処理中

しばらくお待ちください...

設定

設定

出願の表示

1. WO2020183618 - 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物

Document

明 細 書

発明の名称 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物

技術分野

0001  

背景技術

0002   0003   0004  

発明の概要

発明が解決しようとする課題

0005   0006  

課題を解決するための手段

0007   0008  

発明の効果

0009  

図面の簡単な説明

0010  

発明を実施するための形態

0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099  

実施例

0100   0101   0102   0103   0104   0105   0106   0107   0108   0109  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16  

図面

1   2   3  

明 細 書

発明の名称 : 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物

技術分野

[0001]
 本発明は、波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物に関する。

背景技術

[0002]
 近年、液晶表示装置等の画像表示装置の分野においては、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、特表2013-544018号公報及び国際公開第2016/052625号に記載のように、量子ドット蛍光体を含む波長変換部材が注目を集めている。
[0003]
 量子ドット蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。量子ドット蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。
[0004]
 量子ドット蛍光体を含む波長変換部材は、通常、量子ドット蛍光体を含有する硬化性組成物を硬化させた硬化物を有する。硬化性組成物としては熱硬化型及び光硬化型があり、生産性の観点からは光硬化型の硬化性組成物が好ましく用いられる。

発明の概要

発明が解決しようとする課題

[0005]
 量子ドット蛍光体を含有する硬化性組成物を被覆材に付与し、付与された硬化性組成物を硬化させて硬化物として波長変換部材を製造した場合に、硬化物にシワができやすく、特に軽量化、小型化等の点で被覆材を薄くしたときに硬化物のシワがより顕著になるという問題がある。
[0006]
 本開示は、上記事情に鑑みてなされたものであり、量子ドット蛍光体を含有し、樹脂硬化物のシワが抑制された波長変換部材並びにそれを用いたバックライトユニット及び画像表示装置を提供することを課題とする。さらに、本開示は、量子ドット蛍光体を含有し、シワが抑制された樹脂硬化物を形成可能な波長変換用樹脂組成物を提供することを課題とする。

課題を解決するための手段

[0007]
 前記課題を達成するための具体的手段は以下の通りである。
<1> 量子ドット蛍光体及びフィラーと、前記量子ドット蛍光体及び前記フィラーを包含する樹脂硬化物と、を含有し、
 前記フィラーの含有率は、前記樹脂硬化物の全量に対して3質量%以上である波長変換部材。
<2> 前記フィラーが、屈折率が2.3以下の低屈折率フィラーを含む<1>に記載の波長変換部材。
<3> 前記フィラーが、シリカ、アルミナ、硫酸バリウム、酸化亜鉛、炭酸カルシウム及び有機フィラーからなる群より選択される少なくとも1種を含む<1>又は<2>に記載の波長変換部材。
<4> 前記フィラーの平均粒子径が、0.2μm以上である<1>~<3>のいずれか1つに記載の波長変換部材。
<5> レーザー回折散乱法により得られる体積累積分布曲線において、小粒径側からの積算が90%となるときの前記フィラーの粒子径(D90)に対する小粒径側からの積算が10%となるときの前記フィラーの粒子径(D10)の比(D10/D90)が、0.40以下である<1>~<4>のいずれか1つに記載の波長変換部材。
<6> 前記樹脂硬化物の全光線透過率が、55%以上である<1>~<5>のいずれか1つに記載の波長変換部材。
<7> 前記樹脂硬化物は、スルフィド構造を含む<1>~<6>のいずれか1つに記載の波長変換部材。
<8> 前記樹脂硬化物の少なくとも一部を被覆する被覆材を有する<1>~<7>のいずれか1つに記載の波長変換部材。
<9> 前記被覆材が、酸素及び水の少なくとも一方に対するバリア性を有する<8>に記載の波長変換部材。
<10> <1>~<9>のいずれか1つに記載の波長変換部材と、光源と、を備えるバックライトユニット。
<11> <10>に記載のバックライトユニットを備える画像表示装置。
[0008]
<12> 量子ドット蛍光体、フィラー、多官能(メタ)アクリレート化合物及び多官能チオール化合物を含み、前記フィラーの含有率は、3質量%以上である波長変換用樹脂組成物。
<13> 前記フィラーが、屈折率が2.3以下の低屈折率フィラーを含む<12>に記載の波長変換用樹脂組成物。
<14> 前記フィラーが、シリカ、アルミナ、硫酸バリウム、酸化亜鉛、炭酸カルシウム及び有機フィラーからなる群より選択される少なくとも1種を含む<12>又は<13>に記載の波長変換用樹脂組成物。
<15> 前記フィラーの平均粒子径が、0.2μm以上である<12>~<14>のいずれか1つに記載の波長変換用樹脂組成物。
<16> レーザー回折散乱法により得られる体積累積分布曲線において、小粒径側からの積算が90%となるときの前記フィラーの粒子径(D90)に対する小粒径側からの積算が10%となるときの前記フィラーの粒子径(D10)の比(D10/D90)が、0.40以下である<12>~<15>のいずれか1つに記載の波長変換用樹脂組成物。

