処理中

しばらくお待ちください...

設定

設定

出願の表示

1. WO2020110940 - タイヤ用ゴム組成物

Document

明 細 書

発明の名称 タイヤ用ゴム組成物

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

発明が解決しようとする課題

0005  

課題を解決するための手段

0006  

発明の効果

0007   0008   0009   0010   0011   0012  

発明を実施するための形態

0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031  

実施例

0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046  

請求の範囲

1   2   3   4   5   6  

明 細 書

発明の名称 : タイヤ用ゴム組成物

技術分野

[0001]
 本発明は、主に空気入りタイヤのアンダートレッド部に用いることを意図したタイヤ用ゴム組成物に関する。

背景技術

[0002]
 空気入りタイヤにおいては、環境負荷を低減するために走行時の燃費性能を向上することが求められている。そのため、空気入りタイヤの各部を構成するゴム組成物の発熱を抑制することが行われている。近年、燃費性能の更なる改善のために、例えば、空気入りタイヤの踏面を形成するキャップトレッド部の内側に配置されるアンダートレッド部を構成するゴム組成物についても発熱を抑制することが求められている。
[0003]
 ゴム組成物の発熱性の指標としては、一般に動的粘弾性測定による60℃におけるtanδ(以下、「tanδ(60℃)」という。)が用いられ、ゴム組成物のtanδ(60℃)が小さいほど発熱性が小さくなる。そして、ゴム組成物のtanδ(60℃)を小さくする方法として、例えばカーボンブラック等の充填材の配合量を少なくしたり、カーボンブラックの粒径を大きくすることが挙げられる。或いは、シリカを配合することも提案されている(例えば特許文献1を参照)。しかしながら、これらの方法では、必ずしもゴム硬度や耐疲労性が十分に得られず、タイヤに利用したとき(特に、アンダートレッド部に用いたとき)に、操縦安定性や耐久性への影響が懸念される。そのため、アンダートレッド部として用いることを意図したタイヤ用ゴム組成物において、タイヤにした時の操縦安定性や耐久性を良好に維持しながら、低転がり性を向上する更なる対策が求められている。

先行技術文献

特許文献

[0004]
特許文献1 : 日本国特開2015‐059181号公報

発明の概要

発明が解決しようとする課題

[0005]
 本発明の目的は、主に空気入りタイヤのアンダートレッド部に用いることを意図したタイヤ用ゴム組成物であって、転がり抵抗が低く、且つ、タイヤにした時の操縦安定性や耐久性に優れるタイヤ用ゴム組成物を提供することにある。

課題を解決するための手段

[0006]
 上記目的を達成する本発明のタイヤ用ゴム組成物は、天然ゴム50質量%以上と末端変性ブタジエンゴム35質量%~50質量%とを含むゴム成分100質量部に対して、窒素吸着比表面積N 2 SAが70m 2 /g以下であるカーボンブラックが50質量部以上配合されたタイヤ用ゴム組成物であって、硬度が65以上、40℃における反発弾性率が80%以上であることを特徴とする。

