처리 중

기다려 주십시오...

설정

설정

1. WO2017110653 - MICROSCOPE SYSTEM

Document

明 細 書

発明の名称 顕微鏡システム

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の概要

発明が解決しようとする課題

0004   0005  

課題を解決するための手段

0006   0007   0008   0009   0010   0011   0012   0013   0014  

発明の効果

0015  

図面の簡単な説明

0016  

発明を実施するための形態

0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118  

符号の説明

0119  

請求の範囲

1   2   3   4   5   6   7   8   9  

図面

1   2A   2B   3   4   5A   5B   5C   6   7   8   9   10   11   12   13   14A   14B   14C   15   16   17   18A   18B   18C   18D   19   20   21   22   23   24   25   26   27   28A   28B   28C   29  

明 細 書

発明の名称 : 顕微鏡システム

技術分野

[0001]
 本発明は、ステージ上に載置された標本を撮像することによって画像データを生成し、この画像データに基づき全焦点画像を生成する顕微鏡システムに関する。

背景技術

[0002]
 近年、標本を観察する顕微鏡システムにおいて、標本を載置するステージを焦準部によって対物レンズの光軸方向(Z軸方向)に沿って移動させながら、撮像部に標本を順次撮像させて焦点が異なる複数の画像データを生成させ、これらの複数の画像データを用いて標本の全焦点画像(以下、EFI(Extended Focus Imaging)ともいう)を作成する技術が知られている(例えば、特許文献1参照)。この技術では、撮像部が標本を撮像し、画像データを作成するたびに焦点の合った部分を取り出して合成し、全焦点画像を作成している。

先行技術文献

特許文献

[0003]
特許文献1 : 特開2006-337470号公報

発明の概要

発明が解決しようとする課題

[0004]
 特許文献1では、全焦点画像を作成する際、光源の種類や光量、使用する光学素子の状態を変えずに、標本のZ軸方向の位置のみを変更して撮像し、画像データを作成し、この画像データから全焦点画像を作成する。したがって、観察像のコントラストが出にくい標本、例えば、表面に細かい凹凸がある標本や、表面の段差が大きく、段差が急峻である標本では、同軸落射光源のみを使用して全焦点画像を含む合成画像を作成すると、コントラストが出ず、観察者の所望する合成画像が得られない場合がある。
[0005]
 本発明は、上記に鑑みてなされたものであって、表面に細かい凹凸がある標本や、表面の段差が大きく、段差が急峻である標本においても、標本のコントラストを反映した合成画像を得ることができる顕微鏡システムを提供することを目的とする。

課題を解決するための手段

[0006]
 上述した課題を解決し、目的を達成するために、本発明に係る顕微鏡システムは、標本の観察像を集光する対物レンズを介して前記標本を観察可能な顕微鏡システムにおいて、前記標本が載置されるステージと、前記標本に照射する光を射出する光源と、前記光源から射出された光を前記標本に照射する照明光学系と、前記光源の選択、状態および/または光量の設定を受け付ける操作部と、前記標本が載置される載置面と直交する直交方向へ移動可能であり、前記ステージと前記対物レンズとの距離を調整する焦準部と、前記対物レンズが集光した前記標本の観察像を撮像して、前記標本の画像データを生成する撮像部と、前記撮像部が生成した複数の前記画像データを合成して合成画像データを生成する合成画像生成部と、を備え、前記合成画像生成部が前記合成画像データを生成する際、前記照明光学系を構成する光学素子の状態、ならびに前記光源の種類、状態および光量の選択を可能とすることを特徴とする。
[0007]
 また、本発明に係る顕微鏡システムは、上記発明において、前記合成画像生成部は、前記撮像部が生成した複数の前記画像データの画素毎のコントラスト値を算出し、高いコントラスト値を示す画素を取り出し合成して合成画像データを生成することを特徴とする。
[0008]
 また、本発明に係る顕微鏡システムは、上記発明において、前記撮像部が生成した前記画像データの画素毎のコントラスト値が最も高い輝度値を保持し合成されたコントラストマップを生成するコントラストマップ生成部を備えることを特徴とする。
[0009]
 また、本発明に係る顕微鏡システムは、上記発明において、前記合成画像生成部は、全焦点画像データを生成するEFI生成部であることを特徴とする。
[0010]
 また、本発明に係る顕微鏡システムは、上記発明において、前記光源は、DFリング光源と同軸照明であって、前記EFI生成部は、前記DFリング光源の点灯するセグメントを変更した状態で撮像された画像データに基づき、前記合成画像データを生成することを特徴とする。
[0011]
 また、本発明に係る顕微鏡システムは、上記発明において、前記合成画像データの生成を指示する指示信号の入力を受け付ける入力部と、前記撮像部、および前記DFリング光源を制御する制御部と、を備え、前記入力部を介し前記合成画像データの生成の指示信号が入力された場合、前記制御部は、前記DFリング光源の点灯するセグメントを自動的に変更するよう制御することを特徴とする。
[0012]
 また、本発明に係る顕微鏡システムは、上記発明において、前記制御部は、前記撮像部の露出時間と前記画像データの転送時間とに基づき、DFリング光源の点灯時間を決定する駆動時間設定部を有し、前記制御部は、前記合成画像生成部が合成画像データを生成する際、前記点灯するセグメントの変更と前記撮像部での撮像とを同期させるよう制御することを特徴とする。
[0013]
 また、本発明に係る顕微鏡システムは、上記発明において、前記照明光学系は開口絞りを有し、前記制御部は、前記入力部を介し前記合成画像データの生成の指示信号が入力された場合、前記開口絞りの開口径を、使用する対物レンズの瞳径の60~80%となるよう自動的に制御することを特徴とする。
[0014]
 また、本発明に係る顕微鏡システムは、上記発明において、前記合成画像生成部は、全焦点画像データを生成するEFI生成部であり、前記操作部は、前記DFリング光源および前記同軸照明の光量、前記DFリング光源の照明モードの選択、前記DFリング光源の点灯セグメントの回転、ならびに前記開口絞りの開口の選択をそれぞれ指示する指示信号の入力を受け付け可能であって、前記操作部を介した前記光源の光量等の変更操作を有効とする状態で全焦点画像データを取得するモードと、前記操作部を介した前記光源の光量等の変更操作を無効とする状態で全焦点画像データを取得するモードと、のいずれかを選択可能であることを特徴とする。

発明の効果

[0015]
 本発明に係る顕微鏡システムによれば、コントラストが出にくい標本においても、標本のコントラストを反映した合成画像を得ることができるという効果を奏する。

