処理中

しばらくお待ちください...

設定

設定

出願の表示

1. WO2020121593 - 表示装置及びヘルメット

Document

明 細 書

発明の名称 表示装置及びヘルメット

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006  

課題を解決するための手段

0007  

発明の効果

0008  

図面の簡単な説明

0009  

発明を実施するための形態

0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107  

符号の説明

0108  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  

明 細 書

発明の名称 : 表示装置及びヘルメット

技術分野

[0001]
 本発明の実施形態は、表示装置及びヘルメットに関する。また、本発明の実施形態は、装着型の表示装置、表示パネルを備える装着器具(ヘルメット、メガネなど)に関する。

背景技術

[0002]
 近年、人間が知覚した実在する世界に、コンピュータ処理で合成された各種情報を重ね合わせ、現実の世界を増幅させる複合現実(MR: Mixed Reality)の技術が普及してきている。MRの実現方法としては、例えば、透過型の表示装置、透明ディスプレイを備える表示装置を用いる方法が挙げられる。特許文献1には、透明ディスプレイを備える装着器具が開示されている。特許文献2には透明ディスプレイの一例となる透明OLEDの構造が開示されている。特許文献3には透明ディスプレイの透過部に光学素子(レンズ)を配置する構造が開示されている。
[0003]
 透過型の表示装置が用いられる場合、ユーザは、透過型の表示装置が眼前に存在する状態で実在世界(背景、遠景)を視認する。しかしながら、ユーザは、焦点距離の違いから、近距離に位置する透過型の表示装置に表示される情報(すなわち、近景)と、遠景とに同時に焦点を合わせることができないため、どちらか一方に焦点を合わせてしまうと、他方がぼやけて見えてしまうといった問題が生じる。
[0004]
 この問題は、ユーザが近景及び遠景に交互に焦点を合わせることで、解消可能ではあるが、この方法では何度も焦点を合わせ直す必要があり、ユーザの眼に大きなストレスを与えてしまうといった新たな問題が生じてしまう。

先行技術文献

特許文献

[0005]
特許文献1 : 特開2005-97774号公報
特許文献2 : 特開2017-40876号公報
特許文献3 : 特開2013-84477号公報

発明の概要

発明が解決しようとする課題

[0006]
 本開示の目的の一つは、近景と遠景とに同時に焦点を合わせることを可能にする表示装置及びヘルメットを提供することである。

課題を解決するための手段

[0007]
 実施形態によれば、表示装置は、複数の画素を含む表示領域と、表示面を含む第1面と、前記第1面の反対側の第2面と、を有する透明ディスプレイと、前記透明ディスプレイの前記第2面側に設置される第1光学素子とを備え、前記第1光学素子は、入射する光を発散する方向に屈折させる特性を有する。

発明の効果

[0008]
 実施形態によれば、近景と遠景とに同時に焦点を合わせることを可能にする表示装置及びヘルメットを提供することができる。

図面の簡単な説明

[0009]
[図1] 図1は、本実施形態の透明ディスプレイの一構成例を示す図である。
[図2] 図2は、図1に示した表示パネルの一構成例を示す断面図である。
[図3] 図3は、透明ディスプレイの一構成例を示す断面図である。
[図4] 図4は、本実施形態の表示装置の適用例を示す図である。
[図5] 図5は、本実施形態の表示装置の別の適用例を示す図である。
[図6] 図6は、透明ディスプレイがユーザの眼前に位置する場合に生じる問題を説明するための図である。
[図7] 図7は、図6に示した問題の原理を説明するための図である。
[図8] 図8は、本実施形態の表示装置の一構成例を示す図である。
[図9] 図9は、本実施形態の表示装置を用いた時に近くの物体と遠くの物体とに同時に焦点が合う原理を説明するための図である。
[図10] 図10は、本実施形態の表示装置を用いた時にユーザによって視認される近くの物体と遠くの物体とを示す図である。
[図11] 図11は、本実施形態の表示装置をユーザの片目側のみに設置した場合のユーザの見え方を説明するための図である。
[図12] 図12は、本実施形態の表示装置の別の構成例を示す図である。
[図13] 図13は、図12に示した表示装置を用いた時に近くの物体と遠くの物体とに同時に焦点が合う原理を説明するための図である。
[図14] 図14は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図15] 図15は、図14に示した表示装置の適用方法を説明するための図である。
[図16] 図16は、図14に示した表示装置の別の適用方法を説明するための図である。
[図17] 図17は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図18] 図18は、液晶レンズを説明するための図である。
[図19] 図19は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図20] 図20は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図21] 図21は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図22] 図22は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図23] 図23は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図24] 図24は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図25] 図25は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図26] 図26は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図27] 図27は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図28] 図28は、本実施形態の表示装置のさらに別の構成例を示す図である。
[図29] 図29は、フレネルレンズを示す図である。

