処理中

しばらくお待ちください...

設定

設定

出願の表示

1. WO2020111154 - 半導体装置の製造方法及び仮固定材用積層フィルム

Document

明 細 書

発明の名称 半導体装置の製造方法及び仮固定材用積層フィルム

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

発明が解決しようとする課題

0005   0006  

課題を解決するための手段

0007   0008   0009   0010   0011   0012  

発明の効果

0013  

図面の簡単な説明

0014  

発明を実施するための形態

0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108  

実施例

0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125  

符号の説明

0126  

請求の範囲

1   2   3   4   5   6   7  

図面

1   2   3   4   5  

明 細 書

発明の名称 : 半導体装置の製造方法及び仮固定材用積層フィルム

技術分野

[0001]
 本発明は、半導体装置の製造方法及び仮固定材用積層フィルムに関する。

背景技術

[0002]
 半導体装置の分野では、近年、複数の半導体素子を積層したSIP(System in Package)と呼ばれるパッケージに関する技術が著しく成長している。SIP型のパッケージでは半導体素子が多数積層されるため、半導体素子には、薄厚化が要求される。この要求に応じて、半導体素子には、半導体部材(例えば、半導体ウェハ)に集積回路を組み入れた後に、例えば、半導体部材の裏面を研削する薄厚化、半導体ウェハをダイシングする個別化等の加工処理が施される。これら半導体部材の加工処理は、通常、仮固定材層によって、半導体部材を支持部材に仮固定して行われる(例えば、特許文献1~3を参照。)。
[0003]
 加工処理が施された半導体部材は、仮固定材層を介して支持部材と強固に固定されている。そのため、半導体装置の製造方法においては、半導体部材のダメージ等を防ぎつつ、加工処理後の半導体部材を支持部材から分離できることが求められる。特許文献1には、このような半導体部材を分離する方法として、仮固定材層を加熱しながら物理的に分離する方法が開示されている。また、特許文献2、3には、仮固定材層にレーザー光(コヒーレント光)を照射することによって、半導体部材を分離する方法が開示されている。

先行技術文献

特許文献

[0004]
特許文献1 : 特開2012-126803号公報
特許文献2 : 特開2016-138182号公報
特許文献3 : 特開2013-033814号公報

発明の概要

発明が解決しようとする課題

[0005]
 しかし、特許文献1に開示されている方法では、熱履歴によるダメージ等が半導体ウェハに発生し、歩留まりが低下してしまう問題がある。一方で、特許文献2、3に開示されている方法では、レーザー光の照射面積が狭く、半導体部材全体に対して何度も繰り返して照射することから時間がかかってしまうこと、レーザー光の焦点を制御してスキャン照射することから工程が複雑になってしまうこと、及び高価な装置を要することの問題がある。
[0006]
 本発明は、このような実情に鑑みてなされたものであり、仮固定された半導体部材を、支持部材から容易に分離することが可能な半導体装置の製造方法を提供することを目的とする。また、本発明は、仮固定材として有用な仮固定材用積層フィルムを提供することを目的とする。

課題を解決するための手段

[0007]
 本発明の一側面は、支持部材と、光を吸収して熱を発生する仮固定材層と、半導体部材とがこの順に積層された積層体を準備する準備工程と、積層体における仮固定材層に光を照射して、支持部材から半導体部材を分離する分離工程とを備え、仮固定材層が、光を吸収して熱を発生する光吸収層と、硬化性樹脂成分の硬化物を含む樹脂硬化物層とを有し、硬化性樹脂成分が、炭化水素樹脂を含み、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が、5~100MPaである、半導体装置の製造方法を提供する。
[0008]
 分離工程における光の光源が、キセノンランプであってよい。分離工程における光は、少なくとも赤外光を含む光であってよい。
[0009]
 分離工程は、支持部材を介して仮固定材層に光を照射する工程であってよい。
[0010]
 硬化性樹脂成分は、熱硬化性樹脂をさらに含んでいてもよい。
[0011]
 本発明の他の一側面は、半導体部材を支持部材に仮固定するための仮固定材用積層フィルムであって、光を吸収して熱を発生する光吸収層と、硬化性樹脂成分を含む樹脂層とを有し、硬化性樹脂成分が、炭化水素樹脂を含み、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が、5~100MPaである、仮固定材用積層フィルムを提供する。
[0012]
 樹脂層の厚みは、50μm以下であってよい。

発明の効果

[0013]
 本発明によれば、仮固定された半導体部材を、支持部材から容易に分離することが可能な半導体装置の製造方法が提供される。また、本発明によれば、仮固定材として有用な仮固定材用積層フィルムが提供される。

図面の簡単な説明

[0014]
[図1] 図1は、本発明の半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図1(a)及び(b)は、各工程を示す模式断面図である。
[図2] 図2(a)、(b)、及び(c)は、仮固定材前駆体層の一実施形態を示す模式断面図である。
[図3] 図3(a)、(b)、(c)、及び(d)は、図2(a)に示す仮固定材前駆体層を用いて形成される積層体の一実施形態を示す模式断面図である。
[図4] 図4は、図3(d)に示す積層体を用いた本発明の半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図4(a)及び(b)は、各工程を示す模式断面図である。
[図5] 図5は、図1(a)に示す積層体の製造方法の他の実施形態を説明するための模式断面図であり、図5(a)、(b)、及び(c)は、各工程を示す模式断面図である。