図面の簡単な説明

[0016]
[図1] 図1は、本発明の実施の形態1に係る顕微鏡システムの概略構成を示す模式図である。
[図2A] 図2Aは、本発明の実施の形態1に係る顕微鏡システムにおけるDFリング光源の点灯モード変更時のLED照明の点灯部位を示す図である。
[図2B] 図2Bは、本発明の実施の形態1に係る顕微鏡システムにおけるDFリング光源のセグメント回転時のLED照明の点灯部位を示す図である。
[図3] 図3は、本発明の実施の形態1に係る顕微鏡システムの通信系統の構成を示すブロック図である。
[図4] 図4は、本発明の実施の形態1に係る顕微鏡システムの操作部の一例を示す図である。
[図5A] 図5Aは、本発明の実施の形態1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図5B] 図5Bは、本発明の実施の形態1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図5C] 図5Cは、本発明の実施の形態1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図6] 図6は、本発明の実施の形態1に係る顕微鏡システムでEFIを通常モードで生成する際のフローチャートである。
[図7] 図7は、本発明の実施の形態1に係る顕微鏡システムでEFIを傷モードで生成する際のフローチャートである。
[図8] 図8は、表示部に表示されるライブ画像とコントラストマップに基づくEFI生成について説明する図である。
[図9] 図9は、同一の標本について光源を変更して作成したEFIである。
[図10] 図10は、本発明の実施の形態1の変形例に係るEFI生成のフローチャートである。
[図11] 図11は、本発明の実施の形態2に係る顕微鏡システムの概略構成を示す模式図である。
[図12] 図12は、本発明の実施の形態2に係る顕微鏡システムの通信系統の構成を示すブロック図である。
[図13] 図13は、本発明の実施の形態2の顕微鏡システムに係るDFリング光源のLED照明の点灯部位の自動回転について説明する図である。
[図14A] 図14Aは、本発明の実施の形態2に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図14B] 図14Bは、本発明の実施の形態2に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図14C] 図14Cは、本発明の実施の形態2に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図15] 図15は、本発明の実施の形態2に係るEFI生成のフローチャートである。
[図16] 図16は、本発明の実施の形態2に係る顕微鏡システムにおけるタイミングチャートである。
[図17] 図17は、本発明の実施の形態2の変形例1に係る顕微鏡システムの概略構成を示す模式図である。
[図18A] 図18Aは、本発明の実施の形態2の変形例1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図18B] 図18Bは、本発明の実施の形態2の変形例1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図18C] 図18Cは、本発明の実施の形態2の変形例1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図18D] 図18Dは、本発明の実施の形態2の変形例1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図19] 図19は、本発明の実施の形態2の変形例1に係るEFI生成のフローチャートである。
[図20] 図20は、本発明の実施の形態2の変形例2に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図21] 図21は、本発明の実施の形態2の変形例3に係る顕微鏡システムの概略構成を示す模式図である。
[図22] 図22は、本発明の実施の形態2の変形例3に係る顕微鏡システムの通信系統の構成を示すブロック図である。
[図23] 図23は、本発明の実施の形態2の変形例3に係る顕微鏡システムでEFIを生成する際のフローチャートである。
[図24] 図24は、本発明の実施の形態3に係る顕微鏡システムの通信系統の構成を示すブロック図である。
[図25] 図25は、本発明の実施の形態3に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[図26] 図26は、本発明の実施の形態3に係る顕微鏡システムでEFIを生成する際のフローチャートである。
[図27] 図27は、本発明の実施の形態4に係る顕微鏡システムの通信系統の構成を示すブロック図である。
[図28A] 図28Aは、本発明の実施の形態4に係る顕微鏡システムの表示部に表示される画像合成画面の一例を示す図である。
[図28B] 図28Bは、本発明の実施の形態4に係る顕微鏡システムの表示部に表示される画像合成画面の一例を示す図である。
[図28C] 図28Cは、本発明の実施の形態4に係る顕微鏡システムの表示部に表示される画像画面の一例を示す図である。
[図29] 図29は、本発明の実施の形態4に係る顕微鏡システムで合成画像を生成する際のフローチャートである。