発明の効果

[0009]
 本開示によれば、量子ドット蛍光体を含有し、樹脂硬化物のシワが抑制された波長変換部材並びにそれを用いたバックライトユニット及び画像表示装置を提供することができる。さらに、本開示は、量子ドット蛍光体を含有し、シワが抑制された樹脂硬化物を形成可能な波長変換用樹脂組成物を提供することができる。

図面の簡単な説明

[0010]
[図1] 波長変換部材の概略構成の一例を示す模式断面図である。
[図2] バックライトユニットの概略構成の一例を示す図である。
[図3] 液晶表示装置の概略構成の一例を示す図である。

発明を実施するための形態

[0011]
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
[0012]
 本開示においてフィラーの平均粒子径は、以下のようにして測定することができる。
 樹脂硬化物における樹脂分を分解、燃焼等して除去した後に得られたフィラー、又は波長変換用樹脂組成物から抽出したフィラーを、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布曲線において、小径側からの積算が50%となるときの値(メジアン径(D50))をフィラーの平均粒子径とする。波長変換用樹脂組成物からフィラーを抽出する方法としては、例えば、波長変換用樹脂組成物を液状媒体で希釈し、遠心分離処理等によりフィラーを沈澱させて分収することで得ることができる。
 本開示においてフィラーのD10/D90は、レーザー回折散乱法により得られる体積累積分布曲線において、小粒径側からの積算が90%となるときのフィラーの粒子径(D90)に対する小粒径側からの積算が10%となるときのフィラーの粒子径(D10)の比を意味する。D10/D90は、前述のD50と同様、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)を用いて測定することができる。
 本開示において、フィラーの屈折率とは、D線(589.3nm)に対するフィラーの屈折率を意味する。
[0013]
<波長変換部材>
 本開示の波長変換部材は、量子ドット蛍光体及びフィラーと、前記量子ドット蛍光体及び前記フィラーを包含する樹脂硬化物と、を含有し、前記フィラーの含有率は、前記樹脂硬化物の全量に対して3質量%以上である。本開示の波長変換部材では、フィラーの含有率が樹脂硬化物の全量に対して3質量%以上であることにより、樹脂硬化物のシワが抑制されると考えられる。この理由としては、樹脂硬化物の作製に用いられる硬化性組成物(例えば、後述する波長変換用樹脂組成物が挙げられる)における多官能(メタ)アクリレート化合物、多官能チオール化合物等の硬化性化合物の量を少なくでき、その結果、硬化性化合物の硬化時における収縮を抑制できるためと推測される。
 本開示の波長変換部材は、必要に応じて、後述する被覆材等のその他の構成要素を含んでいてもよい。
 本開示に係る樹脂硬化物は、後述する本開示の波長変換用樹脂組成物の硬化物であってもよい。
 本開示の波長変換部材は、画像表示用として好適に用いられる。
[0014]
 本開示の波長変換部材は、量子ドット蛍光体及びフィラーを含み、量子ドット蛍光体及びフィラーは、樹脂硬化物に包含されている。
 樹脂硬化物に包含されている量子ドット蛍光体及びフィラーについての詳細は、後述の波長変換用樹脂組成物の項に記載のとおりである。
[0015]
 樹脂硬化物に包含されているフィラーについては、平均粒子径(D50)、D10/D90等は、樹脂硬化物を焼成し、樹脂分を分解、燃焼等して除去した後に得られたフィラーを用いて前述の方法により測定してもよい。
 また、樹脂硬化物におけるフィラーの含有率は、樹脂硬化物を焼成し、樹脂分を分解、燃焼等して除去した後に得られたフィラーの質量と、予め測定した樹脂硬化物の質量とを用いて求めてもよい。
[0016]
 本開示の波長変換部材では、樹脂硬化物は、耐湿熱性に優れる点から、スルフィド構造を含んでいてもよく、脂環式構造を含んでいてもよい。スルフィド構造を含む樹脂硬化物は、例えば、チオール基を含む化合物におけるチオール基と炭素炭素二重結合を含む化合物における炭素炭素二重結合との重合反応により形成されたものであってもよい。樹脂硬化物に含まれ得る脂環式構造は、炭素炭素二重結合を含む化合物に含まれる構造由来であってもよい。
[0017]
 樹脂硬化物に含まれ得る脂環式構造は特に限定されるものではなく、単環式構造であっても、二環式構造、三環式構造等の多環式構造であってもよい。脂環式構造の具体例としては、シクロブタン骨格、シクロペンタン骨格、シクロヘキサン骨格等の単環式構造、トリシクロデカン骨格、シクロヘキサン骨格、1,3-アダマンタン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールS骨格、イソボルニル骨格等の多環式構造などが挙げられる。これらの中でも、多環式構造であることが好ましく、トリシクロデカン骨格又はイソボルニル骨格であることがより好ましく、トリシクロデカン骨格であることがさらに好ましい。
[0018]
 樹脂硬化物に含まれ得る脂環式構造は、1種類単独であっても、少なくとも2種類であってもよく、少なくとも2種類であることが好ましい。
 少なくとも2種類の脂環式構造が樹脂硬化物に含まれる場合、脂環式構造の組み合わせとしては、トリシクロデカン骨格及びイソボルニル骨格の組み合わせ、水添ビスフェノールA骨格及びイソボルニル骨格の組み合わせ等が挙げられる。これらの中でも、発光効率、輝度及び耐湿熱性の観点から、トリシクロデカン骨格及びイソボルニル骨格の組み合わせが好ましい。
[0019]
 脂環式構造に占める多環式構造の割合は特に限定されるものではなく、多環式構造のモル基準の割合は、70モル%~100モル%であることが好ましく、80モル%~100モル%であることがより好ましく、90モル%~100モル%であることがさらに好ましい。
 脂環式構造としてトリシクロデカン骨格及びイソボルニル骨格の組み合わせが用いられる場合、トリシクロデカン骨格とイソボルニル骨格とのモル基準の含有比率(トリシクロデカン骨格/イソボルニル骨格)は、耐湿熱性の観点から、5~20であることが好ましく、5~18であることがより好ましく、5~15であることがさらに好ましい。
 脂環式構造に占める多環式構造の割合及びトリシクロデカン骨格とイソボルニル骨格とのモル基準の含有比率は、樹脂硬化物の製造に用いられる波長変換用樹脂組成物に含まれる成分の含有量から算出してもよい。例えば、トリシクロデカン骨格を有する化合物とイソボルニル骨格を有する化合物とのモル基準の含有比率は、トリシクロデカン骨格とイソボルニル骨格とのモル基準の含有比率と一致する。
[0020]
 樹脂硬化物は、エステル構造を含んでいてもよい。樹脂硬化物の元となる炭素炭素二重結合を含む化合物としては、例えば、(メタ)アリル基を含む(メタ)アリル化合物及び(メタ)アクリロイル基を含む(メタ)アクリレート化合物が挙げられる。(メタ)アリル化合物に比較して(メタ)アクリレート化合物のほうが重合反応の活性が高い傾向にある。樹脂硬化物がエステル構造を含むことは即ち炭素炭素二重結合を含む化合物として(メタ)アクリレート化合物が用いられたことを示唆する。(メタ)アクリレート化合物を用いて形成された樹脂硬化物は、(メタ)アリル化合物を用いて形成された樹脂硬化物に比較してガラス転移温度が高くなる傾向にある。
[0021]
 波長変換部材の形状は特に制限されず、フィルム状、レンズ状等が挙げられる。波長変換部材を後述するバックライトユニットに適用する場合には、波長変換部材はフィルム状であることが好ましい。
[0022]