発明を実施するための形態

[0010]
 以下、実施の形態について図面を参照して説明する。
[0011]
 なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有される。また、図面は、説明をより明確にするため、実際の態様に比べて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。各図において、連続して配置される同一又は類似の要素については符号を省略することがある。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明を省略することがある。
[0012]
 以下では、まず、本実施形態の表示装置に適用される透明ディスプレイDSPの構成について説明する。なお、本実施形態において、「透明ディスプレイ」とは、ユーザが視認する第1面(表示面)とその反対の第2面(裏面)との間で光を透過するディスプレイを意味する。このような透明ディスプレイDSPによれば、ユーザは、第1面側から第2面側の背景を視認可能であり、第2面側から第1面側の背景を視認可能である。また、「透明ディスプレイ」は、ユーザが視認する第1面(表示面)とその反対の第2面(裏面)との間で光を透過する透過部と、画像を表示する発光部とを有するディスプレイを、例えば透明OLEDディスプレイを含む
 図1は、本実施形態の透明ディスプレイDSPの一構成例を示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していても良い。第1方向X及び第2方向Yは、透明ディスプレイDSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、透明ディスプレイDSPの厚さ方向に相当する。第3方向Zを示す矢印の先端側に透明ディスプレイDSPを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視と言う。
[0013]
 本実施形態においては、透明ディスプレイDSPの一例として、高分子分散型液晶を適用した液晶表示装置について説明する。透明ディスプレイDSPは、表示パネルPNLと、配線基板1と、ICチップ2と、発光素子LDと、を備えている。
[0014]
 表示パネルPNLは、第1方向Xに沿って延出した一対の短辺E11,E12と、第2方向Yに沿って延出した一対の長辺E13,E14と、を有している。表示パネルPNLは、第1基板SUB1と、第2基板SUB2と、液晶層LCと、シールSEと、を備えている。第1基板SUB1及び第2基板SUB2は、平面視で、重畳している。第1基板SUB1及び第2基板SUB2は、シールSEによって接着されている。シールSEは、例えば、ループ状に形成され、液晶注入口及び封止材を含まない。液晶層LCは、第1基板SUB1と第2基板SUB2との間に保持され、シールSEによって封止されている。図1において、液晶層LC及びシールSEは、異なる斜線で示している。
[0015]
 一例として、シールSEは、液晶層LCを囲む矩形枠状に形成され、第1方向Xに沿って延出した部分E1,E2と、第2方向Yに沿って延出した部分E3,E4と、を有している。部分E1~E4は、液晶層LCに接している。なお、シールSEは、円形枠状に形成されても良いし、他の形状に形成されても良い。
[0016]
 図1において拡大して模式的に示すように、液晶層LCは、ポリマー31と、液晶分子32と、を含む高分子分散型液晶を備えている。一例では、ポリマー31は、液晶性ポリマーである。ポリマー31は、第1方向Xに沿って延出した筋状に形成されている。液晶分子32は、ポリマー31の隙間に分散され、その長軸が第1方向Xに沿うように配向される。ポリマー31及び液晶分子32の各々は、光学異方性あるいは屈折率異方性を有している。ポリマー31の電界に対する応答性は、液晶分子32の電界に対する応答性より低い。
[0017]
 一例では、ポリマー31の配向方向は、電界の有無に関わらずほとんど変化しない。一方、液晶分子32の配向方向は、液晶層LCに閾値以上の高い電圧が印加された状態では、電界に応じて変化する。液晶層LCに電圧が印加されていない状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに平行であり、液晶層LCに入射した光は、液晶層LC内でほとんど散乱されることなく透過する(透明状態)。液晶層LCに電圧が印加された状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに交差し、液晶層LCに入射した光は、液晶層LC内で散乱される(散乱状態)。
[0018]
 表示パネルPNLは、画像を表示する表示部(表示領域)DAと、表示部DAを囲む額縁状の非表示部NDAと、を備えている。シールSEは、非表示部NDAに位置している。表示部DAは、第1方向X及び第2方向Yにマトリクス状に配列された画素PXを備えている。
[0019]
 図1において拡大して示すように、各画素PXは、スイッチング素子SW、画素電極PE、共通電極CE、液晶層LC等を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査線G及び信号線Sと電気的に接続されている。走査線Gは、第1方向Xに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。信号線Sは、第2方向Yに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。画素電極PEは、スイッチング素子SWと電気的に接続されている。共通電極CEは、複数の画素電極PEに対して共通に設けられている。液晶層LC(特に、液晶分子32)は、画素電極PEと共通電極CEとの間に生じる電界によって駆動される。容量CSは、例えば、共通電極CEと同電位の電極、及び、画素電極PEと同電位の電極の間に形成される。
[0020]
 後に説明するが、走査線G、信号線S、スイッチング素子SW、及び、画素電極PEは、第1基板SUB1に設けられ、共通電極CEは、第2基板SUB2に設けられている。第1基板SUB1において、走査線Gは、表示部DAとシールSEの部分E3との間、及び、表示部DAとシールSEの部分E4との間に延出し、配線基板1あるいはICチップ2と電気的に接続されている。信号線Sは、表示部DAとシールSEの部分E1との間に延出し、配線基板1あるいはICチップ2と電気的に接続されている。
[0021]
 配線基板1は、第1基板SUB1の延出部Exに電気的に接続されている。配線基板1は、折り曲げ可能なフレキシブルプリント回路基板である。ICチップ2は、配線基板1に電気的に接続されている。ICチップ2は、例えば、画像表示に必要な信号を出力するディスプレイドライバ等を内蔵している。なお、ICチップ2は、延出部Exに電気的に接続されても良い。
[0022]
 発光素子LDは、延出部Exに重畳している。複数の発光素子LDは、第1方向Xに沿って間隔をおいて並んでいる。
[0023]
 図2は、図1に示した表示パネルPNLの一構成例を示す断面図である。
[0024]
 第1基板SUB1は、透明基板10と、絶縁膜11,12と、容量電極13と、スイッチング素子SWと、画素電極PEと、配向膜AL1と、を備えている。透明基板10は、主面(下面)10Aと、主面10Aの反対側の主面(上面)10Bと、を備えている。スイッチング素子SWは、主面10B側に配置されている。絶縁膜11は、スイッチング素子SWを覆っている。なお、図1に示した走査線G及び信号線Sは、透明基板10と絶縁膜11との間に位置しているが、ここでは図示を省略している。容量電極13は、絶縁膜11,12の間に位置している。画素電極PEは、絶縁膜12と配向膜AL1との間において、画素PX毎に配置されている。画素電極PEは、容量電極13の開口部OPを介してスイッチング素子SWと電気的に接続されている。画素電極PEは、絶縁膜12を挟んで、容量電極13と重畳し、画素PXの容量CSを形成している。配向膜AL1は、画素電極PEを覆っている。
[0025]
 第2基板SUB2は、透明基板20と、遮光層BMと、共通電極CEと、オーバーコート層OCと、配向膜AL2と、を備えている。透明基板20は、主面(下面)20Aと、主面20Aの反対側の主面(上面)20Bと、を備えている。透明基板20の主面20Aは、透明基板10の主面10Bと向かい合っている(対向している)。遮光層BM及び共通電極CEは、主面20A側に配置されている。遮光層BMは、例えば、スイッチング素子SWの直上、及び、図示しない走査線G及び信号線Sの直上にそれぞれ位置している。共通電極CEは、複数の画素PXに亘って配置され、第3方向Zにおいて、複数の画素電極PEと対向している。また、共通電極CEは、遮光層BMを覆っている。共通電極CEは、容量電極13と電気的に接続されており、容量電極13とは同電位である。オーバーコート層OCは、共通電極CEを覆っている。配向膜AL2は、オーバーコート層OCを覆っている。