発明の効果

[0007]
 本発明のタイヤ用ゴム組成物は、ゴム成分として天然ゴムに加えて末端変性ブタジエンゴムを併用し、且つ、充填材として粒径の大きいカーボンブラックを配合し、ゴム組成物の硬度や反発弾性率を上記のように充分に高めているので、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を向上することができる。特に、粒径の大きいカーボンブラックと末端変性ブタジエンゴムとを組み合わせて用いているので、発熱を悪化させずに、カーボンブラックの配合量を増大してゴム硬度を向上することも可能になり、前述の性能をバランスよく改善することができる。
[0008]
 尚、本発明において、「硬度」とは、JIS K6253に準拠して、デュロメータのタイプAにより温度20℃で測定したゴム組成物の硬度である。また、「40℃における反発弾性率」とは、JIS K6255に準拠して、リュプケ式反発弾性試験装置により温度40℃で測定したゴム組成物の反発弾性率である。
[0009]
 本発明では、末端変性ブタジエンゴムの重量平均分子量(Mw)および数平均分子量(Mn)から求められる分子量分布(Mw/Mn)が2.0以下であることが好ましい。このように分子量分布を狭くすることで、ゴム物性がより良好になり、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を向上するには有利になる。尚、本発明において、「重量平均分子量Mw」と「数平均分子量Mn」とは、ゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
[0010]
 本発明では、末端変性ブタジエンゴムの末端の官能基が水酸基、アミノ基、アルコキシル基、エポキシ基のうちの少なくとも1種であることが好ましい。これによりカーボンブラックとの親和性が高まり、カーボンブラックの分散性がより改善されるので、より効果的に、発熱性を低く維持しながらゴム硬度や接着性を高めることができ、これら性能をバランスよく両立するには有利になる。
[0011]
 本発明では、ゴム成分100質量部に対してアミン系老化防止剤を1.0質量部~4.0質量部配合することが好ましい。また、ゴム成分100質量部に対してワックスを0質量部超2.0質量部以下配合することが好ましい。このように老化防止剤やワックスを配合することで、耐クラック性や加工性を向上することができる。
[0012]
 本発明のタイヤ用ゴム組成物は、空気入りタイヤのアンダートレッド部に用いることが好ましく、本発明のタイヤ用ゴム組成物をアンダートレッド部に用いた空気入りタイヤは、操縦安定性や耐久性を良好に維持しながら、燃費性能を向上することができる。

