이 애플리케이션의 일부 콘텐츠는 현재 사용할 수 없습니다.
이 상황이 계속되면 다음 주소로 문의하십시오피드백 및 연락
1. (WO2019030393) PHOTOSENSITIVE MICROCAPSULES
유의사항: 이 문서는 자동 광학문자판독장치(OCR)로 처리된 텍스트입니다. 법률상의 용도로 사용하고자 하는 경우 PDF 버전을 사용하십시오

PHOTOSENSITIVE MICROCAPSULES

The research leading to these results has received co-funding from the People Programme (Marie Curie Actions) of the Seventh Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement no. 600388 (TECNIOspring programme), and from the Agency for Business Competitiveness of the Government of Catalonia, ACCI0.

FIELD OF THE INVENTION

The present invention is generally related to microcapsules, more particularly photosensitive microcapsules, compositions comprising such microcapsules, and processes for making and using such microcapsules.

BACKGROUND OF THE INVENTION

Consumer products such as personal care compositions, cleaning compositions and fabric care compositions often include benefit agents. Benefit agents such as perfum.es may delight the user by providing a freshness feeling and may serve as a signal to the user that the product may still be working or that the product is still present. However, benefit agents are expensive and may be less effective when employed at high levels in such compositions.

Microcapsules have been used to encapsulate benefit agents in consumer products in order to improve the delivery efficiency of benefit agents. However, current microcapsules release their contents only under certain external stimul i, such as pressure, temperature, or pH, which are not appropriate or advantageous for all appl ications. For instance, many microcapsules need to be mechanically broken at the desired t ime to release the benefit agent contained within. In consumer product appl ications where limited mechanical forces are available (e.g. drapery or upholstery refreshing, shampoos, conditioners, hair sprays, styl ing gels, hard surface t eatment appl ications, floor cleaners, and dust removing products) the benefit agent may not be released when desired.

As such, there is a need for a microcapsule that can release a benefit agent under less restrictive external stimul i conditions, particularly upon exposure to electromagnetic radiation, preferably visible light.

SUMMARY OF THE INVENTION

A photosensitive microcapsule comprising (a) a core material comprising a benefit agent; and (b) a shell comprising a photosensitive polymer; wherein the photosensitive polymer comprises a photosensitive moiety comprising a structure selected from the group consisting of


and combinations thereof; wherein R5 is selected from alkyl, substituted alkyl, alkoxy, substituted alko.xy, carboxy, carboxyl, substituted carboxyl, aryl, substituted aryl, or is a carbon atom of a polymer backbone; wherein R6 and R9 comprise a 1,3 dione moiety.

A photosensitive polymer comprising the following structure


wherein m + g > 0 and (n+k)/(m+g) > 1; wherein R 1 is selected from H, al kyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, carboxy, carboxyl, substituted carboxyl, or nit rile; wherein D = N or O; wherein for D = N : L is a l inker group containing at least one carbon atom and Qi is a photosensitive moiety comprising a substituted amine and a 1,3 dione moiety; wherein J = OH, OR12, NH.\ NHR12, or NR12R13; wherein R12 and R13 arc independently selected from alkyl, substituted alkyl, alkoxy, aryl, or L-Oj ; wherein the photosensitive polymer comprises at least 7 wt% of the photosensitive moiety.

A method of releasing a core material from a photosensitive microcapsule comprising: exposing the photosensitive microcapsule to an electromagnetic radiation field selected from the group consisting of infrared radiation, v isible l ight, ultrav iolet radiation and mixtures thereof; wherein the photosensitive microcapsule comprises the core material and a shell; wherein the core material comprises a benefit agent and the shell comprises a photosensitive polymer; wherein the photosensitive polymer comprises a photosensitive moiety comprising the following structure


wherein R is selected from alkyl, substituted aikyi, alko.xy, substituted alkoxy, carboxy, carboxyl, substituted carboxyl, aryl, substituted aryl, or can be a carbon atom of the photosensitive polymer backbone; wherein R6 is a 1 ,3 dione moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. I illustrates the photoisomerization behav ior of an ex em p I ary pho tosen s i t i vc polymer comprising a photosensitive moiety upon exposure to visible light;

FIG. 2 shows the ultraviolet-visible absorption spectra of a photosensitive polymer comprising 89 wt% polystyrene and 1 1 wt% photosensitive moiety after irradiation with visible light and a control left in the dark for 0, 30, and 60 minutes;

FIG. 3 shows the ultraviolet-visible absorption spectra of a photosensitive polymer com rising 75 wt% polystyrene and 25 wt% photosensitive moiety after irradiation with visible l ight and a control left in the dark for 0, 30, and 60 minutes;

FIG. 4 shows the ultraviolet-visible absorption spectra of a photosensitiv e polymer comprising 50 wt% polystyrene and 50 wt% photosensitive moiety after irradiation with visible light and a control left in the dark for 0, 30, and 60 minutes; and

FIG. 5 is a micrograph showing a photosensitive microcapsule comprising a shell comprising a photosensitive polymer comprising 89 wt% polystyrene and 1 1 wt% photosensitive moiety.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the articles "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described.

As used herein, "alkyl" refers to straight chained and branched saturated hydrocarbon groups containing 1 -30 carbon atoms (i.e., C 1-C30), for example, 1-20 carbon atoms (i.e.. C 1 -C20) or 1-10 carbon atoms (i.e., C I -C 1 0). In various embodiments, the alkyl groups of Rl , R3-R5 and R7-R8 can be independently selected from C1-C4 alkyls, i.e.. alkyl groups having a

number of carbon atoms encompassing the entire range (i.e., 1 to about 4 carbon atoms), as wel l as al l subgroups (e.g., 1-2, 1-3, 1 -4, 2-3, 2-4, 3-4, 1 , 2, 3, and 4 carbon atoms ). Non-l imiting examples of alky! groups include allyl, methyl, ethyl, n-propyl, i sop ropy I, n-buty , sec-butyl (2-methy I propyl ), t-buty (1 , 1 dimethylcthyi ) and propargyl. Unless otherwise indicated, an a Iky I group can be an unsubstituted alkyl group or a substituted alkyl group. A I ky I groups optional ly can be substituted, for example, with one or more of amino, hydroxy (OH ), alkoxy, carboxy, carboxyl, cycloalkyl, heterocycloalkyl, halo, or nit rile.

As used herein, "aryl" refers to any aromatic carbocyclic or heterocyclic group containing unsaturated C-C bonds in conjugation with one another. Examples of "aryl" substituents include. but arc not limited to phenyl, napthyl, anthranyl or any aromatic heterocyclic group such as pyridine, pyrazine, indole, purine, furan, thiofuran, pyrrole and the like.

A "substituted" alkyl or aryl refers to an alkyl or aryl having at least one hydrogen radical that is substituted with a non-hydrogen radical ( i.e., a substituent ). Examples of non-hydrogen radicals (or substituents) include, but are not l imited to, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, ether, aryl, hcteroaryl, heterocycloalkyl, hydroxy!, oxy, alkoxyl, ester, thioester. acyl, carboxyl, cyano. nitro, amino, amido, or sulfur. When a substituted alkyl group includes more than one non-hydrogen radical, the substituents can be bound to the same carbon or two or more different carbon atoms.

As used herein, the term "alkoxy" refers to alkyl-0— , wherein alkyl is defined herein above. An alkoxy group may be branched or un branched. C 1-C6 alkoxy represents, for example: methoxy, ethoxy, propoxy, butoxy, isopropoxy, isobutoxy or tertiary butoxy. Alkoxy includes C3-C6 cycloalkyloxy and C3-C6 cycloalkyl— C 1-C6 alkyloxy.

As used herein, "consumer product composition" refers to compositions for treating hair (human, dog, and/or cat ), including bleaching, coloring, dyeing, conditioning, growing, removing, retarding growth, shampooing, and styling; deodorants and antiperspirants; personal cleansing; color cosmetics; products relating to treating skin (human, dog, and/or cat), including creams, lotions, ointments, and other topically appl ied products for consumer use; products relating to orally administered materials for enhancing the appearance of hair, skin, and/or nails (human, dog, and/or cat ); shav ing; body sprays; fine fragrances such as colognes and perfumes; compositions for treating fabrics, hard surfaces and any other surfaces in the area of fabric and home care, including air care, car care, dishw ashing, fabric conditioning ( including softening), fabric freshening, laundry detergents, laundry and rinse additive and/or care, hard surface cleaning and/or treatment, and other cleaning for consumer or institutional use; products relating to disposable absorbent and/or non-absorbent articles including adult incontinence garments, bibs, diapers.

training pants, infant and toddler care wipes; hand soaps; products relating to oral care including toothpastes, tooth gels, mouth rinses, denture adhesives, and tooth whitening; personal health care medications; wet or dry bath tissue; facial tissue; disposable handkerchiefs; disposable towels and/or wipes; incontinence pads; parity liners; sanitary napkins; tampons and tampon applicators; and combinations thereof.

As used herein, "DASA moiety" refers to a monomer having a donor group comprising a substituted amine and an acceptor group com rising a 1 ,3 dione moiety.

As used herein, and as understood by one of ordinary skill in the art, a wavy l ine " present in certain chemical structures and drawn perpendicular across a bond, e.g.


indicates a point of attachment of a chemical group to other parts of an overall molecular or polymeric structure, including to a polymer backbone.

As used herein, "room temperature" refers to a temperature of 23 degrees Celsius (°C). All percentages and ratios are calculated by weight unless otherwise indicated. Al l percentages and ratios are calculated based on the total composition unless otherwise indicated.

Unless otherwise noted, al l component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercial ly available sources of such components or compositions.

Al l weights, measurements and concentrations herein are measured at 23°C and 50% relative humidity, unless otherwise specified.

Current microcapsules containing benefit agents may not function as desired as such microcapsules may only respond to ineffective and/or un desired, external stimuli such as pressure.

An alternative approach to pressure-released microcapsules can include photosensitive microcapsules that respond to electromagnetic radiation. A microcapsule having a shel l that comprises one or more photosensitive moieties can undergo photoisomerization. in response to electromagnetic radiation, permitting the microcapsule to release an encapsulated benefit agent.

However, most current photosensitive microcapsules require relatively high energy ultraviolet

(UV) light to trigger the photochemical reaction, which can limit their use.

The present invention relates to an improved photosensitive microcapsule comprising a shell having one or more photosensitive moieties which can reversibly switch between two

conformational states upon appl ication of electromagnetic radiation, including v isible l ight, allowing for the release of an encapsulated benefit agent under consumer-relevant conditions. Particularly preferred photosensitiv e moieties comprise Donor- Acceptor Stcnhouse Adduct ( DASA ) moieties.

In one aspect, the present inv ention relates to a photosensitive microcapsule comprising a core material comprising a benefit agent and a shel l comprising a photosensitiv e polymer. The photosensitive polymer comprises one or more photosensitive moieties that are sensitive to a species of electromagnetic radiation selected from the group consisting of infrared radiation, visible l ight, UV radiation, and combinations thereof. Upon irradiation, the linear triene extended form of the photosensitive moiety can cyclize to a spatially compact zwitterionic form. The extended form of the photosensitiv e moiety is hydrophobic and colored while the compact form is hydrophil ic and colorless. Without wishing to be bound by theory, it is thought that the absorption of electromagnetic radiation by the photosensitive moiety can cause the photoisomerization of the photosensitive moiety, resulting in a change in morphology of the shell and a corresponding release of the encapsulated core material.

FIG. 1 illustrates the photoisomerization of an exemplary photosensitive polymer comprising a photosensitive moiety before and after irradiation with visible light.

The photosensitive polymer can comprise a photosensitiv e moiety. The photosensitive moiety can comprise a donor group comprising a substituted amine and an acceptor group comprising a 1 ,3 dione moiety. Before irradiation, the photosensitive moiety can comprise a substituted amine covalently bound to a first end of a C4 moiety and an oxygen and a 1 ,3 dione moiety cov alently bound to a second end of the C4 moiety. After photoisomerization, the photosensitive moiety can exist as a substituted cyclopent-2-enc- 1 one cov alently bound to a substituted amine. The photosensitive moiety can be a DASA moiety.

The photosensitive moiety need not comprise a substituted or unsubstituted azobenzenc group, a quinine met hide group, a nitrobenzyl group, an o-nitrobenzyl group, or a halomethyl-1 ,3,5-triazine group.

The present invention further relates to a method of releasing a core material from a photosensitiv e microcapsule comprising exposing the photosensitiv e microcapsule to an electromagnetic radiation field.

The photosensitiv e polymer can comprise the structure of Formula la


(la) wherein m + g > 0 and (n+k)/(m+g) > 1;

wherein Ri is selected from H, alkyl, substituted alkyl, aiko.xy, substituted alkoxy, aryl, substituted aryl, earboxy, carboxyl, substituted carboxyl. or nitrile;

wherein D = N or O;

wherein for D = N: L is a linker group containing at least one carbon atom and Qi is a photosensitive moiety;

wherein J = OH, OR12, NH2, NHR12, or NR Ris;

wherein R12 and Ro are independently selected from alkyl, substituted alkyl, alkoxy, aryl, or L-

In one aspect, Ri is an aryl group, as in the case of styrene.

