処理中

しばらくお待ちください...

設定

設定

1. WO2020013231 - 非水電解質電池電極用バインダー、非水電解質電池電極用バインダー溶液、非水電解質電池電極用スラリー組成物、非水電解質電池用電極及び非水電解質電池

Document

明 細 書

発明の名称 非水電解質電池電極用バインダー、非水電解質電池電極用バインダー溶液、非水電解質電池電極用スラリー組成物、非水電解質電池用電極及び非水電解質電池

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の概要

発明が解決しようとする課題

0004   0005  

課題を解決するための手段

0006   0007  

発明の効果

0008  

発明を実施するための形態

0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066  

実施例

0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089  

請求の範囲

1   2   3   4   5   6   7   8   9   10  

明 細 書

発明の名称 : 非水電解質電池電極用バインダー、非水電解質電池電極用バインダー溶液、非水電解質電池電極用スラリー組成物、非水電解質電池用電極及び非水電解質電池

技術分野

[0001]
 本発明は、ポリビニルアセタール系樹脂を含有する非水電解質電池電極用バインダー、該バインダーを含有する非水電解質電池電極用バインダー溶液及び非水電解質電池電極用スラリー組成物、該スラリー組成物の硬化体を含む非水電解質電池用電極、及び、該電極を含む非水電解質電池に関する。

背景技術

[0002]
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池等の非水電解質電池が多用されている。非水電解質電池の電極は、通常、バインダー、溶媒、活物質及び導電助剤(導電付与剤)等を混合して得られる電極用スラリー組成物を集電体に塗布して、溶媒を乾燥することにより、電極用スラリー組成物を硬化体として集電体に結着させて形成される。該スラリー組成物に含まれるバインダーとして、ポリビニルアセタール系樹脂を含有するバインダーが知られている(例えば特許文献1及び2)。

先行技術文献

特許文献

[0003]
特許文献1 : 特許第6126757号
特許文献2 : 特許第5827581号

発明の概要

発明が解決しようとする課題

[0004]
 しかしながら、本発明者の検討によれば、上記文献のバインダーから製造された電極用スラリー組成物においては、活物質、導電助剤等を十分に分散できない場合があることがわかった。また、上記文献のバインダーから製造された電極用スラリー組成物は、比較的低粘度であるために活物質、導電助剤等の分散状態を維持することが困難であった。さらに、該電極用スラリー組成物から電極を製造する際に、活物質、導電助剤等の集電体への接着力が低下したり、該電極を含む非水電解質電池において放電容量の維持率が低下する場合があることがわかった。
[0005]
 従って、本発明の目的は、電極用スラリー組成物において、活物質、導電助剤等の分散性が良好であり、活物質、導電助剤等の集電体への接着性に優れ、放電容量の維持率が高い非水電解質電池を形成可能な、非水電解質電池電極用バインダー、該バインダーを含有する非水電解質電池電極用バインダー溶液及び非水電解質電池電極用スラリー組成物、該スラリー組成物の硬化体を含んでなる非水電解質電池用電極、並びに該電極を含む非水電解質電池を提供することにある。

課題を解決するための手段

[0006]
 本発明者は、上記課題を解決すべく、電極用スラリー組成物の粘度や電極用スラリー組成物における活物質、導電助剤等の分散状態に着目し、鋭意検討を行った。その結果、固形分濃度7.5質量%のN-メチルピロリドン溶液の状態での粘度が、25℃、せん断速度100s -1において、480~1500cPである、ポリビニルアセタール系樹脂を含有する非水電解質電池電極用バインダーによって、上記課題が解決されることを見出し、本発明を完成するに至った。
[0007]
 すなわち、本発明は以下の好適な態様を含む。
〔1〕固形分濃度7.5質量%のN-メチルピロリドン溶液の状態での粘度が、25℃、せん断速度100s -1において、480~1500cPである、ポリビニルアセタール系樹脂を含有する非水電解質電池電極用バインダー。
〔2〕ポリビニルアセタール系樹脂の水酸基量は62~90モル%である、前記〔1〕に記載の非水電解質電池電極用バインダー。
〔3〕多価塩基酸縮合物及び/又はその塩をさらに含む、前記〔1〕又は〔2〕に記載の非水電解質電池電極用バインダー。
〔4〕多価塩基酸縮合物及び/又はその塩の含有量は、非水電解質電池電極用バインダーの総量に基づいて0.1~8質量%である、前記〔3〕に記載の非水電解質電池電極用バインダー。
〔5〕多価塩基酸縮合物はクエン酸縮合物である、前記〔3〕又は〔4〕に記載の非水電解質電池電極用バインダー。
〔6〕前記〔1〕~〔5〕のいずれかに記載の非水電解質電池電極用バインダーと、少なくとも1種の溶媒とを含む、非水電解質電池電極用バインダー溶液。
〔7〕前記〔1〕~〔5〕のいずれかに記載の非水電解質電池電極用バインダー、又は、前記〔6〕に記載の非水電解質電池電極用バインダー溶液と、活物質とを含む、非水電解質電池電極用スラリー組成物。
〔8〕ポリビニルアセタール系樹脂の含有量は、活物質100質量部に対して、0.1~20質量部である、前記〔7〕に記載の非水電解質電池電極用スラリー組成物。
〔9〕前記〔7〕又は〔8〕に記載の非水電解質電池電極用スラリー組成物の硬化体と、集電体とを含む、非水電解質電池用電極。
〔10〕前記〔9〕に記載の非水電解質電池用電極を含む、非水電解質電池。

発明の効果

[0008]
 本発明の非水電解質電池電極用バインダー、該バインダーを含有する非水電解質電池電極用バインダー溶液及び非水電解質電池電極用スラリー組成物によれば、電極用スラリー組成物における活物質、導電助剤等の分散性が良好であり、活物質、導電助剤等の集電体への接着性を高めることができ、放電容量の維持率が高い非水電解質電池を形成することができる。