発明を実施するための形態

[0017]
 以下、図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について説明する。なお、以下に説明する実施の形態によって、本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。即ち、本発明は、各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
[0018]
 (実施の形態1)
 図1は、本発明の実施の形態1に係る顕微鏡システムの概略構成を示す模式図である。顕微鏡システム100は、顕微鏡本体部1と、標本2を載置するステージ3と、ステージ3に対向して配置された対物レンズ4と、標本2に明視野(BF)照明用の照明光を照射する同軸落射光源5と、標本2に暗視野(DF)照明用の照明光を照射するDFリング光源6と、標本2から反射した光を観察する接眼レンズ7と、標本2から反射した光を撮像する撮像装置8と、顕微鏡システム100の駆動を制御する制御部9と、撮像装置8が生成した画像データに対応する画像を表示するとともに、顕微鏡システム100の各種の操作の入力を受けつける画像処理装置20と、標本2に照射する照明光等を設定する操作部30と、を備える。顕微鏡本体部1、撮像装置8、制御部9、画像処理装置20、および操作部30は、データが送受信可能に有線または無線で接続されている。
[0019]
 顕微鏡本体部1は、側面視略C字状をなし、ステージ3を支持するとともに、レボルバ11を介して対物レンズ4を保持する顕微鏡フレーム12を有している。
[0020]
 ステージ3は、XYZ軸方向に移動自在に構成され、図示しないステージ操作部の操作に応じて移動する。
[0021]
 レボルバ11は、顕微鏡フレーム12に対してスライド自在または回転自在に設けられ、対物レンズ4を標本2の上方に配置する。レボルバ11は、倍率(観察倍率)が異なる複数の対物レンズ4を保持する。
[0022]
 対物レンズ4は、レボルバ11に装着される。顕微鏡フレーム12に設けられる焦準ハンドル16の操作により、ステージ3が光路方向(Z軸方向)に移動され焦準が調整される。
[0023]
 同軸落射光源5は、明視野照明用の照明光を照射する落射光源13aを有するランプハウス13と、落射光源13aが発した照明光を集光してキューブターレット14内のミラー14aへ出射する投光管15と、を有する。投光管15には、少なくとも落射光源13aが発した明視野照明用の照明光を集光する集光レンズ15a、および開口絞り15bが設けられている。開口絞り15bは、ステッピングモータや超音波モータ等のモータを有し、制御部9の制御のもと、モータが駆動され、開口絞り15bの開口が調整される。落射光源13aが発した明視野照明用の照明光は、集光レンズ15a、開口絞り15b、ミラー14aおよび対物レンズ4等の照明光学系を介して標本2に照射され、標本2からの反射光は、対物レンズ4、ミラー14a、三眼鏡筒17内の結像レンズ17a、ならびに図示しない分割プリズムおよびミラーにより接眼レンズ7または撮像装置8に導入されて、目視観察等が行われる。
[0024]
 DFリング光源6は、複数のLED照明61がリング状に配置されている。LED照明61から照射された暗視野照明用の照明光は、略並行光であり、対物レンズ4の光路中心の外側に設けられた暗視野光路を通過し、標本2に照射される。本発明の実施の形態1では、DFリング光源6は16個のLED照明61を備え、各LED照明61がセグメントに分割されて、セグメント毎に点灯と消灯を行うよう制御部9により制御される。図2Aは、DFリング光源6の点灯モード変更時のLED照明61の点灯部位を示す図である。図2Aにおいて、黒丸は点灯するLED照明61、白丸は消灯するLED照明61を示している。
[0025]
 DFリング光源6は、LED照明61が90度(4/16)点灯するモード(図2A(1))、LED照明61が180度(8/16)点灯するモード(図2A(2))、LED照明61が360度(16/16)点灯するモード(図2A(3))の点灯モードを有する。点灯モード(図2Aの(1)~(3))の変更は、後述する操作部30の点灯モード選択部32(図4参照)を押下することにより行うことができる。点灯モードを変更することにより、標本2の凹凸等の観察が容易となる。
[0026]
 また、DFリング光源6は、点灯モードを変更することなく、LED照明61の点灯箇所を回転することができる。図2Bは、DFリング光源6のセグメント回転時のLED照明61の点灯部位を示す図である。図2Bは、4つのLED照明61が点灯するパターン(図2A(1))が選択された状態で点灯するセグメントが回転する場合のLED照明61の点灯部位を示している。図2Bに示すように、リング状に配置された内の左上の4つのLED照明61が点灯した状態(図2B(1))で、後述する操作部30の回転操作部33(図4参照)のツマミを回転すると、LED照明61の点灯箇所が時計回り(CW)または反時計回り(CCW)に1つずつ(22.5°ずつ)回転する。LED照明61の点灯箇所が回転することにより、標本2の凹凸等の観察が容易となる。
[0027]
 撮像装置8は、対物レンズ4および結像レンズ17a等を介して入射された標本2の観察像(観察光)を受光して光電変換を行うことによって、光を電気信号(アナログ信号)に変換する複数の画素を有するCCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子と、撮像素子から出力される電気信号に増幅(ゲイン調整)等の信号処理を施した後、A/D変換を行うことによってデジタルの標本2の画像データに変換してEFI生成部25へ出力する信号処理部(図示せず)と、を用いて構成される。撮像装置8は、制御部9の制御のもと、標本2の画像データを微小な時間間隔で連続的に生成してEFI生成部25へ出力する。また、撮像装置8は、所定のフレームレート、例えば15fpsで画像データを生成する。なお、本実施の形態1では、撮像装置8が撮像部として機能する。
[0028]
 制御部9は、顕微鏡システム100の駆動を制御する。図3は、図1の顕微鏡システム100の通信系統の構成を示すブロック図である。制御部9は、操作部30を介して受信したコマンドに応じて、同軸落射光源5およびDFリング光源6の照明光の照射を制御する。また、制御部9は、操作部30を介して受信したコマンドに応じて、開口絞り15bの開口を制御する。
[0029]
 画像処理装置20は、パーソナルコンピュータを用いて構成され、撮像装置8が作成した複数の画像データに基づき全焦点画像を生成する。画像処理装置20は、撮像装置8が作成した画像データに対応する画像を表示する表示部21と、顕微鏡システム100に関する各種の操作を指示する指示信号の入力を受け付ける入力部22と、画像処理装置20が実行する各種のプログラムや情報を記録する画像処理記憶部23と、画像処理装置20の各部を制御する画像処理制御部24と、を備える。画像処理装置20は、撮像装置8の制御を行うとともに、撮像装置8が生成した画像データを取得して表示部21に表示する。
[0030]
 表示部21は、液晶または有機EL(Electro Luminescence)等からなる表示パネルを用いて構成される。表示部21は、撮像装置8が生成した画像データに対応する画像を表示する。
[0031]
 入力部22は、キーボードおよびマウス等の入力デバイスを用いて構成され、各種の入力デバイスの操作入力に応じた操作信号を画像処理装置20へ出力する。
[0032]
 画像処理記憶部23は、SDRAM(Synchronous Dynamic Random Access Memory)やFlashメモリ等を用いて構成され、画像処理装置20が実行する各種のプログラム、処理中のデータおよび撮像装置8が生成した画像データ等を記録する。また、画像処理記憶部23は、外部から着脱自在なメモリカード等を用いて構成してもよい。
[0033]
 画像処理制御部24は、CPU(Central Processing Unit)等を用いて構成される。画像処理制御部24は、画像処理装置20の各部を制御することによって、画像処理装置20の動作を統括的に制御する。画像処理制御部24は、画像データの画素毎のコントラスト値を算出し、高いコントラスト値を示す画素を取り出し合成して全焦点画像を生成するEFI生成部25と、撮像装置8が生成した画像データの画素毎のコントラスト値が最も高い輝度値を保持し合成されたコントラストマップを生成するコントラストマップ生成部26と、を有する。
[0034]
 操作部30は、図4に示すように、DFリング光源6のLED照明61を全点灯/全消灯するON/OFFスイッチ31と、DFリング光源6の点灯モード、例えば、図2Aに示す、90度点灯するモード、180度点灯するモード、360度点灯するモードの選択を行う点灯モード選択部32と、DFリング光源6の点灯モードを保持した状態で、LED照明61の点灯箇所を回転する回転操作部33と、DFリング光源6の光量を増減するDF光源光量操作部34a、34bと、同軸落射光源5の光量を増減する同軸光源光量操作部35a、35bと、開口絞り15bの開口を調整するAS操作部36a、36bと、を備える。観察者は、操作部30の各操作部を介して、同軸落射光源5およびDFリング光源6の光量、DFリング光源6の点灯モードの選択、回転、開口絞り15bの開口についての指示を入力する。
[0035]
 次に、図5を参照して全焦点画像の作成について説明する。図5A~図5Cは、実施の形態1に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[0036]