発明を実施するための形態

[0013]
 本発明のタイヤ用ゴム組成物において、ゴム成分はジエン系ゴムであり、天然ゴムと末端変性ブタジエンゴムとを必ず含む。
[0014]
 天然ゴムとしては、タイヤ用ゴム組成物に通常用いられるゴムを使用することができる。天然ゴムを配合することで、タイヤ用ゴム組成物として充分なゴム強度を得ることができる。ジエン系ゴム全体を100質量%としたとき、天然ゴムの配合量は50質量%以上、好ましくは50質量%~70質量%、より好ましくは60質量%~65質量%である。天然ゴムの配合量が50質量%未満であるとゴム強度が低下する。
[0015]
 末端変性ブタジエンゴムは、分子鎖の片末端または両末端が官能基を有する有機化合物で変性されたブタジエンゴムである。このような末端変性ブタジエンゴムを配合することにより、後述のカーボンブラックとの親和性を高くし分散性を改善するため、発熱性を低く維持しながら、カーボンブラックの作用効果を一層向上して、ゴム硬度を高めることができる。分子鎖の末端を変性する官能基としては、例えばアルコキシシリル基、ヒドロキシル基(水酸基)、アルデヒド基、カルボキシル基、アミノ基、アミド基、イミノ基、アルコキシル基、エポキシ基、アミド基、チオール基、エーテル基、シロキサン結合基を挙げることができる。なかでもヒドロキシル基(水酸基)、アミノ基、アミド基、アルコキシル基、エポキシ基、シロキサン結合基から選ばれる少なくとも一つであるとよい。ここで、シロキサン結合基は、-O-Si-O-構造を有する官能基とする。
[0016]
 ジエン系ゴム全体を100質量%としたとき、末端変性ブタジエンゴムの配合量は、35質量%~50質量%、好ましくは40質量%~50質量%である。末端変性ブタジエンゴムの配合量が35質量%未満であると低燃費性が悪化する。末端変性ブタジエンゴムの配合量が50質量%を超えるとゴム強度が低下する。
[0017]
 末端変性ブタジエンゴムの分子量分布(Mw/Mn)は、好ましくは2.0以下、より好ましくは1.1~1.6である。このように、末端変性ブタジエンゴムとして分子量分布が狭いものを用いることで、ゴム物性がより良好になり、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を効果的に向上することができる。末端変性ブタジエンゴムの分子量分布(Mw/Mn)が2.0を超えるとヒステリシスロスが大きくなってゴムの発熱性が大きくなると共に、耐コンプレッションセット性が低下する。
[0018]
 本発明で使用する末端変性ブタジエンゴムのガラス転移温度Tgは好ましくは-85℃以下、より好ましくは-90℃~-100℃であるとよい。このようにガラス転移温度Tgを設定することで、発熱性を効果的に低減することができる。ガラス転移温度Tgが-80℃を超えると発熱性を低減する効果が充分に得られなくなる。尚、天然ゴムのガラス転移温度Tgは特に限定されないが、例えば-70℃~-80℃に設定することができる。
[0019]
 本発明で使用する末端変性ブタジエンゴムは、ビニル含有量が好ましくは0.1質量%~20質量%、より好ましくは0.1質量%~15質量%である。末端変性ブタジエンゴムのビニル含有量が0.1質量%未満であると、カーボンブラックとの親和性が不足し発熱を充分に低減することが難しくなる。末端変性ブタジエンゴムのビニル含有量が20質量%を超えると、ゴム組成物のガラス転移温度Tgが上昇し、転がり抵抗および耐摩耗性を十分に改良することができない。尚、末端変性ブタジエンゴムのビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。末端変性ブタジエンゴムにおけるビニル単位含有量の増減は、触媒等、通常の方法で適宜調製することができる。
[0020]
 本発明のタイヤ用ゴム組成物は、天然ゴム、末端変性ブタジエンゴム以外の他のジエン系ゴムを含有してもよい。他のジエン系ゴムとしては、例えば、末端変性していないブタジエンゴム、スチレンブタジエンゴム、イソプレンゴム、アクリロニトリル‐ブタジエンゴム等が挙げられる。これらジエン系ゴムは、単独又は任意のブレンドとして使用することができる。
[0021]
 本発明のタイヤ用ゴム組成物は、充填剤としてカーボンブラックが必ず配合される。カーボンブラックを配合することでゴム組成物の強度を高めることができる。特に、本発明で使用するカーボンブラックは、窒素吸着比表面積N 2 SAが70m 2 /g以下、好ましくは35m 2 /g~60m 2 /g、より好ましくは35m 2 /g~50m 2 /gである。このように粒径が大きいカーボンブラックを上述の変性ブタジエンゴムと組み合わせて配合することで、発熱性を低く維持しながら、ゴム硬度を効果的に高めることができる。カーボンブラックの窒素吸着比表面積N 2 SAが70m 2 /gを超えると発熱性が悪化する。尚、本発明において、カーボンブラックの窒素吸着比表面積N 2 SAは、JIS6217‐2に準拠して測定するものとする。