When D = N, the N can be covalently bound to linker group L. Linker group L can be a substituted alkanediyl.

Linker group L can comprise Formula II:


(II) wherein v is an integer from 1-20; and

wherein R3 and Rt can be independently selected from H, alkyl, substituted alkyl, allyl, substituted allyl, alkenyi, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, substituted phenyl, aryl, substituted aryl, heteroaryl, substituted heteroary , halo, hydroxy!, alkoxy, substituted alkoxy, alloxy, alkylthio, substituted alkylthio, phenylthio, substituted phcnylthio, arylthio, substituted arylthio, carbonyl, substituted carbony , carboxyl, substituted carboxyl.

amino, substituted amino, amido. substituted am ido. sulfonyl, substituted sulfonyl, C 1-C20 cyc l ic, substituted C 1-C20 cycl ic, heterocyclic, and substituted heterocyclic groups.

Representative structures for R \ and R4 are described hereafter.

A lternatively, the photosensitive polymer can comprise the structure of Formula lb


(lb)

wherein m + g > 0 and n > 0;

wherein Ri is selected from I I, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl , carboxy, carboxyl, substituted carboxyl , or nitri le;

wherein R2 is selected from H or CH .;

wherein D = N or O;

wherein for D = N: L is a l inker group containing at least one carbon atom and Qi is a photosensitive moiety;

wherein J = OH, OR12, NH2, NHR12, or NR Ris;

wherein R12 and R13 arc independently selected from alkyl, substituted alkyl , al koxy, aryl, or L-

Alternatively, the photosensitive polymer can comprise the structure of Formula Ic


w herein b is a repeating monomer unit;

wherein Z = Qi or CH2;

wherein A = Ri or A = Qi when Z = CH2;

wherein Qi is a photosensitive moiety;

wherein Ri is selected from H. alkyl, substituted alkyl, alkoxy. substituted alkoxy. aryl.

substituted aryl, carboxy, carboxyi, substituted carboxyi, nitrile, siloxy alkyl, or silo alkyl .

When Z = Qi the substituted amine can be part o the photosensitive polymer backbone.

The photosensitive polymer can comprise the structure of Formula Id


wherein m > 0 and n > 0;

wherein R i is selected from H, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, carboxy, carboxyi, substituted carboxyi, or nitrile;

wherein Qi is a photosensitive moiety.

Before irradiation, photosensitive moiety Qi can comprise Formula I l ia:


wherein R5 can be an alkyl , substituted alkyl, alkoxy, substituted alkoxy, carboxy, carboxyi, substituted carboxyi, aryl, substituted aryl, or can be a carbon atom of the photosensitive polymer backbone;

wherein R6 can be a 1 ,3 dione moiety.

Representative structures for R5 are described hereafter.

R(, can be selected from the group consisting of

wherein R? and Rg are independently selected from the group consisting of H. alkyl, substituted alkyl. aryl, or substituted aryl .

After photoisomerization, photosensitive moiety Qi can comprise Formula 11 lb:


wherein Rs can be an alkyl, substituted alkyl, alkoxy, substituted alkoxy, carboxy, carboxyl, substituted carboxyl, aryl, substituted aryl, or can be a carbon atom of the photosensitive polymer backbone;

wherein R» can be a 1 ,3 dionc moiety.

R'j can be selected from the group consisting of


wherein R? and Rs are independently selected from the group consisting of H. alkyl, substituted alkyl, aryl, or substituted ary .

Photosensitive moiety Qi can comprise a formula selected from the group consisting of Formula Ilia, Formula 11 lb, and combinations thereof.

Representative structures of R < and Ri can include, but are not l imited to, the following

s







wherein s is an integer from 1 to 20 and u is an integer from 0 to 20.

Representative structures of Rs can include the structures listed above for R x and R t. excluding 11.

A photosensitive polymer can be prepared as described hereafter. First, a starting polymer can undergo a nucleophilic substitution reaction with a diamine comprising a secondary amine to give an am i no- fu n ct i on a I i zed polymer. For example, a starting polymer comprising anhydride or st yren e-vi n y !benzy 1 chori de can be reacted with a diamine comprising a secondary amine to give an amino-functional ized polymer. Non-l imiting examples of starting polymers comprising anhydride or styrene-vinylbenzylchoride can include po I y( st yrene-co-ma 1 e i c anhydride), po I y ( st yren c-it aco n i c anhydride), and poly(styrene-vinyibenzyl chloride). Alternatively, a photosensitive polymer can be prepared without the need for the nucleophilic substitution reaction if the starting polymer is an amino-functional ized polymer comprising a secondary amine in the polymer main chain or the polymer side chain. Non-limiting examples of starting polymers comprising a secondary amine in the polymer main chain or the polymer side chain can include poiyethylenimine, silicones comprising secondary amines such as N-ethyiaminoisobutyl terminated Po I y( d i m et h y 1 s i I ox an e ) available from Gel est. Inc. (Morrisville, Pennsylvania, USA) catalog numbers DMS-A21 1 and DMS-A214; a m i n o e t h y I a m i n o p ro p y 1 m et h y I s i I ox a n e-d i m ethyl siloxane copolymers available from Geiest, Inc. (catalog number AMS-233); a m i n o e t h y I a m i n o i so b u t y 1 methyl s i I ox ane-d i m et h y 1 s i lox ae copolymers available from Geiest, Inc. (catalog number AMS-242 ); Po I y ( 2 - ( t e rt - b u t y I a m i n o ) ethyl methacryiate) as a homopoiymer or copolymer with (meth )acrylate and (meth)acryiamide comonomers; and Poly(dial lyl amine). The secondary amine group of the amino-functionalized polymer can be reacted with a conjugated furfural derivative of Meldrum's acid to form the photosensitiv e moiety. The conjugated furfu al deriv ative of Meldrum's acid can be formed by condensing furfural with Meldrum's acid.

Non-l imiting examples of conjugated furfural derivatives of Meldrum's acid can include 5-((furan-2-yl)methyiene)-2,2-dimethyi-l ,3-dioxane-4,6-dione; 5-((furan-2-yl)methylene)-dihydro-l ,2,2,3-tetramethylpyrimidine-4,6(lH,5H)-dione; 5-((furan-2-yl )methylene)-2l l-indenc-

1 ,3-dione; 1

dione; (E )-5-((furan-2-yl )mcthylcne)-dihydro-2^,3-tnmetliyl- l Hictylpynmidine-4,6( 1 H.5H )-dione; 5-((foran-2-yl)methylene)-dihydro^

5-((furan-2-yl)methylene)-dihy 5-((f iraii-2-yi )mcthylcnc)-dihydro- l ,3-bis(4-metho.xyphcnyl )-2,2-dimethylpyrimidine- 4,6(1 H,5H)-dione; l ,3-bis(4-chlorophenyl)-5-((furan-2-yl)methylene)-dihydro-2,2-dimethylpyrimidine-4,6(lH,5H)-dione; and combinations thereof. Such examples are detailed in

Table 1 below.

Table 1 : Examples of conjugated furfural derivatives of Meldrum 's acid


l,3-dibutyl-5-((furan-2-y I )m et h y I e n e )-d i h yd ro -2,2-dimcthylpynmidinc- 4,6(lH,5H)-dione

(E)-5-((furan-2-yl)methylene)-dihydro-2,2,3-trimethyl-l -octylpyrimidinc-4,6(1 H,5H)-dionc

5 -(( furan-2-yl )methy enc)-d i h y d ro - 2.2 - d i m e t h y 1 - 1,3-dioctylpyrimidine-4,6(1 H,5H)-dione

5 -((furan-2-yl )methylene)- d i h y d ro- 2.2 -d i m el h y 1 - 1 ,3- diphenylpyrimidine- 4,6( 1 H,5 H )-dione

5 -(( furan-2-yl )methylene )- dihydro- 1 ,3-bis(4- methoxyphenyl)-2,2- dimethylpyrimidine- 4,6( 1 H,5 H )-dione

1 ,3-bis(4-chlorophenyi)-5- ((furan-2-yl)methylene)- CI

dihydro-2,2- dimethylpyrimidine- 4,6( 1 H,5 H )-dione

In one aspect, the shell of the capsule can comprise a mixture of a polymer comprising DASA moiety and a polymer which does not contain DASA moiety.

In one aspect, the shell of the capsule comprising DASA moiety is cross-linked.

In one aspect, the photosensitive moiety (e.g. DASA moiety) can be incorporated in a monomer. Such monomer can then be polymerized to produce a photosensitive polymer. Such monomers comprise at least one secondary amine to react with the DASA photosensitive moiety and at least one reactive group that will enable the polymerization (such as amines, aery hues, acyl chlorides, alcohols, aldehydes, or isocyanates) to form a photosensitiv e polymer, such as polyureas, poiyamides, polyurethancs, polycarbonates, aminoplasts, acrylates, or mixtures thereof.

In one aspect, the monomer that will react with DASA moiety comprises at least one aer I ate reactive group and may be selected from :


wherein

R i 4 is H or CH3;

Ri5 is selected from the group consisting of

wherein

Rz is selected from the group consisting of


wherein R\ R" and R'" are each independently selected from the group consisting of H and CH3;

wherein a, i, j and 1 are each integers independently selected from 0 to 3; and

wherein c, d, e, f and h are each integers independently selected from 1 to 3.

In a preferred aspect, a, c, d, e, f, h, i, j and 1 are each 2.

In one aspect, the DASA photosensitive monomer may comprise amines as reactive group. Such DASA-amine monomers and or oligomers may be prepared by the procedure described in Sensors and Actuators B: Chemical, Volume 254, January 2018, Pages 385-392.

In one aspect, the monomer that will react with DASA moiety comprises hydroxyi as reactive group. Such hyd oxyi monomers may comprise following structure:

H

E-i B1 N B2 E2

wherein Bi and B2 might be independently selected from:


wherein Ei and E2 might be independently selected from the group consisting of:


wherein E3 might be selected from:


herein Ti, T2, T3, T4 and T5 are independently selected from the group consisting of:


wherein o, q, r, w, x and y are integers, o and y might have values from 1 to 6 and q, r and o might have values from 0 to 6.

In one aspect, the monomer that will react with DASA moiety comprises aldehydes as reactive groups. Non-limiting examples


In one aspect, the monomer that will react with DASA moiety comprises carboxylic acids as reactive groups. Non-limiting examples

Tabic 2: Non-limiting examples of photosensitive monomers:


5-((2Z,4E)-5-(bis(2- hydrox ycthyl )am i no )-2- hydroxypenta-2,4-dien- 1 -yiidene)-2,2-dimethyl- 1 ,3-dioxane-4,6-dione

4,4'-(((lE,3Z)-5-(2,2- dimethyl-4,6-dioxo-l ,3- dioxan-5-ylidene)-4- hydroxypenta- 1 ,3-dien- 1 -yi )azancdiyl )dibutanal


A preferred photosensitive polymer can be synthesized by the route described in Scheme 1 . The example shown in Scheme 1 is merely illustrative and is not meant to limit the scope of the invention.

Scheme 1

In step 1 , 2,2-dimethyl- l ,3-dioxane-4,6-dione is reacted with furfural to provide 5-(furan- 2-ylmethyiene)-2,2-dimethyi-l ,3-dioxane-4,6-dione ( IV) by adding 2,2-dimethyl- l ,3-dioxane- 4,6-dione and furfural to water to form a heterogeneous mixture. The heterogeneous mixture is heated to 75°C and stirred at that temperature for 2 hours. After the reaction is complete, the mixture is cooled to room temperature. The precipitated solid is collected and washed twice with water. The collected solid is dissolved in trichloromethane and then washed sequentially with saturated aqueous Nai l SO ¾, water, saturated aqueous NaHCOs, and saturated NaCl. The organic layer is dried over gSOj, filtered, and the solvent is removed. See the procedure reported by Hclmy et al . J. Am. Chem. Soc. 2014, 136, 8169.

(IV)

In step 2, po I y( styrene-co-m a I ei c anhydride) is reacted with n-methyl ethylene diamine to provide po I y ( st yren e-co- m a I e i m i d e ) (V). In particular, po I y( st yren e-co-m a I ei c anhydride) and d i m et h y I fo rm amide are mixed for 10 minutes at 25°C. Then, a diamine mixture is added dropwise to form a reaction mixture. The reaction mixture is heated to 60 C and held at that temperature for 2 hours. Next, a strongly acidic ion exchange resin, such as Amberlyst® 1 5 (available from Sigma-Aldrich, St. Louis, issouri, USA) is added and the reaction is re fluxed for 24 hours at 135°C. After reaction completion, the ion exchange resin is filtered off and the filtrate is evaporated under a reduced pressure to yield a sol id. The obtained solid is dissolved in tetrahydrofuran and then it is precipitated with n-heptane. See the method described in U.S. Patent No. 4,812,579.


(V)

In step 3, 5-(furan-2-ylmethylene)-2,2-dimethyl- l ,3-dioxane-4,6-dione ( IV) is reacted with po I y ( st yre n e-co-m a I e i m i d e ) (V) to provide poly(styrenc-co-maleimide)-5-(furan-2-ylmethylene)-2,2-dimethyl-l ,3-dioxane-4,6-dione (VI).