発明を実施するための形態

[0015]
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
[0016]
 本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
[0017]
 本明細書において、(メタ)アクリル酸は、アクリル酸又はそれに対応するメタクリル酸を意味する。(メタ)アクリレート、(メタ)アクリロイル基等の他の類似表現についても同様である。
[0018]
[半導体装置の製造方法]
 本実施形態に係る半導体装置の製造方法は、支持部材と、光を吸収して熱を発生する仮固定材層(以下、単に「仮固定材層」という場合がある。)と、半導体部材とがこの順に積層された積層体を準備する準備工程と、積層体における仮固定材層に光を照射して、支持部材から半導体部材を分離する分離工程とを備える。
[0019]
<積層体の準備工程>
 図1は、本発明の半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図1(a)及び(b)は、各工程を示す模式断面図である。図1(a)に示すとおり、積層体の準備工程においては、支持部材10と、仮固定材層30cと、半導体部材40とがこの順に積層された積層体100を準備する。
[0020]
 支持部材10は、特に制限されないが、例えば、ガラス基板、樹脂基板、シリコンウェハ、金属薄膜等であってよい。支持部材10は、光の透過を妨げない基板であってよく、ガラス基板であってよい。
[0021]
 支持部材10の厚みは、例えば、0.1~2.0mmであってよい。厚みが0.1mm以上であると、ハンドリングが容易となる傾向にあり、厚みが2.0mm以下であると、材料費を抑制することができる傾向にある。
[0022]
 仮固定材層30cは、支持部材10と半導体部材40とを仮固定するための層であって、光を照射したときに、光を吸収して熱を発生する層である。仮固定材層30cにおける吸収の対象となる光は、赤外光、可視光、又は紫外光のいずれかを含む光であってよい。後述の光吸収層が熱を効率よく発生させることができることから、仮固定材層30cにおける吸収の対象となる光は、少なくとも赤外光を含む光であってよい。また、仮固定材層30cは、赤外光を含む光を照射したときに、赤外光を吸収して熱を発生する層であってよい。
[0023]
 図1(a)に示す積層体100は、例えば、支持部材上に仮固定材前駆体層を形成し、仮固定材前駆体層上に半導体部材を配置し、仮固定材前駆体層における硬化性樹脂成分を硬化させ、仮固定材層を形成することによって作製することができる。
[0024]
 仮固定材前駆体層は、光を吸収して熱を発生する光吸収層と硬化性樹脂成分を含む樹脂層とを有する。図2(a)、(b)、及び(c)は、仮固定材前駆体層の一実施形態を示す模式断面図である。仮固定材前駆体層30としては、光吸収層32と樹脂層34とを有しているのであれば、その構成に特に制限されないが、例えば、光吸収層32と樹脂層34とを支持部材10側からこの順に有する構成(図2(a))、樹脂層34と光吸収層32とを支持部材10側からこの順に有する構成(図2(b))、光吸収層32と樹脂層34と光吸収層32とをこの順に有する構成(図2(c))等が挙げられる。これらのうち、仮固定材前駆体層30は、光吸収層32と樹脂層34とを支持部材10側からこの順に有する構成(図2(a))であってよい。以下では、主に図2(a)で示す構成の仮固定材前駆体層30を用いた態様について詳細に説明する。
[0025]
 光吸収層32の一態様は、光を吸収して熱を発生する導電体(以下、単に「導電体」という場合がある。)からなる層(以下、「導電体層」という場合がある。)である。このような導電体層を構成する導電体は、光を吸収して熱を発生する導電体であれば特に制限されないが、赤外光を吸収して熱を発生する導電体であってよい。導電体としては、例えば、クロム、銅、チタン、銀、白金、金等の金属、ニッケル-クロム、ステンレス鋼、銅-亜鉛等の合金、酸化インジウムスズ(ITO)、酸化亜鉛、酸化ニオブ等の金属酸化物、導電性カーボン等のカーボン材料などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、導電体は、クロム、チタン、銅、アルミニウム、銀、金、白金、又はカーボンであってよい。
[0026]
 光吸収層32は、複数の導電体層から構成されていてもよい。このような光吸収層としては、例えば、支持部材10上に設けられる第1の導電体層と第1の導電体層の支持部材10の反対側の面上に設けられる第2の導電体層とから構成される光吸収層等が挙げられる。第1の導電体層における導電体は、支持部材(例えば、ガラス)との密着性、成膜性、熱伝導性、低熱容量等の観点から、チタンであってよい。第2の導電体層における導電体は、高膨張係数、高熱伝導等の観点から、銅、アルミニウム、銀、金、又は白金であってよく、これらの中でも、銅又はアルミニウムであることが好ましい。
[0027]
 光吸収層32としての導電体層は、これらの導電体を、真空蒸着、スパッタリング等の物理気相成長(PVD)、電解めっき、無電解めっき、プラズマ化学蒸着等の化学気相成長(CVD)によって、支持部材10に直接形成することができる。これらのうち、導電体層は、大面積に導電体層を形成できることから、物理気相成長を用いて形成してもよく、スパッタリング又は真空蒸着を用いて形成してもよい。
[0028]
 光吸収層32の一態様の厚みは、軽剥離性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。光吸収層32が、第1の導電体層と第2の導電体層とから構成される場合、第1の導電体層の厚みは、1~1000nm、5~500nm、又は10~100nmであってよく、第2の導電体層の厚みは、1~5000nm、10~500nm、30~300nm、又は50~200nmであってよい。
[0029]
 光吸収層32の他の態様は、光を吸収して熱を発生する導電性粒子を含む硬化性樹脂組成物の硬化物を含有する層である。硬化性樹脂組成物は、導電性粒子及び硬化性樹脂成分を含有していてもよい。
[0030]
 導電性粒子は、光を吸収して熱を発生するものであれば特に制限されないが、赤外光を吸収して熱を発生するものであってよい。導電性粒子は、例えば、銀粉、銅粉、ニッケル粉、アルミニウム粉、クロム粉、鉄粉、真鋳粉、スズ粉、チタン合金、金粉、合金銅粉、酸化銅粉、酸化銀粉、酸化スズ粉、及び導電性カーボン(炭素)粉からなる群より選ばれる少なくとも1種であってよい。導電性粒子は、取り扱い性及び安全性の観点から、銀粉、銅粉、酸化銀粉、酸化銅粉、及びカーボン(炭素)粉からなる群より選ばれる少なくとも1種であってもよい。また、導電性粒子は、樹脂又は金属をコアとし、当該コアをニッケル、金、銀等の金属でめっきした粒子であってもよい。さらに、導電性粒子は、溶剤との分散性の観点から、その表面が表面処理剤で処理された粒子であってもよい。
[0031]
 導電性粒子の含有量は、硬化性樹脂組成物の導電性粒子以外の成分の総量100質量部に対して、10~90質量部であってよい。なお、硬化性樹脂組成物の導電性粒子以外の成分には、後述の有機溶剤は包含されない。導電性粒子の含有量は、15質量部以上、20質量部以上、又は25質量部以上であってもよい。導電性粒子の含有量は、80質量部以下又は50質量部以下であってもよい。
[0032]
 硬化性樹脂成分は、熱又は光によって硬化する硬化性樹脂成分であり得る。硬化性樹脂成分は、例えば、熱硬化性樹脂、硬化剤、及び硬化促進剤を含んでいてもよい。熱硬化性樹脂、硬化剤、及び硬化促進剤は、例えば、後述の樹脂層における硬化性樹脂成分で例示したもの等を用いることができる。熱硬化性樹脂及び硬化剤の合計の含有量は、硬化性樹脂組成物の導電性粒子以外の成分の総量100質量部に対して、10~90質量部であってよい。硬化促進剤の含有量は、熱硬化性樹脂及び硬化剤の総量100質量部に対して、0.01~5質量部であってよい。
[0033]
 光吸収層32は、光を吸収して熱を発生する導電性粒子を含む硬化性樹脂組成物から形成することができる。硬化性樹脂組成物は、有機溶剤で希釈された硬化性樹脂組成物のワニスとして用いてもよい。有機溶剤としては、例えば、アセトン、酢酸エチル、酢酸ブチル、メチルエチルケトン(MEK)等が挙げられる。これらの有機溶剤は、1種を単独で又は2種以上を組み合わせて用いていてもよい。ワニス中の固形成分濃度は、ワニスの全質量を基準として、10~80質量%であってよい。
