이 애플리케이션의 일부 콘텐츠는 현재 사용할 수 없습니다.
이 상황이 계속되면 다음 주소로 문의하십시오피드백 및 연락
1. (WO2019062878) HYBRID VEHICLE AND POWER SYSTEM THEREOF
Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084  

权利要求书

1   2   3   4   5   6   7   8   9   10  

附图

1   2A   2B   2C   3A   3B   4   5   6  

说明书

发明名称 : 混合动力汽车及其动力系统

[0001]
相关申请的交叉引用
[0002]
本申请基于申请号为201710910647.1,申请日为2017年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。

技术领域

[0003]
本公开涉及混合动力汽车技术领域,具体涉及一种混合动力汽车的动力系统和一种混合动力汽车。

背景技术

[0004]
在混合动力汽车中,电机发电输出的电压经逆变器整流给动力电池充电,此时逆变器的输出端电压不受控制,但是因为输出端与动力电池并联,动力电池相当于一个巨大的容性负载,能够稳定主电路上电压,这样对后级的DC-DC变换器影响就很小。而且,高压直接可以通过DC-DC变换器降压至低压如12V给整车低压电器供电。
[0005]
但动力电池一旦断开,电机发电输出的电压将是不可控的,故需对电机发电输出的电压进行稳压,才能给后续负载使用。由于逆变器端的电压波动很大,电机输出的反电动势的幅值和频率会随负载的变化(即发动机的转速变化)而变化。例如高转速时,反电动势很高,整流稳压输出的电压往往很高。如果采用制动整流方式,那么一旦动力电池断开,输出的电压将不可控制;如果采用不可控整流,损耗就会很大。
[0006]
发明内容
[0007]
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。
[0008]
为此,本公开的一个目的在于提出一种混合动力汽车的动力系统。该动力系统能够使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作。
[0009]
本公开的另一个目的在于提出一种混合动力汽车。
[0010]
为达到上述目的,本公开第一方面实施例提出了一种混合动力汽车的动力系统,包括:发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电机包括动力电机控制器,所述动力电机控制器包括第一调节器;动力电池,所述动力电池用于给所述动力电机供电;DC-DC变换器;与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机包括副电机控制器,所述副电机控制器包括逆变器和 第二调节器;稳压电路,所述稳压电路连接在所述副电机与所述DC-DC变换器之间,所述稳压电路对所述副电机发电时输出至所述DC-DC变换器的直流电进行稳压处理;其中,所述第二调节器用于当所述动力电池断开与所述DC-DC变换器的连接且所述副电机控制器有效时控制所述稳压电路进行稳压处理,所述第一调节器用于当所述动力电池断开与所述DC-DC变换器的连接且所述副电机控制器失效时控制所述稳压电路进行稳压处理。
[0011]
根据本公开实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,稳压电路对副电机发电时输出至DC-DC变换器的直流电进行稳压处理,并且第二调节器在动力电池断开与DC-DC变换器的连接且副电机控制器有效时控制稳压电路进行稳压处理,第一调节器在动力电池断开与DC-DC变换器的连接且副电机控制器失效时控制稳压电路进行稳压处理,从而不仅可维持整车低速电平衡及低速平顺性,提升整车性能,还能够在动力电池失效或者动力电池和副电机控制器均失效等情况下使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作,确保整车正常行驶。
[0012]
进一步地,本公开提出了一种混合动力汽车,其包括本公开上述的混合动力汽车的动力系统。
[0013]
根据本公开实施例提出的混合动力汽车,通过上述混合动力汽车的动力系统,不仅可维持整车低速电平衡及低速平顺性,提升整车性能,还能够在动力电池失效或者动力电池和副电机控制器均失效等情况下使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作,确保整车正常行驶。