(V) (IV) (VI)

In order to examine pliotoisomerization behavior, an oil-in-water emulsion comprising photosensitive polymers having 33 wt% photosensitive moieties is exposed to visible light (wavelength = 400-750 run ) emitted from an 1 1 Watt iDual LED light bulb (available from Jedi Lighting, Hong Kong). The oil-in-water emulsion included an oil phase of 1 0 wt% photosensitive polymer and 90 wt% perfume oil and an aqueous phase of 5 wt% l inear benzene sulfonic acid ( H I . AS ) surfactant and 95 wt% water. A color change from pink to white is observed when the oil-in-water emulsion of the photosensitive polymers is exposed to visible light. Color change is a known indicator of the pliotoisomerization from the extended conjugated form of the photosensitive moiety to the compact zwitterionic cyclopentenone form.

The ultraviolet-visible absorption spectra of samples comprising photosensitive polymers having varying levels of photosensitive moieties in darkness versus v isible l ight at various time intervals are shown in FIGS. 2 - 4. FIG. 2 shows the ultraviolet-visible absorption spectra of Sample A comprising a photosensitive polymer of Example 2 (described hereafter), comprising 1 1 wt% photosensitive moiety, after irradiation with visible light and a control left in the dark for 0, 30, and 60 minutes. FIG. 3 shows the ultrav iolet-visible absorption spectra of Sample B comprising a photosensitive polymer of Example 1 (described hereafter), comprising 25 wt% pliotosensitive moiety, after irradiation with visible light and a control left in the dark for 0, 30, and 60 minutes. FIG. 4 shows the ultraviolet-visible absorption spectra of Sample C comprising a photosensitive polymer of Example 6 (described hereafter), comprising 50 wt% photosensitive moiety, after irradiation with visible light and a control left in the dark for 0, 30, and 60 minutes. Samples A-C arc prepared by mixing 0.2 mg of the polymer of Example 2, 1 and 6, respectively.

with 0.4 m L of perfume oil. Ultraviolet-visible absorption spectra are measured using a UV-1800 Shimadzu UV Spectrophotometer (available from Shimadzu, Kyoto, Japan ).

FIGS. 2-4 show that irradiation with visible light led to a gradual decrease in the absorption band at about 541 nm for Samples A, B and C as compared to control samples left in the dark, suggesting the conversion from the extended to zwitterionic cyciopentenonc form of the photosensitive moieties.

In one aspect, the photoisomerization of the photosensitive moieties may be dependent on the level of photosensitive moieties in the photosensitive polymer. In another aspect, the photoisomerization of the photosensitive moieties is not dependent on the level of photosensitive moieties in the photosensitive pol mer. Without being limited by theory, it is believed that the more photosensitive moieties in the photosensitive polymer, the slower the photoisomerization may occur because of spatial constraints due to the number of photosensitive moieties present. It is believed that photosensitive polymers hav ing a lower number of photosensitive moieties can undergo photoisomerization faster. Photosensitive polymers comprising higher levels photosensitive moieties may need to be irradiated for longer exposure times to allow for the photoisomerization of the photosensitive moieties.

M ICROCAPSULES

FIG. 5 is a micrograph showing a spherical photosensitive microcapsule comprising a shel l comprising a photosensitive polymer encapsulating a core material comprising a perfume. The photosensitive microcapsule is prepared as described hereinafter with 10% w/v of the photosensitive polymer of Example 2 and 90% w/v of perfume oil .

The photosensitive moieties can switch from an extended form to a compact form upon exposure to electromagnetic radiation, thus increasing the porosity of the shell and al lowing for the release of the core material . When the electromagnetic radiation is removed from the photosensitive microcapsules, the photosensitive moieties can switch back to the original extended form, thus decreasing the porosity of the shell and inhibiting the release of core material .

The sw itch from extended form to compact form of the photosensitive moieties can be triggered upon irradiation with electromagnetic radiation selected from the group consisting of infrared radiation, visible light, UV radiation, and combinations thereof. The electromagnetic radiation can have a wavelength of from about 200 nm to about 1 000 nm, alternatively from about 300 nm to about 900 nm, alternatively from about 400 nm to about 750 nm, alternatively from about 430 nm to about 650 nm, alternatively from about 480 nm to about 600 nm. Preferably, the electromagnetic radiation comprises a wavelength of about 400 nm to about 750 nm.

It is found that photosensitive moieties undergo faster photo i som eri zat ion when exposed to electromagnetic radiation com rising green l ight (about 480 nm to about 590 nm ) as compared to electromagnetic radiation comprising blue light (about 430 nm to about 530 nm ), or white l ight (about 400 nm to about 750 nm ). When photosensitive pol mers comprising photosensitive moieties are e posed to red light comprising a wavelength of about 500 nm to about 650 nm photoisomerization is not observed.

The photo i som eri zat ion behavior of the photosensitive moieties can occur after an exposure time of about 1 minute to about 90 minutes, alternatively about 3 minutes to about 60 minutes, alternatively about 5 minutes to about 45 minutes, alternatively about 10 minutes to about 30 minutes. The photosensitive microcapsules can be exposed to electromagnetic radiation for an exposure time of greater than about 1 minute, alternatively greater than about 3 minutes, alternatively greater than about 1 0 minutes, alternatively greater than about 30 minutes, alternativ ely greater than about 60 minutes.

Upon exposure to electromagnetic radiation, from about 1% to about 90% of the core material can be released from the photosensitive microcapsule, alternatively from about 5% to about 75%, alternatively from about 10% to about 60%, alternatively from about 15% to about 50%, alternatively from about 30% to about 40%.

From about 1% to about 90% of the core material can be released from the photosensitive microcapsule within about 1 to about 90 minutes after exposure to electromagnetic radiation, alternatively within about 5 to about 60 minutes, alternatively within about 1 0 to about 30 minutes. Alternativ ely, from about 5% to about 75% of the core material can be released from the photosensitive microcapsule within about 1 to about 90 minutes after exposure to electromagnetic radiation, alternativ ely w ithin about 5 to about 60 minutes, alternativ ely w ithin about 10 to about 30 minutes. Alternativ ely, from about 10% to about 60% of the core material can be released from the photosensitive microcapsule within about 1 to about 90 minutes after exposure to electromagnetic radiation, alternatively within about 5 to about 60 minutes, alternatively within about 10 to about 30 minutes. Alternatively, from about 15% to about 50% of the core material can be released from the photosensitive microcapsule within about 1 to about 90 minutes after exposure to electromagnetic radiation, alternatively w ithin about 5 to about 60 minutes, alternatively w ithin about 10 to about 30 minutes.

The photoisomerization behavior of the photosensitive moieties can occur upon exposure to electromagnetic radiation at a temperature range of from about 10°C to about 50 C depending on the composition of the encapsulated core material, the environment surrounding the shel l, and/or the structure of photosensitive moiety.

The photo i som eri zat ion behavior of the photosensitive moieties may depend on the solvent type in which the photosensitive polymer and/or photosensitive microcapsule is dissolved. The photosensitive polymer and/or the photosensitiv e microcapsule can be dissolved in a solv ent, such as toluene, benzene, or xylenes, before e posure to electromagnetic radiation in order for photoisomerization to occur. Alternatively, the photoisomerization. behav ior of the photosensitiv e moieties may not depend on the solvent. Without being l imited by theory, it is believ ed that photoisomerization is not solvent dependent when an aromatic group is connected to the amine in the photosensitive moiety. The photosensitive polymer and/or the photosensitive microcapsule need not be dissolved in a solvent before e posure to electromagnetic radiation. The photosensitive polymer and/or the photosensitive microcapsule can be deposited on a dry surface before exposure to electromagnetic radiation.

The photosensitiv e microcapsules may change color after exposure to electromagnetic radiation. In one aspect the photosensitiv e microcapsules may change color from pink to white after exposure to electromagnetic radiation due to the conformational change in the photosensitive moieties. Alternatively, the photosensitive microcapsules need not change color after exposure to electromagnetic radiation.

The photosensitive microcapsules can have a diameter of about 10 iim to about 1 70 μπι, alternatively about 30 iim to about 1 50 iim, alternatively about 45 um to about 140 iim, alternatively about 60 iim to about 1 00 um, alternatively about 75 um to about 90 iim.

The photosensitive microcapsules can comprise a weight ratio of core material to shell of from about 50: 1 to about 1 : 1 , alternatively from about 30: 1 to about 1 : 1 , alternatively from about 20: 1 to about 1 : 1 , alternativ ely from about 10: 1 to about 1 : 1 , alternatively about 3 : 1 to about 1 : 1 .

The photosensitiv e microcapsules can comprise from about 1 wt% to about 25 wt% shell, alternatively from about 5 wt% to about 20 wt%, alternativ ely from about 8 wt% to about 1 5 wt%, alternatively from about 1 0 wt% to about 12 wt%.

The photosensitive microcapsules can comprise from about 75 wt% to about 99 wt% core material, alternatively from about 80 wt% to about 95 wt%, alternatively from about 85 wt% to about 92 wt%, alternatively from about 88 wt% to about 90 wt%.

Shell

The shell can comprise a photosensitive polymer comprising a weight average molecular weight of from about 3,000 g/moi to about 120,000 g'mol, alternatively from about 5,000 g'mol to about 1 00,000 g mol, alternatively from about 1 0,000 g mol to about 90,000 g/moi.

The shel l can comprise a photosensitive polymer comprising any suitable number of photosensitive moieties. The photosensitive polymer can comprise at least one photosensitive

moiety. Alternatively, the photosensitive polymer can comprise a plural ity of photosensitive moieties. The photosensitive polymer can comprise from about 1 wt% to about 95 wt% photosensitive moiety, alternativ ely from about 5 wt% to about 80 wt%, alternativ ely from about 10 wt% to about 50 wt%, alternatively from about 1 5 wt% to about 40 wt%. This weight percentage can be calculated by div iding the formula mass of the photosensitive moiety by the molar mass of the photosensitive polymer.

The photosensitive polymer can preferably comprise phenyl groups, such as polystyrene as a co-polymeric part of the polymer. The photosensitive polymer can comprise a polystyrene content of from about 40 wt% to about 90 wt%, alternativ ely about 50 wt% to about 85 wt%, alternatively about 60 wt% to about 75 wt%.

The photosensitiv e polymer can comprise anhydride and imide. The photosensitiv e polymer can comprise malcic anhydride and maleimide. Alternatively, the photosensitive polymer can comprise itaconic anhydride and itaeonimide. The photosensitiv e polymer can comprise from about 1 wt% to about 90 wt% anhydride, alternatively about 2 wt% to about 75 wt%, alternatively about 5 wt% to about 50 wt%, alternatively about 10 wt% to about 20 wt%. The photosensitive polymer can comprise from about 1 wt% to about 95 wt% imide, alternatively about 5 wt% to about 80 wt% imide, alternatively about 10 wt% to about 50 wt%, alternatively about 1 5 wt% to about 40 wt%. One advantage to using a photosensitive polymer comprising anhydride is that the anhydride groups can be cross-l inked to form the shell . In one aspect, the shel l can comprise a cross-linked photosensitive polymer.

The ratio of polystyrene to anhydride can be from about 1 : 1 to about 1 : 10, alternativ ely about 1 :2 to about 1 :8, alternatively about 1 :3 to about 1 :6. The ratio of polystyrene to anhydride can be about 1 : 1 , alternatively about 1 :2, alternatively about 1 :3, alternatively about 1 :4, alternatively about 1 :6, alternativ ely about 1 :8.

The shel l of the photosensitive microcapsule can be formed when the functional groups of photosensitive polymer are cross-l inked. In one aspect the functional groups can comprise anhydride groups, OH, OR12, NH:, NHR12, NR12R13 groups, and combinations thereof. In one aspect, the anhydride groups can be cross-linked with diamines such as 1 ,8-diaminooctane, 1 . 10-diaminodecane, 1 ,7-diaminoheptane, and combinations thereof. The shell can comprise about 1% to about 25%, cross-linked functional groups relativ e to the total functional group content of the starting polymer used for the photosensitiv e polymer preparation, alternativ ely about 2% to about 15%, alternatively about 3% to about 10%. The shel l can comprise about 1%> to about 3%> cross-l inked functional groups. Shells comprising cross-linked photosensitive polymers can have a

higher stability and can help prevent the photosensitive microcapsules from dissolving in a final product.

The shell can have a thickness of about 5 iim to about 50 iim, alternatively about 10 iim to about 35 iim, alternatively about 15 iim to about 25 um. The shell can have a thickness of about 20 iim. The thickness of the shell can be measured at the thickest part of the shell. If the shell is too thin the photosensitiv e microcapsules may not survive manufacturing and shipping and/or could break and release the benefit agent at an undesirable time before it is exposed to electromagnetic radiation.

Core Material

The encapsulated core material can comprise a benefit agent. Benefit agents can include perfumes, brighteners, biocontrol agents, dyes, silicones, waxes, flavors, v itamins, fabric softening agents, skin care agents, sunscreen agents, enzymes, bleaches, sensates including heating and cool ing agents, pharmaceutically active ingredients, and combinations thereof.

Benefit agents useful as core material of the photosensitive microcapsules can be liquid in form at 25 C.