 表示部21は、図5Aに示すEFI生成画面120aを表示する。EFI生成画面120aは、EFI生成の開始を指示する開始信号の入力を受け付けるEFI開始ボタン121aと、EFI生成の際、傷モードの選択を指示する信号を受け付ける傷モードボタン122aと、EFI生成の際、通常モードの選択を指示する信号を受け付ける通常モードボタン122bと、撮像装置8で撮像した標本2のライブ画像を表示するライブ画像表示部123と、ライブ画像表示部123でのライブ画像の表示の開始/停止の選択を指示する信号の入力を受け付けるライブ画像ボタン124と、を有する。
[0037]
 EFI生成の傷モードは、表面に凹凸がある標本2や、表面の段差が大きい、または段差が急峻である標本2の全焦点画像を生成する場合に使用するモードであり、通常モードは、上記以外の比較的表面が滑らかな標本2の全焦点画像を生成する場合に使用するモードである。観察者は、標本2に応じて、傷モードと通常モードを傷モードボタン122aまたは通常モードボタン122bにより選択して全焦点画像を生成することができる。
[0038]
 EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付け、傷モードボタン122aまたは通常モードボタン122bによりEFIモードの選択がなされると、表示部21は、図5Bに示すEFI生成画面120bを表示する。EFI生成画面120bは、EFI生成の終了を指示する終了信号の入力を受け付けるEFI終了ボタン121bと、傷モードボタン122aと、通常モードボタン122bと、撮像装置8で撮像した標本2のライブ画像を表示するライブ画像表示部123と、ライブ画像ボタン124と、記憶する全焦点画像データについての、コントラストマップを表示するコントラストマップ表示部125と、を有する。EFI生成画面120bは、通常モードボタン122bにより通常モードが選択された画面を示しており、EFI生成画面120bで、操作無効となる操作部(傷モードボタン122aおよびライブ画像ボタン124)が視認(ハッチング等)できる構成となっている。
[0039]
 EFI生成部25は、撮像装置8が撮像し、作成した画像データ、すなわちライブ画像表示部123に表示される画像から焦点の合った部分を抜き出し、全焦点画像を生成する。コントラストマップは、撮像装置8が撮像し、作成した画像データの画素毎のコントラスト値が最も高い輝度値を保持し合成して生成される画像で、EFI生成部25が生成した全焦点画像について、画素毎のコントラスト値を輝度変換して示したものであり、画面が白くなるほど(輝度が高い)ピントが合っており、黒い(輝度が低い)とピントが合っていない状態であることを示している。観察者は、焦準ハンドル16の操作によりステージ3に載置された標本2の光路方向(Z軸方向)の位置を調整し、新たに作成された画像データおよびコントラストマップを見ながら、全焦点画像のピントが合っている部分と合っていない部分とを判断することができる。
[0040]
 観察者は、コントラストマップ表示部125に表示されるコントラストマップに基づき、所望する全焦点画像が生成できたと判断した場合は、図5BのEFI生成画面120bのEFI終了ボタン121bによりEFI終了の指示を入力する。EFI終了の指示が入力されると、図5Cに示すEFI生成画面120cが表示部21に表示される。EFI生成画面120cは、全焦点画像を表示する全焦点画像表示部126を備える。観察者は、全焦点画像表示部126に表示される全焦点画像を確認した後、ライブ画像ボタン124を選択指示することにより、表示部21には図5AのEFI生成画面120aが再度表示されるので、新たな標本2の全焦点画像の生成を行うことができる。
[0041]
 上述したEFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付け、通常モードボタン122bにより通常モードが選択されると、図6に示すフローチャートで、全焦点画像が生成される。
[0042]
 通常モードでは、まず、制御部9により顕微鏡本体1の各部の操作が無効、つまり、顕微鏡の観察条件を変更不可とされ(ステップS1)、表示部21にEFI生成画面120bが表示される(ステップS2)。EFI生成部25は、EFI終了ボタン121bが押下されたか否かを判断し(ステップS3)、EFI終了ボタン121bが押下されていない場合は(ステップS3:No)、撮像装置8により画像データを取得し(ステップS4)、EFI生成部25は取得された画像データの画素毎のコントラスト値を算出し、従前の全焦点画像より高いコントラスト値を示す画素を取り出し、全焦点画像を生成する(ステップS5)。
[0043]
 EFI生成部25が全焦点画像を生成すると、コントラストマップ生成部26は、生成された全焦点画像のコントラスト値を輝度変換したコントラストマップを生成、更新する(ステップS6)。EFI生成部25が、EFI終了ボタン121bが押下されていないと判断した場合は(ステップS3:No)、ステップS4~ステップS6、すなわち、画像データの取得、全焦点画像の生成およびコントラストマップの更新が繰り返される。
[0044]
 EFI生成部25が、EFI終了ボタン121bが押下されたと判断すると(ステップS3:Yes)、表示部21にEFI生成画面120cが表示され、全焦点画像表示部126は直前に作成された全焦点画像を表示する(ステップS7)。制御部9は顕微鏡本体1の操作を有効とし(ステップS8)、EFI生成が終了する。
[0045]
 一方、EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付け、傷モードボタン122aにより傷モードが選択されると、図7に示すフローチャートで、全焦点画像が生成される。
[0046]
 傷モードでは、表示部21にEFI生成画面120bが表示され(ステップS11)、EFI生成部25は、EFI終了ボタン121bが押下されたか否かを判断する(ステップS12)。EFI終了ボタンが押下されていないと判断した場合は(ステップS12:No)、操作部30による顕微鏡本体1の操作、つまり、顕微鏡の観察条件の変更と、全焦点画像およびコントラストマップの生成が平行して行われる。
[0047]
 制御部9は、操作部30の各種選択部が押下された否かを判断し(ステップS13)、操作部30が操作されたと判断した場合は(ステップS13:Yes)、制御部9は、操作部30により受け付けた指示に基づき、顕微鏡の光源等を操作する(ステップS14)。操作部30が操作されていないと判断した場合は(ステップS13:No)、ステップS12から繰り返す。傷モードでは、観察者は、コントラストマップに基づき、全焦点画像においてコントラストが低い部分があると判断した場合、操作部30により顕微鏡の光源、例えば、同軸落射光源5とDFリング光源6とを標本2に同時に照射したり、DFリング光源6の点灯モードを選択等の顕微鏡の観察条件を変更することにより、コントラストに優れた全焦点画像を生成することができる。
[0048]
 顕微鏡の操作と平行し、撮像装置8は画像データを取得し(ステップS15)、EFI生成部25は、画像データのコントラスト値を算出し、全焦点画像を生成する(ステップS16)。コントラストマップ生成部26は、全焦点画像からコントラストマップを生成、更新する(ステップS17)。
[0049]
 EFI生成部25は、EFI終了ボタン121bが押下されたと判断すると(ステップS12:Yes)、表示部21にEFI生成画面120cが表示され、全焦点画像表示部126は直前に作成された全焦点画像を表示し(ステップS18)、EFI生成を終了する。
[0050]
 図8は、表示部21に表示されるライブ画像とコントラストマップに基づくEFIの生成について説明する図である。図8(a)はEFI生成の開始時、図8(b)は標本2の下面2aにピントが合った状態、図8(c)は標本2の上面2bにピントが合った状態、図8(d)は同軸落射光源5とDFリング光源6とを標本2に同時に照射した状態でのライブ画像およびコントラストマップを示す。なお、図8(a)~図8(d)のコントラストマップは、図8(a)~図8(d)のライブ画像を経時的に合成した全焦点画像から生成したものである。
[0051]
 図8(a)で示すEFI生成の開始時のライブ画像124aは、標本2のどこにも焦点が合っていない。したがって、ライブ画像124aから生成された全焦点画像のコントラストマップ125aは全体が黒く示され、全焦点画像の全体で焦点が合っていないことが確認できる。
[0052]
 図8(b)は、観察者がステージ3を下降することにより、標本2の下面2aにピントが合った状態を示している。このライブ画像124bから生成された全焦点画像のコントラストマップ125bは、下面2aが白く示され、これにより全焦点画像の下面2aで焦点が合ったことが確認できる。
[0053]
 図8(c)は、観察者がさらにステージ3を下降し、標本2の上面2bにピントが合った状態を示している。このライブ画像124cを合成した全焦点画像のコントラストマップ125cは、下面2aおよび上面2bが白く示され、合成した画像データの下面2aおよび上面2bで焦点が合ったことが確認できる。
[0054]
 図8(a)~図8(c)は同軸落射光源5のみを使用して観察したものであり、標本2の下面2aおよび上面2bで焦点が合った全焦点画像を生成できる。しかしながら、標本2の下面2aと上面2bとの間に段差があり、この段差が高い(または急峻である)ため、段差部分の焦点は合っていない。本実施の形態1では、同軸落射光源5に加えてDFリング光源6により標本2の四方から照明光を照射しながら、撮像装置8により標本2の画像データを取得し、この画像データに基づき全焦点画像を生成する。
[0055]