附图说明

[0014]
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
[0015]
图1是根据本公开一个实施例的混合动力汽车的动力系统的结构框图;
[0016]
图2a是本公开一个实施例的混合动力汽车的动力系统的结构示意图;
[0017]
图2b是本公开另一个实施例的混合动力汽车的动力系统的结构示意图;
[0018]
图2c是本公开又一个实施例的混合动力汽车的动力系统的结构示意图;
[0019]
图3a是根据本公开一个实施例的稳压电路的结构框图;
[0020]
图3b是根据本公开另一个实施例的稳压电路的结构框图
[0021]
图4是根据本公开一个实施例的稳压控制的原理图;
[0022]
图5是根据本公开一个具体实施例的混合动力汽车的动力系统的结构框图;以及
[0023]
图6是根据本公开实施例的混合动力汽车的结构框图。

具体实施方式

[0024]
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
[0025]
下面参考附图描述根据本公开实施例提出的混合动力汽车的动力系统和混合动力汽车。
[0026]
图1是本公开一个实施例的混合动力汽车的动力系统的结构框图。如图1所示,该混合动力汽车的动力系统100包括:发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5和稳压电路6。
[0027]
结合图1-3所示,发动机1通过离合器7将动力输出到混合动力汽车的车轮8;动力电机2用于输出驱动力至混合动力汽车的车轮8。也就是说,本公开实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力,换言之,在本公开的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,发动机1和动力电机2中的任一个可单独输出动力至车轮8,或者,发动机1和动力电机2可同时输出动力至车轮8。
[0028]
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连,副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连。稳压电路6连接在副电机5与DC-DC变换器4之间,稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,以使稳定后的电压通过DC-DC变换器4给整车低压电器供电。换言之,副电机5发电时输出的电能通过稳压电路6后,输出稳定电压供给DC-DC变换器4。
[0029]
由此,动力电机2和副电机5可分别对应充当驱动电机和发电机,从而低速时副电机5可具有较高的发电功率和发电效率,从而满足低速行驶的用电需求,维持整车低速电平衡,维持低速平顺性,提升整车性能。且可通过稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,使DC-DC变换器4的输入电压保持稳定,从而保证DC-DC变换器正常工作。
[0030]
副电机5在发动机1的带动下进行发电时,可实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮8的同时带动副电机5发电,也可单独带动副电机5发电。
[0031]
其中,副电机5可为BSG电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电,还可给动力电机2和/或DC-DC变换器4供电。并且副电机5也可属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
[0032]
需要说明的是,稳压电路6可以设置在副电机5的输出线上,副电机5通过稳压电路6分别与动力电机2、动力电池3和DC-DC变换器4相连,如图2b、2c所示,此时,副电机5发电时可通过稳压电路6输出稳定电压,实现给动力电池3稳压充电、给动力电机2稳压供电、给DC-DC变换器4稳压供电,由此,无论动力电池3和DC-DC变换器4连接与否,均能保证DC-DC变换器4正常工作。稳压电路6也可以设置在DC-DC变换器4的进线上,且副电机5可分别与DC-DC变换器4、动力电池3连接,同时动力电池3可与DC-DC变换器4连接,如图1、图2a所示,由此,在动力电池3与DC-DC变换器4断开连接时,副电机5发电时输出至DC-DC变换器4的电压仍是稳定的,进而保证了DC-DC变换器4正常工作。
[0033]
副电机5可用于启动发动机1,即副电机5可实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中的启动机的功能。