[0034]
 光吸収層32は、硬化性樹脂組成物を、支持部材10に直接塗布することによって形成することができる。有機溶剤で希釈された硬化性樹脂組成物のワニスを用いる場合、硬化性樹脂組成物を支持部材10に塗布し、溶剤を加熱乾燥して除去することによって形成することができる。
[0035]
 光吸収層32の他の態様の厚みは、軽剥離性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。
[0036]
 続いて、光吸収層32上に樹脂層34を形成する。
[0037]
 樹脂層34は、導電性粒子を含有しない層であって、熱又は光によって硬化する硬化性樹脂成分を含む層である。樹脂層34は、硬化性樹脂成分からなる層であってもよい。硬化性樹脂成分は、炭化水素樹脂を含み、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率は、5~100MPaである。以下では、樹脂層34が硬化性樹脂成分からなる層である場合について詳細に説明する。
[0038]
 炭化水素樹脂は、主骨格が炭化水素で構成される樹脂である。このような炭化水素樹脂としては、例えば、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体エラストマー、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、エチレン・スチレン共重合体、エチレン・ノルボルネン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・非共役ジエン共重合体、エチレン・1-ブテン・非共役ジエン共重合体、エチレン・プロピレン・1-ブテン・非共役ジエン共重合体、ポリイソプレン、ポリブタジエン、スチレン・ブタジエン・スチレンブロック共重合体(SBS)、スチレン・イソプレン・スチレンブロック共重合体(SIS)、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)等が挙げられる。これらの炭化水素樹脂は、水添処理が施されていてもよい。また、これらの炭化水素樹脂は、無水マレイン酸等によってカルボキシ変性されていてもよい。これらのうち、炭化水素樹脂は、スチレンに由来するモノマー単位を含む炭化水素樹脂(スチレン系樹脂)を含んでいてもよく、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS)を含んでいてもよい。
[0039]
 炭化水素樹脂のTgは、-100~500℃、-50~300℃、又は-50~50℃であってよい。炭化水素樹脂のTgが500℃以下であると、フィルム状の仮固定材を形成したときに、柔軟性を確保し易く、低温貼付性を向上させることができる傾向にある。炭化水素樹脂のTgが-100℃以上であると、フィルム状の仮固定材を形成したときに、柔軟性が高くなり過ぎることによる取扱性及び剥離性の低下を抑制できる傾向にある。
[0040]
 炭化水素樹脂のTgは、示差走査熱量測定(DSC)によって得られる中間点ガラス転移温度値である。炭化水素樹脂のTgは、具体的には、昇温速度10℃/分、測定温度-80~80℃の条件で熱量変化を測定し、JIS K 7121に準拠した方法によって算出される中間点ガラス転移温度である。
[0041]
 炭化水素樹脂の重量平均分子量(Mw)は、1万~500万又は10万~200万であってよい。重量平均分子量が1万以上であると、形成される仮固定材層の耐熱性を確保し易くなる傾向にある。重量平均分子量が500万以下であると、フィルム状の仮固定材層又は樹脂層を形成したときに、フローの低下及び貼付性の低下を抑制し易い傾向にある。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。
[0042]
 炭化水素樹脂の含有量は、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が5~100MPaの範囲となるように適宜設定することができる。炭化水素樹脂の含有量は、例えば、硬化性樹脂成分の総量100質量部に対して、40~90質量部であってよい。炭化水素樹脂の含有量は、50質量部以上又は60質量部以上であってもよい。炭化水素樹脂の含有量は、85質量部以下又は80量部以下あってもよい。炭化水素樹脂の含有量が上記範囲にあると、仮固定材層の薄膜形成性及び平坦性により優れる傾向にある。
[0043]
 硬化性樹脂成分は、炭化水素樹脂に加えて熱硬化性樹脂を含んでいてもよい。ここで、熱硬化性樹脂は、熱により硬化する樹脂を意味し、上記炭化水素樹脂を包含しない概念である。熱硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、熱硬化性樹脂は、耐熱性、作業性、及び信頼性により優れることから、エポキシ樹脂であってよい。熱硬化性樹脂として、エポキシ樹脂を用いる場合、エポキシ樹脂硬化剤と組み合わせて用いてもよい。
[0044]
 エポキシ樹脂は、硬化して耐熱作用を有するものであれば特に限定されない。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などが挙げられる。また、エポキシ樹脂は、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂、又は脂環式エポキシ樹脂であってもよい。
[0045]
 熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化性樹脂成分は、エポキシ樹脂硬化剤を含んでいてもよい。エポキシ樹脂硬化剤は、通常用いられている公知の硬化剤を使用することができる。エポキシ樹脂硬化剤としては、例えば、アミン、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールS等のフェノール性水酸基を1分子中に2個以上有するビスフェノール、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂等のフェノール樹脂などが挙げられる。
[0046]
 熱硬化性樹脂及び硬化剤の合計の含有量は、硬化性樹脂成分の総量100質量部に対して、10~60質量部であってよい。熱硬化性樹脂及び硬化剤の合計の含有量は、15質量部以上又は20質量部以上であってもよい。熱硬化性樹脂及び硬化剤の合計の含有量は、50質量部以下又は40質量部以下であってもよい。熱硬化性樹脂及び硬化剤の合計の含有量が上記範囲にあると、仮固定材層の薄膜形成性及び平坦性により優れる傾向にある。熱硬化性樹脂及び硬化剤の合計の含有量が上記範囲内であると、耐熱性がより優れる傾向にある。
[0047]
 硬化性樹脂成分は、硬化促進剤をさらに含んでいてもよい。硬化促進剤としては、例えば、イミダゾール誘導体、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレート等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
[0048]
 硬化促進剤の含有量は、熱硬化性樹脂及び硬化剤の総量100質量部に対して、0.01~5質量部であってよい。硬化促進剤の含有量が上記範囲内であると、硬化性が向上し、耐熱性がより優れる傾向にある。
[0049]
 硬化性樹脂成分は、重合性モノマー及び重合開始剤をさらに含んでいてもよい。重合性モノマーは、加熱又は紫外光等の照射によって重合するものであれば特に制限されない。重合性モノマーは、材料の選択性及び入手の容易さの観点から、例えば、エチレン性不飽和基等の重合性官能基を有する化合物であってよい。重合性モノマーとしては、例えば、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルエステル、ビニルピリジン、ビニルアミド、アリール化ビニル等が挙げられる。これらのうち、重合性モノマーは、(メタ)アクリレートであってもよい。(メタ)アクリレートは、単官能(1官能)、2官能、又は3官能以上のいずれであってもよいが、充分な硬化性を得る観点から、2官能以上の(メタ)アクリレートであってもよい。
[0050]
 単官能(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレートなどが挙げられる。
[0051]