[0022]
 カーボンブラックの配合量は、上述のゴム成分100質量部に対して、50質量部以上、好ましくは55質量部~65質量部、より好ましくは57質量部~60質量部である。充填剤の配合量が50質量部未満であると硬度が低下する。
[0023]
 本発明のゴム組成物は、カーボンブラック以外の他の無機充填剤を配合することができる。他の無機充填剤としては、例えばシリカ、クレー、タルク、炭酸カルシウム、マイカ、水酸化アルミニウム等を例示することができる。
[0024]
 これら他の無機充填剤のなかでも、特にシリカを併用する場合、カーボンブラックに対するシリカの重量比率を好ましくは0.1~0.5、より好ましくは0.15~0.3になるように配合するとよい。この重量比率が上記範囲から外れると、発熱性を低く維持しながらゴム硬度を高める効果が得られない。特に、シリカの重量比率が過多であると発熱性が悪化する虞がある。
[0025]
 充填剤としてシリカを併用する場合、充填材の総配合量は好ましくは70質量部以下、より好ましくは55質量部~60質量部にするとよい。充填材の総配合量が75質量部を超えると発熱性が悪化する虞がある。尚、上述の配合量と重量比率との関係から、シリカを併用する場合のシリカの配合量は、ジエン系ゴム100質量部に対して好ましくは5質量部~20質量部、より好ましくは5質量部~10質量部である。
[0026]
 充填剤としてシリカを併用する場合、シリカのCTAB吸着比表面積は好ましくは100m 2 /g~250m 2 /g、より好ましくは135m 2 /g~210m 2 /gであるとよい。シリカのCTAB吸着比表面積が100m 2 /g未満であるとゴム強度が低下する。シリカのCTAB吸着比表面積が250m 2 /gを超えると発熱性が悪化する。尚、本発明において、シリカのCTAB吸着比表面積は、ISO 5794に準拠して測定するものとする。
[0027]
 本発明では、アミン系老化防止剤および/またはワックスを配合することが好ましい。これらを配合することで、耐クラック性や加工性を向上することができる。アミン系老化防止剤の配合量は、ゴム成分100質量部に対して好ましくは1.0質量部~4.0質量部、より好ましくは1.5質量部~3.5質量部である。ワックスの配合量は、ゴム成分100質量部に対して好ましくは0質量部超2.0質量部以下、より好ましくは0.1質量部以上2.0質量部以下アミン系老化防止剤とワックスとは、それぞれ単独で配合してもよく、併用してもよい。アミン系老化防止剤の配合量が1.0質量部未満であると、耐クラック性や加工性を向上する効果が見込めなくなり、特に耐クラック性が低下する。アミン系老化防止剤の配合量が4.0質量部を超えると加工性が低下する。ワックスの配合量が2.0質量部を超えると加工性が低下する。
[0028]
 本発明のタイヤ用ゴム組成物には、上記以外の他の配合剤を添加することができる。他の配合剤としては、カーボンブラックおよびシリカ以外の他の補強性充填剤、加硫又は架橋剤、加硫促進剤、アミン系以外の老化防止剤、液状ポリマー、熱硬化性樹脂、熱可塑性樹脂など、一般的に空気入りタイヤに使用される各種配合剤を例示することができる。これら配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量にすることができる。また混練機としは、通常のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用することができる。
[0029]
 このような配合からなる本発明のタイヤ用ゴム組成物の硬度は65以上、好ましくは65~75、より好ましくは65~70である。また、本発明のタイヤ用ゴム組成物の40℃における反発弾性率は80%以上、好ましくは80%~85%、より好ましくは82%~85%である。本発明のゴム組成物はこのような物性を有するため、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を向上することができる。硬度が65未満であると、タイヤにした時の操縦安定性が悪化する。反発弾性率が80%未満であると、発熱が悪化し転がり抵抗を低減することができない。尚、これら硬度や反発弾性率は上述の配合のみで決定されるものではなく、例えば混練条件や混練方法によっても調整可能な物性である。
[0030]
 本発明のタイヤ用ゴム組成物は、上述の配合や物性により、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を向上することができる。具体的には、ゴム成分として天然ゴムに加えて末端変性ブタジエンゴムを併用し、且つ、充填材として粒径の大きいカーボンブラックを配合し、粒径の大きいカーボンブラックと末端変性ブタジエンゴムとを組み合わせて用いており、更に、ゴム組成物の硬度や反発弾性率を上記のように充分に高めているので、転がり抵抗を低減しながら、タイヤにした時の操縦安定性や耐久性を向上することができ、これら性能をバランスよく改善することができる。そのため、本発明のタイヤ用ゴム組成物は、空気入りタイヤのアンダートレッド部に用いることが好ましく、本発明のタイヤ用ゴム組成物をアンダートレッド部に用いた空気入りタイヤは、操縦安定性や耐久性を良好に維持しながら、燃費性能を向上することができる。