[0034]
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮8。例如,如图2a、2b所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮81(包括左前轮和右前轮);又如,如图2c所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮81(包括左前轮和右前轮),动力电机2可驱动混合动力汽车的第二车轮例如一对后轮82(包括左后轮和右后轮)。
[0035]
当发动机1和动力电机2共同驱动一对前轮81时,动力系统的驱动力将均输出至一对前轮81,整车采用两驱的驱动方式;当发动机1驱动一对前轮81且动力电机2驱动一对后轮82时,动力系统的驱动力将分别输出至一对前轮81和一对后轮82,整车采用四驱的驱动方式。
[0036]
在两驱的驱动方式下,结合图2a、图2b所示,混合动力汽车的动力系统100,还包括主减速器9和第一变速器91,其中,发动机1通过离合器7、第一变速器91、主减速器9将动力输出到混合动力汽车的第一车轮例如一对前轮81,动力电机2通过主减速器9输出驱动力至混合动力汽车的第一车轮例如一对前轮81。
[0037]
在四驱的驱动方式下,结合图2c所示,混合动力汽车的动力系统100,还包括第一变速器91和第二变速器92,其中,发动机1通过离合器7和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮81,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮82。
[0038]
其中,离合器7与第一变速器91可集成设置。
[0039]
在本公开的实施例中,由于副电机5的发电电压是提供至动力电池3的两端,因此在动力电池3与DC-DC变换器4连接时,输入至DC-DC变换器4的电压是稳定的。当动力电池3失效或损坏而与DC-DC变换器4断开连接时,此时需要对副电机5发电时输出的电能进行控制,即可通过稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳 压处理。
[0040]
在本公开的一些实施例中,如图1所示,动力电机2包括动力电机控制器21,动力电机控制器21包括第一调节器211;副电机5包括副电机控制器51,副电机控制器51包括逆变器511和第二调节器512。
[0041]
其中,第二调节器512用于当动力电池3断开与DC-DC变换器4的连接且副电机控制器51有效时,控制稳压电路6进行稳压处理,第一调节器211用于当动力电池3断开与DC-DC变换器4的连接且副电机控制器51失效时控制稳压电路6进行稳压处理。
[0042]
需要说明的是,副电机控制器51失效可以指副电机控制器51无法进行稳压处理,反之,副电机控制器51有效可以指副电机控制器51能够进行稳压处理。
[0043]
也就是说,当动力电池3断开时,整车仍然需要正常行驶时,副电机控制器51进行稳压,如果副电机控制器51失效时,则动力电机控制器就负责进行稳压,从而,当动力电池3和副电机控制器51同时失效时,整车依然可以正常行驶,并且还可避免消耗掉蓄电池的电量。
[0044]
分别在混联模式和串联模式下,说明本公开实施例的稳压处理流程。
[0045]
整车正常行驶时,当混合动力汽车工作于混联模式时,如果动力电池3的电池管理系统BMS的主接触器断开,则说明动力电池3断开,进一步判断副电机控制器51是否失效。如果副电机控制器51失效,则副电机控制器51停止稳压处理,动力电机控制器21进行稳压处理;如果副电机控制器51失效,则动力电机控制器21停止稳压处理,副电机控制器51进行稳压处理。
[0046]
整车正常行驶时,当混合动力汽车工作于串联模式时,如果动力电池3的电池管理系统BMS的主接触器断开,则说明动力电池3断开,进一步判断副电机控制器51是否失效。如果副电机控制器51失效,则副电机控制器51停止稳压处理,动力电机控制器21进行稳压处理;如果副电机控制器51失效,则动力电机控制器21停止稳压处理,副电机控制器51进行稳压处理。
[0047]