 波長変換部材がフィルム状である場合、波長変換部材における樹脂硬化物の平均厚みは、例えば、40μm~200μmであることが好ましく、50μm~150μmであることがより好ましく、50μm~120μmであることがさらに好ましい。樹脂硬化物の平均厚みが50μm以上であると、波長変換効率がより向上する傾向にあり、平均厚みが200μm以下であると、波長変換部材を後述するバックライトユニットに適用した場合に、バックライトユニットをより薄型化できる傾向にある。
 フィルム状の樹脂硬化物の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
 また、フィルム状かつ複数層の波長変換部材から樹脂硬化物の平均厚みを求める場合、樹脂硬化物の平均厚みは、SEM(走査型電子顕微鏡)を用いて樹脂硬化物の断面を観察し、測定した任意の3箇所の厚みの算術平均値として求められる。
[0023]
 波長変換部材は、1種類の波長変換用樹脂組成物を硬化したものであってもよく、2種類以上の波長変換用樹脂組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換部材は、第1の量子ドット蛍光体を含有する波長変換用樹脂組成物を硬化した第1の硬化物層と、第1の量子ドット蛍光体とは発光特性が異なる第2の量子ドット蛍光体を含有する波長変換用樹脂組成物を硬化した第2の硬化物層とが積層されたものであってもよい。
[0024]
 波長変換部材は、波長変換用樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、波長変換用樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm ~5000mJ/cm の照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。
[0025]
 波長変換部材に含有される樹脂硬化物は、密着性をより向上させる観点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることがさらに好ましい。樹脂硬化物の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
[0026]
 また、樹脂硬化物は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、ガラス転移温度(Tg)が85℃以上であることが好ましく、85℃~160℃であることがより好ましく、90℃~120℃であることがさらに好ましい。樹脂硬化物のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、周波数10Hzの条件で測定することができる。
[0027]
 また、樹脂硬化物は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×10 Pa~1×10 10Paであることが好ましく、5×10 Pa~1×10 10Paであることがより好ましく、5×10 Pa~5×10 Paであることがさらに好ましい。樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
[0028]
 本開示の波長変換部材は、樹脂硬化物の少なくとも一部を被覆する被覆材を有していてもよい。例えば、樹脂硬化物がフィルム状である場合、フィルム状の樹脂硬化物の片面又は両面がフィルム状の被覆材によって被覆されていてもよい。
[0029]
 被覆材は、量子ドット蛍光体の発光効率の低下を抑える観点から、酸素及び水の少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水の少なくとも一方に対するバリア性を有する被覆材としては特に制限されず、無機層を有するバリアフィルム等の公知の被覆材を用いることができる。
[0030]
 被覆材がフィルム状である場合、被覆材がフィルム状である場合、被覆材の平均厚みは、例えば、10μm~150μmであることが好ましく、10μm~125μmであることがより好ましく、10μm~100μmであることがさらに好ましい。平均厚みが100μm以上であると、バリア性等の機能が充分なものとなる傾向にあり、平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。
 フィルム状の被覆材の平均厚みは、フィルム状の樹脂硬化物と同様にして求められる。
[0031]
 被覆材の酸素透過率は、例えば、0.5mL/(m ・24h・atm)以下であることが好ましく、0.3mL/(m ・24h・atm)以下であることがより好ましく、0.1mL/(m ・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度65%の条件で測定することができる。
 また、被覆材の水蒸気透過率は、例えば、5×10 -2g/(m ・24h・Pa)以下であることが好ましく、1×10 -2g/(m ・24h・Pa)以下であることがより好ましく、5×10 -3g/(m ・24h・Pa)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度90%の条件で測定することができる。
[0032]
 本開示の波長変換部材は、光の利用効率をより向上させる観点及び輝度を向上させる観点から、全光線透過率が55%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましい。波長変換部材の全光線透過率は、JIS K 7136:2000の測定法に準拠して測定することができる。
[0033]
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。また、図1における硬化物層及び被覆材の大きさは概念的なものであり、大きさの相対的な関係はこれに限定されない。なお、各図面において、同一の部材には同一の符号を付し、重複した説明は省略することがある。
[0034]
 図1に示す波長変換部材10は、フィルム状の樹脂硬化物である硬化物層11と、硬化物層11の両面に設けられたフィルム状の被覆材12A及び12Bとを有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。
[0035]
 図1に示す構成の波長変換部材は、例えば、以下のような公知の製造方法により製造することができる。
[0036]
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に後述の波長変換用樹脂組成物を付与し、塗膜を形成する。波長変換用樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。
[0037]
 次いで、波長変換用樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。
[0038]
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。
[0039]
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物層を形成してもよい。
[0040]
<バックライトユニット>
 本開示のバックライトユニットは、上述した本開示の波長変換部材と、光源とを備える。
[0041]
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。
[0042]
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。 また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。
[0043]
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。