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレートなどが挙げられる。
[0052]
 3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。
[0053]
 これらの(メタ)アクリレートは、1種を単独で又は2種以上を組み合わせて用いてもよい。さらに、これらの(メタ)アクリレートをその他の重合性モノマーと組み合わせて用いてもよい。
[0054]
 重合性モノマーの含有量は、硬化性樹脂成分の総量100質量部に対して、10~60質量部であってよい。
[0055]
 重合開始剤は、加熱又は紫外光等の照射によって重合を開始させるものであれば特に制限されない。例えば、重合性モノマーとして、エチレン性不飽和基を有する化合物を用いる場合、重合性開始剤は熱ラジカル重合開始剤又は光ラジカル重合開始剤であってよい。
[0056]
 熱ラジカル重合開始剤としては、例えば、オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
[0057]
 光ラジカル重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシドなどが挙げられる。
[0058]
 これらの熱及び光ラジカル重合開始剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。
[0059]
 重合開始剤の含有量は、重合性モノマーの総量100質量部に対して、0.01~5質量部であってよい。
[0060]
 硬化性樹脂成分は、その他の成分として、絶縁性フィラー、増感剤、酸化防止剤等をさらに含んでいてもよい。
[0061]
 絶縁性フィラーは、樹脂層に低熱膨張性、低吸湿性を付与する目的で添加され得る。絶縁性フィラーとしては、例えば、シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、セラミック等の非金属無機フィラーなどが挙げられる。これらの絶縁性フィラーは、1種を単独で又は2種以上を組み合わせて用いてもよい。絶縁性フィラーは、溶剤との分散性の観点から、その表面が表面処理剤で処理された粒子であってもよい。表面処理剤は、上述のシランカップリング剤と同様のものを用いることができる。
[0062]
 絶縁性フィラーの含有量は、硬化性樹脂成分の総量100質量部に対して、5~20質量部であってよい。絶縁性フィラーの含有量が上記範囲内であると、光透過を妨げることなく耐熱性をより向上させることができる傾向にある。また、絶縁性フィラーの含有量が上記範囲内であると、軽剥離性にも寄与する可能性がある。
[0063]
 増感剤としては、例えば、アントラセン、フェナントレン、クリセン、ベンゾピレン、フルオランテン、ルブレン、ピレン、キサントン、インダンスレン、チオキサンテン-9-オン、2-イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4‐プロポキシチオキサントン等が挙げられる。
[0064]
 増感剤の含有量は、硬化性樹脂成分の総量100質量部に対して、0.01~10質量部であってよい。増感剤の含有量が上記範囲内であると、硬化性樹脂成分の特性及び薄膜性への影響が少ない傾向にある。
[0065]
 酸化防止剤としては、例えば、ベンゾキノン、ハイドロキノン等のキノン誘導体、4-メトキシフェノール、4-t-ブチルカテコール等のフェノール誘導体、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等のアミノキシル誘導体、テトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体などが挙げられる。
[0066]
 酸化防止剤の含有量は、硬化性樹脂成分の総量100質量部に対して、0.1~10質量部であってよい。酸化防止剤の含有量が上記範囲内であると、硬化性樹脂成分の分解を抑制し、汚染を防ぐことができる傾向にある。
[0067]
 硬化性樹脂成分の硬化物(後述の樹脂硬化物層)における25℃の貯蔵弾性率は、5~100MPaである。硬化性樹脂成分の硬化物における25℃の貯蔵弾性率は、5.5MPa以上、6MPa以上、又は6.3MPa以上であってもよく、90MPa以下、80MPa以下、70MPa以下、又は65MPa以下であってもよい。硬化性樹脂成分の硬化物における25℃の貯蔵弾性率は、適宜調整することが可能であり、例えば、炭化水素樹脂の割合を増やす、高Tgの炭化水素樹脂を適用する、絶縁性フィラーを添加する等によって、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率を向上させることができる。硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が5MPa以上であると、取り扱い性が向上し、支持部材にたわみなくチップ等を仮固定し易くなり、はく離時に凝集破壊し難く、さらに残さが少なくなる傾向にある。硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が100MPa以下であると、支持部材へチップ等を搭載する際に、位置ずれを小さくすることができる傾向にある。なお、本明細書において、硬化性樹脂成分の硬化物における貯蔵弾性率は、実施例に記載の硬化方法及び測定手順で測定されものを意味する。
[0068]
 硬化性樹脂成分の硬化物における250℃の貯蔵弾性率は、特に制限されないが、例えば、0.70~2.00MPaであってよい。硬化性樹脂成分の硬化物における250℃の貯蔵弾性率は、0.80MPa以上、0.85MPa以上、又は0.90MPa以上であってもよく、1.90MPa以下、1.80MPa以下、又は1.75MPa以下であってもよい。
[0069]
 樹脂層34は、炭化水素樹脂を含む硬化性樹脂成分(導電性粒子を含まない硬化性樹脂組成物)から形成することができる。硬化性樹脂成分は、溶剤で希釈された硬化性樹脂成分のワニスとして用いてもよい。溶剤は、絶縁性フィラー以外の成分を溶解できるものであれば特に制限されない。溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサンなどの環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらの溶剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。これらのうち、溶剤は、溶解性及び沸点の観点から、トルエン、キシレン、ヘプタン、又はシクロヘキサンであってもよい。ワニス中の固形成分濃度は、ワニスの全質量を基準として、10~80質量%であってよい。
[0070]
 硬化性樹脂成分のワニスは、炭化水素樹脂を含む硬化性樹脂成分及び溶剤を混合、混練することによって調製することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ビーズミル等の分散機を適宜組み合わせて行うことができる。
[0071]
 樹脂層34は、硬化性樹脂成分を光吸収層32に直接塗布することによって形成することができる。溶剤で希釈された硬化性樹脂成分のワニスを用いる場合、硬化性樹脂成分のワニスを光吸収層32に塗布し、溶剤を加熱乾燥して除去することによって形成することができる。また、樹脂層34は、硬化性樹脂成分からなる硬化性樹脂成分フィルムを作製することによっても形成することができる。
[0072]
 樹脂層34の厚みは、仮固定材層20の厚みに合わせて調整することができる。樹脂層34の厚みは、応力緩和の観点から、例えば、50μm以下であってよい。樹脂層34の厚みは、0.1~40μm又は1~30μmであってもよい。
[0073]
 仮固定材前駆体層30は、光吸収層32と樹脂層34とを有する積層フィルム(以下、「仮固定材用積層フィルム」という場合がある。)を予め作製し、これを光吸収層32と支持部材10とが接するようにラミネートすることによっても作製することができる。
[0074]
 仮固定材用積層フィルムにおける光吸収層32及び樹脂層34の構成は、光吸収層32と樹脂層34とを有しているのであれば、その構成に特に制限されないが、例えば、光吸収層32と樹脂層34とを有する構成、光吸収層32と樹脂層34と光吸収層32とをこの順に有する構成等が挙げられる。これらのうち、仮固定材用積層フィルムは、光吸収層32と樹脂層34とを有する構成であってよい。光吸収層32は、導電体からなる層(導電体層)であっても、導電性粒子を含有する層であってもよい。仮固定材用積層フィルムは、支持フィルム上に設けられていてもよく、支持フィルムとは反対側の表面上に、必要に応じて、保護フィルムが設けられていてもよい。
