このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2019065940) プリプレグ、金属張積層板、及び配線板
Document

明 細 書

発明の名称 プリプレグ、金属張積層板、及び配線板

技術分野

0001  

背景技術

0002   0003   0004   0005   0006   0007  

先行技術文献

特許文献

0008  

発明の概要

0009   0010   0011  

図面の簡単な説明

0012  

発明を実施するための形態

0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146  

実施例

0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179  

産業上の利用可能性

0180  

請求の範囲

1   2   3   4   5   6   7  

図面

1   2   3   4  

明 細 書

発明の名称 : プリプレグ、金属張積層板、及び配線板

技術分野

[0001]
 本発明は、プリプレグ、金属張積層板、及び配線板に関する。

背景技術

[0002]
 各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが求められる。各種電子機器において用いられる配線板の基材を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。
[0003]
 ポリフェニレンエーテルは、誘電率や誘電正接等の低誘電特性に優れ、MHz帯からGHz帯という高周波数帯(高周波領域)においても誘電率や誘電正接等の低誘電特性が優れていることが知られている。このため、ポリフェニレンエーテルは、例えば、高周波用成形材料として用いられることが検討されている。より具体的には、高周波数帯を利用する電子機器に備えられる配線板の基材を構成するための基板材料等に好ましく用いられる。
[0004]
 一方、基板材料等の成形材料として利用する際には、低誘電特性に優れるだけではなく、耐熱性等に優れていることも求められている。このことから、ポリフェニレンエーテルを変性させて、耐熱性を高めることが考えられる。
[0005]
 このような基板材料としては、例えば、変性させたポリフェニレンエーテルを含有する樹脂組成物を用いたプリプレグ及び積層板等が挙げられる。特許文献1には、ポリフェニレンエーテル部分を分子構造内に有し、この分子末端にエテニルベンジル基等を有し、且つ数平均分子量が1000~7000であるポリフェニレンエーテルと、架橋型硬化剤とを含むポリフェニレンエーテル樹脂組成物を用いたプリプレグ及び積層板が記載されている。
[0006]
 特許文献1によれば、誘電特性を低下させることなく、耐熱性や成形性等の高い積層板を得ることができる旨が開示されている。このように、配線板に備えられる絶縁層を製造するための基板材料として、誘電率及び誘電正接を低減させた材料を用いると、得られた配線板における信号伝送時の損失を低減させることができると考えられる。
[0007]
 一方で、ガラスクロスを備えるプリプレグを用いて得られた配線板では、信号品質を低下させるスキュー(Skew)と呼ばれる歪みが発生することが知られている。特に、高周波数帯を利用する電子機器に備えられる配線板では、スキューによる信号品質の低下がより顕著になることが知られている。これは、ガラスクロスを備えるプリプレグを用いて得られた金属張積層板及び配線板では、ガラスクロスを構成するヤーンが存在する部分と存在しない部分とで、誘電率に差が発生することによると考えられる。

先行技術文献

特許文献

[0008]
特許文献1 : 特表2006-516297号公報

発明の概要

[0009]
 本発明は、かかる事情に鑑みてなされたものであって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板を提供することを目的とする。また、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を提供することを目的とする。
[0010]
 本発明の一局面は、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋型硬化剤とを含有し、前記変性ポリフェニレンエーテル化合物の含有率は、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤の合計質量に対して、40~90質量%であり、前記樹脂組成物の比誘電率は、2.6~3.8であり、前記繊維質基材が、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスであり、前記プリプレグの比誘電率が、2.7~3.8であり、前記プリプレグの誘電正接が、0.002以下であるプリプレグである。
[0011]
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載から明らかになるであろう。

図面の簡単な説明

[0012]
[図1] 図1は、本発明の実施形態に係るプリプレグの一例を示す概略断面図である。
[図2] 図2は、本発明の実施形態に係る金属張積層板の一例を示す概略断面図である。
[図3] 図3は、本発明の実施形態に係る配線板の一例を示す概略断面図である。
[図4] 図4は、実施例におけるドリル磨耗率を測定する際のドリル加工を説明するための概略図である。