 図8(d)は、標本2の上面2bに焦点を合わせ、同軸落射光源5とDFリング光源6とを標本2に同時に照射して撮像した標本2の画像データである。このライブ画像124dから生成された全焦点画像のコントラストマップ125dは、標本2の全面が白く示され、取得した全焦点画像の全面で焦点が合ったことが確認できる。観察者は、操作部30の点灯モード選択部32、回転操作部33等により、DFリング光源6からの照明光の照射方向を変えて画像データを取得し、全焦点画像を生成する。観察者は、コントラストマップ表示部125に表示されるコントラストマップを見ながら、EFI生成時、操作部30を操作して観察条件を変更できるので、簡易かつ確実に、表面に細かい凹凸がある標本2や、表面の段差が大きかったり、段差が急峻である標本2においても、全体に焦点が合い、標本2のコントラストが反映された全焦点画像を生成することができる。
[0056]
 図9は、同一の標本2について光源を変更して作成した全焦点画像である。図9(a)は標本2に同軸落射光源5のみを照射して作成した全焦点画像であり、図9(b)は、標本2に同軸落射光源5とDFリング光源6のLED照明61を全点灯して作成した全焦点画像、図9(c)は、標本2に同軸落射光源5とDFリング光源6を90度点灯するモード(図2A(1))で点灯するLED照明61を回転させて作成した全焦点画像である。図9(b)および図9(c)は、図9(a)よりコントラストが高く、表面の細かい凹凸がより鮮明に確認できる。
[0057]
 上記の実施の形態1では、コントラストマップを見ながら、EFIを作成できるので、標本2のコントラストが反映された全焦点画像を得ることができる。また、EFI生成時、顕微鏡の操作指示を受け付ける、つまり、観察条件を変更できる傷モードと、顕微鏡の操作指示を受け付けない、つまり観察条件を変更できない通常モードと、を観察者が適宜選択することにより、標本2に応じたEFI作成を行うことができる。
[0058]
 なお、実施の形態1の傷モードでは、開口絞り15bの開口をAS操作部36a、36bにより操作可能とするが、開口絞り15bの開口の最適位置は使用する対物レンズ4の瞳径により決定されるものであるので、傷モードが選択された際、制御部9が開口絞り15bの開口を、対物レンズ4の瞳径の60%~80%となるよう自動的に制御する構成としてもよい。
[0059]
 図10は、実施の形態1の変形例1にかかるEFI生成のフローチャートである。EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付け、傷モードボタン122aにより傷モードが選択されると、表示部21にEFI生成画面120bが表示され(ステップS21)、制御部9が開口絞り15bのモータを駆動し、開口が対物レンズ4の瞳径の60%~80%となるよう制御する(ステップS22)。その後、ステップS23~ステップS29を、図7のステップS12~ステップS18と同様に行った後、制御部9は、開口絞り15bのモータを駆動し、開口をもとの位置まで戻すよう制御する(ステップS30)。なお、通常モードにおいても、制御部9により開口絞り15bの開口を対物レンズ4の瞳径の60%~80%となるよう自動的に制御した後、EFIを生成してもよい。
[0060]
 さらに、実施の形態1の傷モードにおいて、操作部30による顕微鏡の操作は、少なくとも凹凸の観察が容易となるDFリング光源6の操作が可能であればよく、例えば、同軸落射光源5の光量の操作を無効とするよう設定することも可能である。
[0061]
(実施の形態2)
 実施の形態2の顕微鏡システム100Aは、全焦点画像を生成する際、DFリング光源6の点灯するセグメントを自動的に変更しながら、撮像装置8が撮像し、画像データを作成する。図11は、実施の形態2に係る顕微鏡システムの概略構成を示す模式図である。図12は、実施の形態2に係る顕微鏡システムの通信系統の構成を示すブロック図である。図13は、実施の形態2の顕微鏡システムに係るDFリング光源のLED照明の点灯部位の自動回転について説明する図である。
[0062]
 顕微鏡システム100Aにおいて、制御部9Aは、撮像装置8の露出時間と画像データの転送時間とに基づき、DFリング光源6の点灯時間Tを決定する駆動時間設定部91を有する。制御部9Aは、撮像装置8の露出時間を決定または取得するとともに、撮像装置8から画像データの転送時間を取得する。駆動時間設定部91は、撮像装置8が標本2の撮像に要する時間、すなわち露出時間と、画像データの転送に要する時間との和からDFリング光源6の点灯時間Tを決定する。DFリング光源6の点灯時間Tは、撮像装置8の露出の開始前から画像データの転送終了後まで点灯されるように設定されればよく、画像データの転送が露出完了前に開始される場合は、露出時間と転送時間の和より小さく設定してもよい。
[0063]
 制御部9Aは、EFI生成の指示を受信すると、図13に示すように、DFリング光源6の90度点灯モードで点灯するLED照明61の点灯セグメントを、T秒経過するごとに時計回りに自動的に回転させる。また、制御部9Aは、点灯セグメントの回転と撮像装置8での撮像とを同期させるよう制御する。実施の形態2では、DFリング光源6の偏射方向を自動的に変更できるので、より簡易にコントラストの高い全焦点画像を得ることができる。
[0064]
 図14A~図14Cは、実施の形態2に係る顕微鏡システム100Bの表示部21に表示されるEFI生成画面の一例を示す図である。
[0065]
 図14AのEFI生成画面120dは、EFI生成の開始を指示する開始信号の入力を受け付けるEFI開始ボタン121aと、撮像装置8で撮像した標本2のライブ画像を表示するライブ画像表示部123と、ライブ画像表示部123でのライブ画像の表示の開始/停止の選択を指示する信号の入力を受け付けるライブ画像ボタン124と、を有する。
[0066]
 EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付けると、表示部21は、図14Bに示すEFI生成画面120eを表示する。EFI生成画面120eは、EFI生成の終了を指示する終了信号の入力を受け付けるEFI終了ボタン121bと、ライブ画像表示部123と、ライブ画像ボタン124と、コントラストマップ表示部125と、を有する。
[0067]
 観察者は、コントラストマップ表示部125に表示されるコントラストマップに基づき、所望する全焦点画像が生成できたと判断した場合は、図14BのEFI生成画面120eのEFI終了ボタン121bによりEFI終了の指示を入力する。EFI終了の指示が入力されると、図14Cに示すEFI生成画面120fが表示部21に表示される。EFI生成画面120fは、全焦点画像を表示する全焦点画像表示部126を備える。観察者は、全焦点画像表示部126に表示される全焦点画像を確認した後、ライブ画像ボタン124の選択指示することにより、表示部21には図14AのEFI生成画面120dが再度表示される。
[0068]
 EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付けると、図15に示すフローチャートで、全焦点画像が生成される。
[0069]
 制御部9Aは、顕微鏡本体1の各部の操作を無効とし(ステップS41)、表示部21にEFI生成画面120eが表示される(ステップS42)。制御部9Aは、撮像装置8の露出時間を設定または取得するとともに、画像データの転送時間を取得する(ステップS43)。駆動時間設定部91は、露光時間および転送時間に基づき、DFリング光源6の点灯時間Tを設定する(ステップS44)。
[0070]
 EFI生成部25は、EFI終了ボタン121bが押下されたか否かを判断し(ステップS45)、EFI終了ボタン121bが押下されていない場合は(ステップS45:No)、制御部9AはDFリング光源6の点灯セグメントが1つ時計回り(CW方向)に回転するよう制御する(ステップS46)。点灯セグメントを変更した後、制御部9Aはカウントを開始し(ステップS47)、撮像トリガ"H-L"パルスを出力する(ステップS48)。
[0071]
 撮像トリガを出力後、撮像装置8は画像データを取得し(ステップS49)、EFI生成部25は、取得された画像データのコントラスト値を算出し、高いコントラスト値を示す画素を取り出し、全焦点画像を生成(ステップS50)し、コントラストマップ生成部26は、生成された全焦点画像のコントラスト値を輝度変換したコントラストマップを生成、更新する(ステップS51)。
[0072]
 制御部9Aは、T時間経過したか否かを判断し(ステップS52)、経過していない場合は(ステップS52:No)、ステップS52を繰り返し、経過した場合は(ステップS52:Yes)、ステップS45から繰り返す。
[0073]
 EFI生成部25が、EFI終了ボタン121bが押下されたと判断すると(ステップS45:Yes)、制御部9Aは、DFリング光源6の点灯セグメントを1つ時計回り(CW方向)に回転する自動回転モードを停止し(ステップS53)、表示部21にEFI生成画面120fを表示し、全焦点画像表示部126は直前に作成された全焦点画像を表示する(ステップS54)。制御部9Aは顕微鏡本体1の操作を有効とし(ステップS55)、EFI生成が終了する。
[0074]
 図16は、発明の実施の形態2に係る顕微鏡システム100Aにおけるタイミングチャートである。顕微鏡システム100Aでは、制御部9Aが、DFリング光源6の点灯セグメントを回転した後、撮像トリガがLからHとなる。撮像装置8は、撮像トリガのエッジを検出後、露出を開始して撮像を行う。撮像装置8が撮像し、生成した画像データは画像処理装置20に転送される。実施の形態2では、以上の処理を、DFリング光源6の点灯時間がT秒となるように制御し、点灯セグメントの回転と撮像装置8での撮像とを同期させている。これにより、観察者は、より簡易に、コントラストの高い全焦点画像を得ることができる。
[0075]
 上記の実施の形態2では、DFリング光源6の点灯するセグメントを自動的に変更し、撮像装置8により撮像したすべての画像データに基づき全焦点画像を作成しているが、観察者が自動的に撮像された画像データを個々に観察し、観察者が選択した画像データから全焦点画像を作成することも可能である。