[0031]
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
実施例
[0032]
 表1~2に示す配合からなる24種類のゴム組成物(標準例1、比較例1~12、実施例1~11)を、それぞれ加硫促進剤および硫黄を除く配合成分を秤量し、1.8Lの密閉式バンバリーミキサーで5分間混練し、温度150℃でマスターバッチを放出し室温冷却した。その後、このマスターバッチを1.8Lの密閉式バンバリーミキサーに供し、加硫促進剤及び硫黄を加え2分間混合してゴム組成物を調製した。次に、得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を作製した。
[0033]
 尚、表1~2において、ゴム組成物の硬度は、JIS K6253に準拠して、デュロメータのタイプAにより温度20℃で測定した。また、ゴム組成物の反発弾性率は、JIS K6255に準拠して、リュプケ式反発弾性試験装置により温度40℃で測定した。
[0034]
 得られたゴム組成物について、下記に示す方法により、低燃費性能、操縦安定性、耐久性、耐クラック性、加工性の評価を行った。
[0035]
   低燃費性能
 得られたゴム組成物をアンダートレッドに使用した試験タイヤ(タイヤサイズ215/45R17)を作製し、標準リム(リムサイズ7JJ)に組み付けて、空気圧を230kPaとし、室内ドラム試験機(ドラム径:1707mm)を用いて、JATMA イヤーブック2009年版記載の当該空気圧における最大負荷荷重の85%に相当する荷重を負荷してドラムに押し付けた状態で、速度80km/hで走行させたときの転動抵抗を測定した。評価結果は、測定値の逆数を用いて、標準例1の値を100とする指数で示した。この指数値が大きいほど転動抵抗が小さく、低燃費性能に優れることを意味する。
[0036]
   操縦安定性
 得られたゴム組成物をアンダートレッドに使用した試験タイヤ(タイヤサイズ215/45R17)を作製し、標準リム(リムサイズ7JJ)に組み付けて、空気圧を230kPaとし、排気量2000ccの試験車両に装着し、舗装路面からなるテストコースにて、80km/h走行時にレーンチェンジをする際の路面応答性についてテストドライバーによる官能評価を行った。評価結果は、標準例1を100とする指数値にて示した。この指数値が大きいほどレーンチェンジをする際の路面応答性が良好であり、操縦安定性が優れていることを意味する。
[0037]
   耐久性
 得られたゴム組成物をアンダートレッドに使用した試験タイヤ(タイヤサイズ215/45R17)を作製し、標準リム(リムサイズ7JJ)に組み付けて、空気圧を230kPaとし、排気量2000ccの試験車両に装着し、8の字旋回テストコースを旋回加速度0.8G、500ラップの条件で走行し、走行後のトレッド部の摩耗量を測定した。評価結果は、測定値の逆数を用い、標準例1を100とする指数にて示した。この指数値が大きいほど摩耗量が小さく、耐久性に優れることを意味する。
[0038]
   耐クラック性
 得られた試験片からJIS K6251に準拠したJIS3号ダンベル型試験片を切り出した。この試験片をJIS K6260に準拠し、デマチャ屈曲き裂試験機を用いて、温度23℃、ストローク40mm、速度300±10rpm、屈曲回数10万回の条件で、繰り返し屈曲によるき裂成長の長さを測定し、その後、試験片表面の亀裂(クラック)の有無を目視で観察し以下のA~Cで評価した。得られた結果を、表1~3の「耐クラック性」の欄に示した。
  A:亀裂の数が少ない(およそ10個未満)
  B:亀裂の数が多い(およそ10個以上、100個未満)
  C:亀裂が無数に存在する(およそ100個以上)
[0039]
   加工性
 得られたゴム組成物をシート状に押出成形し、押出後3時間後の2枚の押出物(圧着用試料)を圧着荷重0.98N、圧着時間0秒、圧着速度50cm/minの条件で圧着した後に、剥離速度125cm/minの条件で剥離して、その際の粘着力をPICMA式タックメーター(東洋精機製作所社製)により測定した。評価結果は、以下のA~Cで示した。尚、A~Cの評価に用いた「タック指数」は、測定値を用いて、標準例1を100とした指数である。
  A:加工性が非常に良好(タック指数が95超)
  B:加工性が良好(タック指数が80超95以下)
  C:加工性が悪い(タック指数が80以下)
[0040]
[表1]