発明を実施するための形態

[0013]
 スキューの発生は、ガラスクロスを備えるプリプレグを用いて得られた金属張積層板及び配線板では、ガラスクロスが存在する部分と存在しない部分とで、誘電率に差が発生することによると考えられ、本発明者等は、このことに着目した。そして、本発明者等は、従来から、ガラスクロス由来のスキューによる信号品質の低下を抑制するために、ガラスクロスにおけるヤーンの開繊をして粗密を小さくする等、ガラスクロスの編み方を検討したり、ガラスクロスを用いないことを検討しているが、プリプレグを構成する繊維質基材の素材自体についての検討はあまりされてこなかったことに着目した。本発明者等は、繊維質基材の素材について検討したところ、誘電率の比較的高いガラスクロスを繊維質基材として用いると、プリプレグの硬化物の誘電率を低くするためには、プリプレグを構成する樹脂組成物として、その硬化物の誘電率が低いものを用いることになる。このことから、ヤーンが存在する部分と存在しない部分とで、誘電率に差が発生してしまい、スキューによる信号品質の低下を抑制することが困難であることを見出した。そこで、本発明者等は、SiO の含有率が比較的高い石英ガラスクロス等が比較的低い誘電率を有することに着目し、繊維質基材として、この石英ガラスクロスのような、誘電率の比較的低いガラスクロスを用い、それに応じた樹脂組成物及びプリプレグの構成等を詳細に検討した結果、以下の本発明により、上記目的は達成されることを見出した。
[0014]
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
[0015]
 <プリプレグ>
 本発明の一実施形態に係るプリプレグは、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備える。このプリプレグ1は、図1に示すように、樹脂組成物又は前記樹脂組成物の半硬化物2と、樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備えるもの等が挙げられる。
[0016]
 なお、本実施形態において、半硬化物とは、樹脂組成物をさらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、溶融に伴い、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が徐々に低下し始めてから、完全に硬化する前までの間の状態等が挙げられる。
[0017]
 本実施形態に係るプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、本実施形態に係るプリプレグとしては、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。
[0018]
 本実施形態に係るプリプレグにおける樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋型硬化剤とを含有し、前記変性ポリフェニレンエーテル化合物の含有率は、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤の合計質量に対して、40~90質量%である。また、前記樹脂組成物は、硬化物の比誘電率が2.6~3.8である。また、前記プリプレグにおける繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである。前記プリプレグは、その硬化物の、比誘電率が2.7~3.8であり、誘電正接が0.002以下である。
[0019]
 上記のようなプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。まず、プリプレグを構成する繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを用いることによって、得られたプリプレグは、その硬化物の低誘電特性に優れたものになると考えられる。しかしながら、繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを単に用いただけでは、その硬化物の低誘電特性が充分には高くならなかったり、硬化物の耐熱性が充分に高いものにならない場合があった。そこで、前記プリプレグは、繊維質基材として、上記のような、比較的低い比誘電率を有するガラスクロスを単に用いるだけではなく、プリプレグを構成する樹脂組成物として、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤とを所定比となるように含有する樹脂組成物を用いる。さらに、前記プリプレグは、前記樹脂組成物の硬化物の比誘電率、前記プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、前記樹脂組成物の組成やガラスクロスの状態等を調整する。そうすることによって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグが得られる。
[0020]
 [樹脂組成物]
 本実施形態で用いる樹脂組成物は、前記変性ポリフェニレンエーテル化合物と、前記架橋型硬化剤とを含有する。
[0021]
 (変性ポリフェニレンエーテル化合物)
 前記変性ポリフェニレンエーテル化合物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物であれば、特に限定されない。前記変性ポリフェニレンエーテル化合物としては、例えば、ポリフェニレンエーテル鎖を分子中に有し、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物等が挙げられる。
[0022]
 前記変性ポリフェニレンエーテル化合物としては、具体的には、下記式(1)又は式(2)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
[0023]
[化1]