[0044]
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
[0045]
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。
[0046]
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。
[0047]
 エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。但し、本開示のバックライトユニットは、図2の構成に限定されるものではない。また、図2における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
[0048]
 図2に示すバックライトユニット20は、青色光L を出射する光源21と、光源21から出射された青色光L を導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光L の一部を励起光として赤色光L 及び緑色光L を発光し、赤色光L 及び緑色光L と、励起光とならなかった青色光L とを出射する。この赤色光L 、緑色光L 、及び青色光L により、再帰反射性部材23から白色光L が出射される。
[0049]
<画像表示装置>
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
[0050]
 液晶表示装置の概略構成の一例を図3に示す。但し、本開示の液晶表示装置は、図3の構成に限定されるものではない。また、図3における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
[0051]
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。
[0052]
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Virtical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。
[0053]
<波長変換用樹脂組成物>
 本開示の波長変換用樹脂組成物は、量子ドット蛍光体、フィラー、多官能(メタ)アクリレート及び多官能チオール化合物を含み、前記フィラーの含有率は、3質量%以上である。本開示の波長変換用樹脂組成物は、必要に応じて、他の成分をさらに含有していてもよい。本開示の波長変換用樹脂組成物は、上記構成を有することにより、樹脂硬化物のシワを抑制することができる。
[0054]
(量子ドット蛍光体)
 波長変換用樹脂組成物は、量子ドット蛍光体を含有する。量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。
[0055]
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
[0056]
 量子ドット蛍光体としては、コアシェル構造を有するものが好ましい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。
[0057]
 また、量子ドット蛍光体としては、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。
[0058]
 波長変換用樹脂組成物は、1種類の量子ドット蛍光体を単独で含有していてもよく、2種類以上の量子ドット蛍光体を組み合わせて含有していてもよい。2種類以上の量子ドット蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含有する態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。
[0059]
 例えば、波長変換用樹脂組成物は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rとを含有していてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含有する波長変換用樹脂組成物の樹脂硬化物に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、樹脂硬化物を透過する青色光とにより、白色光を得ることができる。
[0060]
 量子ドット蛍光体は、分散媒体に分散された量子ドット蛍光体分散液の状態で用いてもよい。量子ドット蛍光体を分散する分散媒体としては、各種有機溶剤及び単官能(メタ)アクリレート化合物が挙げられる。
 分散媒体として使用可能な有機溶剤としては、水、アセトン、酢酸エチル、トルエン、n-ヘキサン等が挙げられる。
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、脂環式構造を有する単官能(メタ)アクリレート化合物が挙げられる。単官能(メタ)アクリレート化合物に含まれる脂環式構造は、特に限定されるものではなく、単環式構造であっても、二環式構造、三環式構造等の多環式構造であってもよい。単官能(メタ)アクリレート化合物の具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。
 これらの中でも、分散媒体としては、波長変換用樹脂組成物を硬化する際に分散媒体を揮発させる工程が不要になる観点から、単官能(メタ)アクリレート化合物であることが好ましく、脂環式構造を有する単官能(メタ)アクリレート化合物であることがより好ましく、多環式構造を有する単官能(メタ)アクリレート化合物であることがさらに好ましく、イソボルニル(メタ)アクリレート及びジシクロペンタニル(メタ)アクリレートであることが特に好ましく、イソボルニル(メタ)アクリレートであることが極めて好ましい。
[0061]
 分散媒体として単官能(メタ)アクリレート化合物を用いる場合、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物との質量基準の含有比率(単官能(メタ)アクリレート化合物/多官能(メタ)アクリレート化合物)は、0.01~0.30であることが好ましく、0.02~0.20であることがより好ましく、0.05~0.20であることがさらに好ましい。
[0062]
 分散媒体として単官能(メタ)アクリレート化合物を用いる場合、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物との組み合わせとして、耐湿熱性の観点から、多官能(メタ)アクリレート化合物がトリシクロデカン骨格を有する化合物を含み、単官能(メタ)アクリレート化合物がイソボルニル骨格を有する化合物を含むことが好ましい。
 トリシクロデカン骨格を有する化合物とイソボルニル骨格を有する化合物とのモル基準の含有比率(トリシクロデカン骨格を有する化合物/イソボルニル骨格を有する化合物)は、耐湿熱性の観点から、5~20であることが好ましく、5~18であることがより好ましく、5~15であることがさらに好ましい。
[0063]
 量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合は、1質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、1質量%~10質量%であることがさらに好ましい。
[0064]
 波長変換用樹脂組成物中の量子ドット蛍光体分散液の含有率は、量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合が1質量%~20質量%である場合、波長変換用樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。