[0075]
 支持フィルムとしては、特に制限されず、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリ(メタ)アクリレート、ポリスルホン、液晶ポリマのフィルム等が挙げられる。これらは、離型処理が施されていてもよい。支持フィルムの厚みは、例えば、3~250μmであってよい。
[0076]
 保護フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。保護フィルムの厚みは、例えば、10~250μmであってよい。
[0077]
 仮固定材用積層フィルムにおける光吸収層32の厚みは、軽剥離性の観点から、1~5000nm(0.001~5μm)又は50~3000nm(0.05~3μm)であってよい。
[0078]
 仮固定材用積層フィルムにおける樹脂層34の厚みは、応力緩和の観点から、例えば、50μm以下であってよい。樹脂層34の厚みは、0.1~40μm又は1~30μmであってもよい。
[0079]
 仮固定材用積層フィルムの厚みは、所望の仮固定材層の厚みに合わせて調整することができる。仮固定材用積層フィルムの厚みは、応力緩和の観点から、0.1~55μm又は10~40μmであってよい。
[0080]
 図2(b)で示す構成の仮固定材前駆体層30は、例えば、支持部材10上に樹脂層34を形成し、続いて、光吸収層32を形成することによって作製することができる。図2(c)で示す構成の仮固定材前駆体層30は、例えば、支持部材10上に光吸収層32、樹脂層34、及び光吸収層32を交互に形成することによって作製することができる。これらの仮固定材前駆体層30は、予め上記構成の仮固定材用積層フィルムを作製し、支持部材10にラミネートすることによって作製してもよい。
[0081]
 仮固定材前駆体層30の厚み(光吸収層32と樹脂層34との合計の厚み)は、上述の仮固定材用積層フィルムの厚みと同様であってよい。
[0082]
 次いで、作製した仮固定材前駆体層上に半導体部材を配置し、仮固定材前駆体層30(樹脂層34)における硬化性樹脂成分を硬化させ、光吸収層と、硬化性樹脂成分の硬化物を含む樹脂硬化物層とを有する仮固定材層を形成することによって、支持部材10と仮固定材層30cと半導体部材40とがこの順に積層された積層体を作製する(図1(a))。図3(a)、(b)、(c)、及び(d)は、図2(a)に示す仮固定材前駆体層を用いて形成される積層体の一実施形態を示す模式断面図である。
[0083]
 半導体部材40は、半導体ウェハ又は半導体ウェハを所定サイズに切断してチップ状に個片化した半導体チップであってよい。半導体部材40として、半導体チップを用いる場合、通常、複数の半導体チップが用いられる。半導体部材40の厚みは、半導体装置の小型化、薄型化に加えて、搬送時、加工工程等の際の割れ抑制の観点から、1~1000μm、10~500μm、又は20~200μmであってよい。半導体ウェハ又は半導体チップには、再配線層、パターン層、又は外部接続端子を有する外部接続部材が備えられていてもよい。
[0084]
 半導体部材40は、作製した仮固定材前駆体層30を設けた支持部材10を、真空プレス機又は真空ラミネーター上に設置し、半導体部材40を仮固定材前駆体層30上に配置し、プレスで圧着することによって積層することができる。
[0085]
 真空プレス機を用いる場合は、例えば、気圧1hPa以下、圧着圧力1MPa、圧着温度120~200℃、保持時間100~300秒間で、仮固定材前駆体層30に半導体部材40を圧着する。
[0086]
 真空ラミネーターを用いる場合は、例えば、気圧1hPa以下、圧着温度60~180℃又は80~150℃、ラミネート圧力0.01~0.5MPa又は0.1~0.5MPa、保持時間1~600秒間又は30~300秒間で、仮固定材前駆体層30に半導体部材40を圧着する。
[0087]
 仮固定材前駆体層30を介して支持部材10上に半導体部材40を配置した後、仮固定材前駆体層30における硬化性樹脂成分を所定条件で熱硬化又は光硬化させる。熱硬化の条件は、例えば、300℃以下又は100~200℃で、1~180分間又は1~60分間であってよい。このようにして、硬化性樹脂成分の硬化物が形成され、半導体部材40は、支持部材10に硬化性樹脂成分の硬化物を含む仮固定材層30cを介して仮固定され、積層体300が得られる。仮固定材層30cは、図3(a)に示すとおり、光吸収層32と硬化性樹脂成分の硬化物を含む樹脂硬化物層34cとから構成され得る。
[0088]
 積層体は、例えば、仮固定材層を形成した後に、半導体部材を配置することによっても作製することができる。図5は、図1(a)に示す積層体の製造方法の他の実施形態を説明するための模式断面図であり、図5(a)、(b)、及び(c)は、各工程を示す模式断面図である。図5の各工程は、図2(a)に示す仮固定材前駆体層を使用するものである。積層体は、支持部材10上に硬化性樹脂成分を含む仮固定材前駆体層30を形成し(図5(a))、仮固定材前駆体層30(樹脂層34)における硬化性樹脂成分を硬化させて硬化性樹脂成分の硬化物を含む仮固定材層30cを形成し(図5(b))、形成した仮固定材層30c上に半導体部材40を配置することによって作製することができる(図5(c))。このような製造方法では、半導体部材40を配置する前に、仮固定材層20c上に再配線層、パターン層等の配線層41を設けることができるため、配線層41上に半導体部材40を配置することによって、配線層41を有する半導体部材40を形成することができる。
[0089]
 積層体100における半導体部材40(支持部材10に仮固定された半導体部材40)は、さらに加工されていてもよい。図3(a)に示す積層体300における半導体部材40を加工することによって、積層体310(図3(b))、320(図3(c))、330(図3(d))等が得られる。半導体部材の加工は、特に制限されないが、例えば、半導体部材の薄化、貫通電極の作製、再配線層、パターン層等の配線層の形成、エッチング処理、めっきリフロー処理、スパッタリング処理等が挙げられる。
[0090]
 半導体部材の薄化は、グラインダー等で、半導体部材40の仮固定材層30cに接している面とは反対側の面を研削することによって行うことができる。薄化された半導体部材の厚みは、例えば、100μm以下であってよい。
[0091]
 研削条件は、所望の半導体部材の厚み、研削状態等に応じて任意に設定することができる。
[0092]
 貫通電極の作製は、薄化した半導体部材40の仮固定材層30cに接している面とは反対側の面に、ドライイオンエッチング、ボッシュプロセス等の加工を行い、貫通孔を形成した後、銅めっき等の処理することによって行うことができる。
[0093]
 このようにして半導体部材40に加工が施され、例えば、半導体部材40が薄化され、貫通電極44が設けられた積層体310(図3(b))を得ることができる。
[0094]
 図3(b)で示す積層体310は、図3(c)に示すように、封止層50で覆われていてもよい。封止層50の材質には特に制限はないが、耐熱性、その他の信頼性等の観点から、熱硬化性樹脂組成物であってよい。封止層50に用いられる熱硬化性樹脂としては、例えば、クレゾールノボラックエポキシ樹脂、フェノールノボラックエポキシ樹脂、ビフェニルジエポキシ樹脂、ナフトールノボラックエポキシ樹脂等のエポキシ樹脂等が挙げられる。封止層50を形成するための組成物には、フィラー及び/又はブロム化合物等の難燃性物質等の添加剤が添加されていてもよい。
[0095]
 封止層50の供給形態は、特に制限されないが、固形材、液状材、細粒材、フィルム材等であってよい。
[0096]
 封止フィルムから形成される封止層50による加工半導体部材42の封止には、例えば、コンプレッション封止成形機、真空ラミネート装置等が用いられる。上記装置を使用して、例えば、40~180℃(又は60~150℃)、0.1~10MPa(又は0.5~8MPa)、かつ0.5~10分間の条件で熱溶融させた封止フィルムにて加工半導体部材42を覆うことによって、封止層50を形成することができる。封止フィルムは、ポリエチレンテレフタレート(PET)フィルム等の剥離ライナー上に積層された状態で準備されてもよい。この場合、封止フィルムを加工半導体部材42上に配置し、加工半導体部材42を埋め込んだ後、剥離ライナーを剥離することによって封止層50を形成することができる。このようにして、図3(c)で示す積層体320を得ることができる。