発明を実施するための形態

[0009]
<非水電解質電池電極用バインダー>
 本発明の非水電解質電池電極用バインダー(単に「バインダー」という場合がある)は、ポリビニルアセタール系樹脂を含有するバインダーであって、固形分濃度7.5質量%のN-メチルピロリドン溶液の状態での粘度が、25℃、せん断速度100s -1において、480cP~1500cPである。バインダーの上記状態での粘度が480cPより低いと、該バインダー、活物質及び場合により導電助剤を含む非水電解質電池電極用スラリー組成物において、活物質、導電助剤等の分散状態を維持することができなくなる。また、バインダーの上記状態での粘度が480cPより低いと、スラリー組成物の硬化体、特に硬化体に含まれ得る活物質、導電助剤等と集電体との接着性が低下し、最終的に得られる非水電解質電池の放電容量の維持率が低下する。また、最終的に得られる非水電解質電池の電気抵抗が高くなる。また、バインダーの上記状態での粘度が1500cPより高いと活物質及び場合により導電助剤を含む非水電解質用スラリー組成物の粘度が過度に上昇し、電極塗工速度が低下し、生産性が低下する。
[0010]
 本発明のバインダーの上記状態での粘度は、非水電解質電池電極用スラリー組成物における活物質、導電助剤等の分散性を高め、電気抵抗を低下させやすく、非水電解質電池の放電容量の維持率を高めやすい観点から、好ましくは500cP以上、より好ましくは520cP以上である。また、上記粘度は求められる塗工性に応じて適宜選択してよいが、塗工しやすさの観点から、例えば1300cP以下、1200cP以下等であってよい。
[0011]
 上記粘度は、本発明のバインダーを7.5質量%の固形分濃度でN-メチルピロリドンに溶解させた溶液を測定試料とし、25℃、せん断速度100s -1の測定条件で、例えばE型粘度計を用いて測定される。
[0012]
 本発明のバインダーの上記状態での粘度は、バインダーの粘度を調整する材料、例えば多価塩基酸縮合物及び/又はその塩をバインダーに添加する方法、バインダーに含まれるポリビニルアセタール系樹脂の分子量及び含有量を調整する方法等により、上記所望の範囲に調整することができる。
[0013]
 本発明の非水電解質電池電極用バインダーは、ポリビニルアセタール系樹脂を主成分として含有する。本発明のバインダーにおけるポリビニルアセタール系樹脂の含有量は、バインダーの総量に基づいて、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、好ましくは99質量%以下、より好ましくは95質量%以下である。ポリビニルアセタール系樹脂の含有量が上記の範囲内であると、本発明のバインダーの溶液状態における粘度を好ましい範囲に調整しやすく、活物質及び導電助剤の分散性を高めやすくなる。
[0014]
 本発明の非水電解質電池電極用バインダーに含まれるポリビニルアセタール系樹脂としては、例えばポリビニルアルコール系樹脂をアセタール化した樹脂が挙げられる。
[0015]
 ポリビニルアルコール系樹脂は、主にビニルアルコール由来の構成単位とビニルエステル由来の構成単位を有するが、本発明の効果を損なわない範囲で、これらの構成単位以外の他の単量体に由来する構成単位を含んでいてもよい。他の単量体としては、例えばエチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-オレフィン類;アクリル酸、メタクリル酸、クロトン酸、フタル酸、無水フタル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸などの不飽和酸類及びその塩又はその炭素数1~18のアルキルエステル類;アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその酸塩又はその4級塩などのアクリルアミド類;メタクリルアミド、炭素数1~18のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその酸塩又はその4級塩などのメタクリルアミド類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミドなどのN-ビニルアミド類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテルなどのビニルエーテル類;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;塩化ビニル、フッ化ビニル、臭化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;トリメトキシビニルシランなどのビニルシラン類;ポリオキシアルキレンアリルエーテルなどのオキシアルキレン基を有する化合物;酢酸イソプロペニル;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オールなどのヒドロキシ基含有のα-オレフィン類;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水フタル酸、無水トリメリット酸などに由来するカルボキシル基を有する化合物;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などに由来するスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロリド、ビニロキシブチルトリメチルアンモニウムクロリド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロリド、N-アクリルアミドエチルトリメチルアンモニウムクロリド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロリド、メタアリルトリメチルアンモニウムクロリド、ジメチルアリルアミン、アリルエチルアミンなどに由来するカチオン基を有する化合物などが挙げられる。これらの中でも、入手のしやすさや共重合性の観点から、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-オレフィン類;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミドなどのN-ビニルアミド類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテルなどのビニルエーテル類;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテルなどのアリルエーテル類;ポリオキシアルキレンアリルエーテルなどのオキシアルキレン基を有する単量体;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オールなどのヒドロキシ基含有のα-オレフィン類などが好ましい。これらの単量体は単独又は二種以上組み合わせて使用できる。
[0016]
 ビニルアルコール由来及びビニルエステル由来の構成単位以外の、他の単量体に由来する構成単位の含有量は、ポリビニルアルコール系樹脂を構成する構成単位の総モル数に対して、通常20モル%以下であり、10モル%以下が好ましく、5モル%以下がより好ましい。
[0017]