 また、波長変換用樹脂組成物中の量子ドット蛍光体の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。量子ドット蛍光体の含有率が0.01質量%以上であると、樹脂硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が1.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。
[0065]
(フィラー)
 波長変換用樹脂組成物は、フィラーを含有し、フィラーの含有率は、波長変換用樹脂組成物全量に対して3質量%以上である。
[0066]
 フィラーは、輝度の低下を抑制する観点から、屈折率が2.3以下の低屈折率フィラーを含むことが好ましい。低屈折率フィラーとしては、輝度の低下をより好適に抑制する観点から、2.1以下が好ましく、2.0以下がより好ましく、1.8以下がさらに好ましく、1.6以下が特に好ましい。
[0067]
 フィラーが低屈折率フィラーを含む場合、低屈折率フィラーの含有率は、フィラー全量に対して60質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
[0068]
 フィラーは、シリカ、アルミナ、硫酸バリウム、酸化亜鉛、炭酸カルシウム及び有機フィラーからなる群より選択される少なくとも1種を含むことが好ましい。樹脂硬化物のシワ及び輝度の低下をより好適に抑制する点から、シリカ、アルミナ、硫酸バリウム及び炭酸カルシウムからなる群より選択される少なくとも1種を含むことがより好ましく、シリカ及びアルミナからなる群より選択される少なくとも1種を含むことがさらに好ましい。
[0069]
 フィラーは、屈折率が2.3超えの高屈折率フィラーを含んでいてもよい。高屈折率フィラーとしては、酸化チタン等が挙げられる。
[0070]
 フィラーが高屈折率フィラーを含む場合、高屈折率フィラーの含有率は、フィラー全量に対して40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
[0071]
 フィラーの平均粒子径は、輝度の観点から、0.2μm以上であることが好ましい。また、フィラーの平均粒子径は、0.2μm~40.0μmであってもよく、0.2μm~20.0μmであってもよい。
[0072]
 フィラーのD10/D90は、0.40以下であってもよく、0.01~0.40であってもよく、0.04~0.25であってもよい。フィラーのD10/D90が0.40以下であることにより、フィラーの充填性に優れることで波長変換用樹脂組成物の粘度が上昇し、シワを好適に抑制できる傾向にある。
[0073]
 フィラーの含有率は、シワの抑制及び輝度の観点から、波長変換用樹脂組成物全量に対して5質量%~50質量%であることが好ましく、10質量%~40質
量%であることがより好ましく、15質量%~35質量%であることがさらに好ましい。
[0074]
(多官能(メタ)アクリレート化合物)
 本開示の波長変換用樹脂組成物は、多官能(メタ)アクリレート化合物を含有する。多官能(メタ)アクリレート化合物は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物であればよい。
[0075]
 多官能(メタ)アクリレート化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレート化合物などが挙げられる。中でも、多官能(メタ)アクリレート化合物としては、耐湿熱性の観点から、脂環式構造を有する(メタ)アクリレート化合物が好ましい。
[0076]
 脂環式構造を有する多官能(メタ)アクリレート化合物は、骨格に脂環式構造を有し、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物である。
 脂環式構造を有する多官能(メタ)アクリレート化合物に含まれる脂環式構造は、特に限定されるものではなく、単環式構造であっても、二環式構造、三環式構造等の多環式構造であってもよい。
 脂環式構造を有する多官能(メタ)アクリレート化合物に含まれる脂環式構造は、多環式構造を含むことが好ましく、トリシクロデカン骨格を含むことがより好ましい。脂環式構造がトリシクロデカン骨格を含む多官能(メタ)アクリレート化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレートであることが好ましい。
[0077]
 波長変換用樹脂組成物中の多官能(メタ)アクリレート化合物の含有率は、波長変換用樹脂組成物の全量に対して、例えば、10質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましく、40質量%~65質量%であることがさらに好ましく、45質量%~55質量%であることが特に好ましい。多官能(メタ)アクリレート化合物の含有率が上記範囲にある場合、樹脂硬化物の耐湿熱性がより向上する傾向にある。
[0078]
 波長変換用樹脂組成物は、1種類の多官能(メタ)アクリレート化合物を単独で含有していてもよく、2種類以上の多官能(メタ)アクリレート化合物を組み合わせて含有していてもよい。
[0079]
(チオール化合物)
 波長変換用樹脂組成物は、多官能チオール化合物を含有していてもよい。波長変換用樹脂組成物が多官能チオール化合物を含有することで、波長変換用樹脂組成物が硬化する際に多官能(メタ)アクリレート化合物と多官能チオール化合物との間でエンチオール反応が進行し、樹脂硬化物の耐湿熱性がより向上する傾向にある。また、波長変換用樹脂組成物が多官能チオール化合物を含有することで、樹脂硬化物の光学特性がより向上する傾向にある。
[0080]
 なお、(メタ)アリル化合物とチオール化合物とを含有する組成物は保存安定性に劣ることが多いが、本開示の波長変換用樹脂組成物は多官能チオール化合物を含有するにもかかわらず保存安定性に優れる。これは、波長変換用樹脂組成物が多官能(メタ)アクリレート化合物を含有するためと推測される。
[0081]
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。
[0082]
 また、多官能チオール化合物は、あらかじめ多官能(メタ)アクリレート化合物と反応したチオエーテルオリゴマーの状態であってもよい。
[0083]
 チオエーテルオリゴマーは、多官能チオール化合物と多官能(メタ)アクリレート化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。チオエーテルオリゴマーを付加重合により得る場合、原料となる多官能(メタ)アクリレート化合物の(メタ)アクリロイル基の当量数に対する多官能チオール化合物のチオール基の当量数の割合(チオール基の当量数/(メタ)アクリロイル基の当量数)は、例えば、3.0~3.3であることが好ましく、3.0~3.2であることがより好ましく、3.05~3.15であることがさらに好ましい。
[0084]
 チオエーテルオリゴマーの重量平均分子量は、例えば、3000~10000であることが好ましく、3000~8000であることがより好ましく、4000~6000であることがさらに好ましい。
 なお、チオエーテルオリゴマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。
[0085]
 また、チオエーテルオリゴマーのチオール当量は、例えば、200g/eq~400g/eqであることが好ましく、250g/eq~350g/eqであることがより好ましく、250g/eq~270g/eqであることがさらに好ましい。
[0086]
 なお、チオエーテルオリゴマーのチオール当量は、以下のようなヨウ素滴定法により測定することができる。