The benefit agent can be hydrophobic. Alternatively, the benefit agent can be hydrophilic. One advantage to having a hydrophilic benefit agent is that when the photosensitive polymer is in the compact, hydrophil ic form, a hydrophilic benefit agent can be released faster than a hydrophobic benefit agent.

The benefit agent can comprise one or more perfumes. The one or more perfum.es may be selected from any perfume or perfume chemical suitable for topical application to the skin and/or hair, for use in personal care compositions, or for providing freshness to fabrics and/or textiles in fabric care compositions. The perfume may be selected from the group consisting of perfumes, highly volatile perfume materials hav ing a boiling point of less than about 250 C, and mixtures thereof. In one aspect, the perfume is selected from high impact accord perfume ingredients having a ClogP of greater than about 2 and odor detection thresholds of less than or equal to 50 parts per billion (ppb).

Non-l imiting examples of perfumes can include the perfume raw materials described in

Table 3 below.

Table 3. Useful Perfume Raw Materials

Item Common Name IUPAC Name

1 Methyl 2-methyl. butyrate methyl 2-methylbutanoate

2 1 sop ropy 1 2-methyl butyrate propan-2-yl 2-methylbutanoate

3 Ethyl -2 Methyl Butyrate ethyl 2-methylbutanoate

4 Ethyl-2 Methyl Pentanoate ethyl 2-methyl pentanoate

Ethyl heptanoate ethyl heptanoate

Ethyl octanoate Ethyl octanoate

Isobutyi hc.xanoatc 2-methylpropyl hcxanoate

Amy! butvrate penty butanoate

Amy! heptanoate Pcntyl heptanoate

Isoamyl isobutyrate 3 -methylbutyl 2-methylpropanoate

Hexyl acetate hexyl acetate

Hexyl butyrate hexyl butanoate

Hexyl isobutyrate hexyl 2-methylpropanoate

Hexyl isovalcratc hexyl 3-methylbutanoate

Hexyl propionate hexyl propanoate

Ethyl 2-cyclohexyl propanoate ethyl 2-cyclohexylpropanoate

Ethyl 3,5,5-trimethyl hcxanoate ethyl 3,5,5-trimethylhexanoate

Glyceryl -h y d ro x y d ec an oa t e 2 , 3 - d i h y d ro x y p ro p y 1 5 -hyd rox yd ccanoatc

Prenyl acetate 3-methyl 2-butcnyl acetate

3-methyl 2-butenyl acetate 3-methyl 2-butenyl acetate

Methyl 3-nonenoate methyl non-3-enoate

Ethyl (E)-dec-4-enoate Ethyl (E)-dec-4-enoate

Ethyl (E)-oct-2-enoate Ethyl (E)-oct-2-enoate

Ethyl 2.4-decadienoatc ethyl (2E.4Z )-deca-2.4-dienoate

Ethyl 3-octenoate ethyl (E)-oct-3-enoate

Citronellyl acetate 3,7-dimethyloct-6-enyl acetate

Ethyl trans-2-decenoate ethyl (E)-dec-2-enoate

2-Hexen- l -yl isovalcratc [(E)-hex-2-enyl] acetate

2-Hexen- l -yl propionate (E)-hex-2-enyl] propanoate

2-Hexen- l -yl valerate [(E)-hex-2-enyl] pentanoate

3-Hexcn- l -yl ( E )-2-hexenoate [(Z)-hex-3-enyl] ( E)-hex-2-enoatc

3-Hexen- l -yl 2-methyl butyrate [(Z)-hex-3-enyl] 2-methylbutanoatc

3-Hexen-l-yl acetate f(Z)-hex-3-enyl] acetate

3-Hexen- l -yl benzoate (Z)-hex-3-enyl] benzoate

3-Hexcn- l -yl formate j~(Z)-hex-3-enyl] formate

3-Hexcn- l -yl tiglatc [(Z)-hex-3-enyl] (Z)-2-meth\ but-2- enoate

2- ethyl butyl 2-methyl butyrate 2-methylbutyl 2-methyl butanoate

Butyl isovalcratc butyl 3-methylbutanoatc

Gcranyl acetate [(2E )-3.7-dimethylocta-2.6-dienyl | acetate

Gcranyl butyrate [(2E)-3,7-dimethylocta-2,6-dienyl]

butanoate

Geranyl isovalcratc [(3E)-3,7-dimethylocta-3,6-dienyl] 3- methylbutanoate

Gcranyl propionate [(2E)-3,7-dimethylocta-2,6-dienyl]

propanoate

Al ly! cyclohexane acetate prop-2-enyl 2-cyclohcxylacetate

Al ly! cyclohexyl propionate prop-2-enyl 3-cyclohexylpropanoate

Ally! cyclohexyl valerate prop-2-enyl 5-cyclohcxylpentanoatc

Benzyl octanoate benzyl octanoate

Cocolactone 6-pentyl-5,6-dihydropyran-2-one

Coconut decanonc 8 -m ethyl- 1 -oxasp iro(4.5 )decan-2 -on e

Gamma undccalactonc 5-heptyloxolan-2-one

G am m a-deca 1 acton c 5 -hexyloxolan-2-one

Gamma-dodecalaetone 5-octyioxoian-2-one

33 aphtha lactone 6-[(E)-pent-2-enyi]oxan-2-one

Jasmolactone 5-[(Z)-hex-3-cnyl]oxolan-2-onc

Nonalactone 6-butyloxan-2-one

6-acetoxydihydrotheaspirane [2a,5a(S *)]-2,6, 10.1 0-tetramethyl- 1 - oxaspiro[4.5]decan-6-yl acetate

Phcnoxyethyl isobutyrate 2-(phenoxy)ethyl 2-methylpropanoate

Pivacyclcne

Verdox (2-tert-biityicyciohexyi) acetate

Cyclobutanate 3a.4,5.6,7,7a-hexahydro-4,7-methano- 1 g- inden-5(or 6)-yl butyrate

Dimethyl anthranilatc methyl 2-methyiaminobenzoate

Methyl antranilate methyl 2-aminobenzoate

Octyl aldehyde Octanal

onanal Nonanal

Decyl aldehyde Decanal

Laurie aldehyde Dodecanai

Methyl nonyl acetaldehyde 2-mcthyl undccanal

Methyl octyl acetaldehyde 2-methyl decanal

2,4 Hexadienal (2E,4E)-hexa-2,4-dienal

Intrcleven aldehyde undec- 10-enal

Decen-l-al ( E)-dec-2-enal

onen- l -al (E)-2-nonen-l-ai

Ado.xal 2,6, 10-trimethyhindec-9-enal

Geraldehyde (4Z )-5,9-dimethyldeca-4,8-dienal

Iso cyclo citral 2.4.6-trimethy cyciohex-3-ene- 1 - carbaldehyde

d-limonene mainly 1 -methyl-4-prop- 1 -en-2-yl-cyclohexene

Ligustral 2.4-dimethylcyclohex-3-ene- 1 - carbaldehyde

Myrac aldehyde 4-(4-methylpent-3-enyl )cyclohex-3-ene- 1 - carbaldehyde

Tridecenal tridec-2-enal

Triplal 2.4-dimethyl-3-cyclohexene- 1 - carboxaldehyde

Vertoliff 1 ,2-dimethylcyclohex-3-ene- 1 - carbaldehyde

Cyclal C 2.4-dimethylcyclohex-3-ene- 1 - carbaldehyde

Anisic aldehyde 4-methoxybenzaldehyde

Hclional 3-( 1 ,3-benzodioxol-5-yl )-2- methylpropanal

Heiiotropin 1 .3-benzodioxole-5-carbaldchyde

Neocaspirene

Beta naphthol ethyl ether 2-ethoxynaphtalene

Beta naphthol methyl ether 2-methoxynaphtalene

Hyacinth ether 2-cyclohcxyloxyethylbenzene


Non-l imiting examples of biocontrol agents can incl ude biocides, antimicrobials. bactericides, fungicides, algaecides, mildewcides, disinfectants, antiseptics, insecticides, insect and/or moth repel I ant, vermicides, plant growth hormones, and combinations thereof.

Non-limiting examples of antimicrobials can include comprise glutaraldchyde. cinnamaidehyde, and mixtures thereof.

The core material can optionally further comprise a partitioning modifier. When the core materia! of the photosensitive microcapsule is an oil such as perfume oil, the properties inherent to the oil may play a role in determining how much, how quickly, and how permeable the shell of the photosensitive microcapsule will be at the oil/water interface. For example, when the oil of the core material comprises highly polar materials, such materials may reduce the diffusion of the monomers and polymers to the oil 'water interface, potential ly resulting in a relatively thin and highly permeable shell, which can lead to an inferior photosensitive microcapsule. Incorporating a partitioning modifier to adjust the polarity of the core material may alter the partitioning coefficient of the polar materials, allowing for the establishment of a thicker, more stable shel l of the photosensitive microcapsule.

Non-limiting examples of partitioning modifiers are described in detail in U.S. Application Publication No. 201 1/0268802. Preferred partitioning modifiers are selected from the group consisting of vegetable oil, modified vegetable oil, isopropyl myristate, propan-2-yl tetradecanoatc, and mixtures thereof. Suitable vegetable oils are selected from the group consisting of castor oil, soybean oil, and mixtures thereof. Suitable modified vegetable oils are selected from the group consisting of esterified vegetable oil, brominated vegetable oil, and mixtures thereof. Preferred partitioning modifiers are selected from isopropyl myristate, propan-2-yl tetradecanoate, and mixtures thereof.

CONSUMER PRODUCT COMPOSITION

The present invention further relates to a consumer product composition comprising one or more photosensitive microcapsules.

The consumer product composition can comprise, based on total composition weight, from about 0.1% to about 25% photosensitive microcapsules, alternatively from about 0.2% to about 15%, alternatively from about 0.4% to about 10%, alternatively from about 1% to about 8%, alternatively from about 3% to about 5%.

The consumer product composition may comprise photosensitive microcapsules and non-photosensitive microcapsules that do not comprise photosensitive moieties. Such non-photosensitive microcapsules may be core-shel l microcapsules that can release their core material, which may be a benefit agent such as a perf ume, due to the application of a stimuli, including but not limited to, pressure, heat, ionic strength, dehydration and/or diffusion. The benefit agent

within non-photosensitive microcapsules may be the same as or different than the benefit agent in the photosensitive microcapsules, depending on the application.

Adjunct Ingredients

The consumer product composition can optionally comprise one or more adjunct ingredients added to the consumer product composition in addition to any encapsulated ingredient. Therefore, the consumer product composition may comprise, for example, a fabric softening agent as an adjunct ingredient and a photosensitive microcapsule comprising a fabric softening agent as a core material.

Non-limiting examples of adjunct ingredients can include: bleaching agents, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, enzyme stabilizers, catalytic metal complexes, polymeric dispersing agents, clay and soil removal/ant i-redcposition agents, brighteners, suds suppressors, dyes, UV absorbing ingredients, perfumes, structure clasticizing agents, fabric softening agents, conditioning agents, carriers, hydrotropes, processing aids, structurants, anti-dandruff agents, anti-agglomeration agents, pigments and combinations thereof.

The precise nature of the adjunct ingredients, and levels of incorporation thereof, will depend on the physical form of the consumer product composition and the nature of the operation for which it is to be used. However, when one or more adjunct ingredients are present, such one or more adjunct ingredients may be present as detailed below. The fol low ing is a non-limiting list of suitable adjunct ingredients.

Surfactants - The consumer product composition may comprise a surfactant. Suitable surfactants can include the anionic, nonionic, zwitterionic, ampholytic or cationic type or may comprise compatible mixtures of these types. Anionic and nonionic surfactants are typically employed if the composition is a laundry detergent or hair shampoo. In contrast, cationic surfactants are typically employed if the composition is a fabric softener or hair conditioner.

Anionic surfactants suitable for use in the consumer product compositions can include alkyl and aikyi ether sul fates. Other suitable anionic surfactants are the water-soluble salts of organic, sulfuric acid reaction products. Still other suitable anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide. Other similar anionic surfactants are described in U.S. Patent Nos. 2,486,921 ; 2,486,922; and 2,396,278, which are incorporated herein by reference.

Non-l imiting examples of anionic surfactants can include ammonium lauryi sulfate, ammonium laureth sulfate, triethylamine lauryi sulfate, triethylaminc laureth sulfate, triethanolamine lauryi sulfate, triethanolamine laureth sulfate, m o n o e t h a n o I a m i n e lauryi sulfate. monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate. I auric monoglyceridc sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinatc, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sul fate, ammonium lauroyl sul fate, sodium cocoyl sulfate, sodium lauroyl sulfate, potassium cocoyl sulfate, potassium lauryl sulfate, tricthanolamine lauryl sulfate, triethanolamine lauryl sul fate, monoethanolamine cocoyl sul fate, monoethanolamine lauryl sulfate, sodium tridccyl benzene sulfonate, sodium dodecyl benzene sul fonate, sodium cocoyl isethionate. and combinations thereof The anionic surfactant can be sodium lauryl sulfate or sodium laureth sulfate.