另外,在本公开的一些实施例中,可通过混合动力汽车的整车控制器判断动力电池3是否断开以及副电机控制器51是否失效,例如,整车控制器可通过CAN总线与动力电池3进行通信以判断动力电池3是否断开,整车控制器可通过CAN总线与副电机控制器51进行通信以判断副电机控制器51是否失效,并在动力电池3断开且副电机控制器51有效时向副电机控制器51发送稳压处理指令,整车控制器可通过CAN总线与动力电机控制器21进行通信以在动力电池3断开且副电机控制器51失效时向动力电机控制器21发送稳压处理指令。或者,在一些其他实施例中,也可通过动力电池3、副电机控制器51和动力电机控制器21之间的通信判断动力电池3是否断开以及副电机控制器51是否失效,副电机控制器51可通过与动力电池3进行通信以判断动力电池3是否断开,在动力电池3断开且副电机控制器51自身有效时进行稳压处理,副电机控制器51还可在自身失效时向动力电机控 制器21发送稳压处理指令。
[0048]
根据本公开的一个实施例,第一调节器211和第二调节器512均用于根据稳压电路6的输出信号输出第一调节信号和第二调节信号,以使逆变器511输出的直流母线电压保持稳定,其中,第一调节信号用于对副电机5的d轴电流进行调节,第二调节信号用于对副电机5的q轴电流进行调节。
[0049]
也就是说,当第一调节器211控制稳压电路6进行稳压处理时,第一调节器211根据稳压电路6的输出信号输出第一调节信号和第二调节信号;当第二调节器512控制稳压电路6进行稳压处理时,第二调节器512根据稳压电路6的输出信号输出第一调节信号和第二调节信号。
[0050]
在一些实施例中,如图3a和图3b所示,稳压电路6包括第一电压采样器61和目标电压采集器62。第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至第一调节器211或第二调节器512,目标电压采集器62获取目标参考电压,并将目标参考电压发送至第一调节器211或第二调节器512。第一调节器211和第二调节器512均用于根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号。其中,稳压电路6的输出信号包括第一电压采样值和目标参考电压。
[0051]
副电机控制器51通过稳压电路6与DC-DC变换器4相连,副电机控制器51通过逆变器511输出直流母线电压。
[0052]
当第二调节器512控制稳压电路6进行稳压处理时,如图3a所示,第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至第二调节器512。目标电压采集器62获取目标参考电压,并将目标参考电压发送至第二调节器512,第二调节器512根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号,通过第一调节信号对副电机5的d轴电流进行调节,通过第二调节信号对副电机5的q轴电流进行调节,以便副电机控制器51在动力电池3断开与DC-DC变换器4连接时根据副电机5的d轴电流和q轴电流对逆变器511进行控制,使逆变器511输出的直流母线电压保持稳定。
[0053]
当第一调节器211控制稳压电路6进行稳压处理时,如图3b所示,第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至第一调节器211。目标电压采集器62获取目标参考电压,并将目标参考电压发送至第一调节器211,第一调节器211根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号,通过第一调节信号对副电机5的d轴电流进行调节,通过第二调节信号对副电机5的q轴电流进行调节,以便动力电机控制器21在动力电池3断开与DC-DC变换器4连接且副电机控制器51失效时根据副电机5的d轴电流和q轴电流对逆变器511进行控制,使逆变器511输出的直流母线电压保持稳定。
[0054]
在一些示例中,可以采用PWM(Pulse Width Modulation,脉宽调制技术)对逆变器511进行控制,以使逆变器511输出的直流母线电压保持稳定。如图4所示,第一调节器211和第二调节器512均可包括误差计算单元a、第一PID调节单元b和第二PID调节单元c。也就是说,第一调节器211和第二调节器512所采用的结构、控制原理可均相同。
[0055]
其中,误差计算单元a分别与第一电压采样器61和目标电压采集器62相连,误差计算单元a用以获取目标参考电压与第一电压采样值之间的电压差值。第一PID调节单元b与误差计算单元a相连,第一PID调节单元b对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第一调节信号。第二PID调节单元c与误差计算单元a相连,第二PID调节单元c对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第二调节信号。
[0056]