[0026]
 液晶層LCは、第1基板SUB1と第2基板SUB2との間に位置し、配向膜AL1及びAL2に接している。
[0027]
 透明基板10,20は、ガラス基板やプラスチック基板等の絶縁基板である。絶縁膜11は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物、アクリル樹脂等の透明な絶縁材料によって形成されている。一例では、絶縁膜11は、無機絶縁膜及び有機絶縁膜を含んでいる。絶縁膜12は、シリコン窒化物等の無機絶縁膜である。容量電極13、画素電極PE、及び、共通電極CEは、インジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)等の透明導電材料によって形成された透明電極である。遮光層BMは、モリブデン、アルミニウム、タングステン、チタン、銀等の不透明な金属材料によって形成されている。共通電極CEは、遮光層BMに接しているため、遮光層BMと電気的に接続される。これにより、共通電極CEが低抵抗化される。配向膜AL1,AL2は、X-Y平面に略平行な配向規制力を有する水平配向膜である。一例では、配向膜AL1,AL2は、第1方向Xに沿って配向処理されている。なお、配向処理とは、ラビング処理であっても良いし、光配向処理であっても良い。
[0028]
 図3は、本実施形態の透明ディスプレイDSPの一構成例を示す断面図である。なお、
表示パネルPNLについては、主要部のみを図示している。
[0029]
 発光素子LDは、第2方向Yにおいて、透明基板20の側面20Cに対向している。発光素子LDは、配線基板Fに電気的に接続されている。発光素子LDは、例えば、発光ダイオードであり、詳述しないが、赤発光部、緑発光部、及び、青発光部を備えている。なお、発光素子LDと、側面20Cとの間に、透明な導光体が配置されても良い。
[0030]
 次に、図3を参照しながら、発光素子LDから出射される光L1について説明する。
[0031]
 発光素子LDは、側面20Cに向けて光L1は出射する。発光素子LDから出射された光L1は、第2方向Yを示す矢印の向きに沿って進行し、側面20Cから透明基板20に入射する。透明基板20に入射した光L1は、繰り返し反射されながら、表示パネルPNLの内部を進行する。電圧が印加されていない液晶層LCに入射した光L1は、ほとんど散乱されることなく液晶層LCを透過する。また、電圧が印加された液晶層LCに入射した光L1は、液晶層LCで散乱される。
[0032]
 以下では、上記した透明ディスプレイDSPを用いた複合現実(以下では「MR」と表記する)の技術について説明する。
[0033]
 透明ディスプレイDSPは、MRを実現させるために、例えば図4に示すように、ヘルメットのシールド(バイザー)部分100に適用される。この場合、透明ディスプレイDSPには、例えば、自動車や自動二輪車の走行中に確認が必要となる温度や燃費等の車両情報が表示される。透明ディスプレイDSPは、図4に示すように、シールド部分100の内側(ユーザ側)に貼り付けて設置されても良いし、シールド部分100の一部をくりぬいた上でそこに埋め込むようにして設置されても良い。なお、透明ディスプレイDSPは、ユーザの眼と向かい合う位置に設置されることが好ましい。より詳しくは、透明ディスプレイDSPは、ユーザが正面を見た時(まっすぐ前を見た時)の当該ユーザの視線の先に設置されることが好ましい。
[0034]
 なお、図4では、1つの透明ディスプレイDSPがユーザの片目側にのみ設置されている場合を例示しているが、これに限定されず、2つの透明ディスプレイDSPがユーザの両目にそれぞれ対応するようにして設置されても良いし、1つの透明ディスプレイDSPがシールド部分100の全面に設置されても良い。2つの透明ディスプレイDSPがユーザの両目にそれぞれ対応するように設置される場合や、1つの透明ディスプレイDSPがシールド部分100の全面に設置される場合については後述する。
[0035]
 また、透明ディスプレイDSPは、MRを実現させるために、例えば図5に示すように、メガネのレンズ部分200に適用されても良い。なお、透明ディスプレイDSPをメガネのレンズ部分200に設置する場合の設置位置や設置環境は、上記したヘルメットのシールド部分100に透明ディスプレイDSPを設置する場合と同様であるため、ここではその詳しい説明は省略する。
[0036]
 透明ディスプレイDSPが、図4及び図5に示すように、ヘルメットのシールド部分100やメガネのレンズ部分200に、すなわち装着器具に、設置されることで、ユーザは、透明ディスプレイDSPに表示される情報を視認しつつ、シールド100やレンズ200越しに背景(実在世界)を視認することができるようになる。なお、図4及び図5において、透明ディスプレイDSPが着脱可能な構造であってもよい。
[0037]
 一方で、透明ディスプレイDSPをヘルメットのシールド部分100やメガネのレンズ部分200に設置する場合、すなわち、透明ディスプレイDSPをユーザの眼前に設置する場合、次のような問題が生じる可能性がある。
[0038]
 図6は、透明ディスプレイDSPがユーザの眼前に位置する場合に生じる問題を説明するための図である。図6においては、図6(a)に示すように、透明ディスプレイDSPには“A”という文字が表示され、且つ、透明ディスプレイDSPの第2面側(透明ディスプレイDSPよりもユーザの眼から離れた位置)であって、ユーザが視認可能な範囲内に1本の木がある場合を想定している。なお、以下では、上記した1本の木を「遠くの物体」または「背景」と表記して説明するものとする。
[0039]
 図6に示す場合において、ユーザが透明ディスプレイDSPに表示されている文字“A”を視認しようとした場合、ユーザは透明ディスプレイDSPに焦点を合わせるため、図6(b)に示されるように、透明ディスプレイDSPに表示されている文字“A”をはっきりと視認することができる一方で、遠くの物体には焦点が合っていないため、遠くの物体がぼやけて見えてしまうといった問題が生じる。
[0040]
 同様に、図6に示す場合において、ユーザが遠くの物体を視認しようとした場合、ユーザは遠くの物体に焦点を合わせるため、図6(c)に示されるように、遠くの物体をはっきりと視認することができる一方で、透明ディスプレイDSPには焦点が合っていないため、透明ディスプレイDSPに表示されている文字“A”がぼやけて見えてしまうといった問題が生じる。
[0041]
 ここで、図7を参照して、上記した問題の原理について説明する。
[0042]
 図7(a)は、人間の眼が、第1距離D1だけ離れて位置する物体(以下では「近くの物体」と表記する)と、第1距離D1よりも大きい第2距離D2だけ離れて位置する物体(以下では「遠くの物体」と表記する)とのうちの近くの物体に焦点を合わせた状態を示している。また、図7(b)は、人間の眼が、近くの物体と遠くの物体とのうちの遠くの物体に焦点を合わせた状態を示している。なお、図7における近くの物体は、図6に示した透明ディスプレイDSPに相当し、図7における遠くの物体は、図6に示した1本の木(遠くの物体、背景)に相当する。また、図7においては、近くの物体から発せられる光を、近くの物体と同じ場所に位置する点光源PL1から発せられる光と同一であると仮定して説明する。同様に、図7においては、遠くの物体から発せられる光を、遠くの物体と同じ場所に位置する点光源PL2から発せられる光と同一であると仮定して説明する。
[0043]
 人間の眼を構成する水晶体は、近くの物体を視認する際には、その厚みを厚くするように調整し、屈折率を高める。このため、点光源PL1から発せられる光(近くの物体から発せられる光)は、図7(a)の点線に示されるようにして人間の眼に入射し、水晶体250で屈折した後に、網膜にて焦点を結ぶ。一方で、近くの物体を視認しようとして、高い屈折率を有した状態の水晶体250に、点光源PL2から発せられる光(遠くの物体から発せられる光)が入射する場合、図7(a)の実線に示されるように、当該光にとっては水晶体250の屈折率が高すぎるため、当該光は水晶体250で屈折した後に、網膜より手前で焦点を結んでしまう。このため、近くの物体に焦点を合わせた場合、遠くの物体には焦点が合わないことになる。
[0044]
 人間の眼を構成する水晶体は、遠くの物体を視認する際には、その厚みを薄くするように調整し、屈折率を低める。このため、点光源PL2から発せられる光は、図7(b)の実線に示されるようにして人間の眼に入射し、水晶体250で緩やかに屈折した後に、網膜にて焦点を結ぶ。一方で、遠くの物体を視認しようとして、低い屈折率を有した状態の水晶体250に、点光源PL1から発せられる光が入射する場合、図7(b)の点線に示されるように、当該光にとっては水晶体250の屈折率が低すぎるため、当該光は水晶体250で緩やかに屈折した後に、網膜にて焦点を結ぶことなく、網膜に到達してしまう(仮想的には、網膜よりも後方にて焦点を結ぶ)。このため、遠くの物体に焦点を合わせた場合、近くの物体には焦点が合わないことになる。