The consumer product composition can comprise a nonionic surfactant. The consumer product composition can comprise from about 0.01% to about 30%, alternatively from about 0.01% to about 20%, alternatively from about 0.1 % to about 10%, by weight of the composition, of a nonionic surfactant. The nonionic surfactant may comprise an ethoxylated nonionic surfactant. Suitable for use herein are the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R inl OC^H tiiOH, wherein Rio is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 20 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of f is from about 5 to about 15.

Suitable nonionic surfactants are those of the formula Ri i (OC:>H i)hOH, w herein Rn is a C10-C16 alkyl group or a CVC 12 alkyl phenyl group, and h is from 3 to about 80. In one aspect, particularly useful materials are condensation products of C9-C15 alcohols with from about 5 to about 20 moles of ethylene oxide per mole of alcohol.

The consumer product composition may contain up to about 30%, alternativ ely from about 0.01% to about 20%, alternatively from about 0.1 % to about 20%, by w eight of the composition, of a cationic surfactant. Cationic surfactants can include those which can del iver fabric care benefits, non-limiting examples which include: fatty amines, quaternary ammonium surfactants, imidazoline quat materials, and combinations thereof.

Non-limiting examples of cationic surfactants are , N-bis(stearoyi-oxy-ethyl) N,N-di methyl ammonium chloride; , -b i s( t a 11 o wo y I -o y-et h y I ) N,N-dimethyl ammonium chloride; N,N-bis(stearoyl-oxy-cthyl ); N-(2 hydroxyethyl ) N-methyl ammonium methylsulfate; 1 , 2 di (stearoy -oxy) 3 trim ethyl a m m o n i u m p ro pane chloride; d i a I k y 1 e n ed i m e t h y 1 a m m o n i u m. salts such as dieanoladimethy ammonium chloride, di(hard )tallow dimethylammonium chloride, and d i cano I ad i m et h y I am mon i u m methylsulfate; 1 -methyl- 1 -stearoylamidoethyl-2-s t ea ro y I i m i d a zo I i n i u m methylsulfate; 1 -tailow ylamidoethyl-2-tal low y I imidazoline; N,N"-

dialkyldiethylenetriamine; the reaction product of N-(2-hydroxyethyl)-l ,2-ethylenediamine or N-(2-hydroxyisopropyl )- 1 .2-ethylenediaminc with glycolic acid esterified w ith fatty acid, where the fatty acid is (hydrogenated ) tal low fatty acid, palm fatty acid, hydrogenated palm fatty acid, oleic acid, rapeseed fatty acid, or hydrogenated rapeseed fatty acid; polyglycerol esters (PGEs); oily sugar derivatives; wax emulsions; and combinations thereof.

Amphoteric detersive surfactants can include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the al iphatic radical can be straight or branched chain and wherein one of the al iphatic substituents contains from about 8 to about 1 8 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. Exemplary amphoteric detersive surfactants can include cocoamphoacetate, cocoamphodiacetate, lauroamphoaeetate, I au roam phod i acetate, and mixtures thereof.

Zwitterionic detersive surfactants can include those surfactants broadly described as derivatives of aliphatic quaternaryammonium, phosphonium, and suifonium compounds, in which the al iphatic radicals can be straight or branched chain, and wherein one of the al iphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate. Alternatively, zitterionic detersive surfactants such as betaines can be selected.

Non-limiting examples of other anionic, zwitterionic. amphoteric or optional additional surfactants suitable for use in the compositions are described in McCutcheon's, Emu I si tiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and U.S. Patent Nos. 3,929,678; 2,658,072; 2,438,091 ; and 2,528,378, which are incorporated herein by reference.

Builders - The consumer product composition may comprise from about 0.1% to about 80%, by weight of the composition, of a builder. Consumer product compositions in l iquid form can contain from about 1% to 10%, by weight of the composition, of the builder. Consumer product compositions in granular form can contain from about 1% to about 50%, by weight of the composition, of the builder.

Detergent builders are well known in the art and can contain, for example, phosphate salts as well as various organic and inorganic nonphosphorus builders. Water-soluble, nonphosphorus organic buiiders useful herein can include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylatcs, polycarboxylates, and poiyhydroxy sulfonates. Examples of polyacctate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mel!itic acid, benzene polycarboxylic acids, and citric acid. Other polycarboxylate builders are the oxydisuccinates and ether carboxylate builder compositions

comprising a combination of tartrate monosuccinate and tartrate disuccinate. Builders for use in liquid detergents can comprise citric acid. Suitable nonphosphorus, inorganic builders can include silicates, aluminosiiicates such as zeolites, borates and carbonates, such as sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicates having a weight ratio of SiO? to a i kal i metal oxide of from about 0.5 to about 4.0, or from about 1.0 to about 2.4.

Dispersants - The consumer product composition may comprise from about 0.1% to about 10%, by weight of the composition, of a dispersant. Dispersants can comprise water-soluble organic materials such as homo- or co-polymeric acids or their salts, in which the polycarboxyiic acid may contain at least two carboxyi radicals separated from each other by not more than two carbon atoms. Dispersants may also comprise aikoxyiated derivatives of polyamin.es and/or quaternized derivatives.

Enzymes - The consumer product composition may comprise one or more enzymes which provide cleaning performance and/or fabric care benefits. Non-limiting examples of suitable enzymes can include hemiceiiuiases, peroxidases, proteases, celluiases, xylanases, lipases, phospho lipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, l igninases, pullulanases, tannases, pentosanases, malanases, B-glucanases, arabinosidases, hyaluronida.se, chondroitina.se, laccase, and amylases, and mixtures thereof. A typical combination may be a cocktail of conventional applicable enzymes like protease, lipase, cutinase and/Or cellulase in conjunction with amylase. Enzymes can be used at their art-taught levels, for example at levels recommended by suppliers such as Novozymes® ( Frankl inton, North Carol ina, USA) and Genencor® ( Palo Alto, Cal ifornia, USA ). Typical levels in the consumer product composition can be from about 0.0001 % to about 5%, by weight of the composition. When enzymes are present, they can be used at very low lev els, e.g., from about 0.001 % or lower; or they can be used in heavier-duty laundry detergent formulations at higher levels, e.g., about 0.1% and higher. In accordance with a preference of some consumers for "non-biological" detergents, the compositions may be enzyme-frce.

Dye Transfer Inhibiting Agents - The consumer product composition may comprise a dye transfer inhibiting agent. The consumer product composition can comprise from about 0.0001% to about 10%, by weight of the composition, of one or more dye transfer inhibiting agents, alternatively from about 0.01% to about 2%, alternatively from about 0.05% to about 1%. Non-l imiting examples of dye transfer inhibiting agents can include po I y v in pyrro I i do n e polymers, polyamine -oxide polymers, copolymers of N -vinyl pyrroi idonc and N-v inyiimidazole, polyvinyioxazoiidones, po I y v i n yi i m i dazo I es, and combinations thereof.

Chelants - The consumer product composition may comprise a chelant. The consumer product composition can comprise less than about 5%, by weight of the composition, of a chelant. Alternatively, the consumer product composition can comprise from about 0.01% to about 3%, by weight of the composition, of a chelant. Non-limiting examples of chelants can include citrates: n i t rogen-con t a ining, P-free aminocarboxylates such as ethylenediamine-N,N'-disuccinic acid (EDDS), et h y I en ed i am i n et et raacct i c acid (EDTA), and diethylenetriaminepentaacet ic acid (DTP A); aminophosphonates such as diethylenetriaminc pentamethylenephosphonic acid, and ethylenediaminc tetramethylenephosphonic acid; nitrogen-free phosphonates e.g., 1 -hydroxyethane 1 , 1 -diphosphonic acid (HEDP); nitrogen or oxygen containing, P-free carboxylate-free chelants such as compounds of the general class of certain macrocyclic N-iigands such as those known for use in bleach catalyst systems; and combinations thereof.

Brighteners - The consumer product composition can comprise a brightener and may comprise any compound that exhibits fluorescence, including compounds that absorb UV light and reemit as "blue" v isible l ight. Non-limiting e amples of brighteners can include: deriv ativ es of stilbene or 4.4 ' -d iam i nost i I bene, bi phenyl, five-membered. heterocycies such as triazoles, pyrazolines, oxazoles, imidiazoles, etc., or six-membered heterocycies (coumarins, naphthalan! ide. s-triazinc, etc. ). Cationic, anionic, nonionic. amphoteric and zvvitterionic brighteners can be used. Suitable brighteners include those commercial ly marketed under the trade name Tinopai-U PA-GX® by Ciba Specialty Chemicals Corporation ( High Point, North Carolina, USA).

Bleaching Agents - The consumer product composition may comprise a bleaching agent. Non-limiting examples of bleaching agents can include catalytic metal complexes; activated peroxygen sources; bleach activators; bleach boosters; photobleaches; bleaching enzymes; free radical initiators; H2O2; hypohalite bleaches: peroxygen sources, including perborate and/or percarbonate; and combinations thereof. Suitable bleach activators can comprise perhydroiyzable esters and perhydroiyzable imides such as, tetraacetyl ethylene diamine, octanoylcaprolactam, benzoyloxybenzencsulphonate, nonanoyloxybenzenesulphonate, benzoyl valerolactam, and dodecanoyloxybenzenesulphonate.

Stabilizers - The consumer product composition may comprise a stabil izer. Any suitable lev el of stabil izer may be of use. Exemplary lev els of stabilizer can include from about 0.01% to about 20%, from about 0.1% to about 10%, or from about 0.1% to about 3% by weight of the composition. Non-limiting examples of stabilizers can include crystall ine, h y d rox y I -co n t a i n i n g stabilizing agents, trihydroxystearin, hydrogenated oil, or a variation thereof, and combinations thereof. In some aspects, the crystalline, h yd ro x y I -c o n t a i n i n g stabil izing agents may be water- insoluble wax-like substances, including fatty acid, fatty ester or fatty soap. In other aspects, the crystalline, hydroxyl-containing stabilizing agents may be derivatives of castor oil, such as hydrogenated castor oil derivatives, for example, castor wax. Other stabilizers can include thickening stabilizers such as gums and other similar polysaccharides, for example gel Ian gum, carrageenan gum, and other known types of thickeners and Theological, additives. Exemplary stabilizers in this class can include gum-type polymers (e.g. xanthan gum ); polyvinyl alcohol and derivatives thereof; cellulose and derivatives thereof including cellulose ethers, cellulose esters, and tamarind gum (for example, comprising xylogluean polymers); guar gum; locust bean gum (in some aspects comprising galactomannan. polymers); and other industrial gums and polymers.

Silicones - The consumer product composition may comprise a second silicone in addition to silicone that may be encapsulated. Therefore, the consumer product composition can comprise a photosensitiv e microcapsule comprising a silicone as the core material and a second sil icone. The second silicone and the silicone of the core material can be the same or can be different.

Suitable silicones comprise Si-0 moieties and may be selected from non-functional ized siloxane polymers, functionalized siloxane polymers, and combinations thereof. The molecular weight of the organosiiicone is usually indicated by the reference to the viscosity of the material . In one aspect, the organo silicones may comprise a viscosity of from about 10 to about 2,000,000 centistokes at 25 C. In another aspect, suitable organosilicones may have a viscosity of from about 10 to about 800,000 centistokes at 25 °C.

Suitable organosilicones may be linear, branched, or cross-linked.

The organosiiicone may comprise a cyclic silicone. The cyclic silicone may comprise a cyclomethicone of the formula [(CHh hSiOje where e is an integer that may range from about 3 to about 7, or from about 5 to about 6.

The organosiiicone may comprise a functionalized siloxane polymer. Functional ized siloxane polymers may comprise one or more functional moieties selected from the group consisting of amino, amido, aikoxy, hydroxy, polyether, carboxy, hydride, mercapto. sul fate phosphate, and/or quaternary ammonium moieties. These moieties may be attached directly to the siloxane backbone through a bivalent alkylene radical, (i.e., "pendant") or may be part of the backbone. Suitable functionalized siloxane polymers include materials selected from the group consisting of aminosiiicones, amidosilicones, silicone poiyethers, siiicone-urethane polymers, quaternary ABn sil icones, amino ABn sil icones, and combinations thereof.

The functionalized siloxane polymer may comprise a silicone polyether, also referred to as "dimethicone copolyol ." In general, sil icone poiyethers comprise a po I y d i m et h y I s i I ox a n c backbone with one or more polyoxyalkylene chains. The polyoxyalkylene moieties may be

incorporated in the polymer as pendent chains or as terminal blocks. The functional ized siloxane polymer may comprise an aminosiiicone.

The organosiiicone may comprise amine ABn silicones and quat ABn silicones. Such organosilicones are generally produced by reacting a diamine with an epoxide.

The funct ional ized siloxane polymer may comprise sil icone-urethanes, which are commercial ly available from Wacker Chemie ( unich, Germany) under the trade name SLM-21200®.

Sil icone materials typically serve as conditioning agents in consumer product compositions, such as in fabric softening compositions or hair conditioning compositions.

Perfume - The consumer product composition may comprise a perfume, which is a neat perfume added to the consumer product composition in addition to any encapsulated perfume. Therefore, the consumer product composition can comprise a neat perfume and a photosensitive microcapsule comprising a perfume as the core material. The neat perfume and the perfume of the core material can be the same or can be different.