 ポリビニルアルコール系樹脂は、ビニルアルコール及び必要に応じて前記単量体を重合した樹脂を、公知の方法、例えばアルコール等の溶媒に溶解した状態でけん化する方法により製造できる。この方法で使用される溶媒としては、例えばメタノール、エタノール等の低級アルコールが挙げられ、メタノールを好適に使用できる。けん化反応に使用されるアルコールは、その量が40質量%以下であれば、アセトン、酢酸メチル、酢酸エチル、ベンゼンなどの溶媒を含有していてもよい。けん化反応に用いられる触媒としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、ナトリウムメトキシドなどのアルカリ触媒、又は鉱酸などの酸触媒が挙げられる。けん化反応の温度について特に制限はないが、20~60℃の範囲が好ましい。けん化反応によって得られるビニルアルコール系樹脂は、洗浄後、乾燥に付される。
[0018]
 ポリビニルアルコール系樹脂のけん化度は、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは99モル%以上である。けん化度が上記の下限値以上であると、残留エステル基による有機溶媒への親和性が抑制され、有機溶媒への溶解度、膨潤度が低下し、スラリーの安定化が得られる。けん化度の上限値は99.9モル%である。なお、本明細書において、ポリビニルアセタール系樹脂のけん化度は、アセタール化する前のポリビニルアルコール系樹脂のけん化度を意味する。また、けん化度は、JIS-K6726に従って測定することができる。
[0019]
 ポリビニルアセタール系樹脂は、例えば、前記ポリビニルアルコール系樹脂を、アルデヒドによりアセタール化することにより製造できる。アセタール化の方法としては、特に限定されず、例えば沈殿法や固液反応法等が挙げられる。沈殿法は、溶媒として例えば水やアセトンを用い、原料であるポリビニルアルコール系樹脂を水やアセトンに溶解しておいて、酸などの触媒を加えてアセタール化反応を行い、生成したポリビニルアセタール系樹脂を沈殿させ、触媒として用いた酸を中和し、固体粉末として得る方法である。固液反応法は、原料であるポリビニルアルコール系樹脂が溶解しない溶媒を使用する点が異なるだけで、その他は、沈殿法と同様に反応を行い得る方法である。いずれの方法による場合でも、得られるポリビニルアセタール系樹脂の粉末の中には、未反応のアルデヒド及び中和によって生じた塩等の不純物が含まれるため、この不純物を除くために、不純物が可溶な溶媒を用いて抽出又は蒸発除去することで純度の高いポリビニルアセタール系樹脂を得ることができる。
[0020]
 アセタール化に使用するアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、n-ブチルアルデヒド(1-ブタノール)、sec-ブチルアルデヒド、オクチルアルデヒド、ドデシルアルデヒドなどの脂肪族アルデヒド;シクロヘキサンカルボアルデヒド、シクロオクタンカルボアルデヒド、トリメチルシクロヘキサンカルボアルデヒド、シクロペンチルアルデヒド、ジメチルシクロヘキサンカルボアルデヒド、メチルシクロヘキサンカルボアルデヒド、メチルシクロペンチルアルデヒドなどの脂環式アルデヒド;α-カンフォレンアルデヒド、フェランドラール、シクロシトラール、トリメチルテトラハイドロベンズアルデヒド、α-ピロネンアルデヒド、ミルテナール、ジヒドロミルテナール、カンフェニランアルデヒドなどのテルペン系アルデヒド;ベンズアルデヒド、ナフトアルデヒド、アントラアルデヒド、フェニルアセトアルデヒド、トルアルデヒド、ジメチルベンズアルデヒド、クミンアルデヒド、ベンジルアルデヒドなどの芳香族アルデヒド;シクロヘキセンアルデヒド、ジメチルシクロヘキセンアルデヒド、アクロレインなどの不飽和アルデヒド;フルフラール、5-メチルフルフラールなどの複素環を有するアルデヒド;グルコース、グルコサミンなどのヘミアセタール;4-アミノブチルアルデヒドなどのアミノ基を有するアルデヒド等が挙げられる。これらのアルデヒドは単独又は二種以上組み合わせて使用できる。また、アルデヒドの代わり又はアルデヒドと併用して、2-プロパノン、メチルエチルケトン、3-ペンタノン、2-ヘキサノンなどの脂肪族ケトン;シクロペンタノン、シクロヘキサノンなどの脂環式ケトン、アセトフェノン、ベンゾフェノンなどの芳香族ケトンなどを用いることもできる。
[0021]
 酸触媒は、公知の酸を用いることができ、その例としては、硫酸、塩酸、硝酸等の無機酸、及びパラトルエンスルホン酸などの有機酸が挙げられる。酸触媒は、アセタール化反応の最終系における酸濃度が0.5~5.0質量%となる量で通常用いられるが、この濃度に限定されるものではない。これらの酸触媒は、所定量を1度に添加してもよいが、沈殿法の場合、比較的細かい粒子のポリビニルアセタール系樹脂を析出沈殿させるために、適当な回数に分割して添加するのが好ましい。一方、固液反応法の場合は、所定量を反応のはじめに一括して添加するのが反応効率の点から好ましい。
[0022]
 本発明のバインダーは、1又は2種以上のポリビニルアセタール系樹脂を含むことができる。本発明のバインダーが2種以上のポリビニルアセタール系樹脂を含む場合、これらポリビニルアセタール系樹脂は、アセタール化度、アセチル基量、水酸基量、重合度、及び/又は単量体成分が互いに異なるポリビニルアセタール系樹脂であってよい。
[0023]
 ポリビニルアセタール系樹脂の水酸基量は、好ましくは62~90モル%、より好ましくは65~90モル%、さらに好ましくは66~90モル%、さらにより好ましくは68~89モル%、特に好ましくは70~88モル%である。水酸基量が上記の下限値以上であると、集電箔との接着性に優れることに加え、電解液によるポリビニルアセタール系樹脂の膨潤を抑制しやすく、膨潤による導電パスの切断が抑制されることで、得られる非水電解質電池が高放電容量を発現しやすく、或いは、放電容量を維持しやすい傾向がある。水酸基量が上記の上限値以下であると、工業的に合成しやすく、溶媒への溶解性が低くなりすぎないために使用可能な活物質の量が制限されにくく、また、スラリー組成物の塗工性を向上させやすいため、十分な活物質量を有する電極を製造しやすくなる。その結果、高放電容量の非水電解質電池を得ることができる。なお、ポリビニルアセタール系樹脂の水酸基量は実施例に記載の方法により算出できる。
[0024]
 ポリビニルアセタール系樹脂のアセタール化度は、単独アルデヒド、混合アルデヒドのいずれのアセタール化を用いる場合でも、全アセタール化度で、好ましくは10~38モル%、より好ましくは10~35モル%、さらに好ましくは10~34モル%、特に好ましくは11~32モル%、最も好ましくは12~30モル%である。アセタール化度が上記の下限値以上であると、集電体への活物質の接着性を向上しやすい。アセタール化度が上記の上限値以下であると、電解液への過度の膨潤が抑制でき、充放電時の電極の崩壊が生じず、放電容量を維持しやすい。なお、アセタール化度は実施例に記載の方法により算出できる。
[0025]
 ポリビニルアセタール系樹脂のアセチル基量は、好ましくは10モル%以下、より好ましくは5モル%以下、さらに好ましくは1モル%以下である。また、好ましくは0.1モル%以上である。アセチル基量が上記の上限値以下であると、ポリビニルアセタール系樹脂の電解液への溶解を有効に抑制でき、電池使用時における集電体への活物質の接着性を向上しやすい。また、上記の下限値以上であれば、残留エステル基による有機溶媒への親和性が抑制され、有機溶媒への溶解度、膨潤度が低下しスラリーの安定化が得やすい。ポリビニルアセタール系樹脂のアセチル基量は、実施例に記載の方法により算出できる。
[0026]
 ポリビニルアセタール系樹脂の重合度は、好ましくは250以上、より好ましくは300以上、さらに好ましくは1000以上、特に好ましくは1500以上であり、好ましくは4000以下、より好ましくは3000以下、さらに好ましくは2000以下である。重合度が上記の範囲であると、電池使用時における集電体への活物質の接着性が向上しやすい。なお、本明細書において、ポリビニルアセタール系樹脂の重合度は、アセタール化する前のポリビニルアルコール系樹脂の重合度であってもよい。また、重合度は、JIS-K6726に従って測定することができる。