 測定試料0.2gを精秤し、これにクロロホルム20mLを加えて試料溶液とする。デンプン指示薬として可溶性デンプン0.275gを30gの純水に溶解させたものを用いて、純水20mL、イソプロピルアルコール10mL、及びデンプン指示薬1mLを加え、スターラーで撹拌する。ヨウ素溶液を滴下し、クロロホルム層が緑色を呈した点を終点とする。このとき下記式にて与えられる値を、測定試料のチオール当量とする。
 チオール当量(g/eq)=測定試料の質量(g)×10000/ヨウ素溶液の滴定量(mL)×ヨウ素溶液のファクター
[0087]
 波長変換用樹脂組成物は、1分子中に1個のチオール基を有する単官能チオール化合物を含有してもよい。
[0088]
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
[0089]
 波長変換用樹脂組成物中のチオール化合物(多官能チオール化合物及び必要に応じて用いられる単官能チオール化合物の合計)の含有率は、波長変換用樹脂組成物の全量に対して、例えば、5質量%~50質量%であることが好ましく、5質量%~40質量%であることがより好ましく、10質量%~30質量%であることがさらに好ましく、15質量%~25質量%であることが特に好ましい。この場合、多官能(メタ)アクリレート化合物とのエンチオール反応により、樹脂硬化物がさらに緻密な架橋構造を形成し、耐湿熱性がより向上する傾向にある。
 多官能チオール化合物及び必要に応じて用いられる単官能チオール化合物の合計に占める多官能チオール化合物の質量基準の割合は、60質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、80質量%~100質量%であることがさらに好ましい。
[0090]
 多官能(メタ)アクリレート化合物と多官能チオール化合物との質量基準の含有比率(多官能(メタ)アクリレート化合物/多官能チオール化合物)は、0.5~10であることが好ましく、0.5~8.0であることがより好ましく、0.5~6.0であることがさらに好ましい。
[0091]
(光重合開始剤)
 波長変換用樹脂組成物は、光重合開始剤を含有していてもよい。光重合開始剤としては特に制限されず、具体例として、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
[0092]
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。波長変換用樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。
[0093]
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。
[0094]
 波長変換用樹脂組成物中の光重合開始剤の含有率は、波長変換用樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.5質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、波長変換用樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、波長変換用樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。
[0095]
(液状媒体)
 波長変換用樹脂組成物は、液状媒体を含有しないか又は液状媒体の含有率が0.5質量%以下であることが好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
[0096]
 液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイル;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸;などが挙げられる。波長変換用樹脂組成物が液状媒体を含有する場合、1種類の液状媒体を単独で含有していてもよく、2種類以上の液状媒体を組み合わせて含有していてもよい。
[0097]
(その他の成分)
 波長変換用樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤等のその他の成分をさらに含有していてもよい。波長変換用樹脂組成物は、その他の成分のそれぞれについて、1種類を単独で含有していてもよく、2種類以上を組み合わせて含有していてもよい。
 また、波長変換用樹脂組成物は、必要に応じて(メタ)アリル化合物を含有してもよい。
[0098]
(波長変換用樹脂組成物の調製方法)
 波長変換用樹脂組成物は、量子ドット蛍光体、フィラー、多官能(メタ)アクリレート化合物及び多官能チオール化合物並びに必要に応じてその他の成分を常法により混合することで調製することができる。量子ドット蛍光体は、液状媒体に分散させた状態で混合することが好ましい。
[0099]
(波長変換用樹脂組成物の用途)
 波長変換用樹脂組成物は、フィルム形成に好適に使用可能である。また、波長変換用樹脂組成物は、波長変換部材の形成に好適に使用可能である。
実施例
[0100]
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[0101]
<実施例1~5並びに比較例1及び2>
(硬化性組成物の調製)
 表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例1~5並びに比較例1及び2の波長変換用樹脂組成物をそれぞれ調製した。表1中の「-」は未配合を意味する。
 なお、多官能(メタ)アクリレート化合物としては、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社、A-DCP)を用いた。
 また、多官能チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社、PEMP)を用いた。
 また、光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASF社、IRGACURE TPO)を用いた。
 また、緑色光を発光する量子ドット蛍光体(量子ドット蛍光体Green)としては、CdSe/ZnS(コア/シェル)分散液(Nanosys社、Gen3.5 QD Concentrate)を用いた。このCdSe/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレートを使用した。CdSe/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが90質量%以上含有されている。
 また、赤色光を発光する量子ドット蛍光体(量子ドット蛍光体Red)としては、InP/ZnS(コア/シェル)分散液(Nanosys社製、Gen3.5 QD Concentrate)を用いた。このInP/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレートを使用した。InP/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが90質量%以上含有されている。
 また無機フィラーとしては、下記を用いた。
 酸化チタン(Chemours社、タイピュア R-706、平均粒子径0.36μm)
 アルミナ(住友化学株式会社、AKP-30、平均粒子径0.27μm)
 破砕シリカ(株式会社龍森、AS-1、平均粒子径 3.0μm)
 球状シリカ(株式会社アドマテックス、SO-C2、平均粒子径0.5μm)
 なお、無機フィラーのD10/D90は、いずれも0.04~0.25の範囲内であった。
[0102]
[表1]