[0076]
 図17は、実施の形態2の変形例1に係る顕微鏡システムの概略構成を示す模式図である。図18A~図18Dは、実施の形態2の変形例1に係る顕微鏡システムの表示部21に表示されるEFI生成画面の一例を示す図である。
[0077]
 図18AのEFI生成画面120hは、EFI生成の開始を指示する開始信号の入力を受け付けるEFI開始ボタン121aと、撮像装置8で撮像した標本のライブ画像を表示するライブ画像表示部123と、ライブ画像表示部123でのライブ画像2の表示の開始/停止の選択を指示する信号の入力を受け付けるライブ画像ボタン124と、を有する。
[0078]
 EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付けると、表示部21は、図18Bに示すEFI生成画面120jを表示する。EFI生成画面120jは、EFI生成の終了を指示する終了信号の入力を受け付けるEFI終了ボタン121bと、ライブ画像ボタン124と、撮像装置8により撮像され、撮像時のDFリング光源6のセグメント情報を付して画像処理記憶部23Eに記憶されたイメージ画像を表示するイメージ画像表示部128と、イメージ画像表示部128に表示するイメージ画像を次のセグメントのイメージ画像に送る送りボタン129a、およびイメージ画像を前のセグメントのイメージ画像に戻す戻しボタン129bと、DFリング光源6をイメージ画像表示部128に表示されるDFリング光源6の照明セグメントに再現するリング光源再現ボタン130と、撮像したすべての照明セグメントのイメージ画像を表示する全画像表示ボタン131と、を有する。
[0079]
 全画像表示ボタン131が押圧されると、表示部21は、図18Cに示すEFI生成画面120kを表示する。EFI生成画面120kは、EFI終了ボタン121bと、ライブ画像ボタン124と、画像処理記憶部23Eに記憶された全照明セグメントのイメージ画像を表示するイメージ画像表示部128Aと、観察者が選択したイメージ画像を合成する合成ボタン132と、を有する。変形例1では、観察者は、図18Bのイメージ画像表示部128に表示されるイメージ画像、または図18Cのイメージ画像表示部128Aに表示される全照明セグメントのイメージ画像128-1~128-16を観察して、所望の画像を選択し、合成ボタン132の押圧により画像合成を指示する開始信号の入力を受け付けると、合成画像生成部28は選択したイメージ画像の合成画像を生成する。
[0080]
 合成ボタン132が押圧されると、表示部21は、図18Dに示すEFI生成画面120rを表示する。EFI生成画面120rは、EFI終了ボタン121bと、ライブ画像ボタン124と、合成画像を表示する合成画像表示部133と、を有する。観察者は、合成画像表示部133に表示される全焦点画像を確認した後、ライブ画像ボタン124を選択指示することにより、表示部21には図18AのEFI生成画面120hが再度表示される。
[0081]
 次に、図を参照して、実施の形態2の変形例1に係る顕微鏡システムでの全焦点画像の生成について説明する。図19は、実施の形態2の変形例1に係るEFI生成のフローチャートである。
[0082]
 変形例1では、実施の形態2と同様に、制御部9Eは、顕微鏡本体1の各部の操作を無効とし(ステップS121)、表示部21にEFI生成画面120hが表示される(ステップS122)。制御部9Eは、撮像装置8の露出時間を設定または取得するとともに、画像データの転送時間を取得する(ステップS123)。駆動時間設定部91は、露光時間および転送時間に基づき、DFリング光源6の点灯時間Tを設定する(ステップS124)。
[0083]
 その後、DFリング光源6のカウンタIが初期化(I=1)され(ステップS125)、撮像装置8は画像データを取得する(ステップS126)。EFI生成部25Eは、EFI終了ボタン121bが押下されたか否かを判断し(ステップS127)、EFI終了ボタン121bが押下されていない場合は(ステップS127:No)、制御部9EはDFリング光源6の点灯セグメントが1つ時計回り(CW方向)に回転するよう制御する(ステップS128)。点灯セグメントを変更した後、制御部9Eはカウントを開始し(ステップS129)、撮像トリガ"H-L"パルスを出力し(ステップS130)、撮像装置8は画像データを取得し(ステップS131)、画像データは画像処理記憶部23Eにセグメント情報とともに記憶される。
[0084]
 制御部9Eは、T時間経過したか否かを判断し(ステップS132)、経過していない場合は(ステップS132:No)、ステップS132を繰り返し、経過した場合は(ステップS132:Yes)、DFリング光源6のカウンタIを更新(I=I+1)する(ステップS133)。
[0085]
 制御部9Eは、DFリング光源6のカウンタIが16か否かを判断し(ステップS134)、カウンタIが16でない場合は(ステップS134:No)、ステップS128から繰り返す。カウンタIが16の場合は(ステップS134:Yes)、イメージ画像表示部128にカウンタIが1のイメージ画像を表示する(ステップS135)。
[0086]
 制御部9Eは、合成ボタン132が押下されたか否かを判断し(ステップS136)、合成ボタン132が押下されていない場合は(ステップS136:No)、ステップS136を繰り返し、押圧された場合は(ステップS136:Yes)、合成画像生成部28は、選択されたイメージ画像のコントラスト値を算出し(ステップS137)、高いコントラスト値を示す画素を取り出し、合成画像を生成、記憶し(ステップS138)、ステップS127から繰り返す。
[0087]
 EFI生成部25Eが、EFI終了ボタン121bが押下されたと判断すると(ステップS127:Yes)、制御部9Eは、DFリング光源6の点灯セグメントを1つ時計回り(CW方向)に回転する自動回転モードを停止する(ステップS139)。EFI生成部25Eは、記録された複数の合成画像から全焦点画像を生成し(ステップS140)、生成した全焦点画像を全焦点画像表示部に表示する(ステップS141)。制御部9Eは顕微鏡本体1の操作を有効とし(ステップS142)、EFI生成が終了する。
[0088]
 実施の形態2の変形例1では、DFリング光源6の点灯セグメントを変えて撮像されたイメージ画像を、1枚ごと、または撮像した全イメージ画像を対比させて観察可能であり、標本2に応じた好ましい照明条件の探索が容易となる。また、リング光源再現ボタン130を有するため、リング光源再現ボタン130を押圧するだけで自動的に好ましい照明条件に設定可能となり、その後ライブ画像ボタン124を押圧することで、標本2を選択した照明条件下で即時に観察することができる。
[0089]
 実施の形態2の変形例1では、EFI生成画面120hのEFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付けると、表示部21はEFI生成画面120jを表示するが、EFI生成画面120qを表示してもよい。図20は、実施の形態2の変形例2に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。
[0090]
 EFI生成画面120qは、EFI終了ボタン121bと、ライブ画像ボタン124と、イメージ画像表示部128と、送りボタン129aおよび戻しボタン129bと、リング光源再現ボタン130と、全画像表示ボタン131と、イメージ画像表示部128に表示されているイメージ画像を撮像した際のDFリング光源6の照明セグメントを表示する照明セグメント表示部134と、を有する。照明セグメント表示部134でDFリング光源6の照明セグメントが表示されているので、照明条件を容易に把握することができる。
[0091]
 上記の実施の形態2、ならびに変形例1および2では、観察者はDFリング光源6の操作を行うことなく、簡易に全焦点画像を得ることができるが、標本2のZ軸方向の移動は、観察者が焦準ハンドル16の操作により行う必要がある。標本2を載置するステージ3にモータを配置し、標本2のZ軸方向の移動を制御部が制御しながら、EFIを生成してもよい。
[0092]
 図21は、実施の形態2の変形例3に係る顕微鏡システム100Bの概略構成を示す模式図である。図22は、実施の形態2の変形例3に係る顕微鏡システム100Bの通信系統の構成を示すブロック図である。図23は、実施の形態2の変形例3に係る顕微鏡システム100BでEFIを生成する際のフローチャートである。
[0093]
 顕微鏡システム100Bは、ステージ3aと、ステージ3aをZ軸方向へ移動させるステージ駆動部3bと、を備える。制御部9Bは、ステージ駆動部3bを制御して、ステージ3aをZ軸方向に移動する。
[0094]
 EFI開始ボタン121aにより、EFI生成の開始を指示する開始信号の入力を受け付けると、図23に示すフローチャートで、全焦点画像が生成される。
[0095]
 制御部9Bは、顕微鏡本体1の各部の操作を無効とし(ステップS80)、表示部21にEFI生成画面が表示される(ステップS81)。制御部9Bは、撮像装置8の露出時間を設定または取得するとともに、画像データの転送時間を取得する(ステップS82)。駆動時間設定部91は、露光時間および転送時間に基づき、DFリング光源6の点灯時間Tを設定する(ステップS83)。
[0096]
 EFI生成部25は、EFI終了ボタン121bが押下されたか否かを判断し(ステップS84)、EFI終了ボタン121bが押下されていない場合は(ステップS84:No)、制御部9Bは、ステージ駆動部3bを制御して、ステージ3aを上昇または下降させる(ステップS85)。ステージ3aのZ軸方向へ移動した後、ステップS86~ステップS92を、実施の形態2のステップS46~ステップS52と同様に行う。