[0027]
 本発明の非水電解質電池電極用バインダーは、電解液への膨潤度が、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下、さらにより好ましくは3%以下、さらにより好ましくは1.4%以下、さらにより好ましくは1.1%以下、さらにより好ましくは1%以下、さらにより好ましくは0.7%以下、特に好ましくは0.5%以下であり、好ましくは0.1%以上、より好ましくは0.15%以上である。電解液への膨潤度が上記の上限値以下であると、導電助剤と活物質間の距離が最適となり、得られる電池の放電容量及び耐久性を向上しやすい。なお、電解液への膨潤度は実施例に記載の方法により測定できる。
[0028]
 本発明の非水電解質電池電極用バインダーは、バインダーの溶液状態における粘度を調整する材料をさらに含有してよい。粘度を調整する材料としては、例えば多価塩基酸縮合物及び/又はその塩が挙げられ、具体的には、マレイン酸、フマル酸、クエン酸、酒石酸、アスパラギン酸などの酸の縮合物、又は、これらの縮合物の塩が挙げられる。多価塩基酸縮合物の塩としては、多価塩基酸縮合物のアルカリ金属塩、アルカリ土類金属塩が挙げられる。この中でも特に、クエン酸縮合物又はその塩が入手性、価格の点から好ましく、クエン酸縮合物が、増粘効果を得やすく本発明のバインダーの溶液状態における粘度を調整しやすい観点から、さらに好ましい。本発明の非水電解質電池電極用バインダーが多価塩基酸縮合物及び/又はその塩を含有する本発明の一態様において、多価塩基酸縮合物及び/又はその塩は、スラリーの安定化剤として作用すると考えられる。本発明は以下のメカニズムに何ら限定されるものではないが、本発明のバインダーを含有するスラリー組成物において、多価塩基酸の縮合により生成した水酸基及びカルボキシル基が、ポリビニルアセタール系樹脂のヒドロキシル基と相互作用し増粘効果が奏されることで活物質の沈降が抑制され、スラリーが安定化するものと考えられる。
[0029]
 本発明の非水電解質電池電極用バインダーが多価塩基酸縮合物及び/又はその塩を含有する本発明の一態様において、本発明のバインダーは、1種類の多価塩基酸縮合物及び/又はその塩を含有してもよいし、2種以上の多価塩基酸縮合物及び/又はその塩を含有してもよい。
[0030]
 本発明の非水電解質電池電極用バインダーが多価塩基酸縮合物及び/又はその塩を含有する本発明の一態様において、多価塩基酸縮合物の含有量は、特に限定されず、本発明のバインダーの上記溶液状態における粘度が、上記好ましい範囲となるような量で適宜調整してよい。本発明のバインダーに含まれる多価塩基酸縮合物及び/又はその塩の含有量は、本発明のバインダーの総量に基づいて、好ましくは0.1~10質量%、より好ましくは0.1~8質量%、さらにより好ましくは0.5~7質量%、特に好ましくは1~5質量%である。多価塩基酸縮合物の含有量が上記の上限値以下であると、本発明のバインダーに含まれるポリビニルアセタール系樹脂の量が低下しすぎることによる粘度低下を抑制しつつ、多価塩基酸縮合物又はその塩による増粘効果を高めやすく、バインダーの溶液状態における粘度を上記好ましい範囲に調整しやすい。その結果、集電体への活物質の接着性を高めやすくなり、充放電時の電極の崩壊が抑制され、高い容量維持率が得られる。
[0031]
 多価塩基酸縮合物の製造方法は、特に限定されないが、例えば多価塩基酸を熱、マイクロ波などの方法で縮合することにより製造することができる。
[0032]
 多価塩基酸を熱で縮合させて多価塩基酸縮合物を製造する方法としては、例えば、多価塩基酸を、数分~数時間の時間をかけて150℃以上の温度で加熱する方法が挙げられる。マイクロ波を使用する場合、例えばマイクロ波を照射できる装置(例えば家庭用電子レンジ等)を用い、例えば800Wの出力下、数分~数十分の時間をかけてマイクロ波を照射する方法が挙げられる。縮合時の環境や圧力は何ら限定されず、空気雰囲気下、不活性ガス雰囲気下、大気圧条件下、減圧条件下などのいずれの条件で行ってもよい。安全性の観点からは、不活性ガス雰囲気下、大気圧条件下で縮合を行うことが好ましい。
[0033]
 多価塩基酸縮合物における多価塩基酸の縮合率は特に限定されるものではなく、例えば上記のような製造条件で得られるものであってよい。例えば、好ましくは5~100倍、より好ましくは6~80倍、さらに好ましくは7~50倍程度の範囲の縮合率で多価塩基酸を縮合させたものであってよい。
[0034]
 本発明の非水電解質電池電極用バインダーが多価塩基酸縮合物の塩を含有する一態様において、多価塩基酸縮合物と一価の金属を含む塩基性物質とを反応させるのと同時に本発明のバインダーに添加し、多価塩基酸縮合物の塩を含有させることもできるし、多価塩基酸縮合物と一価の金属を含む塩基性物質とをあらかじめ反応させて得た多価塩基酸縮合物の塩を、本発明のバインダーに添加することもできる。
[0035]
 本発明のバインダーは、ポリビニルアセタール系樹脂、ならびに必要に応じてポリビニルアセタール系樹脂以外の成分を溶媒に溶解させ溶液とし、溶媒を除去することにより得てもよい。また、前記溶液をそのままバインダー溶液として続くスラリー組成物の調製に用いてもよい。その場合、バインダー溶液中の溶媒以外の成分の組成物が本発明のバインダーである。本発明のバインダーは、本発明のスラリー組成物の硬化体中においては、活物質等の成分と混合された状態で含まれている。
[0036]
<非水電解質電池電極用バインダー溶液>
 本発明のバインダー溶液は、本発明の非水電解質電池電極用バインダーと、少なくとも1種の溶媒とを含む。溶媒は、前記ポリビニルアセタール系樹脂を溶解可能な溶媒であれば特に限定されない。溶媒の例としては、N-メチルピロリドン、N-エチルピロリドン、N-メチル-α-メチルピロリドン、N-エチル-α-メチルピロリドン等のN-アルキルピロリドンなどの環状アミド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;テトラヒドロフラン、ジオキサン、モルホリン、N-メチルモルホリン等の環状エーテル系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;スルホラン等のスルホン系溶媒などが挙げられる。これらの溶媒は単独又は二種以上を組み合わせて使用できる。これらの中でも、環状アミド系溶媒が好ましい。環状アミド系溶媒を使用すると、本発明のバインダーが活物質を十分に被覆可能なため、活物質の凝集をより有効に抑制し、活物質の接着性を向上しやすい。
[0037]
 本発明のバインダー溶液は、上記本発明のバインダーの他に、本発明の効果を損なわない範囲で、溶媒に溶解することが可能な添加剤(添加剤Aとする)を含有することができる。添加剤Aとしては、例えば、ポリエチレングリコール、ポリエチレングリコールジメチルエーテル、ポリエチレンイミンなどが挙げられる。添加剤Aの含有量は、バインダー溶液の総量に基づいて、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下であり、特に添加剤Aを含まないことが好ましい。
[0038]
 本発明のバインダー溶液は、前記ポリビニルアセタール系樹脂、前記溶媒、必要に応じて前記多価塩基酸縮合物及び/又はその塩等のバインダーの粘度を調整する材料、必要に応じて前記添加剤Aを、公知の方法、例えば撹拌等の方法で混合して得られる。混合温度や混合時間は、溶媒の種類に応じて適宜調整し得る。なお、バインダー溶液は、ポリビニルアセタール系樹脂が溶媒に溶解された状態の溶液を示す。溶解された状態とは、溶媒に完全に溶解したポリビニルアセタール系樹脂の質量が、バインダー溶液を作製する際に使用されたポリビニルアセタール系樹脂の総質量(100質量%)に対して、80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらに99質量%以上、特に好ましくは100質量%以上である状態を意味する。