[0045]
 以上説明したように、透明ディスプレイDSPをヘルメットやメガネ等の装着器具に適用して、MRを実現させることは可能であるものの、透明ディスプレイDSPをユーザの眼前に設置してしまうと、ユーザは、透明ディスプレイDSPに表示される情報(近くの物体)と、透明ディスプレイDSPの第2面側に位置する遠くの物体とに同時に焦点を合わせることができないため、どちらかの物体がぼやけて見えてしまうといった問題が生じる。このため、以下では、上記した問題を解消して、MRを実現させることが可能な表示装置について説明する。
[0046]
 図8は、本実施形態の表示装置300の一構成例を示す図である。本実施形態に係る表示装置300は、図8に示すように、透明ディスプレイDSPと、透明ディスプレイDSPの第2面側に設置される第1光学素子400とを備えている。第1光学素子400は、当該第1光学素子400に入射した平行光束を発散させる特性(発散特性)を有する素子であり、例えば、凹レンズ等である。透明ディスプレイDSP及び第1光学素子400は、例えば透明樹脂からなる接着剤により接着される。この接着剤は第1光学素子400と同一の屈折率を有している方が好ましい。
[0047]
 なお、図8では、透明ディスプレイDSP及び第1光学素子400が接着されている場合を例示しているが、透明ディスプレイDSP及び第1光学素子400は、間隔を空けて設置されても良い。透明ディスプレイDSP及び第1光学素子400を、間隔を空けて設置する場合の詳細については後述するものとし、ここではその詳細は省略する。但し、透明ディスプレイDSP及び第1光学素子400の間隔はゼロに近似した値である方が光学特性上好ましい。
[0048]
 ここで、図9を参照して、近くの物体(透明ディスプレイDSP)を視認しようとして、高い屈折率を有した状態の水晶体250に、点光源PL2から発せられる光(遠くの物体から発せられる光)が本実施形態の表示装置300を介して入射される場合の光の軌跡(光路)について説明する。
[0049]
 図9に示す場合において、点光源PL1から発せられる光(近くの物体から発せられる光)は、水晶体250が高い屈折率を有した状態であるので、上記した図7(a)の点線と同様な軌跡を描いて、網膜にて焦点を結ぶ。一方で、点光源PL2から発せられる光は、表示装置300を構成する第1光学素子400により発散する方向に屈折した上で、ユーザの眼に入射するため、水晶体250が高い屈折率を有した状態であっても、網膜の手前で焦点を結ぶのではなく、図9の実線に示されるように、網膜にて焦点を結ぶことになる(あるいは、図7(a)の実線にて示される位置よりも網膜に近い位置にて焦点を結ぶことになる)。
[0050]
 これによれば、ユーザは、近くの物体を視認しようとして、近くの物体に焦点を合わせれば、表示装置300を構成する第1光学素子400の機能により遠くの物体にも焦点を合わせることが可能となり、図10に示すように、近くの物体と遠くの物体との双方をはっきりと視認することが可能となる(あるいは、遠くの物体がぼやけて見えてしまうことを抑止することが可能となる)。
[0051]
 以上説明した本実施形態の表示装置300は、入射する光を発散させる特性を有する第1光学素子400を備えているので、図9及び図10に示した通り、透明ディスプレイDSPに表示される情報と、透明ディスプレイDSPの第2面側に位置する遠くの物体とに同時に焦点を合わせることができ、どちらかの物体がぼやけて見えてしまうといった事象の発生を抑止することが可能となる。
[0052]
 一方で、図9に示した構成の表示装置300の場合、ユーザは、遠くの物体を、第1光学素子400を介して視認することになるため、第1光学素子400の特性上(視角の変化に起因して)、図11に示すように、遠くの物体は、裸眼で見た時に比べて小さく見えてしまう。このため、本実施形態の表示装置300が、図4及び図5に示したように、ヘルメットのシールド部分100やメガネのレンズ部分200の片目側のみに設置された場合、図11に示すように、ユーザは、一方の眼では遠くの物体を表示装置300(第1光学素子400)を介して視認し、他方の眼では遠くの物体を表示装置300(第1光学素子400)を介さずに視認することに、例えば裸眼で視認することになるので、右眼と左眼とで遠くの物体の大きさが異なって見えてしまい、視覚に差が生じてしまう。これはユーザにとってストレスとなる事象であり、あまり好ましいことではない。さらに、図11における当該一方の眼が有する水晶体は、図9に示す厚さ、屈折率の水晶体250と同様の状態であり、当該他方の眼が有する水晶体は、図7(b)に示す厚さ、屈折率の水晶体250と同様の状態である。すなわち、右眼と左眼とで水晶体の厚さが異なることになり、これもユーザにとってストレスとなる事象である。上記した新たな問題を解消した上で、MRを実現させることが可能な表示装置について説明する。
[0053]
 図12は、本実施形態の表示装置301の一構成例を示す図である。本実施形態に係る表示装置301は、図12に示すように、透明ディスプレイDSPと、透明ディスプレイDSPの第2面側に設置される第1光学素子400と、透明ディスプレイDSPの第1面側に設置される第2光学素子500とを備えている。すなわち、表示装置301は、透明ディスプレイDSPの第1面側に第2光学素子500をさらに備えている点で表示装置300と相違している。
[0054]
 第2光学素子500は、第1光学素子400とは異なり、当該第2光学素子500に入射した平行光束を集光させる特性(集光特性)を有する素子であり、例えば、凸レンズ等である。透明ディスプレイDSP及び第1光学素子400は、例えば透明樹脂からなる第1接着剤により接着される。第1接着剤は、第1光学素子400と同一の屈折率を有している方が好ましい。また、透明ディスプレイDSP及び第2光学素子500は、例えば透明樹脂からなる第2接着剤により接着される。第2接着剤は、第2光学素子500と同一の屈折率を有している方が好ましい。
[0055]
 第1光学素子400は、当該第1光学素子400に入射した光を発散する方向に屈折させる特性を有していることから、ユーザに物体を実際の大きさよりも小さく視認させる縮小効果を有している。一方で、第2光学素子500は、当該第2光学素子500に入射した光を集光する方向に屈折させる特性を有していることから、ユーザに物体を実際の大きさよりも大きく視認させる拡大効果を有している。表示装置301においては、2つの光学素子の倍率の積が1となるような第1光学素子400(倍率:1/x倍)と第2光学素子500(倍率:x倍)とが用いられる方が好ましい。
[0056]
 ここで、図13を参照して、遠くの物体を視認しようとして、低い屈折率を有した状態の水晶体250に、点光源PL1から発せられる光(近くの物体から発せられる光)と、点光源PL2から発せられる光(遠くの物体から発せられる光)とがそれぞれ本実施形態の表示装置301を介して入射する場合の光の軌跡(光路)について説明する。
[0057]
 図13に示す場合において、点光源PL1から発せられる光は、表示装置301を構成する第2光学素子500により集光する方向に屈折した上で、ユーザの眼に入射するため、水晶体250が低い屈折率を有した状態であっても、図7(b)の点線に示したように焦点を結ぶことなく網膜に到達するのではなく、図13に示すように網膜にて焦点を結ぶ(あるいは、網膜の後方にて仮想的に焦点を結ぶ位置が、図7(b)に示される位置よりも網膜に近くなる)。これによれば、ユーザは、遠くの物体を視認しようとして、遠くの物体に焦点を合わせているにも関わらず、表示装置301を構成する第2光学素子500の機能により近くの物体にも焦点を合わせることが可能となり、近くの物体と遠くの物体との双方をはっきりと視認することが可能となる。
[0058]
 一方、点光源PL2から発せられる光は、表示装置301を構成する第1光学素子400により発散する方向に一度屈折した後に、第2光学素子500により集光する方向に再度屈折して、ユーザの眼に入射する。つまり、第1光学素子400の光を発散させる特性に起因して生じる縮小効果を、第2光学素子500の光を集光させる特性に起因して生じる拡大効果によって相殺(キャンセル)することができる。これによれば、ユーザは、遠くの物体を、表示装置301を介して視認したとしても等倍で視認することが可能となり、遠くの物体を表示装置300(第1光学素子400)を介さずに見た時、例えば裸眼で見た時と同じ大きさで視認することが可能となるので、上記した新たな問題を解消することができる。