[0097]
 封止フィルムの厚みは、封止層50が加工半導体部材42の厚み以上になるように調整する。封止フィルムの厚みは、50~2000μm、70~1500μm、又は100~1000μmであってよい。
[0098]
 封止層50を有する加工半導体部材42は、図3(d)に示すように、ダイシングによって個片化されていてもよい。このようにして、図3(d)で示す積層体330を得ることができる。なお、ダイシングによる個片化は、後述の半導体部材の分離工程後に実施されてもよい。
[0099]
<半導体部材の分離工程>
 図1(b)に示すとおり、半導体部材の分離工程においては、積層体100における仮固定材層30cに方向Aで光を照射して、支持部材10から半導体部材40を分離する。
[0100]
 図4は、図3(d)に示す積層体を用いた本発明の半導体装置の製造方法の一実施形態を説明するための模式断面図であり、図4(a)及び(b)は、各工程を示す模式断面図である。
[0101]
 仮固定材層30cは、光を照射することによって、光吸収層32が光を吸収して熱を瞬間的に発生し、界面又はバルクにおいて、樹脂硬化物層34cの溶融、支持部材10と半導体部材40(加工半導体部材42)との応力、光吸収層32の飛散等が発生し得る。このような現象の発生によって、仮固定されている加工半導体部材42を、支持部材10から容易に分離(剥離)することができる。なお、分離工程においては、光の照射とともに、加工半導体部材42に対して、支持部材10の主面に対して平行な方向に応力をわずかに加えてもよい。
[0102]
 分離工程における光は、インコヒーレント光であってよい。インコヒーレント光は、干渉縞が発生しない、可干渉性が低い、指向性が低いといった性質を有する電磁波であり、光路長が長くなるほど、減衰する傾向にある。インコヒーレント光は、コヒーレント光でない光である。レーザー光は、一般にコヒーレント光であるのに対して、太陽光、蛍光灯の光等の光は、インコヒーレント光である。インコヒーレント光は、レーザー光を除く光ということもできる。インコヒーレント光の照射面積は、コヒーレント光(すなわち、レーザー光)よりも圧倒的に広いため、照射回数を少なくすること(例えば、1回)が可能である。
[0103]
 分離工程における光は、少なくとも赤外光を含む光であってよい。分離工程における光の光源は、特に制限されないが、キセノンランプであってよい。キセノンランプは、キセノンガスを封入した発光管での印加・放電による発光を利用したランプである。キセノンランプは、電離及び励起を繰り返しながら放電するため、紫外光領域から赤外光領域までの連続波長を安定的に有する。キセノンランプは、メタルハライドランプ等のランプと比較して始動に要する時間が短いため、工程に係る時間を大幅に短縮することができる。また、発光には、高電圧を印加する必要があるため、高熱が瞬間的に生じるが、冷却時間が短く、連続的な作業が可能である。また、キセノンランプの照射面積は、レーザー光よりも圧倒的に広いため、照射回数を少なくすること(例えば、1回)が可能である。
[0104]
 キセノンランプによる照射条件は、印加電圧、パルス幅、照射時間、照射距離(光源と仮固定材層との距離)、照射エネルギー等を任意に設定することができる。キセノンランプによる照射条件は、1回の照射で分離できる条件を設定してもよく、2回以上の照射で分離できる条件を設定してもよいが、加工半導体部材42のダメージを低減する観点から、キセノンランプによる照射条件は、1回の照射で分離できる条件を設定してもよい。
[0105]
 分離工程は、支持部材10を介して仮固定材層30cに光を照射する工程であってよい(図4(a)の方向A)。すなわち、仮固定材層30cに対する光による照射は、支持部材10側からの照射であってよい。支持部材10を介して仮固定材層30cに光を照射することによって、仮固定材層30c全体を照射することが可能となる。
[0106]
 支持部材10から半導体部材40又は加工半導体部材42を分離したときに、半導体部材40又は加工半導体部材42に仮固定材層の残さ30c’(図4(a)、(b))が付着している場合、これらは、溶剤で洗浄することができる。溶剤としては、特に制限されないが、エタノール、メタノール、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。また、これら溶剤に浸漬させてもよく、超音波洗浄を行ってもよい。さらに、100℃以下の範囲で、加熱してもよい。
[0107]
 このように支持部材から半導体部材を分離することによって、半導体部材40又は加工半導体部材42を備える半導体素子60が得られる(図4(b))。得られた半導体素子60を他の半導体素子又は半導体素子搭載用基板に接続することにより半導体装置を製造することができる。
[0108]
[仮固定材用積層フィルム]
 上述の光を吸収して熱を発生する光吸収層と、硬化性樹脂成分を含む樹脂層とを有し、硬化性樹脂成分が、炭化水素樹脂を含み、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が、5~100MPaである積層フィルムは、半導体部材を支持部材に仮固定するための仮固定材として好適に用いることができる。
実施例
[0109]
 以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
[0110]
(実施例1)
<硬化性樹脂成分の調製>
 炭化水素樹脂として、無水マレイン酸変性スチレン・エチレン・ブチレン・スチレンブロック共重合体(商品名:FG1924、クレイトンポリマージャパン株式会社、スチレン含有量13質量%)70質量部、エポキシ樹脂として、ジシクロペンタジエン型エポキシ樹脂(商品名:HP7200、DIC株式会社)30質量部、及び硬化促進剤として、1-ベンジル-2-メチルイミダゾール(商品名:キュアゾール1B2MZ、四国化成工業株式会社)1質量部を混合して混合物を得た。なお、炭化水素樹脂はトルエンで固形分25質量%に希釈したものを用いた。これらを、自動撹拌装置を用いて、2200回転/分で10分間撹拌することによって、溶剤としてのトルエンで希釈された硬化性樹脂成分のワニスを調製した。
[0111]
<硬化性樹脂成分フィルムの作製>
 得られた硬化性樹脂成分のワニスを、精密塗工機を用いて、ポリエチレンテレフタレート(PET)フィルム(ピューレックスA31、帝人デュポンフィルム株式会社、厚み:38μm)の離型処理面に厚みが20μmとなるように塗工し、90℃で10分間加熱して、溶剤を乾燥除去し、厚みが20μmである硬化性樹脂成分フィルム(樹脂層)を作製した。また、厚みが200μmとなるように塗工し、90℃で15~20分間加熱して、溶剤を乾燥除去し、厚みが200μmである硬化性樹脂成分フィルム(樹脂層)を作製した。
[0112]
<貯蔵弾性率の測定>
 得られた厚みが200μmである硬化性樹脂成分フィルムを、所定のサイズ(縦(チャック間距離)20mm×横5.0mm)に切り出し、クリーンオーブン(エスペック株式会社製)中で180℃、2時間の条件で熱硬化させることによって、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)である測定サンプルを得た。硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を、以下の条件で測定した。結果を表2に示す。
[0113]
 装置名:動的粘弾性測定装置(TAインストルメント株式会社製、RSA-G2)
 測定温度領域:-70~300℃
 昇温速度:5℃/分
 周波数:1Hz
 測定モード:引張モード
[0114]
<光吸収層の作製>
 支持部材であるスライドガラス(サイズ:40mm×40mm、厚み:0.8μm)上にスパッタで第1の導電体層がチタン、第2の導電体層が銅である光吸収層を作製し、光吸収層を備える支持部材を得た。なお、当該光吸収層は、逆スパッタリングによる前処理(Ar流速:1.2×10 -2Pa・m /s(70sccm)、RF電力:300W、時間:300秒間)後、表1に示す処理条件でRFスパッタリングを行い、チタン層/銅層の厚みを50nm/200nmとすることによって作製した。
[0115]
[表1]