[0041]
[表2]


[0042]
 表1~2において使用した原材料の種類を下記に示す。
・NR:天然ゴム、TSR20(ガラス転移温度Tg:-65℃)
・SBR:スチレンブタジエンゴム、日本ゼオン社製 Nipol 1502(ガラス転移温度:-60℃)
・変性S‐SBR:末端変性溶液重合スチレンブタジエンゴム、日本ゼオン社製 Nipol NS612(非油展品、ガラス転移温度Tg:-65℃、官能基:水酸基)
・BR:ブタジエンゴム、日本ゼオン社製 Nipol BR1220(ガラス転移温度Tg:-105℃)
・変性BR1:末端変性ブタジエンゴム、JSR社製 BR54(ガラス転移温度Tg:-107℃、官能基:シラノール基、分子量分布2.5)
・変性BR2:下記の方法で合成した末端変性ブタジエンゴム(ガラス転移温度Tg:-93℃、官能基:ポリオルガノシロキサン基)
・変性BR3:末端変性ブタジエンゴム、日本ゼオン社製 Nipol BR1250H(ガラス転移温度Tg:-96℃、官能基:N‐メチルピロリドン基、分子量分布1.1)
・CB1:カーボンブラック、東海カーボン社製 シーストKHP(窒素吸着比表面積N 2 SA:85m 2 /g)
・CB2:カーボンブラック、新日化カーボン社製 ニテロン#GN(窒素吸着比表面積N 2 SA:35m 2 /g)
・シリカ:デグサ社製 Ultrasil VN3(CTAB吸着比表面積:153m 2 /g)
・酸化亜鉛:正同化学工業社製 酸化亜鉛3種
・ステアリン酸:花王社製 ルナックS‐25
・老化防止剤1:アミン系老化防止剤、フレキシス社製 サントフレックス6PPD
・老化防止剤2:アミン‐ケトン系老化防止剤、大内新興化学工業社製 ノクラック224
・ワックス:大内新興化学工業社製 サンノック
・イオウ:四国化成工業社製 ミュークロンOT‐20
・加硫促進剤:大内新興化学工業社製 ノクセラーCZ
[0043]
   変性BR2の合成方法
 攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン5670g、1,3‐ブタジエン700gおよび、テトラメチルエチレンジアミン0.17mmolを仕込んだ後、シクロヘキサンと1,3‐ブタジエンとに含まれる重合を阻害する不純物の中和に必要な量のn‐ブチルリチウムを添加し、更に、重合反応に用いる分のn-ブチルリチウムを8.33mmol加えて、50℃で重合を開始した。重合を開始してから20分経過後に、1,3‐ブタジエン300gを30分間かけて連続的に添加した。重合反応中の最高温度は80℃であった。連続添加終了後、更に15分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、少量の重合溶液をサンプリングした。サンプリングした少量の重合溶液は、過剰のメタノールを添加して反応停止した後、風乾して、重合体を取得し、ゲルパーミエーションクロマトグラフィー(GPC)分析の試料とした。その試料を用いて、重合体(活性末端を有する共役ジエン系重合体鎖に該当)のピークトップ分子量および分子量分布を測定したところ、それぞれ、「23万」および「1.04」であった。
[0044]
 前述の少量の重合溶液をサンプリングした直後、重合溶液に、1,6‐ビス(トリクロロシリル)ヘキサン0.288mmol(重合に使用したn‐ブチルリチウムの0.0345倍モルに相当)を40重量%シクロヘキサン溶液の状態で添加し、30分間反応させた。更に、その後、ポリオルガノシロキサンA0.0382mmol(重合に使用したn‐ブチルリチウムの0.00459倍モルに相当)を20重量%キシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn‐ブチルリチウムの2倍モルに相当する量のメタノールを添加した。これにより、変性ブタジエンゴムを含有する溶液を得た。この溶液に、ゴム成分100部あたり、老化防止剤として2,4‐ビス(n‐オクチルチオメチル)‐6‐メチルフェノール0.2部を添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性ブタジエンゴム(変性BR2)を得た。この変性ブタジエンゴム(変性BR2)について、重量平均分子量、分子量分布、カップリング率、ビニル結合含有量、および、ムーニー粘度を測定したところ、それぞれ、「51万」、「1.46」、「28%」、「11質量%」および「46」であった。
[0045]
 表1~2から明らかなように、実施例1~12のゴム組成物(タイヤ)は、標準例1に対して低燃費性能、操縦安定性、耐久性をバランスよく向上した。また、標準例1と同等以上の良好な耐クラック性および加工性を発揮した。
[0046]
 一方、比較例1のゴム組成物(タイヤ)は、末端変性ブタジエンゴムの代わりにスチレンブタジエンゴムが配合されているため、低燃費性能が悪化した。比較例2のゴム組成物(タイヤ)は、末端変性ブタジエンゴムの代わりに末端変性溶液重合スチレンブタジエンゴムが配合されているため、耐久性が悪化した。比較例3のゴム組成物(タイヤ)は、末端変性ブタジエンゴムの配合量が少なすぎるため、耐久性が悪化した。比較例4のゴム組成物(タイヤ)は、カーボンブラックの配合量が少なすぎるため、操縦安定性および耐久性が悪化した。比較例5のゴム組成物(タイヤ)は、カーボンブラックの窒素吸着比表面積が大きすぎるため、低燃費性能および耐久性が悪化した。比較例6のゴム組成物(タイヤ)は、天然ゴムおよび末端変性ブタジエンゴムだけでなく、更にスチレンブタジエンゴムが配合されているため、反発弾性が悪化した。比較例7のゴム組成物(タイヤ)は、硬度が小さすぎるため、操縦安定性が悪化した。比較例8のゴム組成物(タイヤ)は、反発弾性率が小さすぎるため、燃費性能が悪化した。比較例9のゴム組成物(タイヤ)は、末端変性ブタジエンゴムが配合されないため、低燃費性能、操縦安定性能を向上する効果が得られず、更に、アミン系ではない老化防止剤だけが配合されるので、耐クラック性および耐久性が悪化した。比較例10のゴム組成物(タイヤ)は、末端変性ブタジエンゴムが配合されないため、低燃費性能、操縦安定性能、耐久性を向上する効果が得られず、更に、老化防止剤の配合量が多すぎるため、加工性が悪化した。比較例11のゴム組成物(タイヤ)は、末端変性ブタジエンゴムが配合されないため、低燃費性能、操縦安定性能、耐久性を向上する効果が得られず、更に、ワックスの配合量が多すぎるため、加工性が悪化した。比較例12のゴム組成物(タイヤ)は、末端変性ブタジエンゴムが配合されないため、低燃費性能、操縦安定性能、耐久性を向上する効果が得られず、更に、アミン系ではない老化防止剤だけが多量に配合されるため、耐クラック性および加工性が悪化した。