[0059]
 なお、図13に示したように、表示装置301は、上記した表示装置300とは異なり、近くの物体に焦点を合わせることで遠くの物体にも焦点を合わせることを可能にするのではなく、遠くの物体に焦点を合わせることで近くの物体にも焦点を合わせることを可能にしている。
[0060]
 以上説明した本実施形態の表示装置301は、第1光学素子400により発散する方向に一度屈折した光を、集光する方向に再度屈折させる第2光学素子500を備えているので、図13に示した通り、透明ディスプレイDSPに表示される情報と、透明ディスプレイDSPの第2面側に位置する遠くの物体とに同時に焦点を合わせることができる上に、遠くの物体の大きさを、表示装置301を介して視認する場合と、表示装置300(第1光学素子400)を介さずに視認する場合、例えば裸眼で視認する場合とで同じにすることができ、右眼と左眼との視覚に差が生じてしまうといった事象の発生を抑止することが可能となる。
[0061]
 なお、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とは、図12及び図13に示したように、それぞれ接着されている方が好ましいが、これに限定されず、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とは、それぞれ間隔を空けて設置されても良い。以下では、図14を参照して、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とが、それぞれ間隔を空けて設置されている表示装置301aについて説明する。
[0062]
 透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とが、図14に示すように、それぞれ間隔を空けて設置されている場合、透明ディスプレイDSPと第1光学素子400との間には第1空気層(図14の斜線部分に相当する)が存在し、透明ディスプレイDSPと第2光学素子500との間には第2空気層(図14の斜線部分に相当する)が存在する。この第1及び第2空気層によれば、例えば次のような問題が生じる可能性がある。
[0063]
 図12及び図13に示した構成の表示装置301においては、遠くの物体から発せられる光は、第1光学素子400により発散する方向に一度屈折した後に、第2光学素子500により集光する方向に再度屈折するので、第1光学素子400の特性に起因した縮小効果を第2光学素子500の特性に起因した拡大効果で相殺し、結果的に、ユーザは、表示装置301を介したとしても、表示装置301(第1光学素子400)を介さずに見た時、裸眼で見た時と同じ大きさで遠くの物体を視認することが可能となる。
[0064]
 一方で、図14に示す構成の表示装置301aの場合、遠くの物体から発せられる光は、表示装置301の場合と同様に、第1光学素子400により発散する方向に一度屈折した後に、第2光学素子500により集光する方向に再度屈折するものの、第1及び第2空気層に起因して、第1光学素子400の特性に起因した縮小効果よりも大きな縮小効果が生じてしまう可能性がある。このため、上記した縮小効果を、第2光学素子500の特性に起因した拡大効果で相殺し切れず、結果的に、右眼と左眼との視覚に差が生じてしまうといった問題が生じてしまう。
[0065]
 このため、図14に示す構成の表示装置301aを使用する場合、ヘルメットのシールド部分100やメガネのレンズ部分200の、表示装置301aと向かい合う眼とは反対の眼と向かい合う位置に、第1光学素子400と同じ特性を有する第3光学素子401(補正用レンズ)を設置する。
[0066]
 第3光学素子401は、第1光学素子400と同様に、入射した光を発散する方向に屈折させる特性を有した素子であり、ユーザに物体を実際の大きさよりも小さく視認させる縮小効果を有している。第1及び第3光学素子400,401が共に凹レンズである場合、第3光学素子401は第1光学素子400よりも大きい曲率(ひいては倍率)を有している。第3光学素子401の倍率は、ユーザが表示装置301aを介して遠くの物体を見た時に、当該物体を実際の大きさよりもどれだけ小さく視認しているかに基づいて設定され、例えば1/x倍小さく視認している場合、1/x倍に設定される。すなわち、第3光学素子401は、上記した第2光学素子500の特性に起因した拡大効果で相殺し切れない分の縮小効果を有する。
[0067]
 これによれば、ユーザが遠くの物体を表示装置301aを介して視認した場合、遠くの物体の大きさは実際の大きさよりも小さく視認されてしまうものの、他方の眼でも第3光学素子401を介して同様に小さく視認することが可能となるため、右眼と左眼との視覚に差が生じてしまうといった事象の発生を抑止することが可能となる。
[0068]
 なお、ここでは、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とが、それぞれ間隔を空けて設置されている表示装置301aを使用した際に生じる問題の解消方法として、表示装置301aと向かい合う眼とは反対の眼と向かい合う位置に第3光学素子401を設置する方法を説明したが、上記した問題の解消方法はこれに限定されない。
[0069]
 例えば図15に示すように、第3光学素子401に代えて、表示装置301aがもう1つ設置されるとしても良い。これによれば、ヘルメットのシールド部分100やメガネのレンズ部分200には、右眼用の表示装置301aと、左眼用の表示装置301aとが設置されることになるため、右眼と左眼とで視覚に差が生じることはなく、上記した問題を解消することが可能である。なお、右眼用の表示装置301aに画像を表示している場合、左眼用の表示装置301aには画像は表示しないものとする。同様に、左眼用の表示装置301aに画像を表示している場合、右眼用の表示装置301aには画像は表示しないものとする。
[0070]
 あるいは、図16に示すように、ヘルメットのシールド部分100(やメガネのレンズ部分200)の全面に右眼と左眼との両方に対応する大きさの表示装置301aが設置されるとしても良い。これによれば、ユーザは、右眼と左眼との両目共に、1つの表示装置301aを介して遠くの物体を視認することになるので、右眼と左眼とで視覚に差が生じることはなく、上記した問題を解消することが可能である。なお、表示装置301aの右眼と対向する領域に画像を表示している場合、表示装置301aの左眼と対向する領域には画像を表示しないものとする。同様に、表示装置301aの左眼と対向する領域に画像を表示している場合、表示装置301aの右眼と対向する領域には画像を表示しないものとする。
[0071]
 なお、表示装置301aは、図17に示すように、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500との間隔を調整可能な調整機構600をさらに備えていても良い。図17では、各部300~500を接続する少なくとも2本の軸601と、各部300~500を2本の軸601に沿って左右方向に移動可能にする複数のネジ602とを備えた調整機構600を図示したが、調整機構600の構成はこれに限定されず、透明ディスプレイDSP、第1光学素子400及び第2光学素子500を左右方向に移動可能、且つ、各部300~500を固定可能であれば、どのような構成であっても良い。これによれば、ユーザの視力の違いに起因した見え方の違いに対応することが可能となり、種々様々な視力のユーザに好適な見え方を提供することが可能となる。
[0072]
 なお、調整機構600を備えた表示装置301aが図4に示したヘルメットに適用される場合、ユーザの眼から透明ディスプレイDSPまでの距離は、およそ5cm~15cmが好ましく、この場合、調整機構600により、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500との間隔は、それぞれ0cm~3cmに調整可能であるものとする。同様に、調整機構600を備えた表示装置301aが図5に示したメガネに適用される場合、ユーザの眼から透明ディスプレイDSPまでの距離は、およそ2cm~5cmが好ましく、この場合においても、調整機構600により、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500との間隔は、それぞれ0cm~3cmに調整可能であるものとする。
[0073]
 本実施形態においては、第1光学素子400が凹レンズであり、第2光学素子500が凸レンズである場合を想定して説明したが、これに限定されず、第1光学素子400及び第2光学素子500としては、可変焦点レンズの一種である液晶レンズが用いられても良い。
[0074]
 図18は、液晶レンズ700の一例を説明するための図である。