[0116]
<仮固定材用積層フィルムの作製>
 厚みが20μmである硬化性樹脂成分フィルム(樹脂層)を40mm×40mmに切り出した。得られた光吸収層を備える支持部材の光吸収層上に、切り出した硬化性樹脂成分フィルム(樹脂層)を配置し、真空ラミネートを行うことによって、支持部材上に設けられた実施例1の仮固定材用積層フィルムを作製した。
[0117]
<積層体の作製>
 得られた仮固定材用積層フィルムの硬化性樹脂成分フィルム(樹脂層)上に、半導体部材である半導体チップ(サイズ:10mm×10mm、厚み:150μm)を搭載し、180℃で1時間の条件で熱硬化させることによって、実施例1の積層体を得た。
[0118]
(実施例2)
 実施例1の炭化水素樹脂を、無水マレイン酸変性スチレン・エチレン・ブチレン・スチレンブロック共重合体(商品名:FG1924、クレイトンポリマージャパン株式会社、スチレン含有量13質量%)35質量部及び無水マレイン酸変性スチレン・エチレン・ブチレン・スチレンブロック共重合体(商品名:FG1901、クレイトンポリマージャパン株式会社、スチレン含有量30質量%)35質量部に変更した以外は、実施例1と同様にして、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を測定し、実施例2の仮固定材用積層フィルム及び積層体を作製した。25℃及び250℃の貯蔵弾性率の結果を表2に示す。
[0119]
(実施例3)
 炭化水素樹脂及びエポキシ樹脂の全量を基準として10質量%のシリカフィラー(商品名:R972、日本アエロジル株式会社)を加えた以外は、実施例1と同様にして、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を測定し、実施例3の仮固定材用積層フィルム及び積層体を作製した。25℃及び250℃の貯蔵弾性率の結果を表2に示す。
[0120]
(比較例1)
 実施例1で使用したエポキシ樹脂を、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(商品名:セロキサイド2021P、株式会社ダイセル)30質量部に変更した以外は、実施例1と同様にして、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を測定し、比較例1の仮固定材用積層フィルム及び積層体を作製した。25℃及び250℃の貯蔵弾性率の結果を表2に示す。
[0121]
(比較例2)
 炭化水素樹脂とエポキシ樹脂との質量比を70:30から80:20に変更した以外は、実施例1と同様にして、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を測定し、比較例2の仮固定材用積層フィルム及び積層体を作製した。25℃及び250℃の貯蔵弾性率の結果を表2に示す。
[0122]
(比較例3)
 実施例1の炭化水素樹脂を、無水マレイン酸変性スチレン・エチレン・ブチレン・スチレンブロック共重合体(商品名:FG1901、クレイトンポリマージャパン株式会社、スチレン含有量30質量%)70質量部に変更した以外は、実施例1と同様にして、硬化性樹脂成分フィルムの硬化物(樹脂硬化物層)における25℃及び250℃の貯蔵弾性率を測定し、実施例2の仮固定材用積層フィルム及び積層体を作製した。25℃及び250℃の貯蔵弾性率の結果を表2に示す。
[0123]
<剥離性試験>
 積層体をそれぞれ2つ用意した。印加電圧3800V、パルス幅200μs、照射距離50mm、照射回数1回、及び照射時間200μsの照射条件A、並びに、印加電圧2700V、パルス幅1000μs、照射距離50mm、照射回数1回、及び照射時間1000μsの照射条件Bの2種類の照射条件でそれぞれ積層体をキセノンランプで照射し、支持部材からの剥離性を評価した。キセノンランプは、Xenon社製のS2300(波長範囲:270nm~近赤外領域、単位面積あたりの照射エネルギー:7J/cm (予測値、照射条件A)、13J/cm (予測値、照射条件B))を用い、キセノンランプ照射は、積層体の支持部材(スライドガラス)側から行った。照射距離は、光源とスライドガラスを設置したステージとの距離である。剥離性試験の評価は、キセノンランプ照射後、自然に半導体チップがスライドガラスから剥離した場合を「A」と評価し、いずれかの照射条件で半導体チップとスライドガラスとの間にピンセットを差し込んだときに、半導体チップが破損することなく、分離した場合を「B」と評価し、いずれかの照射条件で分離しなかった場合を「C」と評価した。結果を表2に示す。
[0124]
[表2]