如图4所示,第一电压采样器61实时对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至误差计算器a,目标电压采集器62获取目标参考电压,并将目标参考电压输出至误差计算单元a。误差计算单元a获取目标参考电压与第一电压采样值之间的电压差值,并将该差值分别输入至第一PID调节单元b和第二PID调节单元c,通过第一PID调节单元b输出第一调节信号(即图4中的Id *)和通过第二PID调节单元c输出第二调节信号(即图4中的Iq *)。此时,副电机5输出的三相电流经3S/2R变换后变为dq坐标系下的d轴电流Id和q轴电流Iq,分别获取Id *和Id、Iq *和Iq之间差值,并分别通过相应的PID调节器对差值进行控制以得到副电机5的α轴电压Uα和副电机5的β轴电压Uβ;将Uα和Uβ输入给SVPWM模块,输出三相占空比,通过该占空比对逆变器511进行控制,通过逆变器511调整副电机5输出的d轴电流Id和q轴电流Iq,进而通过第一控制信号再次对调整后的副电机的d轴电流进行调节,通过第二调节信号再次对副电机的q轴电流进行调节。由此,形成对副电机d轴电流和q轴电流的闭环控制,通过该闭环控制能够使逆变器511输出的直流母线电压保持稳定,即副电机5发电时输出至DC-DC变换器4的直流电压保持稳定。
[0057]
需要说明的是,副电机控制器51中逆变器511输出的直流电压和副电机5输出的反电动势有一定的相关性,为保证控制效率,可以将逆变器511输出的电压设为3/2的相电压(即驱动状态时最大相电压为直流母线电压的2/3)。由此,逆变器511输出的直流电压与副电机5转速呈一定的关系,当副电机5转速越高,逆变器511输出的直流电压越高,副电机5转速越低,逆变器511输出的直流电压越低。
[0058]
为了保证输入DC-DC变换器4的直流电压在预设电压区间,在本公开的一些实施例中,如图3a和图3b所示,稳压电路6还可以包括稳压器63、第二电压采样器64和稳压控制器65。
[0059]
其中,稳压器63连接到逆变器511的直流输出端,稳压器63对逆变器511输出的直流母线电压进行稳压处理,稳压器63的输出端连接DC-DC变换器4的输入端。第二电压采 样器64对稳压器63的输出电压进行采样以获得第二电压采样值。稳压控制器65分别与稳压器63和第二电压采样器64相连,稳压控制器65用于根据预设参考电压和第二电压采样值对稳压器63的输出电压进行控制以使稳压器63的输出电压处于预设电压区间。
[0060]
在一些示例中,稳压器63可以采用开关型稳压电路,如BOOST升压电路,其不仅能够升压,且控制精度高。其中,BOOST升压电路中开关器件可以采用碳化硅MOSFET,如英飞凌的IMW120R45M1,可耐压1200V,内阻为45mΩ,具有耐压高,内阻小,导热性能良好的特点,比同样规格的高速IGBT损耗要小好几十倍。稳压器63的驱动芯片可以采用英飞凌的1EDI60N12AF,其采用无磁芯变压隔离,控制安全可靠。可以理解,该驱动芯片可产生驱动信号。
[0061]
在另一些示例中,稳压器63可以采用升降压型的BUCK-BOOST电路,其能够在高速时降压,低速时升压,且控制精度高。
[0062]
在又一些示例中,稳压器63还可以采用线性稳压电路或者三端稳压电路(如LM317和7805等)。
[0063]
可以理解,为便于电路设计,第一电压采样器61和第二电压采样器64的电路结构可以是相同的。例如,第一电压采样器61和第二电压采样器64均可以包括差分电压电路,其具有精度高,且方便调整放大倍数的特点。
[0064]
在一些示例中,稳压控制器65可以采用PWM专用调制芯片SG3525,其具有体积小,控制简单,能够输出稳定的PWM波的特点。
[0065]
举例而言,上述混合动力汽车的动力系统100的工作流程为:第二电压采样器64对稳压器63的输出电压进行采样以获得第二电压采样值,并将第二电压采样值输出至芯片SG3525,芯片SG3525可以设置参考电压,并对参考电压和第二电压采样值进行比较,再结合芯片SG3525产生的三角波可以生成两路的PWM波,通过两路PWM波对稳压器63进行控制以使稳压器63输出至DC-DC变换器4的电压处于预设电压区间,如11-13V,由此,能够保证混合动力汽车中低压负载的正常工作。
[0066]
需要说明的是,如果输出的直流母线电压过低,第二电压采样值就很小,则SG3525可发出占空比较大的PWM波,来进行升压。
[0067]
由此,副电机5和DC-DC变换器4有一路单独稳压供电通道,当动力电池3发生故障,断开与DC-DC变换器4的连接或者副电机控制器52失效时,可通过副电机5和DC-DC变换器4的单独稳压供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0068]