[0075]
 液晶レンズ700は、図18に示すように、第1基板701と、第2基板702と、液晶層703と、複数の第1制御電極704と、第2制御電極705と、を備えている。図示した例では、第1制御電極704は第1基板701に設けられ、第2制御電極705は第2基板702に設けられているが、第1制御電極704及び第2制御電極705がいずれも同一基板、つまり、第1基板701または第2基板702に設けられていても良い。
[0076]
 複数の第1制御電極704は、第1方向Xに間隔をおいて第1基板701上に並んでいる。一例では、第1制御電極704の第1方向Xに沿った幅は、隣り合う第1制御電極704の第1方向Xに沿った間隔と同等以下である。複数の第1制御電極704は、図示しない配向膜によって覆われており、当該配向膜は液晶層703と接触している。
[0077]
 第2制御電極705は、単一の平板電極であり、液晶層703を介して第1制御電極704と対向している。第2制御電極705は、第1制御電極704と同様に、図示しない配向膜によって覆われており、当該配向膜が液晶層703と接触している。すなわち、液晶層703は、複数の第1制御電極704を覆う配向膜と、第2制御電極705を覆う配向膜とによって挟持されている。
[0078]
 第1基板701及び第2基板702は、例えばガラス基板または樹脂基板である。第1制御電極704及び第2制御電極705は、インジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)等の透明導電材料によって形成されている。液晶層703は、例えば、正の誘電率異方性を有する液晶材料によって形成されている。第1制御電極704及び第2制御電極705は、液晶層703にレンズを形成するための電圧を印加する。
[0079]
 液晶層703は、上記の通り、正の誘電率異方性を有しており、液晶層703に含まれる液晶分子703Mは、電界が形成されない状態ではその長軸が第1方向Xに沿うように初期配向しており、電界が形成された状態ではその長軸が電界に沿うように配向される。
[0080]
 等間隔に並んだ複数の第1制御電極704の交互に閾値以上の電圧が印加されると、電界が形成され、液晶層703には液晶分子703Mの配向状態に応じた屈折率分布が生じる。具体的には、複数の第1制御電極704a,704c,704eに閾値以上の電圧が印加されると、図18(a)に示されるように、凸レンズ状の屈折率分布(換言すると、集光特性を有した屈折率分布)が生じ、複数の第1制御電極704b,704dに閾値以上の電圧が印加されると、図18(b)に示されるように、凹レンズ状の屈折率分布(換言すると、発散特性を有した屈折率分布)が生じる。
[0081]
 上記した通り、液晶レンズ700は、複数の第1制御電極704への電圧の印加の仕方によって、発散特性を有する第1光学素子400としても、集光特性を有する第2光学素子500としても機能する。このため、図18(b)に示す状態の液晶レンズ700を第1光学素子400の代わりに用い、図18(a)に示す状態の液晶レンズ700を第2光学素子500の代わりに用いることで、表示装置300,301,301aは構成されるとしても良い。
[0082]
 なお、液晶レンズ700は、印加する電圧の大きさに応じて焦点距離を調整可能な可変焦点レンズであるため、上記した調整機構600が設けられた場合と同様に、ユーザの視力の違いに起因した見え方の違いに対応することが可能となり、種々様々な視力のユーザに好適な見え方を提供することが可能となる。
[0083]
 本実施形態において、表示装置301,301aは、透明ディスプレイDSPに加えて、それぞれ1つの第1光学素子400と第2光学素子500とを備えているとしたが、表示装置301,301aの構成はこれに限定されず、表示装置301,301aは、例えば、透明ディスプレイDSPに加えて、複数の第1光学素子400と1つの第2光学素子500とを備えているとしても良い。以下では、表示装置301,301aが複数の第1光学素子400を備える場合について詳しく説明する。
[0084]
 例えば、表示装置301,301aがヘルメットのシールド部分100に設置される場合、ユーザは、表示装置301,301aの上側領域では、遠くの物体として進行方向に位置する道路や車体、人物等を視認するのに対し、表示装置301,301aの下側領域では、遠くの物体として回転速度計等の各種計器やカーナビ等を視認するものと推察される。すなわち、表示装置301,301aの上側領域と下側領域とで、遠くの物体として視認する対象までの距離が異なる場合があり、このような場合、1種類の第1光学素子400では、表示装置301,301aの上側領域では遠くの物体を視認し易い(焦点を合わせ易い)のに対し、表示装置301,301aの下側領域では遠くの物体を視認し辛い(焦点を合わせ辛い)等、ユーザにとって好適な見え方を提供できない可能性がある。
[0085]
 このような問題を解消するために、表示装置301,301aには、図19に示すように、透明ディスプレイDSPの第2面側のうちの上側領域に設置される第1光学素子400aと、透明ディスプレイDSPの第2面側のうちの下側領域に設置され、第1光学素子400aとは屈折率の異なる第1光学素子400bとが備えられるとしても良い。なお、図19では説明の便宜上、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とがそれぞれ間隔を空けて設置される表示装置301aを図示しているが、透明ディスプレイDSP、第1光学素子400及び第2光学素子500がそれぞれ接着されて設置される表示装置301であっても、勿論同様な構成は可能である。さらに、図19では、1つの第2光学素子500が設置されているが、複数の第2光学素子500が設置されてもよい。例えば2つの第2光学素子500が、第1光学素子400aに対向する位置と第1光学素子400bに対向する位置とに1つずつ設置されてもよい。
[0086]
 図19では、ユーザによって、上側領域で遠くの物体として視認される対象が、下側領域で遠くの物体として視認される対象よりも遠くに位置する場合を想定している。このため、上側領域には、屈折率の低い第1光学素子400aが設置され、下側領域には、第1光学素子400aよりも屈折率の高い第1光学素子400bが設置されている。
[0087]
 なお、ここでは、上側領域に屈折率の低い第1光学素子400aが設置され、下側領域に屈折率の高い第1光学素子400bが設置される場合を説明したが、どの領域にどのような屈折率の第1光学素子400を設置するかは、状況に応じて任意に変更可能であるものとする。例えば、ユーザによって、上側領域で遠くの物体として視認される対象が、下側領域で遠くの物体として視認される対象よりも近くに位置する場合、上側領域には、屈折率の高い第1光学素子400bが設置され、下側領域には、屈折率の低い第1光学素子400aが設置されても良い。
[0088]
 また、ここでは、表示装置301,301aが1本の横線で上側領域と下側領域といった2つの領域に仮想的に分けられ、この上側領域と下側領域とに屈折率の異なる2つの第1光学素子400が設置される場合を説明したが、第1光学素子400を設置する領域の数や、設置する第1光学素子400の数は、状況に応じて任意に変更可能であるものとする。例えば、表示装置301,301aを2本の横線で3分割し、上段領域と、中段領域と、下段領域といった3つの領域に仮想的に分けた上で、各領域に1つずつ第1光学素子400が設置されるとしても良い。
[0089]
 以上説明した図19に示す構成の表示装置301,301aは、上記した通り、透明ディスプレイDSPの第2面側の上側領域に設置された第1光学素子400aと、透明ディスプレイDSPの第2面側の下側領域に設置され、第1光学素子400aとは屈折率の異なる第1光学素子400bとを備えている。これによれば、遠くの物体として視認される対象までの距離が、表示装置301,301aの上側領域と下側領域とで異なっていたとしても、上側領域と下側領域との双方において、遠くの物体として視認される対象をユーザにはっきりと視認させることが可能となる。
[0090]
 上記した図19では、表示装置301,301aの上側領域には第1光学素子400aを設置し、表示装置301,301aの下側領域には第1光学素子400bを設置することで、ユーザによって遠くの物体として視認される対象までの距離が領域毎に異なる場合であっても、ユーザに好適な見え方を提供可能としたが、例えば図20に示すように、表示装置301,301aの上側領域にのみ第1光学素子400を設置し、表示装置301,301aの下側領域には第1光学素子400を設置しないことによって、上記した問題を解消し、ユーザに好適な見え方を提供するとしても良い。
[0091]