[0039]
 本発明のバインダー溶液におけるポリビニルアセタール系樹脂の含有量は、バインダー溶液の総量に基づいて、好ましくは1~30質量%、より好ましくは3~20質量%、特に好ましくは5~15質量%である。ポリビニルアセタール系樹脂の含有量が上記の下限値以上であると、集電体への活物質の接着性を向上しやすい。また、上記の上限値以下であると、活物質の急激な凝集を抑制しやすい。
[0040]
<非水電解質電池電極用スラリー組成物>
 本発明の非水電解質電池電極用スラリー組成物(単に「スラリー組成物」という場合がある)は、前記非水電解質電池電極用バインダー又は前記非水電解質電池電極用バインダー溶液と、活物質とを含有する。
[0041]
 本発明の非水電解質電池電極用スラリー組成物は、正極、負極のいずれの電極に使用してもよく、また、正極及び負極の両方に使用してもよい。そのため、活物質は、正極活物質又は負極活物質であってよい。
[0042]
 負極活物質は、従来から非水電解質電池の負極活物質として用いられている材料を使用することができ、その例としては、アモルファスカーボン、人工グラファイト、天然グラファイト(黒鉛)、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維、カーボンブラック、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボン、ポリアセン等の導電性高分子などの炭素質材料、SiO 、SnO 、LiTiO で表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属、TiS 、LiTiS などの金属化合物及び、金属酸化物と炭素質材料との複合材料などが挙げられる。これらの中でも、経済性と電池容量の観点から、黒鉛が好ましく、特に球状天然黒鉛が好ましい。これらの負極活物質は単独又は二種以上組み合わせて使用できる。
[0043]
 正極活物質としては、例えば、従来から非水電解質電池の正極活物質として用いられている材料を使用することができ、その例としては、TiS 、TiS 、非晶質MoS 、Cu 、非晶質V O-P 、MoO 、V 、V 13などの遷移金属酸化物やLiCoO 、LiNiO 、LiMnO 、LiMn などのリチウム含有複合金属酸化物などが挙げられる。これらの正極活物質は単独又は二種以上組み合わせて使用できる。
[0044]
 本発明のスラリー組成物において、ポリビニルアセタール系樹脂の含有量は、活物質100質量部に対して、好ましくは0.1~20質量部であり、より好ましくは0.2~15質量部であり、さらに好ましくは0.2~12質量部である。上記の下限値以上であると、活物質の接着性が向上され、電池の耐久性維持の観点から有利である。また、上記の上限値以下であると、放電容量が向上されやすい。
[0045]
 本発明のスラリー組成物は、導電助剤を含んでいてもよい。導電助剤は、非水電解質電池を高出力化するために用いられるものであり、正極又は負極に使用する場合に応じて適宜選択でき、その例としては、例えば、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、気相成長炭素繊維等が挙げられる。得られる非水電解質電池が高出力化しやすい観点から、これらの中でも、アセチレンブラックが好ましい。
[0046]
 本発明のスラリー組成物が導電助剤を含有する場合、導電助剤の含有量は、活物質100質量部に対して、好ましくは0.1~15質量部、より好ましくは1~10質量部、さらに好ましくは3~10質量部である。導電助剤の含有量が上記範囲であると、電池容量を低下させることなく十分な導電補助効果がある。
[0047]
 本発明のスラリー組成物は溶媒を含んでいてもよい。特にバインダーを溶解可能な溶媒であることが好ましく、このような溶媒を含むことで、活物質表面をバインダーが均一に被覆でき、活物質の凝集を有効に抑制することができる。従って、溶媒を含むことにより、活物質の接着性及び得られる電池の柔軟性を向上しやすい。
[0048]
 溶媒は、前記バインダーを溶解可能な溶媒であれば、特に限定されず、その例としては、N-メチルピロリドン、N-エチルピロリドン、N-メチル-α-メチルピロリドン、N-エチル-α-メチルピロリドン等のN-アルキルピロリドンなどの環状アミド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;テトラヒドロフラン、ジオキサン、モルホリン、N-メチルモルホリン等の環状エーテル系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;スルホラン等のスルホン系溶媒などが挙げられる。これらの溶媒は単独又は二種以上組み合わせて使用できる。これらの中でも、環状アミド系溶媒を好適に使用できる。環状アミド系溶媒を使用すると、ポリビニルアセタール系樹脂が活物質を十分に被覆可能なため、活物質の凝集をより有効に抑制し、活物質の接着性が向上されやすい。
[0049]
 本発明のスラリー組成物が溶媒を含む場合、ポリビニルアセタール系樹脂の含有量は、バインダーと溶媒の総質量に対して、好ましくは1~30質量%、より好ましくは3~20質量%、特に好ましくは5~15質量%である。ポリビニルアセタール系樹脂の含有量が上記の下限値以上であると、集電体への活物質の接着性及び得られる電池の柔軟性を向上し得る。また、上記の上限値以下であると、電極あたりの電池容量を確保できる。
[0050]
 本発明のスラリー組成物は、前記バインダー、前記活物質、前記導電助剤及び前記溶媒以外にも、必要に応じて、難燃助剤、増粘剤、消泡剤、レベリング剤、密着性付与剤等の添加剤を含むことができる。これらの添加剤を含む場合、添加剤の含有量は、スラリー組成物の総量に基づいて、好ましくは0.1~10質量%程度である。
[0051]
 本発明のスラリー組成物は、前記バインダー、前記活物質、及び必要に応じて、導電助剤、溶媒並びに添加剤を、慣用の方法により、例えばボールミル、ブレンダーミル、3本ロール等の混合機を用いて混合することにより得ることができる。
[0052]
<非水電解質電池用電極>
 本発明の非水電解質電池用電極(単に「電極」という場合がある)は、前記非水電解質電池電極用スラリー組成物の硬化体と、集電体とを含んでなる。
[0053]
 本発明の電極は、集電体への活物質の接着性に優れている。そのため、本発明の電極の剥離強度は、電解液浸漬前において、好ましくは300N/m以上、より好ましくは500N/m以上、さらに好ましくは600N/m以上、特に好ましくは700N/m以上である。また、本発明の電極は、電解液に浸漬しても十分な接着強度を維持することができる。そのため、本発明の電極の剥離強度は、電解液浸漬後において、好ましくは300N/m以上、より好ましくは500N/m以上、さらに好ましくは600N/m以上、特に好ましくは700N/m以上である。なお、電極の剥離強度の上限値は浸漬前又は浸漬後において、例えば1000N/mである。
[0054]
 本発明の電極は、前記スラリー組成物を集電体に塗布し、溶媒を乾燥等により除去して得ることができる。また、乾燥後に電極を圧延処理してもよい。
[0055]
 集電体としては、導電性材料からなるものであれば、特に限定されず、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料などが挙げられる。これらの集電体は単独又は二種以上組み合わせて使用できる。集電体の中でも、活物質の接着性及び放電容量の観点から、正極集電体としては銅が好ましく、負極集電体としてはアルミニウムが好ましい。