Fabric Hueing Agents - The consumer product composition can comprise a fabric hueing agent. Typical ly, fabric hueing agents prov ide a blue or violet shade to fabric. Fabric hueing agents can be used either alone or in combination to create a specific shade of hueing and/or to shade different fabric types. This may be provided, for example, by mixing a red and green-blue dye to yield a blue or violet shade. Fabric hueing agents may be selected from any known chemical class of dye, including but not l imited to acridine; anthraquinone (including polycycl ic quinones); azine; azo (e.g., monoazo, disazo, trisazo, tetrakisazo, poiyazo), including premetal lizcd azo, benzodifurane, and benzodifuranone; carotenoid; coumarin; cyanine; diazahemicyanine; diphenylmethane; formazan; hemicyanine; indigoids; methane; naphtha! imides; naphthoquinone; nitro; nitroso; oxazine; phthalocyanine; pyrazoles; stilbene; styryi; triarylmethane; triphenylmethane; xanthenes; and mixtures thereof.

Suitable fabric hueing agents can include dyes, dye-clay conjugates, and organic and inorganic pigments. Suitable dyes can include small molecule dyes and polymeric dyes. Suitable small molecule dyes can be selected from the group consisting of dyes fal ling into the Colour Index (C.I.) classifications of Acid, Direct, Basic, Reactive or Hydro lysed Reactive, Solvent or Disperse dyes, for example, that are classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination. Suitable small molecule dyes can include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Coiourists, Bradford, UK) numbers Direct Violet dyes such as 9, 35, 48, 5 1 , 66, and 99, Direct Blue dyes such as 1 , 71 , 80, and 279, Acid Red dyes such as 17, 73, 52, 88, and 1 50, Acid Violet dyes such as 1 5. 17, 24, 43. 49. and 50. Acid Blue dyes such as 1 5. 17, 25, 29. 40. 45. 75. 80, 83, 90, and 1 13, Acid Black dyes such as 1 , Basic Violet dyes such as 1 , 3, 4, 10, and 35, Basic Blue dyes such as 3, 16, 22, 47, 66, 75, and 1 59, Disperse or Solvent dyes as disclosed in US 8,268,016 B2, or dyes as disclosed in US 7,208,459 B2, and mixtures thereof. Suitable small molecule dyes can be selected from the group consisting of C. I. numbers Acid Violet 17, Acid Blue 80, Acid Violet 50, Direct Blue 71 , Direct Violet 51 , Direct Blue 1 , Acid Red 88, Acid Red 150, Acid Blue 29. Acid Blue I 13, and mixtures thereof.

Suitable polymeric dyes can include polymeric dyes selected from the group consisting of polymers containing covalently bound (sometimes referred to as conjugated ) chromogens, for example polymers with chromogens co-polymerized into the backbone of the polymer and mixtures thereof. Polymeric dyes can include those described in US 7,686,892 B2.

Suitable polymeric dyes can include polymeric dyes selected from the group consisting of fabric-substantive colorants sold under the name of Liquitint® (M il liken, Spartanburg, South Carol ina, USA ), dye-polymer conjugates formed from at least one reactive dye and a polymer selected from the group consisting of polymers comprising a moiety selected from the group consisting of a hydroxy! moiety, a primary amine moiety, a secondary amine moiety, a thiol moiety and mixtures thereof. In one aspect, suitable polymeric dyes can include polymeric dyes selected from the group consisting of Liquitint® Violet CT, carboxymethyl cellulose (CMC) covalently bound to a reactive bl ue, reactive violet or reactive red dye such as CMC conjugated with C. I. Reactive Blue 19, sold by Megazyme (Wicklow, Ireland ) under the product name AZO-CM-CELLULOSE, product code S-ACMC, alkoxylated. triphenyl-methane polymeric colourants, alkoxylated thiophene polymeric colourants, and mixtures thereof.

Suitable dye clay conjugates can include dye clay conjugates selected from the group consisting of at least one cationic/basic dye and a smectite clay, and mixtures thereof. In another aspect, suitable dye clay conjugates can be selected from the group consisting of one cationic/basic dye selected from the group consisting of C. I. Basic Yellow 1 through 108, C. I. Basic Orange 1 through 69. C. I. Basic Red 1 through 1 1 , C.I. Basic Violet 1 through 5 l . C.I. Basic Blue 1 through 1 64, C. I. Basic Green 1 through 14, C. I. Basic Brown 1 through 23, CI Basic Black 1 through 1 1 , and a clay selected from the group consisting of Montmorillonite clay, Hectorite clay, Saponite clay and mixtures thereof. In still another aspect, suitable dye clay conjugates can include dye clay conjugates selected from the group consisting of: Montmoril lonite Basic Blue B7 C. I. 42595 conjugate, Montmoril lonite Basic Blue B9 C. I. 5201 5 conjugate, Montmorillonite Basic Violet V3 C. I. 42555 conjugate, Montmorillonite Basic Green G I C. I. 42040 conjugate, Montmorillonite Basic Red R 1 C. I. 45 160 conjugate. Montmoril lonite C. I. Basic Black 2 conjugate, Hectorite Basic Blue B7 C.I. 42595 conjugate, Hectorite Basic Blue B9 C.I. 52015 conjugate, Hectorite Basic Violet V3 C. I. 42555 conjugate, Hectorite Basic Green G 1 C. I. 42040 conjugate, Hectorite Basic Red R 1 C. I. 45 1 60 conjugate, Hectorite C. I. Basic Black 2 conjugate, Saponite Basic Blue B7 C. I . 42595 conjugate, Saponite Basic Blue B9 C. I. 5201 5 conjugate, Saponite Basic Violet V3 C. I. 42555 conjugate, Saponite Basic Green Gl C. I. 42040 conjugate, Saponite Basic Red R 1 C. I . 45160 conjugate, Saponite C. I. Basic Black 2 conjugate, and mixtures thereof.

The fabric hueing agent may be incorporated into the consumer product composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step(s). Such reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route.

Suitable polymeric bluing agents may be alkoxylated. As with all such alkoxylated compounds, the organic synthesis may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the fabric hueing agent, or may undergo a purification step to increase the proportion of the target molecule.

Suitable pigments can be selected from the group consisting of flavanthrone; in dan throne; chlorinated in dan throne containing from 1 to 4 chlorine atoms; pyranthrone; d i c h I o ro p y ra n t h ro n e ; monobromodichloropyranthrone; dibromodichioropyranthrone; t e t ra b ro m o p y ra n t h ro n e ; perylene-3,4,9, 1 0-tctracarboxyiic acid diimide, wherein the imide groups may be unsubstituted or substituted by C1-C3 -alkyl or a phenyl or heterocyclic radical, and wherein the phenyl and heterocyclic radicals may additional ly carry substituents which do not con fer solubility in water; a n t h ra p yr i m i d i n eca rbox y I i c acid amides; v iol an throne; isoviolanthrone; dioxazine pigments; copper phthalocyanine which may contain up to 2 chlorine atoms per molecule; pol ych loro-copper phthalocyanine or pol ybromoch loro-copper phthalocyanine containing up to 14 bromine atoms per molecule; and mixtures thereof. In another aspect, suitable pigments can be selected from the group consisting of Ultramarine Blue (C. I. Pigment Blue 29), Ultramarine Violet (C. I. Pigment

Violet 1 5 ), Monastrai Blue, and mixtures thereof.

Any mi ture of the aforementioned fabric hueing agents can be used according to the needs of the user.

Structurants The consumer product composition can comprise a structurant. One advantage to including a structurant is that it can help to suspend the benefit agent. Useful structurants can include polysaccharides, for example, waxy maize or dent corn starch, octenyl succinated starches, derivatized starches such as hydroxyethyiated or hyd rox ypropy lated starches, carrageenan, pectin, and mixtures thereof; modified cel luloses such as hydrolyzed cel lulose

acetate, hydroxy propyl cel lulose, methyl cel lulose, and mixtures thereof; modified proteins such as gelatin; hydrogenated and non-hydrogenated polyalkencs, and mixtures thereof; inorganic salts, for example, magnesium chloride, calcium chloride, calcium formate, magnesium formate, aluminum chloride, potassium permanganate, laponitc clay, bentonite clay and mixtures thereof; polysaccharides in combination with inorganic salts; quaternized polymeric materials, for example, polyether amines, alkyl trimcthyl ammonium chlorides, diester ditallow ammonium chloride; imidazoles; non ionic polymers with a p a less than 6.0, for example polyethyleneimine, polyethyleneimine etho ylate; polyurethanes. Such materials can be obtained from CP Kelco Corp. of San Diego, Cal ifornia, USA; Degussa AG of Dusseldorf, Germany; BASF AG of I. udwigsha fen, Germany; Rhodia Corp. of Cranbury, New Jersey, USA; Baker Hughes Corp. of Houston, Texas, USA; Hercules Corp. of Wilmington, Delaware, USA; and Agrium Inc. of Calgary, Alberta, Canada.

Anti-Agglomeration Agents - The consumer product composition can comprise an anti-agglomeration agent. Useful a n t i - a gg I o m e ra t i o n agents can include divalent salts such as magnesium salts, for example, magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boridc, magnesium titanate, magnesium sulfate heptahydrate; calcium salts, for example, calcium chloride, calcium formate, calcium acetate, calcium bromide; trivalent salts, such as aluminum salts, for example, aluminum sul fate, aluminum phosphate, aluminum chloride hydrate and polymers that have the ability to suspend anionic particles such as suspension polymers, for example, polyethylene imines, alkoxylated polyethylene imines. polyquaternium-6 and polyquaternium-7.

Conditioning Agents - The consumer product composition can comprise a conditioning agent. Suitable conditioning agents can be selected from the group consisting of sil icone material, cationic surfactant, and mixtures thereof. Such materials arc described previously herein.

Carriers - The consumer product composition can be in the form of pourable l iquids under ambient conditions. Such compositions will therefore typically comprise a carrier, which can be present at a level of from about 20 wt% to about 95 wt%, or from about 60 wt% to about 85 wt%. The carrier can comprise water, or a miscible mixture of water and organic solvent, and in one aspect may comprise water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other components.

Alternatively, the carrier can comprise water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohols useful herein are monohydric alcohols having 1 to

6 carbons, in one aspect, ethanol and isopropanoi. Exemplary polyhydric alcohols useful herein can include propylene glycol, hexylene glycol, glycerin, and propane diol.

UV- Absorbing Ingredients - The consumer product composition can comprise a UV-absorbing ingredient. One advantage to including a UV-absorbing ingredient is that it can stabilize the photosensitive microcapsules against premature release of the core material by exposure to light of a sufficient wavelength during storage.

Any suitable UV-absorbing ingredient may be employed, but particularly preferred are those which do not impart an unpleasant color or odor to the composition, and which do not adversely affect the rheology of the product. Non-limiting examples of UV-absorbing ingredients can include avobenzone, cinoxate, ecamsule, menthyl anthranilate, octyl methoxycinnamate, octyl salicylate, oxybenzone, sulisobenzone, and combinations thereof. Other suitable UV-absorbing ingredients are disclosed in U.S. Patent No. 6,159,918, which is incorporated herein by reference.

UV-absorbing ingredients may not compromise the light-activated, performance of the photosensitive microcapsules. Without wishing to be bound by theory, it is believed that in many consumer product applications, e.g., cleaning compositions including laundry detergents, shampoos and body washes, the UV-absorbing ingredient is washed down the drain while the photosensitive microcapsules of the present invention are retained in an efficacious amount on the surface of interest where they are available to release their contents on subsequent exposure to ligh t of a sufficient wavelength. In other cleaning compositions or leave-on consumer products, e.g., floor cleaning compositions, drapery and upholstery refreshers, body lotions, and hair styling products, it is believed that the UV-absorbing ingredients dry down to a thin film after application, allowing the photosensitive microcapsules of the present invention to sit atop or extend above the film. This can allow an efficacious amount of light of the desired wavelength to reach the photosensitive microcapsules and effect the release of the benefit agents.

Packaging Materials

Photosensitive microcapsules and/or consumer product compositions comprising photosensitive microcapsules may be protected against premature release of the core material caused by exposure to light of a sufficient wavelength during storage by judicious selection of packaging. Any suitable package or package material that reduces or el iminates penetration of l ight into the composition contained therein may be employed. Non-limiting examples of packaging materials can include coated cardboard; fiberboard; paperboard; colored po I vole fins including high-density polyethylene (HDPE), low-density polyethylene (LDPE), l inear low-density polyethylene (LLDPE) and combinations thereof; polypropylene; coated metal foils; and combinations thereof.

The packaging material can be opaque. Alternatively, the packaging material can be transparent or translucent in order to display the contents contained therein. Non-l imiting examples of such transparent or translucent packaging materials can include polyethylene tcrephthalate (PET), polylactic acid ( PLA ). polyvinyl chloride (PVC), and blends or multilayer combinations of these materials. In these circumstances, it is understood that an effective means to prevent some wavelengths of light from penetrating through the packaging material, while allow ing other wavelengths to pass through, is desirable so that the contents of the package may be seen w hile still maintaining stabil ity of the embodiments of present invention. Any suitable means to filter or absorb l ight of the desired wavelength may be employed. A particularly preferred means is to incorporate a UV-absorbing composition into the resin during manufacture of the package, a non-limiting example of which is described in GB 2 228 940. which is incorporated herein by reference. Other means are use of a label or sleeve which absorbs the required wavelength of l ight.