[0103]
(波長変換部材の製造)
 上記で得られた各波長変換用樹脂組成物を平均厚み38μmのバリアフィルム(大日本印刷株式会社)(被覆材)上に塗布して塗膜を形成した。この塗膜上に厚み38μmのバリアフィルム(大日本印刷株式会社)(被覆材)を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射(照射量:1000mJ/cm )することにより、波長変換用樹脂硬化物を含む硬化物層の両面に被覆材が配置された波長変換部材をそれぞれ得た。硬化物層の平均厚みは75μmであった。
[0104]
<評価>
 実施例1~6並びに比較例1及び2で得られた波長変換用樹脂組成物及び波長変換部材を用いて、以下の各評価項目を測定及び評価した。結果を表2に示す。
[0105]
(外観評価)
 上記で得られた各波長変換部材の外観評価を以下のようにして行った。まず、各波長変換部材を、幅1000mm、長さ1500mmの寸法に裁断した評価用波長変換部材について、平坦な机に置き、物差しを用いて机からの浮きを測定し、シワ高さとした。さらに、評価用波長変換部材について、目視にて浮きの数を測定し、シワの数とした。シワ高さ及びシワの数の評価基準は、それぞれ以下の通りである。
―評価基準(シワ高さ)-
A:1.0mm以下
B:1.0mm超1.5mm以下
C:1.5mm超2.5mm以下
D:2.5mm超
―評価基準(シワの数)-
A:2個以下
B:3個
C:4個又は5個
D:6個以上
[0106]
(光学特性評価)
 上記で得られた各波長変換部材の光学特性評価を以下のようにして行った。各波長変換部材を、幅100mm、長さ100mmの寸法に裁断した評価用波長変換部材について輝度計PR-655(フォトリサーチ社)を用いて輝度を測定した。輝度計は、上部に光学特性を認識するカメラユニットが設置され、レンズ下の箇所に、ブラックマスク、BEF(輝度上昇フィルム)板、拡散板及びLED光源を有し、BEF板と拡散板との間に測定サンプルをセットして、輝度を測定した。輝度の評価基準は以下の通りである。
―評価基準-
A:1100以上
B:1000以上1100未満
C:900以上1000未満
D:900未満
[0107]
[表2]