請求の範囲

[請求項1]
 天然ゴム50質量%以上と末端変性ブタジエンゴム35質量%~50質量%とを含むゴム成分100質量部に対して、窒素吸着比表面積N 2 SAが70m 2 /g以下であるカーボンブラックが50質量部以上配合されたタイヤ用ゴム組成物であって、硬度が65以上、40℃における反発弾性率が80%以上であることを特徴とするタイヤ用ゴム組成物。
[請求項2]
 前記末端変性ブタジエンゴムの重量平均分子量(Mw)および数平均分子量(Mn)から求められる分子量分布(Mw/Mn)が2.0以下であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。
[請求項3]
 前記末端変性ブタジエンゴムの末端の官能基が水酸基、アミノ基、アミド基、アルコキシル基、エポキシ基、シロキサン結合基からなる群から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載のタイヤ用ゴム組成物。
[請求項4]
 前記ゴム成分100質量部に対してアミン系老化防止剤が1.0質量部~4.0質量部配合されたことを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。
[請求項5]
 前記ゴム成分100質量部に対してワックスが0質量部超2.0質量部以下配合されたことを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。
[請求項6]
 請求項1~5のいずれかに記載のタイヤ用ゴム組成物をアンダートレッド部に用いたことを特徴とする空気入りタイヤ。