Method of Use

The photosensitive microcapsules disclosed herein and/or consumer product compositions that contain the photosensitive microcapsules can be used to clean or treat a situs such as a surface, fabric, hair or skin. At least a portion of the situs can be contacted w ith the photosensitive microcapsules and/or a consumer product composition comprising the photosensitive microcapsules in neat form or diluted in a l iquor, such as a wash liquor, and then the situs may be optional ly washed and/or rinsed. Alternatively, at least a portion of the situs can be washed and/or rinsed, contacted w ith the photosensitive microcapsules or a consumer product composition comprising the photosensitive microcapsules, and then optional ly washed and/or rinsed again. Washing can include, but is not l imited to, scrubbing and mechanical agitation. Liquors that may comprise the disclosed compositions may have a pH of from about 3 to about 1 1.5. Such compositions are typical ly employed at concentrations of from about 500 ppm to about 1 5,000 ppm in solution. When the w ash solvent is water, the water temperature typically ranges from about 5°C to about 90°C and, w hen the situs comprises a fabric, the water to fabric ratio is typical ly from about 1 : 1 to about 30: 1 .

MOLECULAR WEIGHT TEST METHOD

Size-exclusion l iquid chromatography (LC) is used to determine the Weight-Av erage Molecular Weight of the photosensitive polymer. Photosensitive polymer samples (0.1% wt/vol) are dissolved in AcOH Ae Hi buffer (pH 4.5) and then filtered through a 0.45 iim pore size membrane (available from EMD M iUipore, Billerica, Massachusetts, USA). Size-exclusion l iquid chromatography (LC) is performed by means of an LC pump (such as the 1260 In finity pump, Agilent Technologies, Santa Clara, California, USA), with two serially-connected columns. Suitable columns can include a model TSK G2500-PW column and a model TSK G6000-PW column, both available from Tosoh Bioscience LLC (King of Prussia, Pennsylvania, USA ). The detection is achieved via a differential refractometer (such as the model Wyatt Optiiab T-rex) coupled on-line with a MALLS detector (such as the model Wyatt Dawn Helcos I I ) both available from Wyatt Technology Corp. (Santa Barbara, Cal ifornia, USA ). Degassed AcOH Ac H j buffer (pH 4.5 ) is used as the eluent after two fi!trations through 0.22 iim pore size membranes (EMD M iU ipore). The flow rate is maintained at 0.5 m L/min and the amount of sample injected is 100 μΐ. Chromatograms are analyzed by software such as the Wyatt Astra version 6. 1 .2 (Wyatt Technology Corp., Santa Barbara, Cal ifornia, USA ) to calculate the Weight Average Molecular Weight of the sample.

EXAMPLES

The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and arc not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.

EXAMPLE 1.

a) Preparation of 5-(furan-2-ylmethylene)-2,2-dimethyl-l ,3-dioxane-4,6-dione.

1 .5 1 grams (g) of 2,2-dimethyl- 1 ,3-dioxane-4,6-dione and 0.961 g of furfural are added sequentially to 30 ml, water to form a heterogeneous mixture. The heterogeneous mixture is heated to 75 °C and stirred at that temperature for 2 hours. During the course of the reaction, a dark green precipitate is formed. At the completion of the reaction (as monitored by thin-layer chromatography using 3 : 1 hexane:ethyi acetate) the mixture is cooled to room temperature. The precipitated sol id is col lected by vacuum filtration and is washed twice with 30 m L cold water. The collected solid is dissolved in trichloromethanc and washed sequentially with 30 ml, saturated aqueous Nail SO «. 30 ml, water, 30 m L saturated aqueous NaHC03, and 30 ml, saturated NaCl.

The organic layer is dried over gSO t. filtered, and the solv ent is remov ed by rotary ev aporation to give 2.19 g (99%) of 5-( fiiran-2-yl methylene )-2.2-dimethyl- 1 .3-dioxane-4.6-dione as a bright yellow powder.

b) Preparation of a photosensitive polymer containing 75% polystyrene and 25% maleimide-5-(furan-2-ylmethylene)-2,2-dimethyl-l ,3-dioxane-4,6-di()ne moieties

5 g of po I y( st yren e-co-m a I ei c anhydride) 75 :25 (available from Total Petrochemicals & Refining USA, Inc., Houston, Texas, USA) and 80 m L of d i m et h y I fo rm a m i d e are placed into a 250 m L round-bottom flask equipped with a reflux condenser with a water-separator, a thermometer, a stirrer, and a dropping funnel. The prepared mixture is stirred for 10 minutes at 25°C. Next, 3.3 m 1 , of a diamine mixture (0.91 g o f N -m et h y I et h y I en ed i am i ne and 2.3 m L of dimethyl fo rm a m idc) is added dropwise to form a reaction mixture. Then the reaction mixture is heated to 60°C and held at that temperature for 2 hours. Next, 0.987 g of a strongly acidic ion exchange resin is added and the reaction is re fluxed for 24 hours at 135°C. A suitable strongly acidic ion exchange resin is Amberlyst® 1 5 (available from Sigma-Aldrich, St. Louis, Missouri, USA ). After reaction completion, the ion exchange resin is filtered off and the filtrate is evaporated under a reduced pressure to yield a solid. The obtained solid is purified by precipitation. First, it is dissolved in 40 ml, of tetrahydrofuran and then it is precipitated with 400 ml, of n-heptane.

Then 5 g of the dry precipitate ( po I y( st yrene-co-m a I ei m i de ) ) and 75 m L of tetrahydrofuran are placed into a 250 ml, round-bottom fla.sk equipped with a reflux condenser, a thermometer, a stirrer, and an oil bath. Then a solution of 2.39 g of 5-(furan-2-ylmethylene)-2,2-dimethyl-l ,3-dioxane-4,6-dione and 40 m 1, tetrahydrofuran is added. The mixture is heated to 60°C and kept for 30 minutes at 60 C to complete the reaction. Next the photosensitive polymer is precipitated from the reaction solution with 1 L of n-heptane, filtrated, and washed with 100 mL of cold diethyl ether. Final ly, the photosensitive polymer is dried in a vacuum at 25°C for 24 hours.

e) Preparation of Photosensitive Microcapsules.

Photosensitiv e microcapsules are prepared in the dark or in red light conditions. Photosensitive microcapsules are obtained by using a nozzle device working in a semi-continuous process w ith a nozzle size of 70 - 80 μηι. A suitable nozzle is available from Spraying Systems Co. Wheaton, I L (dispersion combination type SUF I ). The nozzle is connected to a compressed air supply valve that offers the energy required to break up the polymeric solution into microdroplets. When the air valve is opened, the dev ice disperses the polymeric solution by

shearing action prov ided by a high-v elocity air stream (around 500 1/h). The nozzle is located 30 cm (distance to n-heptane surface) over a container with n-heptan. The outlet flow is positioned perpendicular to the surface of the coagulation bath. Thus, the microdroplets impact directly on the n-heptane surface.

A photosensitive polymeric solution (10 wt% of po I y ( st yren c-co m a I e i m i d c- 5 -( fu ra n - 2 -yimethylene)-2,2-dimethyl- l ,3-dioxane-4,6-dione) in perfume oil is prepared in a dark bottle to ensure that the photosensitive moieties are in the extended, conjugated form and then poured into the nozzle bulk just before microcapsule production to avoid contact with atmospheric air, which can induce solvent evaporation. The coagulation bath is kept at a temperature of from 0-25°C to prevent n-heptane evaporation, and it is stirred to prevent aggregation using a magnetic stirrer set at 100 rpm. After precipitation, the photosensitive microcapsules are filtrated, dried in a desiccator, and stored in a dark bottle.

EXAMPLE 2-6.

Examples 2-6 can be made according to the procedure of Example 1 , except that the compositions are different (see Table 4). The amount of reagents used depends on the ratio between the styrene and maleic anhydride groups of the po I y( st yren e-co-m a!cic anhydride). The amounts o f - m e t h y I e t h y I e n e d i a m i n e and Amberlyst® 1 5 are calculated based on the amount of maleic anhydride groups available for modification with the photosensitive moieties.

Table 4.

EXAMPLE 7.

Example 7 can be made according to the procedure of Example 1 , except 2.67 g of 5-((mran-2-yl)methylene)-dihydro-l ,2,2,3-tetramethylpyrimidine-4,6(lH,5H)-dione is used in place of 2.39 g of 5-( furan-2-ylmethylcnc )-2,2-dimethyl- l ,3-dioxane-4.6-dione.

EXAMPLE 8.

Example 8 can be made according to the procedure of Example 1 , except 2.41 g of 2-((furan-2-yl )methylenc )-2 H-indene- ! ,3-dione is used in place of 2.39 g of 5-(furan-2-ylmethylene)-2,2-dimethyi-l ,3-dioxane-4,6-dione.

EXAMPLE 9.

Example 9 can be made according to the procedure of Example 2, except 1.27 g of 2-((furan-2-yl )methylene)-2H-indene- l ,3-dione is used in place of 2.39 g of 5-(furan-2-yl methylene )-2,2-dimethy - ! ,3-dioxane-4,6-dione.

EXAMPLE 10.

Example 10 can be made according to the procedure of Example 6, except 8.61 g of (1 ,3-bis(4-chiorophenyl)-5-((furan-2-yi)methyiene)-dihydro-2,2-dimethyipyrimidine-4,6(lH,5H)-dione is used in place of 2.39 g of 5-(furan-2-ylmethyiene)-2,2-dimethyl-l ,3-dioxane-4,6-dione.

EXAMPLE 11.

Example 1 1 can be made according to the procedure of Example 9, except 2.52 g of 5-( (furan-2-y )methy ene )-dihydro-2,2-dimethy - 1 ,3-d iocty I pyri m id i ne-4.6( I H.5 H )-dionc is used in place of 1 .27 g of 2-((furan-2-yl )methylene)-2H-indene- l ,3-dione.

EXAMPLE 12.

An aery I ate monomer, 2-(/ / -butyl(( I £,3Z)-5-(2.2-dimcthyl-4,6-dioxo- 1 ,3-dioxan-5-yl idene -4-hydroxypenta- 1 ,3-dien- 1 -yl )amino)ethyl methacrylate, hav ing the formula:


can be made according to the following procedure.

1 .7 1 1 gram (g) of 5-(furan-2-ylmethyiene)-2,2-dimethyl-l ,3-dioxane-4,6-dione (Sigma Aldrich ) is placed in 1 00 m L two-necked round bottom flask and is dissolved in 1 5 m L of tetrahydrofuran (TH F) by magnetic stirrer (300rpm). 1 .426 grams of 2-(tert-Butylamino)ethyl methacrylate (Sigma Aldrich ) is dissolv ed in 1 0 ml, of THF and then is added to 5-(furan-2-y methy cne )-2.2-dimethyl- l ,3-dioxane-4,6-dionc solution. The mixture is stirred (300 rpm) at 25 °C for 1 hour. During the course of the reaction, change in color can be observed from yel low

to dark red. At the com letion of the reaction the mixture is cooled to 5 °C for 30 min. As obtained, solution is precipitated by its addition into 1 50 mL of cold n-heptane. Then, it is centrifuged at 5°C and 9000 rpm for 30 min. The supernatant is rejected and the obtained solid is dissolved in trichloromethanc and washed 10 times with cold water. The organic layer is dried over MgSC>4, filtered, and the solvent is removed by rotary evaporation to give 1 .670 grams of 2- (toV-butyl(( l £\3Z)-5-(2,2-dimetliyl-4 vdioxo- l ,3-dioxan-5-ylidene)-4-hydroxypenta- 1 .3 1 -yl )amino)ethyl methacrylate. The obtained product is further purified by chromatographic column using as solid filler silica gel 40-60-mierons diameter (CAS 7631-86-9, Acros Organics) and as mobile phase ethyl acetate. Purification is controlled by Thin Layer Chromatography using ethyl acetate as eiuent.

EXAMPLE 13.

An aery I ate monomer, 5-((2Z,4E)-2-hydroxy-5-(methyi(5-methyl-4-oxohex-5-en-l-yl)amino)penta-2,4-dien-l-ylidene)-2,2-dimethyi-l ,3-dioxane-4,6-dione, having the formula:


can be made according to the procedure of Example 12, except 1.087 g of 2-methyl-6-(metliylamino)hex- 1 -en-3-one is used in place of 1 .426 g of 2-(tert-butyiamino)ethyl methacrylate.

EXAMPLE 14.

An aery I ate monomer, 5-((2Z,4E)-2-hydroxy-5-(methyi(3-methyl-2-oxobut-3-en-l-yl)amino)penta-2,4-dien-l-ylidene)-2,2-dimethyi-l ,3-dioxane-4,6-dione, having the formula:

can be made according to the procedure of Example 12, except 0.871 g of 3-methyl- l -(methylamino)but-3-en-2-one is used in place of 1 .426 g o f 2 -( t ert -b u t y I a m i no )et h y I methacrylate.