[0056]
 スラリー組成物を集電体に塗布する方法としては、特に限定されないが、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーター等が挙げられる。スラリー組成物の塗布量は、スラリー組成物由来の硬化体の所望とする厚みに応じて、適宜選択される。
[0057]
 電極の圧延方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレス圧としては、電池容量を高めやすい観点から、1~40MPaが好ましい。
[0058]
 本発明の非水電解質電池用電極において、集電体の厚みは、好ましくは1~20μm、より好ましくは2~15μmである。また、硬化体の厚みは好ましくは10~400μmであり、より好ましくは20~300μmである。電極の厚みは好ましくは20~200μmである。
[0059]
<非水電解質電池>
 本発明の非水電解質電池(単に「電池」という場合がある)は、前記非水電解質電池用電極を負極及び/又は正極として含む。さらに非水電解質電池は電解液を含む。
[0060]
 電池の容量維持率は、例えば、以下に示す方法で算出できる。該方法は、例えば充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施する方法であり、具体的には非水電解質電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで、活物質量に対して0.1C(約0.5mA/cm )の定電流充電を行い、さらにリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施する。このときの容量を充電容量(mAh/g)とする。次いで、リチウム電位に対して0.1C(約0.5mA/cm2)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とする。この充放電を5サイクル行った後、5サイクル目の放電容量を1サイクル目の放電容量で割った値が容量維持率(%)として算出される。
[0061]
 本発明の非水電解質電池に含まれる電解液は、電解質を溶媒に溶解させた溶液である。該電解質は、通常の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩を好適に使用でき、LiClO 、LiBF 、LiPF 、LiCF SO 、LiCF CO 、LiAsF 、LiSbF 、LiB 10Cl 10、LiAlC l4、LiCl、LiBr、LiB(C 、CF SO Li、CH SO Li、LiCF SO 、LiC SO 、Li(CF SO N、低級脂肪族カルボン酸リチウムなどが挙げられる。
[0062]
 電解液に含まれる溶媒は、特に限定されず、その具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ビニレンカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独又は二種以上組み合わせて使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。
[0063]
 本発明の非水電解質電池用電極を正極又は負極のいずれかに使用する場合、非水電解質電池用電極を使用しない方の電極には、慣用の電極を用いることができる。
[0064]
 本発明の好ましい実施態様において、非水電解質電池は、本発明の非水電解質電池用電極を正極として使用し、慣用の電極を負極として使用する。負極は、非水電解質電池に通常使用される負極が特に制限なく使用される。例えば、上記負極活物質と、上記導電助剤とSBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを含む負極スラリーを、例えば、リチウム、アルミニウム等の負極集電体に塗布して溶媒を乾燥させて負極とすることができる。
[0065]
 非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型などいずれであってもよい。
[0066]
 本発明の非水電解質電池は、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。また、柔軟性が求められる機器の電池、例えば巻回型乾電池、ラミネート型電池にも好適に用いることができる。
実施例
[0067]
 以下に、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の%は特に断らない限り質量に関するものである。まず、測定方法及び評価方法を以下に示す。
[0068]
<ポリビニルアセタール系樹脂の分析>
 実施例及び比較例で使用したポリビニルアセタール系樹脂の重合度、けん化度、アセタール化度、アセチル基量、水酸基量及び粘度を以下に示す方法に従って測定した。
[0069]
(a)重合度及びけん化度
 JIS-K6726に従って、ポリビニルアルコール(ポリビニルアセタール系樹脂をアセタール化する前の樹脂)の重合度及びけん化度を測定し、ポリビニルアセタール系樹脂の重合度及びけん化度とした。
[0070]
(b)アセタール化度
 ポリビニルアセタール系樹脂を、N-メチルピロリドン(NMP)とジメチルスルホキシド-d6(DMSO-d6)との混合溶液(アセチルN-メチルピロリドン:DMSO-d6=9:1)に溶解してこれにクロムアセチルアセテートを添加し、測定機器として、超伝導核磁気共鳴装置(「Lambda 500」、日本電子製)を用いて、共鳴周波数13C 125MHz及び温度80℃の条件下で測定した。ビニルアセタール単位のアルデヒドの炭素に結合するメチレンカーボン(95ppm、103ppm)に由来するピーク強度と、ビニルアセタール単位、ビニルエステル単位、ビニルアセタール単位の主鎖中のメチレンカーボン(62~75ppm)に由来するピーク強度からアセタール化度を求めた。
[0071]
(c)アセチル基量
 ポリビニルアセタール系樹脂を、N-メチルピロリドン(NMP)とジメチルスルホキシド-d6(DMSO-d6)との混合溶液(アセチルN-メチルピロリドン:DMSO-d6=9:1)に溶解してこれにクロムアセチルアセテートを添加し、測定機器として超伝導核磁気共鳴装置(「Lambda 500」、日本電子製)を用いて、共鳴周波数13C 125MHz及び温度80℃の条件下で測定した。ビニルアセタール単位に結合するビニルエステル(170ppm)に由来するピーク強度と、ビニルアセタール単位、ビニルエステル単位、ビニルアセタール単位の主鎖中のメチレンカーボン(62~75ppm)に由来するピーク強度からアセチル基量を求めた。
[0072]
(d)水酸基量
 上記で算出したアセタール化度とアセチル基量から水酸基量を算出した。
[0073]
(e)粘度
 ポリビニルアセタール系樹脂を、固形分濃度7.5質量%となるようにNMPに溶解したのち、E型粘度計(ブルックフィールド社製)を用いて25℃、せん断速度100/sにおける粘度を測定した。
[0074]
<バインダーの分析>
(f)電解液への膨潤度
 離形処理されたポリエチレンテレフタレートフィルム上に実施例及び比較例で調製したポリビニルアセタール溶液を塗工、乾燥することで、厚み100μmの樹脂シートを作製した。この樹脂シートを2cm角切り出し、DEC(ジエチルカーボネート)溶液に室温で24時間浸漬させ、浸漬前後の重量変化率を膨潤度とした。
[0075]
(g)NMP溶液の状態での粘度