[0125]
 表2に示すように、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が5~100MPaである実施例1~3の積層体は、硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が上記要件を満たさない比較例1~3の積層体と比較して、支持部材からの剥離性に優れていた。以上の結果から、本発明の半導体装置の製造方法が、仮固定された半導体部材を、支持部材から容易に分離できることが確認された。

符号の説明

[0126]
 10…支持部材、30…仮固定材前駆体層、30c…仮固定材層、30c’…仮固定材層の残さ、32…光吸収層、34…樹脂層、34c…樹脂硬化物層、40…半導体部材、41…配線層、42…加工半導体部材、44…貫通電極、50…封止層、60…半導体素子、100,300,310,320,330…積層体。

請求の範囲

[請求項1]
 支持部材と、光を吸収して熱を発生する仮固定材層と、半導体部材とがこの順に積層された積層体を準備する準備工程と、
 前記積層体における前記仮固定材層に光を照射して、前記支持部材から前記半導体部材を分離する分離工程と、
を備え、
 前記仮固定材層が、光を吸収して熱を発生する光吸収層と、硬化性樹脂成分の硬化物を含む樹脂硬化物層とを有し、
 前記硬化性樹脂成分が、炭化水素樹脂を含み、
 前記硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が、5~100MPaである、半導体装置の製造方法。
[請求項2]
 前記分離工程における前記光の光源が、キセノンランプである、請求項1に記載の半導体装置の製造方法。
[請求項3]
 前記分離工程における前記光が、少なくとも赤外光を含む光である、請求項1又は2に記載の半導体装置の製造方法。
[請求項4]
 前記分離工程が、前記支持部材を介して前記仮固定材層に前記光を照射する工程である、請求項1~3のいずれか一項に記載の半導体装置の製造方法。
[請求項5]
 前記硬化性樹脂成分が、熱硬化性樹脂をさらに含む、請求項1~4のいずれか一項に記載の半導体装置の製造方法。
[請求項6]
 半導体部材を支持部材に仮固定するための仮固定材用積層フィルムであって、
 光を吸収して熱を発生する光吸収層と、硬化性樹脂成分を含む樹脂層とを有し、
 前記硬化性樹脂成分が、炭化水素樹脂を含み、
 前記硬化性樹脂成分の硬化物における25℃の貯蔵弾性率が、5~100MPaである、仮固定材用積層フィルム。
[請求項7]
 前記樹脂層の厚みが、50μm以下である、請求項6に記載の仮固定材用積層フィルム。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]