[0097]
 EFI生成部25が、EFI終了ボタン121bが押下されたと判断すると(ステップS84:Yes)、表示部21にEFI生成画面を表示し、全焦点画像表示部126に直前に作成された全焦点画像を表示する(ステップS93)。制御部9Bは顕微鏡本体1の操作を有効とし(ステップS94)、EFI生成が終了する。
[0098]
 実施の形態2の変形例3では、DFリング光源6の点灯セグメントを自動的に回転するとともに、ステージ3aのZ軸方向の移動も自動で行うため、観察者はさらに容易にコントラストの高い全焦点画像を得ることができる。
[0099]
(実施の形態3)
 実施の形態3にかかる顕微鏡システムは、全焦点画像を生成するだけでなく、全焦点画像の貼り合わせも可能とする。図24は、実施の形態3に係る顕微鏡システムの通信系統の構成を示すブロック図である。図25は、実施の形態3に係る顕微鏡システムの表示部に表示されるEFI生成画面の一例を示す図である。図26は、実施の形態3に係る顕微鏡システムでEFIを生成する際のフローチャートである。
[0100]
 実施の形態3にかかる顕微鏡システムにおいて、画像処理装置20Cは、生成した全焦点画像の貼り合わせを行うEFI貼り合わせ部27を備える。
[0101]
 実施の形態3にかかる顕微鏡システムでは、EFI生成画面120gは、EFI生成の開始を指示する開始信号の入力を受け付けるEFI開始ボタン121aと、撮像装置8で撮像した標本2のライブ画像を表示するライブ画像表示部123と、ライブ画像表示部123でのライブ画像の表示の開始/停止の選択を指示する信号の入力を受け付けるライブ画像ボタン124と、生成した全焦点画像の貼り合わせの指示を受け付ける貼り合わせボタン127と、を有する。
[0102]
 実施の形態3にかかる顕微鏡システムでは、EFI生成画面120gのEFI開始ボタン121aおよび貼り合わせボタン127により、EFI生成と貼り合わせの指示を受け付けると、制御部9は、顕微鏡本体1の各部の操作を無効、つまり観察条件の変更を不可とし(ステップS100)、DFリング光源6が点灯中か否かを判断する(ステップ101)。制御部9がDFリング光源6は点灯中と判断した場合(ステップ101:Yes)、DFリング光源6のLED照明61を全消灯する(ステップS102)。
[0103]
 制御部9がDFリング光源6は点灯していないと判断した場合(ステップ101:No)、EFI生成部25は、EFI終了ボタンが押下されたか否かを判断し(ステップS103)、EFI終了ボタンが押下されていない場合は(ステップS103:No)、撮像装置8により画像データを取得し(ステップS104)、EFI生成部25は取得された画像データの画素毎のコントラスト値を算出し、従前の全焦点画像より高いコントラスト値を示す画素を取り出し、全焦点画像を生成する(ステップS105)。
[0104]
 EFI生成部25が全焦点画像を生成すると、コントラストマップ生成部26は、生成された全焦点画像のコントラスト値を輝度変換したコントラストマップを生成、更新する(ステップS106)。EFI生成部25が、EFI終了ボタンが押下されていないと判断した場合は(ステップS103:No)、ステップS104~ステップS106が繰り返される。
[0105]
 EFI生成部25が、EFI終了ボタンが押下されたと判断すると(ステップS103:Yes)、EFI貼り合わせ部27は生成した全焦点画像を貼り合わせ、貼り合わせ画像を更新する(ステップS107)。EFI貼り合わせ部27は、貼り合わせ終了指示を受け付けたか否かを判断し(ステップS108)、終了指示を受け付けていない場合は(ステップS108:No)、ステップS103~ステップS108が繰り返される。貼り合わせ終了指示を受け付けた場合は(ステップS108:Yes)、DFリング光源6を貼り合わせ開始前の状態に点灯し(ステップS109)、制御部9は顕微鏡本体1の操作を有効とする(ステップS110)。表示部21にEFI貼り合わせ画像を表示して(ステップS111)、EFI貼り合わせが終了する。
[0106]
 実施の形態3では、観察条件の変更を不可とし、同一の条件でEFIを生成して、生成したEFIを貼り合わせる。実施の形態3では、DFリング光源6のLED照明61を全消灯したが、同一の条件でEFIを生成できれば、DFリング光源6のLED照明61を全点灯してもよく、あるいは、DFリング光源6を90度点灯モードで点灯セグメントを1つ時計回り(CW方向)に回転する自動回転モードとして貼り合わせるEFIを生成してもよい。
[0107]
(実施の形態4)
 実施の形態4にかかる顕微鏡システムは、DFリング光源6の照明セグメントを自動的に変更しながら、撮像装置8が撮像し、合成画像を生成する。図27は、実施の形態4に係る顕微鏡システムの通信系統の構成を示すブロック図である。図28A~図28Cは、実施の形態4に係る顕微鏡システムの表示部に表示される画像合成画面の一例を示す図である。図29は、実施の形態4に係る顕微鏡システムで合成画像を生成する際のフローチャートである。
[0108]
 図28Aの画像合成画面120mは、撮像開始を指示する開始信号の入力を受け付ける撮像開始ボタン135と、ライブ画像表示部123と、ライブ画像ボタン124と、を有する。
[0109]
 撮像開始ボタン135により、撮像開始を指示する開始信号の入力を受け付けると、表示部21は、図28Bに示す画像合成画面120nを表示する。画像合成画面120nは、撮像開始ボタン135と、ライブ画像ボタン124と、イメージ画像表示部128と、送りボタン129aおよび戻しボタン129bと、DFリング光源6をイメージ画像表示部128に表示されるDFリング光源6の照明セグメントに再現するリング光源再現ボタン130と、撮像したすべての照明セグメントのイメージ画像を表示する全画像表示ボタン131と、を有する。
[0110]
 全画像表示ボタン131が押圧されると、表示部21は、図28Cに示す画像合成画面120pを表示する。画像合成画面120pは、撮像開始ボタン135と、ライブ画像ボタン124と、画像処理記憶部23Eに記憶された全照明セグメントのイメージ画像を表示するイメージ画像表示部128Bと、観察者が選択したイメージ画像を合成する合成ボタン132と、を有する。実施の形態4では、観察者は、図28Bのイメージ画像表示部128に表示されるイメージ画像、または図28Cのイメージ画像表示部128Bに表示される全照明セグメントのイメージ画像128-1~128-16を観察して、所望の画像を選択し、合成ボタン132の押圧により画像合成を指示する開始信号の入力を受け付けると、合成画像生成部28は選択したイメージ画像の合成画像を生成する。
[0111]
 実施の形態4では、合成ボタン132が押圧されると、合成画像生成部28が生成した合成画像を表示部21に表示する。
[0112]
 撮像開始ボタン135により、EFI生成の開始を指示する開始信号の入力を受け付けると、図29に示すフローチャートで、全焦点画像が生成される。
[0113]
 実施の形態4では、制御部9Dは、顕微鏡の各部の操作を無効とし(ステップS201)、表示部21に画像合成画面120mを表示する(ステップS202)。制御部9Dは、撮像装置8の露出時間を設定または取得するとともに、画像データの転送時間を取得する(ステップS203)。駆動時間設定部91は、露光時間および転送時間に基づき、DFリング光源6の点灯時間Tを設定する(ステップS204)。
[0114]
 その後、DFリング光源6のカウンタIを初期化(I=1)し(ステップS205)、撮像装置8は画像データを取得する(ステップS206)。制御部9Dは、DFリング光源6のカウンタIが16か否かを判断し(ステップS207)、カウンタIが16でない場合は(ステップS207:No)、制御部9DはDFリング光源6の点灯セグメントが1つ時計回り(CW方向)に回転するよう制御する(ステップS208)。点灯セグメントを変更した後、制御部9Dはカウントを開始し(ステップS209)、撮像トリガ"H-L"パルスを出力し(ステップS210)、撮像装置8は画像データを取得し(ステップS211)、画像は画像処理記憶部23Dにセグメント情報とともに記憶される。
[0115]
 制御部9Dは、T時間経過したか否かを判断し(ステップS212)、経過していない場合は(ステップS212:No)、ステップS212を繰り返し、経過した場合は(ステップS212:Yes)、DFリング光源6のカウンタIを更新(I=I+1)し(ステップS213)、ステップ207に戻る。
[0116]
 カウンタIが16の場合は(ステップS207:Yes)、イメージ画像表示部128にカウンタIが1のイメージ画像を表示(ステップS214)する。制御部9Dは、合成ボタン132が押下されたか否かを判断し(ステップS215)、合成ボタン132が押下されていない場合は(ステップS215:No)、ステップS215を繰り返す。押圧された場合は(ステップS215:Yes)、合成画像生成部28は、選択されたイメージ画像のコントラスト値を算出し(ステップS216)、高いコントラスト値を示す画素を取り出し、合成画像を生成し(ステップS217)、制御部9Dは顕微鏡の操作を有効とし(ステップS218)、合成画像の生成が終了する。
[0117]
 実施の形態4では、DFリング光源6の点灯セグメントを変えて撮像されたイメージ画像を、1枚ごと、または全イメージ画像を対比させて観察可能であり、標本2に応じた好ましい照明条件の探索が容易となる。また、リング光源再現ボタン130を有するため、リング光源再現ボタン130を押圧するだけで自動的に好ましい照明条件に設定可能となる。また、コントラストの高いイメージ画像を用いて合成画像を生成することができる。
[0118]
 実施の形態4では、観察者が選択したイメージ画像に基づき合成画像を生成するが、全イメージ画像に基づき合成画像を生成してもよい。