 バインダーを固形分濃度7.5質量%で含むNMP溶液を測定試料とし、E型粘度計(ブルックフィールド社製)を用いて、25℃、せん断速度100/sにおける粘度を測定した。なお、後述する実施例及び比較例においては、バインダー溶液が、バインダーを固形分濃度7.5質量%で含むNMP溶液であるため、バインダー溶液を測定試料とした。粘度の測定結果を表1に示した。
[0076]
<電極の剥離強度測定>
 実施例及び比較例のリチウム二次電池用電極について、集電体であるアルミニウム箔から硬化体(スラリー組成物に由来する部分を示す)を剥離したときの強度を測定した。具体的には、実施例及び比較例で得られたリチウム二次電池用電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、50Nのロードセル(株式会社イマダ製)を用いて、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。剥離強度の測定結果を表1に示した。
[0077]
<実施例1>
(ポリビニルアセタール系樹脂の調製)
 還流冷却管、温度計を備え付けた三つ口フラスコに、アセトン150g、水100g、1-ブタナール10gを加え、マグネティックスターラーで撹拌しながらポリビニルアルコール(けん化度99モル%、平均重合度1700)50gを1分間かけて添加した。水50gと47質量%硫酸21.2gの混合溶液を滴下漏斗から5分間かけて滴下し、30℃に昇温して5時間反応を行った。1モル/L水酸化ナトリウム水溶液をpHが8になるまで加えた後、ろ過により固形物を取り出した。アセトンと水の質量比1:1の混合溶媒で前記固形物の洗浄を5回行った後、120℃、圧力0.005MPaで6時間乾燥させることで、水酸基量74のポリビニルアセタール系樹脂を得た。
[0078]
(クエン酸縮合物の調製)
 市販のクエン酸(富士フイルム和光純薬製)粉末を容器に入れ、200℃で加熱した。溶融後、脱水縮合が進行した。3時間後に固化して撹拌できなくなったところで加熱を停止し、その後、室温まで冷却した。
[0079]
(バインダー溶液の調製)
 ポリビニルアセタール系樹脂と添加物の合計100質量部に対して、添加物としてクエン酸縮合物を3質量部及びNMPを加えて加熱混合し、ポリビニルアセタール系樹脂と多価塩基酸縮合物とを含有するリチウム二次電池電極用バインダー溶液(固形分濃度:約7.5質量%)を得た(この溶液中の固形分、すなわち溶媒以外の成分の組成物をリチウム二次電池電極用バインダーとして用いた。)。
[0080]
(リチウム二次電池電極用スラリー組成物の調製)
 正極活物質NCM(日本化学工業社製、「セルシードC-5H」)100質量部に対し、2.1質量部の導電助剤としてのアセチレンブラック(電気化学工業社製、「デンカブラック」)、固形分が3.16質量部となる量の電極用バインダー溶液を加えて混合し、リチウム二次電池電極用スラリー組成物を得た。
[0081]
(リチウム二次電池用電極の作製)
 上記リチウム二次電池電極用スラリー組成物を、バーコーター(「T101」、松尾産業製)を用いて集電体のアルミニウム箔(「1N30-H」、富士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、リチウム二次電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によって、リチウム二次電池用電極を作製した。かかるリチウム二次電池用電極において、活物質及び導電助剤と混合された状態で存在し得る、バインダーとして作用するポリビニルアセタール系樹脂及び多価塩基酸縮合物を含む組成物が、本実施例におけるバインダーである。
[0082]
(リチウム二次電池の作製)
 上記リチウム二次電池用電極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。該リチウム二次電池用電極は正極として用いた。負極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロフィレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF )のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF 、EC/EMC=3/7体積%、VC2質量%)を用いて注入し、コイン型のリチウム二次電池(2032タイプ)を作製した。
[0083]
(充放電特性試験)
 作製したコイン電池について、市販充放電試験機(TOSCAT3100、東洋システム製)を用いてレート試験を実施した。初期充電前に0.1mAの電流を3秒流したときの抵抗値を直流抵抗とした。充電では、0.2C(約1mA/cm )の定電流充電を行い、さらにリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を行った。放電では、リチウム電位に対して0.2C(約0.5mA/cm )の定電流放電を1.5Vまで行った。コイン電池を25℃の恒温槽に置き、上述の条件で、初期充放電を3サイクル実施した後、放電のレートを2Cに変更し1サイクル充放電を行った。このときの0.2Cの放電容量に対する2Cの放電容量の比を放電容量維持率とした。上記結果を下記表1に示す。
[0084]
<実施例2>
 バインダー溶液の調製を、ポリビニルアセタール系樹脂と添加物の合計100質量部に対して、添加物としてクエン酸縮合物を5質量部としたこと以外は、実施例1と同様にして、リチウム二次電池電極用バインダー組成物、リチウム二次電池電極用スラリー組成物、リチウム二次電池用電極、及びリチウム二次電池を作製した。剥離強度及び放電容量維持率の測定結果を表1に示した。
[0085]
<実施例3>
 実施例1のポリビニルアセタール系樹脂の調製において、ポリビニルアルコールの平均重合度を2400に変更した以外は同様の操作を行い、より高重合度のポリビニルアセタール系樹脂を得た。得られたポリビニルアセタール系樹脂及びNMPを加熱混合し、ポリビニルアセタール系樹脂を含有するリチウム二次電池電極用バインダー溶液(固形分濃度:約7.5質量%)を得た(この溶液中の固形分、すなわち溶媒以外の成分の組成物をリチウム二次電池電極用バインダーとして用いた)。このようにして得たバインダー溶液を用いたこと以外は、実施例1と同様にして、リチウム二次電池電極用バインダー組成物、リチウム二次電池電極用スラリー組成物、リチウム二次電池用電極、及びリチウム二次電池を作製した。剥離強度及び放電容量維持率の測定結果を表1に示した。
[0086]
<比較例1>
 添加物を添加しなかったこと以外は、実施例1と同様にして、リチウム二次電池電極用バインダー、リチウム二次電池電極用スラリー組成物、リチウム二次電池用電極、及びリチウム二次電池を作製した。剥離強度及び放電容量維持率の測定結果を表1に示した。
[0087]
<比較例2>
 バインダー溶液の調製を、ポリビニルアセタール系樹脂と添加物の合計100質量部に対して、添加物としてクエン酸縮合物10質量部としたこと以外は、実施例1と同様にして、リチウム二次電池電極用バインダー組成物、リチウム二次電池電極用スラリー組成物、リチウム二次電池用電極、及びリチウム二次電池を作製した。剥離強度及び放電容量維持率の測定結果を表1に示した。
[0088]
<比較例3>
 バインダー溶液の調製を、ポリビニルアセタール系樹脂と添加物の合計100質量部に対して、添加物としてクエン酸10質量部としたこと以外は、実施例1と同様にして、リチウム二次電池電極用バインダー組成物、リチウム二次電池電極用スラリー組成物、リチウム二次電池用電極、及びリチウム二次電池を作製した。剥離強度及び放電容量維持率の測定結果を表1に示した。
[0089]
[表1]