在本公开的一个具体实施例中,如图5所示,动力电池3损坏,断开与DC-DC变换器4的连接时,稳压电路6连接在DC-DC变换器4的进线端。
[0069]
其中,动力电机2还包括动力电机控制器21,副电机控制器51与动力电机控制器21相连,并通过稳压电路6与DC-DC变换器4相连。副电机5发电时产生电能通过逆变器511 变换后,可变换为高压直流电例如600V高压直流电,以实现给动力电机2、DC-DC变换器4中的至少一个供电。
[0070]
可以理解,动力电机控制器21还可具有DC-AC变换单元,DC-AC变换单元可将逆变器511输出的高压直流电变换为交流电,以给动力电机4充电。
[0071]
如图5所示,副电机控制器51的逆变器511具有第一直流端DC1,动力电机控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3。副电机控制器51的第一直流端DC1通过稳压电路6与DC-DC变换器4的第三直流端DC3相连,以给DC-DC变换器4提供稳定电压,且DC-DC变换器4可对稳压后的直流电进行DC-DC变换。并且,副电机控制器51的逆变器511还可通过第一直流端DC1输出高压直流电至动力电机控制器21以给动力电机2供电。
[0072]
如图5所示,DC-DC变换器4还分别与混合动力汽车中的电器设备10和低压蓄电池20相连以给电器设备10和低压蓄电池20供电,且低压蓄电池20还与电器设备10相连。
[0073]
如图5所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将副电机5通过副电机控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。DC-DC变换器4的第四直流端DC4与电器设备10相连,以为电器设备10供电,其中,电器设备10可为低压用电设备,其包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以为低压蓄电池20充电。低压蓄电池20与电器设备10相连,以给电器设备10供电,特别地,在副电机5停止发电时,低压蓄电池20可为电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0074]
需要说明的是,在本公开实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,预设电压区间可指11~13V或23~25V,但不限于此。
[0075]
综上,根据本公开实施例的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,稳压电路对副电机发电时输出至DC-DC变换器的直流电进行稳压处理,并且第二调节器在动力电池断开与DC-DC变换器的连接且副电机控制器有效时控制稳压电路进行稳压处理,第一调节器在动力电池断开与DC-DC变换器的连接且副电机控制器失效时控制稳压电路进行稳压处理,从而不仅可维持整车低速电平衡及低速平顺性,提升整车性能,还能够在动力电池失效或者动力电池和副电机控制器均失效等情况下使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作,确保整车正常行驶。
[0076]
进一步地,本公开还提出了一种混合动力汽车。
[0077]
图6是根据本公开实施例的混合动力汽车的结构框图。如图6所示,混合动力汽车200包括上述的混合动力汽车的动力系统100。
[0078]
根据本公开实施例提出的混合动力汽车,通过上述混合动力汽车的动力系统,不仅可 维持整车低速电平衡及低速平顺性,提升整车性能,还能够在动力电池失效或者动力电池和副电机控制器均失效等情况下使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作,确保整车正常行驶。
[0079]
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
[0080]
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
[0081]
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
[0082]
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
[0083]
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0084]
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。。