[0024]
 式(1)中、m及びnは、例えば、mとnとの合計値が、1~30となるものであることが好ましい。また、mが、0~20であることが好ましく、nが、0~20であることが好ましい。すなわち、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことが好ましい。また、Xは、炭素-炭素不飽和二重結合を有する置換基を示す。また、R ~R は、それぞれ独立している。すなわち、R ~R は、それぞれ同一の基であっても、異なる基であってもよい。また、R ~R は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。R ~R は、この中でも、水素原子、又はアルキル基が好ましい。
[0025]
 前記式(1)で表される変性ポリフェニレンエーテル化合物としては、例えば、R ~R のうち、R 、R 、R 、及びR がメチル基であり、それ以外が水素原子である変性ポリフェニレンエーテル化合物や、R ~R のうち、R 、R 、R 、R 、R 、及びR がメチル基であり、それ以外が水素原子である変性ポリフェニレンエーテル化合物等が挙げられる。
[0026]
 R ~R において、挙げられた各基としては、具体的には、以下のようなものが挙げられる。
[0027]
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
[0028]
 アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
[0029]
 アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
[0030]
 アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
[0031]
 アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
[0032]
 アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
[0033]
[化2]


[0034]
 式(2)中、m及びnは、式(1)のm及びnと同様である。また、式(2)中、R ~R 16は、前記式(1)のR ~R と同様である。また、Xは、前記式(1)のXと同様である。また、Yは、直鎖状、分岐状、又は環状の炭化水素基を示す。また、Yとしては、例えば、下記式(3)で表される基を示す。
[0035]
 前記式(2)で表される変性ポリフェニレンエーテル化合物としては、例えば、R ~R 16のうち、R 、R 10、R 15、及びR 16がメチル基であり、それ以外が水素原子である変性ポリフェニレンエーテル化合物や、R ~R 16のうち、R 、R 10、R 11、R 14、R 15、及びR 16がメチル基であり、それ以外が水素原子である変性ポリフェニレンエーテル化合物等が挙げられる。
[0036]
[化3]


[0037]
 式(3)中、R 17及びR 18は、それぞれ独立して、水素原子又はアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(3)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられる。
[0038]
 前記式(1)及び前記式(2)におけるXは、上述したように、炭素-炭素不飽和二重結合を有する置換基である。前記炭素-炭素不飽和二重結合を有する置換基としては、特に限定されない。前記置換基としては、例えば、下記式(4)で表される置換基等が挙げられる。
[0039]
[化4]


[0040]
 式(4)中、sは、0~10を示す。また、Zは、アリーレン基を示す。また、R 19~R 21は、それぞれ独立している。すなわち、R 19~R 21は、それぞれ同一の基であっても、異なる基であってもよい。また、R 19~R 21は、水素原子又はアルキル基を示す。
[0041]
 なお、式(4)において、sが0である場合は、Zがポリフェニレンエーテルの末端に直接結合しているものを示す。
[0042]
 このアリーレン基は、特に限定されない。具体的には、フェニレン基等の単環芳香族基や、芳香族が単環ではなく、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子がアルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。また、前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
[0043]
 前記置換基としては、より具体的には、p-エテニルベンジル基やm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。
[0044]
 上記式(4)に示す置換基の好ましい具体例としては、ビニルベンジル基を含む官能基が挙げられる。具体的には、下記式(5)又は式(6)から選択される少なくとも1つの置換基等が挙げられる。
[0045]
[化5]


[0046]
[化6]


[0047]
 前記炭素-炭素不飽和二重結合を有する置換基としては、上記(4)で表される置換基以外にも、下記式(7)で表される置換基等が挙げられる。また、この置換基としては、具体的には、アクリレート基及びメタクリレート基等が挙げられる。
[0048]
[化7]


[0049]
 式(7)中、R 22は、水素原子またはアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
[0050]
 前記変性ポリフェニレンエーテル化合物におけるポリフェニレンエーテル鎖としては、上記式(1)及び(2)で表される変性ポリフェニレンエーテル化合物に含まれる繰り返し単位以外にも、下記式(8)で表される繰り返し単位等が挙げられる。
[0051]
[化8]