請求の範囲

[請求項1]
 固形分濃度7.5質量%のN-メチルピロリドン溶液の状態での粘度が、25℃、せん断速度100s -1において、480~1500cPである、ポリビニルアセタール系樹脂を含有する非水電解質電池電極用バインダー。
[請求項2]
 ポリビニルアセタール系樹脂の水酸基量は62~90モル%である、請求項1に記載の非水電解質電池電極用バインダー。
[請求項3]
 多価塩基酸縮合物及び/又はその塩をさらに含む、請求項1又は2に記載の非水電解質電池電極用バインダー。
[請求項4]
 多価塩基酸縮合物及び/又はその塩の含有量は、非水電解質電池電極用バインダーの総量に基づいて0.1~8質量%である、請求項3に記載の非水電解質電池電極用バインダー。
[請求項5]
 多価塩基酸縮合物はクエン酸縮合物である、請求項3又は4に記載の非水電解質電池電極用バインダー。
[請求項6]
 請求項1~5のいずれかに記載の非水電解質電池電極用バインダーと、少なくとも1種の溶媒とを含む、非水電解質電池電極用バインダー溶液。
[請求項7]
 請求項1~5のいずれかに記載の非水電解質電池電極用バインダー、又は、請求項6に記載の非水電解質電池電極用バインダー溶液と、活物質とを含む、非水電解質電池電極用スラリー組成物。
[請求項8]
 ポリビニルアセタール系樹脂の含有量は、活物質100質量部に対して、0.1~20質量部である、請求項7に記載の非水電解質電池電極用スラリー組成物。
[請求項9]
 請求項7又は8に記載の非水電解質電池電極用スラリー組成物の硬化体と、集電体とを含む、非水電解質電池用電極。
[請求項10]
 請求項9に記載の非水電解質電池用電極を含む、非水電解質電池。