[0108]
 表2から分かるように、実施例1~実施例6では、比較例1及び比較例2よりも外観評価が良好であった。特に、実施例4及び5では、平均粒子径の大きい破砕シリカフィラーを高充填した波長変換用樹脂組成物を用いて波長変換部材を製造することにより、比較例1及び2の波長変換用樹脂組成物を用いて波長変換部材を製造した場合と比較して、外観及び輝度により優れていた。
[0109]
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

請求の範囲

[請求項1]
 量子ドット蛍光体及びフィラーと、前記量子ドット蛍光体及び前記フィラーを包含する樹脂硬化物と、を含有し、
 前記フィラーの含有率は、前記樹脂硬化物の全量に対して3質量%以上である波長変換部材。
[請求項2]
 前記フィラーが、屈折率が2.3以下の低屈折率フィラーを含む請求項1に記載の波長変換部材。
[請求項3]
 前記フィラーが、シリカ、アルミナ、硫酸バリウム、酸化亜鉛、炭酸カルシウム及び有機フィラーからなる群より選択される少なくとも1種を含む請求項1又は請求項2に記載の波長変換部材。
[請求項4]
 前記フィラーの平均粒子径が、0.2μm以上である請求項1~請求項3のいずれか1項に記載の波長変換部材。
[請求項5]
 レーザー回折散乱法により得られる体積累積分布曲線において、小粒径側からの積算が90%となるときの前記フィラーの粒子径(D90)に対する小粒径側からの積算が10%となるときの前記フィラーの粒子径(D10)の比(D10/D90)が、0.40以下である請求項1~請求項4のいずれか1項に記載の波長変換部材。
[請求項6]
 前記樹脂硬化物の全光線透過率が、55%以上である請求項1~請求項5のいずれか1項に記載の波長変換部材。
[請求項7]
 前記樹脂硬化物は、スルフィド構造を含む請求項1~請求項6のいずれか1項に記載の波長変換部材。
[請求項8]
 前記樹脂硬化物の少なくとも一部を被覆する被覆材を有する請求項1~請求項7のいずれか1項に記載の波長変換部材。
[請求項9]
 前記被覆材が、酸素及び水の少なくとも一方に対するバリア性を有する請求項8に記載の波長変換部材。
[請求項10]
 請求項1~請求項9のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
[請求項11]
 請求項10に記載のバックライトユニットを備える画像表示装置。
[請求項12]
 量子ドット蛍光体、フィラー、多官能(メタ)アクリレート化合物及び多官能チオール化合物を含み、前記フィラーの含有率は、3質量%以上である波長変換用樹脂組成物。
[請求項13]
 前記フィラーが、屈折率が2.3以下の低屈折率フィラーを含む請求項12に記載の波長変換用樹脂組成物。
[請求項14]
 前記フィラーが、シリカ、アルミナ、硫酸バリウム、酸化亜鉛、炭酸カルシウム及び有機フィラーからなる群より選択される少なくとも1種を含む請求項12又は請求項13に記載の波長変換用樹脂組成物。
[請求項15]
 前記フィラーの平均粒子径が、0.2μm以上である請求項12~請求項14のいずれか1項に記載の波長変換用樹脂組成物。
[請求項16]
 レーザー回折散乱法により得られる体積累積分布曲線において、小粒径側からの積算が90%となるときの前記フィラーの粒子径(D90)に対する小粒径側からの積算が10%となるときの前記フィラーの粒子径(D10)の比(D10/D90)が、0.40以下である請求項12~請求項15のいずれか1項に記載の波長変換用樹脂組成物。

図面

[ 図 1]

[ 図 2]

[ 図 3]