[0052]
 式(8)中、pは、1~50を示し、式(1)又は式(2)のmとnとの合計値に相当し、1~30であることが好ましい。また、R 23~R 26は、それぞれ独立している。すなわち、R 23~R 26は、それぞれ同一の基であっても、異なる基であってもよい。また、R 23~R 26は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。また、R 23~R 26において、挙げられた各基としては、具体的には、R ~R において、挙げられた各基と同様である。
[0053]
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
[0054]
 前記変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、前記変性ポリフェニレンエーテル化合物は、末端に不飽和二重結合を有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このような変性ポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
[0055]
 本実施形態において用いられる変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテル化合物を用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高い配線板が得られにくいという成形性の問題が生じるおそれがあった。
[0056]
 なお、変性ポリフェニレンエーテル化合物の末端官能基数は、変性ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
[0057]
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであることが好ましく、0.04~0.11dl/gであることがより好ましく、0.06~0.095dl/gであることがさらに好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
[0058]
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
[0059]
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の合成方法は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を合成できれば、特に限定されない。具体的には、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
[0060]
 炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とは、前記式(4)~(7)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、具体的には、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
[0061]
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテル化合物を合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
[0062]
 変性ポリフェニレンエーテル化合物の合成方法は、上述した方法が挙げられる。具体的には、上記のようなポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とが反応し、本実施形態で用いられる変性ポリフェニレンエーテル化合物が得られる。
[0063]
 前記反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、炭素-炭素不飽和二重結合を有する置換基が、フェノール基の酸素原子に結合すると考えられる。
[0064]
 アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
[0065]
 反応時間や反応温度等の反応条件は、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
[0066]
 反応時に用いる溶媒は、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶解させることができ、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
[0067]
 上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
[0068]
 相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
[0069]
 本実施形態で用いられる樹脂組成物には、変性ポリフェニレンエーテル化合物として、上記のようにして得られた変性ポリフェニレンエーテル化合物を含むことが好ましい。
[0070]
 (架橋型硬化剤)
 本実施形態で用いられる架橋型硬化剤は、炭素-炭素不飽和二重結合を分子中に有するものであれば、特に限定されない。すなわち、前記架橋型硬化剤は、前記変性ポリフェニレンエーテル化合物と反応させることによって、前記樹脂組成物内に架橋を形成させて、前記樹脂組成物を硬化させることができるものであればよい。前記架橋型硬化剤は、炭素-炭素不飽和二重結合を分子中に2個以上有する化合物が好ましい。
[0071]
 本実施形態において用いられる架橋型硬化剤は、重量平均分子量が100~5000であることが好ましく、100~4000であることがより好ましく、100~3000であることがさらに好ましい。架橋型硬化剤の重量平均分子量が低すぎると、架橋型硬化剤が樹脂組成物の配合成分系から揮発しやすくなるおそれがある。また、架橋型硬化剤の重量平均分子量が高すぎると、樹脂組成物のワニスの粘度や、加熱成形時の溶融粘度が高くなりすぎるおそれがある。よって、架橋型硬化剤の重量平均分子量がこのような範囲内であると、硬化物の耐熱性により優れた樹脂組成物が得られる。このことは、変性ポリフェニレンエーテル化合物との反応により、架橋を好適に形成することができるためと考えられる。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