权利要求书

[权利要求 1]
一种混合动力汽车的动力系统,其特征在于,包括: 发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮; 动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电机包括动力电机控制器,所述动力电机控制器包括第一调节器; 动力电池,所述动力电池用于给所述动力电机供电; DC-DC变换器; 与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机包括副电机控制器,所述副电机控制器包括逆变器和第二调节器; 稳压电路,所述稳压电路连接在所述副电机与所述DC-DC变换器之间,所述稳压电路对所述副电机发电时输出至所述DC-DC变换器的直流电进行稳压处理; 其中,所述第二调节器用于当所述动力电池断开与所述DC-DC变换器的连接且所述副电机控制器有效时控制所述稳压电路进行稳压处理,所述第一调节器用于当所述动力电池断开与所述DC-DC变换器的连接且所述副电机控制器失效时控制所述稳压电路进行稳压处理。
[权利要求 2]
如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述第一调节器和所述第二调节器,均用于根据所述稳压电路的输出信号输出第一调节信号和第二调节信号,以使所述逆变器输出的直流母线电压保持稳定,其中,所述第一调节信号用于对所述副电机的d轴电流进行调节,所述第二调节信号用于对所述副电机的q轴电流进行调节。
[权利要求 3]
如权利要求2所述的混合动力汽车的动力系统,其特征在于,所述稳压电路包括第一电压采样器和目标电压采集器,所述第一电压采样器对所述逆变器输出的直流母线电压进行采样以获得第一电压采样值,并将所述第一电压采样值输出至所述第一调节器或所述第二调节器,所述目标电压采集器获取目标参考电压,并将所述目标参考电压发送至所述第一调节器或所述第二调节; 所述第一调节器和所述第二调节器均用于根据所述目标参考电压与所述第一电压采样值之间的电压差值输出第一调节信号和第二调节信号; 其中,所述稳压电路的输出信号包括第一电压采样值和目标参考电压。
[权利要求 4]
如权利要求3所述的混合动力汽车的动力系统,其特征在于,所述稳压电路还包括: 稳压器,所述稳压器连接到所述逆变器的直流输出端,所述稳压器对所述逆变器输出的直流母线电压进行稳压处理,所述稳压器的输出端连接所述DC-DC变换器的输入端; 第二电压采样器,所述第二电压采样器对所述稳压器的输出电压进行采样以获得第二电压采样值; 稳压控制器,所述稳压控制器分别与所述稳压器和所述第二电压采样器相连,所述稳压控制器用于根据预设参考电压和所述第二电压采样值对所述稳压器的输出电压进行控制以使所述稳压器的输出电压处于预设电压区间。
[权利要求 5]
如权利要求3或4所述的混合动力汽车的动力系统,其特征在于,所述第一调节器和所述第二调节器均包括: 误差计算单元,所述误差计算单元分别与所述第一电压采样器和所述目标电压采集器相连,所述误差计算单元用以获取所述目标参考电压与所述第一电压采样值之间的电压差值; 第一PID调节单元,所述第一PID调节单元与所述误差计算单元相连,所述第一PID调节单元对所述目标参考电压与所述第一电压采样值之间的电压差值进行调节以输出第一调节信号; 第二PID调节单元,所述第二PID调节单元与所述误差计算单元相连,所述第二PID调节单元对所述目标参考电压与所述第一电压采样值之间的电压差值进行调节以输出第二调节信号。
[权利要求 6]
如权利要求1至5中任意一项所述的混合动力汽车的动力系统,其特征在于,所述副电机为BSG电机。
[权利要求 7]
如权利要求1至6中任意一项所述的混合动力汽车的动力系统,其特征在于,所述副电机在所述发动机的带动下进行发电时,实现给所述动力电池充电、给所述动力电机供电、给所述DC-DC变换器供电中的至少一个。
[权利要求 8]
如权利要求1至7中任意一项所述的混合动力汽车的动力系统,其特征在于,所述稳压电路设置在所述副电机的输出线上,其中,所述副电机通过所述稳压电路分别与所述动力电机、所述动力电池和所述DC-DC变换器相连。
[权利要求 9]
如权利要求1至7中任意一项所述的混合动力汽车的动力系统,其特征在于,所述稳压电路设置在所述DC-DC变换器的进线上,且所述副电机分别与所述DC-DC变换器、所述动力电池连接。
[权利要求 10]
一种混合动力汽车,其特征在于,包括如权利要求1-9中任一项所述的混合动力汽车的动力系统。

附图

[ 图 1]  
[ 图 2A]  
[ 图 2B]  
[ 图 2C]  
[ 图 3A]  
[ 图 3B]  
[ 图 4]  
[ 图 5]  
[ 图 6]