 また、上記した図19では、透明ディスプレイDSPと、第1光学素子400と、第2光学素子500とを備える表示装置301,301aに対して、複数の第1光学素子400が適用される場合を説明したが、例えば図21に示すように、透明ディスプレイDSPと第1光学素子400とを備える表示装置300に対して、複数の第1光学素子400が適用されるとしても良い。この場合においても、上記した図19及び図20に示した構成と同様に、上記した問題を解消し、ユーザに好適な見え方を提供することが可能である。
[0092]
 さらに、図21では、表示装置300の上側領域には第1光学素子400aが設置され、表示装置300の下側領域には第1光学素子400bが設置されている場合を例示したが、例えば図22に示すように、表示装置300の上側領域にのみ第1光学素子400を設置し、表示装置300の下側領域には第1光学素子400を設置しないことによって、上記した問題を解消し、ユーザに好適な見え方を提供するとしても良い。
[0093]
 上記した図19~図22では、ユーザによって遠くの物体として視認される対象までの距離が、表示装置の上側領域と下側領域とで異なっている場合、つまり、表示装置の上下方向で異なっている場合について説明したが、以下では、ユーザによって遠くの物体として視認される対象までの距離が、表示装置の左右方向で異なっている場合について説明する。なお、以下では、表示装置が2本の縦線で3分割され、中央領域と、左領域と、右領域といった3つの領域に仮想的に分けられているものとして説明する。
[0094]
 例えば、表示装置301,301aがヘルメットのシールド部分100に設置される場合、ユーザは、表示装置301,301aの中央領域では、遠くの物体として進行方向に位置する車道や車体、車道上の人物等を視認するのに対し、表示装置301,301aの左右領域では、遠くの物体として進行方向に位置する歩道やガードレール、歩道上の人物等を視認するものと推察される。すなわち、表示装置301,301aの中央領域と左右領域とで、遠くの物体として視認する対象までの距離が異なる場合があり、このような場合、1種類の第1光学素子400では、表示装置301,301aの中央領域では遠くの物体を視認し易い(焦点を合わせ易い)のに対し、表示装置301,301aの左右領域では遠くの物体を視認し辛い(焦点を合わせ辛い)等、ユーザにとって好適な見え方を提供できない可能性がある。
[0095]
 このような問題を解消するために、表示装置301,301aには、図23に示すように、透明ディスプレイDSPの第2面側のうちの中央領域に設置される第1光学素子400cと、透明ディスプレイDSPの第2面側のうちの左右領域にそれぞれ設置され、第1光学素子400cとは屈折率の異なる第1光学素子400dとが備えられるとしても良い。なお、図23では説明の便宜上、透明ディスプレイDSP及び第1光学素子400と、透明ディスプレイDSP及び第2光学素子500とがそれぞれ間隔を空けて設置される表示装置301aを図示しているが、透明ディスプレイDSP、第1光学素子400及び第2光学素子500がそれぞれ接着されて設置される表示装置301であっても、勿論同様な構成は可能である。さらに、図23では、1つの第2光学素子500が設置されているが、複数の第2光学素子500が設置されてもよい。なお、図23は、ユーザや表示装置を真上から見た図である。
[0096]
 図23では、ユーザによって、中央領域で遠くの物体として視認される対象が、左右領域で遠くの物体として視認される対象よりも遠くに位置する場合を想定している。このため、中央領域には、屈折率の低い第1光学素子400cが設置され、左右領域には、第1光学素子400cよりも屈折率の高い第1光学素子400dがそれぞれ設置されている。
[0097]
 なお、ここでは、中央領域に屈折率の低い第1光学素子400cが設置され、左右領域に屈折率の高い第1光学素子400dがそれぞれ設置される場合を説明したが、どの領域にどのような屈折率の第1光学素子400を設置するかは、状況に応じて任意に変更可能であるものとする。
[0098]
 例えば、ユーザによって、遠くの物体として視認される対象までの距離が、中央領域、右領域、左領域の順に遠くに位置するような場合、図24に示すように、中央領域に屈折率が最も低い第1光学素子400cが設置され、左領域に屈折率が最も高い第1光学素子400daが設置され、右領域に第1光学素子400cよりも高く、第1光学素子400daよりも低い屈折率の第1光学素子400dbが設置されても良い。また、例えば、ユーザによって、遠くの物体として視認される対象までの距離が、中央領域、左領域、右領域の順に遠くに位置するような場合、図25に示すように、中央領域に屈折率が最も低い第1光学素子400cが設置され、右領域に屈折率が最も高い第1光学素子400daが設置され、左領域に第1光学素子400cよりも高く、第1光学素子400daよりも低い屈折率の第1光学素子400dbが設置されても良い。
[0099]
 また、ここでは、表示装置301,301aが2本の縦線で中央領域と左右領域といった3つの領域に仮想的に分けられ、この中央領域と左右領域とに屈折率の異なる3つの第1光学素子400が設置される場合を説明したが、第1光学素子400を設置する領域の数や、設置する第1光学素子400の数は、状況に応じて任意に変更可能であるものとする。例えば、表示装置301,301aを3本の縦線で4分割し、左中央領域と、右中央領域と、左領域と、右領域といった4つの領域に仮想的に分けた上で、各領域に1つずつ第1光学素子400が設置されるとしても良い。
[0100]
 以上説明した図23~図25に示す構成の表示装置301,301aは、上記した通り、透明ディスプレイDSPの第2面側の中央領域に設置された第1光学素子400cと、透明ディスプレイDSPの第2面側の左右領域に設置され、第1光学素子400cとは屈折率の異なる第1光学素子400dとを備えている。これによれば、遠くの物体として視認される対象までの距離が、表示装置301,301aの中央領域と左右領域とで異なっていたとしても、いずれの領域においても、遠くの物体として視認される対象をユーザにはっきりと視認させることが可能となる。
[0101]
 上記した図23~図25では、表示装置301,301aの中央領域には第1光学素子400cを設置し、表示装置301,301aの左右領域には第1光学素子400dを設置することで、ユーザによって遠くの物体として視認される対象までの距離が領域毎に異なる場合であっても、ユーザに好適な見え方を提供可能としたが、例えば図26に示すように、表示装置301,301aの中央領域にのみ第1光学素子400を設置し、表示装置301,301aの左右領域には第1光学素子400を設置しないことによって、上記した問題を解消し、ユーザに好適な見え方を提供するとしても良い。
[0102]
 また、上記した図23~図25では、透明ディスプレイDSPと、第1光学素子400と、第2光学素子500とを備える表示装置301,301aに対して、複数の第1光学素子400が適用される場合を説明したが、例えば図27に示すように、透明ディスプレイDSPと第1光学素子400とを備える表示装置300に対して、複数の第1光学素子400が適用されるとしても良い。この場合においても、上記した図23~図25に示した構成と同様に、上記した問題を解消し、ユーザに好適な見え方を提供することが可能である。
[0103]
 さらに、図27では、表示装置300の中央領域には第1光学素子400cが設置され、表示装置300の左右領域には第1光学素子400dが設置されている場合を例示したが、例えば図28に示すように、表示装置300の中央領域にのみ第1光学素子400を設置し、表示装置300の左右領域には第1光学素子400を設置しないことによって、上記した問題を解消し、ユーザに好適な見え方を提供するとしても良い。なお、図19~図28に示した各種構成は、適宜組み合わせて用いられても良い。
[0104]
 本実施形態においては、第1光学素子400及び第2光学素子500が共に、通常の凹レンズ及び凸レンズである場合を想定して説明したが、これに限定されず、第1光学素子400として図29(a)に示す凹レンズの特性を有したフレネルレンズ800aが使用され、第2光学素子500として図29(b)に示す凸レンズの特性を有したフレネルレンズ800bが使用されるとしても良い。
[0105]
 本実施形態においては、第1光学素子400及び第2光学素子500の大きさは、透明ディスプレイDSPを構成する表示部DA(すなわち、画像を表示可能な表示領域)よりも大きい方が好ましい。
[0106]
 以上説明した一実施形態によれば、近景と遠景とに同時に焦点を合わせることを可能にする表示装置及びヘルメットを提供することができる。
[0107]
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