[0072]
 本実施形態において用いられる架橋型硬化剤は、架橋型硬化剤1分子当たりの、炭素-炭素不飽和二重結合の平均個数(末端二重結合数)は、架橋型硬化剤の重量平均分子量によって異なるが、例えば、1~20個であることが好ましく、2~18個であることがより好ましい。この末端二重結合数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端二重結合数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。
[0073]
 架橋型硬化剤の末端二重結合数としては、架橋型硬化剤の重量平均分子量をより考慮すると、架橋型硬化剤の重量平均分子量が500未満(例えば、100以上500未満)の場合、1~4個であることが好ましい。また、架橋型硬化剤の末端二重結合数としては、架橋型硬化剤の重量平均分子量が500以上(例えば、500以上5000以下)の場合、3~20個であることが好ましい。それぞれの場合で、末端二重結合数が、上記範囲の下限値より少ないと、架橋型硬化剤の反応性が低下して、樹脂組成物の硬化物の架橋密度が低下し、耐熱性やTgを充分に向上させることができなくなるおそれがある。一方、末端二重結合数が、上記範囲の上限値より多いと、樹脂組成物がゲル化しやすくなるおそれがある。
[0074]
 なお、ここでの末端二重結合数は、使用する架橋型硬化剤の製品の規格値からわかる。ここでの末端二重結合数としては、具体的には、例えば、架橋型硬化剤1モル中に存在する全ての架橋型硬化剤の1分子あたりの二重結合数の平均値を表した数値等が挙げられる。
[0075]
 本実施形態において用いられる架橋型硬化剤は、具体的には、スチレン、ジビニルベンゼン、アクリレート化合物、メタクリレート化合物、トリアルケニルイソシアヌレート化合物、ポリブタジエン化合物、及びマレイミド化合物等が挙げられる。前記アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等の、分子中にアクリル基を2個以上有する多官能メタクリレート化合物等が挙げられる。前記メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート(DCP)等の、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物等が挙げられる。前記トリアルケニルイソシアヌレート化合物としては、例えば、トリアリルイソシアヌレート(TAIC)等が挙げられる。また、前記架橋型硬化剤としては、上記ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及び分子中にビニルベンジル基を有するスチレン、ジビニルベンゼン等のビニルベンジル化合物等も挙げられる。この中でも、炭素-炭素二重結合を分子中に2個以上有するものが好ましい。具体的には、トリアルケニルイソシアヌレート化合物、多官能アクリレート化合物、多官能メタクリレート化合物、多官能ビニル化合物、及びジビニルベンゼン化合物等が挙げられる。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、本実施形態で用いられる樹脂組成物の硬化物の耐熱性をより高めることができる。また、架橋型硬化剤は、例示した架橋型硬化剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、架橋型硬化剤としては、炭素-炭素不飽和二重結合を分子中に2個以上有する化合物と、炭素-炭素不飽和二重結合を分子中に1個有する化合物とを併用してもよい。炭素-炭素不飽和二重結合を分子中に1個有する化合物としては、具体的には、分子中にビニル基を1個有する化合物(モノビニル化合物)等が挙げられる。
[0076]
 (含有量)
 前記変性ポリフェニレンエーテル化合物の含有量は、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計100質量部に対して、40~90質量部であり、50~90質量部であることが好ましい。すなわち、前記変性ポリフェニレンエーテル化合物は、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計質量に対して、40~90質量%である。また、前記架橋型硬化剤の含有量が、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計100質量部に対して、10~60質量部であり、10~50質量部であることが好ましい。すなわち、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との含有比が、質量比で90:10~40:60であり、90:10~50:50であることが好ましい。前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤の各含有量が、上記比を満たすような含有量であれば、硬化物の耐熱性により優れた樹脂組成物になる。このことは、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との硬化反応が好適に進行するためと考えられる。
[0077]
 (その他の成分)
 本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤以外の成分(その他の成分)を含有してもよい。本実施の形態に係る樹脂組成物に含有されるその他の成分としては、例えば、シランカップリング剤、難燃剤、開始剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、及び無機充填材等の添加剤をさらに含んでもよい。また、前記樹脂組成物には、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤以外にも、エポキシ樹脂等の熱硬化性樹脂を含有してもよい。
[0078]
 本実施形態に係る樹脂組成物は、上述したように、シランカップリング剤を含有してもよい。シランカップリング剤は、樹脂組成物に含有されるだけではなく、樹脂組成物に含有されている無機充填材に予め表面処理されたシランカップリング剤として含有していてもよいし、繊維質基材に予め表面処理されたシランカップリング剤として含有していてもよい。シランカップリング剤については、後述する。