符号の説明

[0119]
 1 顕微鏡本体部
 2 標本
 3、3a ステージ
 3b ステージ駆動部
 4 対物レンズ
 5 同軸落射光源
 6 DFリング光源
 7 接眼レンズ
 8 撮像装置
 9、9A、9B 制御部
 91 駆動時間設定部
 11 レボルバ
 12 顕微鏡フレーム
 13 ランプハウス
 13a 落射光源
 14 キューブターレット
 14a ミラー
 15 投光管
 15a 集光レンズ
 15b 開口絞り
 16 焦準ハンドル
 17 三眼鏡筒
 20 画像処理装置
 21 表示部
 22 入力部
 23 画像処理記憶部
 24 画像処理制御部
 25 EFI生成部
 26 コントラストマップ生成部
 27 EFI貼り合わせ部
 28 合成画像生成部 30 操作部
 31 ON/OFFスイッチ
 32 点灯モード選択部
 33 回転操作部
 34a、34b DF光源光量操作部
 35a、35b 同軸光源光量操作部
 36a、36b AS操作部
 100、100A、100B 顕微鏡システム

請求の範囲

[請求項1]
 標本の観察像を集光する対物レンズを介して前記標本を観察可能な顕微鏡システムにおいて、
 前記標本が載置されるステージと、
 前記標本に照射する光を射出する1つ以上の光源と、
 前記光源から射出された光を前記標本に照射する照明光学系と、
 前記光源の選択、状態および/または光量の設定を受け付ける操作部と、
 前記標本が載置される載置面と直交する直交方向へ移動可能であり、前記ステージと前記対物レンズとの距離を調整する焦準部と、
 前記対物レンズが集光した前記標本の観察像を撮像して、前記標本の画像データを生成する撮像部と、
 前記撮像部が生成した複数の前記画像データを合成して合成画像データを生成する合成画像生成部と、
 を備え、前記合成画像生成部が合成画像データを生成する際、前記照明光学系を構成する光学素子の状態、ならびに前記光源の種類、状態および光量の選択を可能とすることを特徴とする顕微鏡システム。
[請求項2]
 前記合成画像生成部は、前記撮像部が生成した複数の前記画像データの画素毎のコントラスト値を算出し、高いコントラスト値を示す画素を取り出し合成して合成画像データを生成することを特徴とする請求項1に記載の顕微鏡システム。
[請求項3]
 前記撮像部が生成した前記画像データの画素毎のコントラスト値が最も高い輝度値を保持し合成されたコントラストマップを生成するコントラストマップ生成部を備えることを特徴とする請求項1または2に記載の顕微鏡システム。
[請求項4]
 前記合成画像生成部は、全焦点画像データを生成するEFI生成部であることを特徴とする請求項1~3のいずれか一つに記載の顕微鏡システム。
[請求項5]
 前記光源は、DFリング光源と同軸光源であって、
 前記合成画像生成部は、前記DFリング光源の点灯するセグメントを変更した状態で撮像された画像データに基づき、前記合成画像データを生成することを特徴とする請求項1~4のいずれか一つに記載の顕微鏡システム。
[請求項6]
 前記合成画像の生成を指示する指示信号の入力を受け付ける入力部と、
 前記撮像部、および前記DFリング光源を制御する制御部と、を備え、
 前記入力部を介し前記合成画像データの生成の指示信号が入力された場合、前記制御部は、前記DFリング光源の点灯するセグメントを自動的に変更するよう制御することを特徴とする請求項5に記載の顕微鏡システム。
[請求項7]
 前記制御部は、前記撮像部の露出時間と前記画像データの転送時間とに基づき、前記DFリング光源の点灯時間を決定する駆動時間設定部を有し、
 前記制御部は、前記合成画像生成部が合成画像データを生成する際、前記点灯するセグメントの変更と前記撮像部での撮像とを同期させるよう制御することを特徴とする請求項6に記載の顕微鏡システム。
[請求項8]
 前記照明光学系は開口絞りを有し、
 前記制御部は、前記入力部を介し前記合成画像データの生成の指示信号が入力された場合、前記開口絞りの開口径を、使用する対物レンズの瞳径の60~80%となるよう自動的に制御することを特徴とする請求項1~7のいずれか一つに記載の顕微鏡システム。
[請求項9]
 前記合成画像生成部は、全焦点画像データを生成するEFI生成部であり、
 前記操作部は、前記DFリング光源および前記同軸光源の光量、前記DFリング光源の照明モードの選択、前記DFリング光源の点灯セグメントの回転、ならびに前記開口絞りの開口の選択をそれぞれ指示する指示信号の入力を受け付け可能であって、
 前記操作部を介した前記光源の光量等の変更操作を有効とする状態で全焦点画像データを取得するモードと、前記操作部を介した前記光源の光量等の変更操作を無効とする状態で全焦点画像データを取得するモードと、のいずれかを選択可能であることを特徴とする請求項5~8のいずれか一つに記載の顕微鏡システム。

図面

[ 図 1]

[ 図 2A]

[ 図 2B]

[ 図 3]

[ 図 4]

[ 図 5A]

[ 図 5B]

[ 図 5C]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14A]

[ 図 14B]

[ 図 14C]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18A]

[ 図 18B]

[ 図 18C]

[ 図 18D]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]

[ 図 26]

[ 図 27]

[ 図 28A]

[ 図 28B]

[ 図 28C]

[ 図 29]