符号の説明

[0108]
 100…シールド、200…レンズ、250…水晶体、300,301,301a…表示装置、400…第1光学素子、401…第3光学素子、500…第2光学素子、600…調整機構、700…液晶レンズ、800a,800b…フレネルレンズ、DSP…透明ディスプレイ。

請求の範囲

[請求項1]
 複数の画素を含む表示領域と、表示面を含む第1面と、前記第1面の反対側の第2面と、を有する透明ディスプレイと、
 前記透明ディスプレイの前記第2面側に設置される第1光学素子と
 を備え、
 前記第1光学素子は、入射する光を発散する方向に屈折させる特性を有する、表示装置。
[請求項2]
 前記透明ディスプレイの前記第1面側に設置される第2光学素子をさらに備え、
 前記第2光学素子は、入射する光を集光する方向に屈折させる特性を有する、請求項1に記載の表示装置。
[請求項3]
 前記透明ディスプレイ及び前記第1光学素子と、前記透明ディスプレイ及び前記第2光学素子とはそれぞれ接着して設置される、請求項2に記載の表示装置。
[請求項4]
 前記透明ディスプレイ及び前記第1光学素子と、前記透明ディスプレイ及び前記第2光学素子とはそれぞれ間隔を空けて設置される、請求項2に記載の表示装置。
[請求項5]
 前記透明ディスプレイ及び前記第1光学素子と、前記透明ディスプレイ及び前記第2光学素子との間隔を変更可能な、請求項4に記載の表示装置。
[請求項6]
 前記第1光学素子は、前記透明ディスプレイの前記第2面側に複数設置される、請求項2に記載の表示装置。
[請求項7]
 前記複数の第1光学素子は、前記透明ディスプレイの前記第2面に含まれる第1領域と対向する位置と、前記透明ディスプレイの前記第2面に含まれ、且つ前記第1領域とは異なる第2領域と対向する位置とにそれぞれ設置される、請求項6に記載の表示装置。
[請求項8]
 前記透明ディスプレイはユーザの眼前に位置し、
 前記第1面は前記ユーザの眼と対向し、
 前記第1領域は、前記ユーザによって視認される対象が前記第2領域に比べて遠くに位置する領域であり、
 前記第1領域と対向する位置に設置される第1光学素子は、前記第2領域と対向する位置に設置される第1光学素子に比べて高い屈折率を有する、請求項7に記載の表示装置。
[請求項9]
 前記第1領域は、前記透明ディスプレイを仮想的に上下に分割した場合の上側領域であり、
 前記第2領域は、前記透明ディスプレイを仮想的に上下に分割した場合の下側領域である、請求項8に記載の表示装置。
[請求項10]
 前記第1領域は、前記透明ディスプレイを2本の縦線で仮想的に3分割した場合の中央領域であり、
 前記第2領域は、前記透明ディスプレイを2本の縦線で仮想的に3分割した場合の左右領域である、請求項8に記載の表示装置。
[請求項11]
 前記第1光学素子及び前記第2光学素子の大きさは、前記透明ディスプレイの前記表示領域よりも大きい、請求項2に記載の表示装置。
[請求項12]
 前記第1光学素子は、凹レンズであり、
 前記第2光学素子は、凸レンズである、請求項2に記載の表示装置。
[請求項13]
 前記第1光学素子及び前記第2光学素子のうちの少なくとも一方は、フレネルレンズである、請求項12に記載の表示装置。
[請求項14]
 前記第1光学素子及び前記第2光学素子は、液晶レンズである、請求項2に記載の表示装置。
[請求項15]
 請求項1に記載の表示装置と、
 前記表示装置が設置されるシールドと
 を備えるヘルメット。
[請求項16]
 ユーザの眼と対向する第1面、前記第1面の反対側の第2面、及び複数の画素を含む表示領域を有する透明ディスプレイと、前記透明ディスプレイの前記第2面側に設置され、入射する光を発散する方向に屈折させる特性を有する第1光学素子と、前記透明ディスプレイの前記第1面側に設置され、入射する光を集光する方向に屈折させる特性を有する第2光学素子とを備える表示装置と、
 前記ユーザの少なくとも一方の眼と対向する位置に前記表示装置が設置されるシールドと
 を具備する、ヘルメット。
[請求項17]
 前記シールドには、
 前記ユーザの一方の眼と対向する位置に前記表示装置が設置され、前記ユーザの他方の眼と対向する位置に前記第1光学素子と同じ特性を有する第3光学素子がさらに設置される、請求項16に記載のヘルメット。
[請求項18]
 前記シールドには、
 前記ユーザの一方の眼と対向する位置に前記表示装置が設置され、前記ユーザの他方の眼と対向する位置にも前記表示装置がさらに設置される、請求項16に記載のヘルメット。
[請求項19]
 前記シールドには、
 その全面に前記表示装置が設置され、
 前記表示装置は、
 前記ユーザの一方の眼と対向する位置を含む第1領域には画像を表示し、前記ユーザの他方の眼と対向する位置を含む第2領域には画像を表示しない、請求項16に記載のヘルメット。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]

[ 図 26]

[ 図 27]

[ 図 28]

[ 図 29]