysis package in R (version 3.4.0, Hanzelmann S, et.al., BMC Bioinformatics 2013; 14:7). The algorithm was modified so that enrichment scores fell between -1 and 1, representing the lowest to the highest possible rankings of GC genes in the transcriptome.

Mammalian 2-hybrid analysis

Sequences encoding either full-length human peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGCla) or full-length human transcriptional

mediators/intermediary factor 2 (TIF2) were cloned in frame with the GAL4 DNA- binding domain in the vector pM (Clontech, Mountain View, C A, USA). Full-length human GR was cloned in frame with the VP 16 activation domain in the vector pVP16 (Clontech). Human SK-N-MC neuroblastoma cells (American Type Culture Collection, Manassas, VA, USA) were co-transfected with these plasmids and a GAL4-dependent luciferase reporter (pGF-luc; Promega, Madison, WI, USA). Transfectants were stimulated with either 200nM dexamethasone or different concentrations of

prednisolone, GR modulators BMS-791826, or BMS-776532. Luciferase activity was measured 48 hours post transfection.

Chromatin immunoprecipitation

For chromatin immunoprecipitations, A549 cells were cultured for 1 hour with either DMSO, 1 μΜ prednisolone, 1 μΜ GR modulators BMS-791826, or 2μΜ BMS- 776532 in RPMI with 10% charcoal-stripped fetal calf serum. Cells were fixed with formaldehyde and sent to Active Motif (Carlsbad, CA, USA) for analysis of GR and TIF2 recruitment to specific promoter sequences using quantitative polymerase chain reaction (qPCR).

Patient cohorts

Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) cross-sectional cohorts

Peripheral blood was obtained in 2014 and 2015 from 86 patients with SLE during routine visits at Northwell Health (Great Neck, NY, USA). The patients were on standard-of-care treatment for general SLE or lupus nephritis that included

hydroxychloroquine, mycophenolate mofetil, glucocorticouds, and/or belimumab. Patient characteristics were as follows: age, 45 ± 14 years (mean ± SD); female, 85%;

SLE Disease Activity Index 2000 score (SLEDAI-2K), 3.7 ± 3.2 (mean ± SD); history of lupus nephritis, 43%; duration of disease, 15 ± 13 years (mean ± SD).

For the RA cohort, blood was obtained in 2014 and 2015 from 84 patients during routine visits at either Brigham and Women's Hospital, Boston, MA or Northwell Health, Great Neck, New York. The patients were on standard-of-care treatment for RA that included methotrexate, hydroxychloroquine, tofacitinib, abatacept, anti-tumor necrosis factor biologies, tocilizumab, glucocorticoids, and/or non-steroidal anti-inflammatory agents. Patient characteristics were as follows: age, 57 ± 14 years (mean ± SD); female, 77%; 2010 American College of Rheumatology criteria for rheumatoid arthritis score, 7.8 ± 1.6 (mean± SD); duration of disease, 17 ± 10 years (mean ± SD). A PAXgene tube of blood was collected at each visit, as well as heparinized blood. Blood was shipped overnight and processed on arrival for fluorescence-activated cell-sorting analysis. PAXgene tubes of blood were also collected from age- and sex-matched normal healthy volunteers (Bristol-Myers Squibb, Princeton, NJ, USA). RNA was isolated from PAXgene tubes of blood and used to probe Affymetrix HG-U219 gene arrays using the protocols described above.

Abatacept SLE clinical cohort (NCTOOl 19678)

Baseline PAXgene collections and complete blood counts were obtained from 144 adults with SLE meeting the criteria of a British Isles Lupus Assessment Group (BILAG) score of A or B. The population at baseline consisted of 53% of patients with polyarthritis, 35% with discoid lupus, and 12% with serositis. Overall, 87% of patients were on prednisone, 50% were on hydroxychloroquine, and 41% were on immunosuppressives (methotrexate, azathioprine, or mycophenolate mofetil).

Prednisoline in Healthy Male cohort 1 (NCT03196557)

Male normal healthy volunteers were randomly assigned (6 participants/group) to receive daily doses of 5, 10, or 30mg prednisolone for 7 days. Two participants received placebo. PAXgene tubes were collected before dosing and at 2, 4, 8, 48, 144, and 216 hours post-dose.

Prednisoline in Healthy Male cohort 2 (NCT03198013)

Male normal healthy volunteers were randomly assigned to receive either a placebo of polyethylene glycol (PEG)-400 solution (4 participants); a single daily oral dose of GR modulator BMS-791826 (150 or 300 mg) as a PEG-400 solution (6 participants/dose); or a single daily dose of 10 mg prednisolone (4 participants) for 3 consecutive days. PAXgene tubes were collected before dosing and at 4 hours post-dose on day 1.

Peripheral blood phenotyping

Heparinized whole blood was stained with premixed cocktails of antibodies followed by lysis and fixation. Antibodies used for the SLE panel included CD3-eF450 (clone OKT3; eBioscience, San Diego, CA, USA), CD4-PE-Cy7 (clone OKT4;

BioLegend, San Diego, CA, USA), CD8-APC-H7 (clone SKI; BD Biosciences, San Jose, CA, USA), and CD19-BV421 (clone HIB19; BioLegend).

Antibodies used for the RA panel included CD19-BV421, CD3-Ax700 (clone OKT3; BioLegend), CD4-Percp-Cy5.5 (clone RPA-T4; eBioscience), and CD8-Bv785 (clone RPA-T8; BioLegend).