EXAMPLE 15.

An acrylate monomer, 5-((2Z,4E)-5-(cyciopropyl(4-methyi-3-oxopent-4-en-l-yl)amino)-2-hydroxypenta-2,4-dien-l-yiidene)-2,2-dimethyl-l,3-dioxane-4,6-dione, having the formula:


can be made according to the procedure of Example 12, except 1.179 g of 5-(cyclopropylamino)-2-methylpent- 1 -en-3-onc is used in place of 1 .426 g of 2 -( tert-but y lam i no )eth y I methacrylate.

EXAMPLE 16.

An acrylate monomer, 5-((2Z,4E)-2-hydroxy-5-(4-(4-methyl-3-oxopent-4-en-l-yi)piperidin-l-yi)penta-2,4-dien-l-ylidene)-2,2-dimethyi-l,3-dioxane-4,6-dione, having the formula:


can be made according to the procedure of Example 12, except 1 .395 g of 2-mcthyl-5-(piperidin-4-yl)pent-l-en-3-one is used in place of 1 .426 g of 2-( tert-buty lam i no )eth y I methacrylate.

EXAMPLE 17.

An acrylate monomer, 2-(tert-butyl((lE,3Z)-4-hydroxy-5-(l ,2,2,3-tetramethyl-4,6-dioxotetrahydropyrimidin-5(2H)-ylidene)penta-l ,3-dien-l-yl)amino)ethyl methacrylate, having the formula:


can be made according to the procedure of Example 12, except 1 .91 1 g of 5-((furan-2-yl)methylene)-dihydro-l ,2,2,3-tetramethylpyrimidine-4,6(lH,5H)-dione is used in place of 1 .71 1 g of 5-(furan-2-ylmethyiene)-2,2-dimethyi-l ,3-dioxane-4,6-dione.

EXAMPLE 18.

An acrylate monomer, 2-(tert-butyl(( 1 E.3Z)-5-( 1 ,3-dibutyl-2,2-dimethyl-4,6-dioxotetrahydropyrimidin-5(2H )-ylidene)-4-hydroxypenta- 1 .3-dien- 1 -yl )amino)cthyl methacrylate, having the formula:

can be made according to the procedure of Example 12, except 2.559 g of l,3-dibutyl-5-((furan- 2-yl)methylene)-dihydro-2,2-dimethylpyrimidine-4,6(lH,5H)-dione is used in place of 1.711 g of 5-(furan-2-ylmethylene)-2,2-dimethyl-l,3-dioxane-4,6-dione.

EXAMPLE 19:

A hydroxyi monomer, 5-((2Z,4E)-5-((2-ethyl-4-hydroxybutyl)(2-hydroxyethyl)amino)-2-h droxypenta-2,4-dien-l-ylidene)-2,2-dimethyi-l,3-dioxane-4,6-dione, having the formula


can be made according to the procedure of Example 12, except 1.24 g of 3-((2-hydroxyethyiamino)methyi)pentan-l-oi is used in place of 1.426 g of 2-(tert-butylamino)ethyl methacryiate.

EXAMPLE 20:

A hydroxyi monomer, 5-((2Z,4E)-5-(bis(2-hydroxyethyi)amino)-2-hydroxypenta-2,4-dien-l-ylidene)-2,2-dimethyl-l,3-dioxane-4,6-dione, having the formula


can be made according to the procedure of Example 12, except 0.81 g of bis(2-hyd ro yet h y I )am i n e is used in place of 1.426 g of 2-(tert-butylamino)ethyi mcthacrylate.

EXAMPLE 21.

Photosensitive capsules can be prepared utilizing the acrylatc monomer of Example 1 2 according to the following procedure, which includes three steps: (i) preparation of a dispersed phase and a continuous phase, (ii) emulsification, and (iii) polymerization to form the photosensitive microcapsules.

Preparation of the dispersed phase is as follows. 0.284 grams of DASA-acryiate monomer produced in exam le 12 are added to 71.81 grams of a perfume composition and mixed with a magnetic stirrer at 300rpm. Then, 0.234 grams of 2-Carboxyethyl acrylatc are added followed by 1 1.23grams CN975 (Sartomer). The composition is mixed for 30 minutes at 45 C. Then, the composition is cooled to room temperature and 1 gram of 2,2'-Azobis(2,4-dimethyivaieronitrile), 0.23grams of 2,2,-Azobis(2-methyibutyronitrile) and 35. 7 grams i so propyl, myristate arc sequential ly added under continuous stirring.

Separately, a continuous phase is prepared as follows. 3.6 grams of Seivol 540 (Sekisui ) arc added to 1 74.9 grams of demineralized water and heated to 80 C mixing with a magnetic stirrer at 450rpm till complete dissolution. The solution is cooled down to room temperature and then 0.67grams 4,4'- Azob i s( 4-c yano va I eri c acid ) and 0.79grams of a 16% caustic soda aqueous solution and mixed for 1 Sminutes.

The emulsification step is as follows. The dispersed phase is emulsified in the continuous phase using a Silverson 1,5 homogenizer with an emulsification head at 2500rpm for 5 min to form an emulsion.

The emulsion is transferred to a reactor equipped with an overhead mixer and a cooler to avoid evaporation during the polymerization and encapsulation steps. Encapsulation is performed by increasing gradual ly the temperature in several steps: first 1 5 minutes at 40 C, secondly temperature is increased to 60 °C for 75 min, thirdly temperature is increased to 75 °C for 270 minutes, fourthly temperature is increased to 90 C for 480 minutes and finally the temperature is lowered to 20 C for the addition of 0.2 grams acticide M BS2255 and 0.9 grams x an than gum.

EXAMPLE 22: Composite crosslinked DASA capsules

In order to obtain composite crosslinked capsules, a first solution is prepared by dissolving 0.16 grams of Polyvinyl alcohol (Mowiol© 18-88, Mw~ 130,000 available from Fluka) in 16 mL of demineralized water at 80 °C and 500 rpm. Then, a second solution is prepared by dissolving 0.785 grams of poly(styrene-co-maleic anhydride) containing a styrene maleic anhydride molar ratio 2: 1 (SMA2000available from Total Petrochemicals & Refining USA, Inc., Houston, Texas, USA) and 0.041 grams of photosensitive polymer of Example 3 (containing 86% polystyrene and 14% maleimide-5-(furan-2-ylmethylene)-2,2-dimethyl- l ,3-dioxane-4,6-dione moieties) in 6.97 grams of a perfume at 25 °C. A third solution is then prepared by dissolving 0.034 grams of 1 ,4-diaminobutane ( Aldrich) and 0.068 grams of sodium bicarbonate (Aldrich) in 7.5 mL demi-water containing 0.075 grams of Polyvinyl alcohol (Mowiol® 18-88, Mw~ 130,000 available from Fluka). Then, a first composition is prepared by emulsifying the second solution into the first solution at 720 rpm for 30 minutes at 25 °C using an IK A RW20 mixer. Then, the third solution is added drop wise into the dispersion for 10 minutes and encapsulation is achieved by mixing this second composition at 150 rpm for 24 h at 25 °C to form perfume composite capsules.

EXAMPLE 23

Photosensitive capsules can be prepared utilizing the acrylate monomer of Example 1 2 according to the following procedure, which includes three steps: (i) preparation of a dispersed phase and a continuous phase, (ii) emulsification, and (iii) polymerization to form the photosensitive microcapsules.

Preparation of the dispersed phase is as follows. 0.065 grams of DAS A-acrylate monomer of Example 12 are added to 2 grams of a perfume composition and dispersed using an ultrasound bath (J. P. Selecta S.A.. 50 60Hz, HOW) for 1 5 minutes. Then. 3.7 grams chloroform arc added and mixed with a magnetic stirrer at 300rpm for 2 minutes or til l complete dissolution of the monomer. Then. 0.025 grams of 2-Carboxyethyl acrylate are added fol lowed by 0.437 grams CN975 (Sartomer). The composition is mixed for 5 minutes at 25 °C. Then, 0.2 1 5 grams of 2,2'- A zob i s( 2.4-d i m eth y I v a I cron i tri I c ) and 0.023 grams of 2,2'-Azobis(2-methylbutyronitrile) are added under continuous stirring.

Separately, a continuous phase is prepared as follows. 0.122grams 4,4'-Azobis(4-cyanovaleric acid) and 0.194grams of a 16% caustic soda aqueous solution are added to 26.06 grams of a 2% Selvol 540 (Sekisui ) aqueous solution and then and mixed for 1 5 minutes with a magnetic stirrer at 300rpm.

The emulsification. step is as follows. The dispersed phase is emulsified in the continuous phase using a magnetic stirrer at lOOOrpm for 5 min to form an emulsion.

The emulsion is further encapsulated by increasing gradually the temperature in several steps: first 15 minutes at 4 "C, secondly temperature is increased to 60 C for 45 min, thirdly temperature is increased to 75 °C for 75 minutes, fourthly temperature is increased to 90 C for 150 minutes and finally the temperature is lowered to 20' C for the characterization and use of the capsules' slurry.

200iii , of the slurry are spread in a I cm x 5cm filter paper and introduced in a transparent vial (Headspace crim vials, ND20 with septum cap from VWR). This operation is repeated 6 times, so 3 vials are exposed to white light and 3 vials are kept in the darkness covered with aluminum folia. After 48 hours, there is a visible difference among samples: the samples maintained in the darkness are pink and the samples exposed to the light discolored to almost white showing the isomerization of the shell comprising DAS A moiety. Then, 5ml, he.xane are added with a syringe through the septum and the vial containing the slurry spread in the filter paper is mixed gently by hand for 30 seconds. Then, 100 uL of a tonal id solution (0.2 grams tonal id in 25m L he.xane) are added. Then, sample is analyzed by Gas Chromatography (GC).

Two main components of the perfume composition are analyzed, iso bornyl acetate and verdox. This analysis shows a higher release of these perfume components in presence of light:


EXAMPLE 24.

Liquid laundry detergent composition having a pi 1 of 8 and comprising capsules of the present invention is prepared as follows. First, a liquid laundry detergent formulation is prepared having following composition in Example 24:

Ingredient Example 24 (%wt)

C12-14 alkyl ethoxy 3 sulphate 4

Cii-16 Alkylbenzene sulphonic acid 10.4

C14-15 alkyl ethoxyiation 7 4

C12/14 AMINE OXIDE 0.5

Sodium hydroxide 3.1

Citric Acid 2.8

Sodium cumene sulfonate 1.72

NaCW-Base 0.51

Ethanol 0.4

C12-18 Fatty acid 1.7

Alkoxyiated grease cleaning polymer1 1.3

Soi l Suspending Alkoxyiated Po!yalky emine Polymer 0.6

Enzymes up to 1 hydrogcnated castor oil 0.3

Minors (Stabilizers, preservatives, antifoam, dye, brightener, buffers. . . ) up to 2

Water balance to 95

1 PG617 or PG640 (BASF, Germany)

2 600 g/mol molecular weight polyethylenimine core with 24 ethoxylate groups per— -NH and 16 propoxylate groups per— NH. Available from BASF (Ludwigshafen, Germany

Then, capsules from Examples 21 , 22, or 23, are added to the l iquid laundry detergent formulation of Example 24, and mixed with an overhead mixer at 350 rpm, to prepare Examples 24A-24C containing capsules of the present invention:

Example 24 Example 24B Example 24C

Ingredient

%wt

Liquid laundry detergent

95 95 95 formulation of Example 24

Capsules of Example 21

1.63 - (equivalent to 0.4% perfume)

Capsules of Example 22

- 0.45

(equivalent to 0.1% perfume)

Capsules of Example 23

4. 1

(equivalent to 0.25% perfume)

Water balance to 100

The photosensitivity of the capsules in the formulation of Example 24B are analyzed as fol lows. 1 drop of Example 24 B is deposited into a cavity well microscope slide (ref. 1341 from Globe Scientific) and capped with a cover glass. This sample is prepared twice, one is left in the darkness and the other one is exposed to 254nm light (UV-GL55, 733-2365, from VWR ) for 140 min at a distance of 20cm. After this time both samples are checked under light microscope (such as Axioscope from Zeiss). It is observed that the capsules of the sample slide left in the darkness are still intact while the capsul es of the sample slide exposed to light are broken and the perfume is released.

Example 25

The following Examples 25 A and 25B are skin care compositions containing capsules of the present invention:

Ingredient Example 25 A Example 25B

%wt

Glycerin 7

Linear alcohols 3.3

Isohexadecane 3

Vitamine E Acetate 0.5

Sepigel 305 0.5

Silicone 2

iacinamide 5

Capsules of Example 0.4

21 (equivalent to

0.1% perfume)

Capsules of Example 0.23

22 (equivalent to

0.05% perfume)

Minors (stabilizers, <3

buffers.

preserv ative.. . )

Demineraiized water balance to 100

Values disclosed herein as ends of ranges are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each numerical range is intended to mean both the recited values and any integers within the range. For example, a range disclosed as "1 to 10" is intended to mean "1 , 2, 3, 4, 5, 6, 7, 8, 9, and 10."

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

Every document cited herein, including any cross referenced or related patent or application and any patent appl ication or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.