[0079]
 本実施形態に係る樹脂組成物は、上述したように、難燃剤を含有してもよい。難燃剤を含有することによって、樹脂組成物の硬化物の難燃性を高めることができる。前記難燃剤は、特に限定されない。具体的には、臭素系難燃剤等のハロゲン系難燃剤を使用する分野では、例えば、融点が300℃以上のエチレンジペンタブロモベンゼン、エチレンビステトラブロモイミド、デカブロモジフェニルオキサイド、及びテトラデカブロモジフェノキシベンゼンが好ましい。ハロゲン系難燃剤を使用することにより、高温時におけるハロゲンの脱離が抑制でき、耐熱性の低下を抑制できると考えられる。また、ハロゲンフリーが要求される分野では、リン酸エステル系難燃剤、ホスファゼン系難燃剤、ビスジフェニルホスフィンオキサイド系難燃剤、及びホスフィン酸塩系難燃剤が挙げられる。リン酸エステル系難燃剤の具体例としては、ジキシレニルホスフェートの縮合リン酸エステルが挙げられる。ホスファゼン系難燃剤の具体例としては、フェノキシホスファゼンが挙げられる。ビスジフェニルホスフィンオキサイド系難燃剤の具体例としては、キシリレンビスジフェニルホスフィンオキサイドが挙げられる。ホスフィン酸塩系難燃剤の具体例としては、例えば、ジアルキルホスフィン酸アルミニウム塩のホスフィン酸金属塩が挙げられる。前記難燃剤としては、例示した各難燃剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[0080]
 本実施形態に係る樹脂組成物には、上述したように、開始剤(反応開始剤)を含有してもよい。ポリフェニレンエーテル樹脂組成物は、変性ポリフェニレンエーテル化合物と架橋型硬化剤とからなるものであっても、硬化反応は進行し得る。また、変性ポリフェニレンエーテルのみであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。反応開始剤は、変性ポリフェニレンエーテルと架橋型硬化剤との硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン,過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等の酸化剤が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させるができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、ポリフェニレンエーテル樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグ乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[0081]
 前記開始剤の含有量としては、特に限定されないが、例えば、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計質量100質量部に対して、0.1~1.8であることが好ましく、0.1~1.5質量部であることがより好ましく、0.3~1.5質量部であることがさらに好ましい。前記開始剤の含有量が少なすぎると、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との硬化反応が好適に開始しない傾向がある。また、前記開始剤の含有量が多すぎると、得られたプリプレグの硬化物の誘電正接が大きくなり、優れた低誘電特性を発揮しにくくなる傾向がある。よって、前記開始剤の含有量が上記範囲内であれば、優れた低誘電特性を有するプリプレグの硬化物が得られる。
[0082]
 本実施形態に係る樹脂組成物には、上述したように、無機充填材等の充填材を含有してもよい。充填材としては、樹脂組成物の硬化物の、耐熱性及び難燃性を高めるために添加するもの等が挙げられ、特に限定されない。また、充填材を含有させることによって、耐熱性及び難燃性等をさらに高めることができる。充填材としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。また、充填材としては、この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、充填材としては、そのまま用いてもよいし、シランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、及びアクリル基等の官能基を分子中に有するシランカップリング剤が挙げられる。
[0083]
 前記無機充填材の含有量は、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計質量100質量部に対して、30~280質量部であることが好ましく、50~280質量部であることがより好ましく、50~250質量部であることがさらに好ましい。前記無機充填材の含有量が少なすぎると、無機充填材が奏する効果が不充分になり、例えば、耐熱性及び難燃性等を充分に高められない傾向がある。前記無機充填材の含有量が多すぎると、樹脂組成物の硬化物及びプリプレグの硬化物の誘電率が高くなり、優れた低誘電特性を発揮しにくくなる傾向がある。よって、前記無機充填材の含有量が上記範囲内であれば、優れた低誘電特性を有するプリプレグの硬化物が得られる。
[0084]
 前記充填材としては、上記のように、特に限定されないが、表面の少なくとも一部にモリブデン化合物が存在する無機充填材(第1の無機充填材)を含有していることが好ましく、この第1の無機充填材と、前記第1の無機充填材以外の第2の無機充填材とを組み合わせて含有していることがより好ましい。
[0085]
 前記第1の無機充填材を含有させることによって、プリプレグを硬化して得られる基板の加工性が高まり、例えば、ドリル加工に用いたドリルの磨耗を抑制できる。前記プリプレグは、前記繊維質基材として、上述したように、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスを備える。このような、比較的低い比誘電率を有するガラスクロスは、硬いSiO の含有率が比較的高く、脆くなる傾向がある。このことから、比較的低い比誘電率を有するガラスクロスを備えるプリプレグから得られた金属張積層板及び配線板の絶縁層は、脆くなる傾向がある。このような傾向があっても、前記第1の無機充填材を含有させることによって、ドリル加工性等の加工性に優れた金属張積層板及び配線板が得られる。
[0086]
 前記第1の無機充填材は、表面の少なくとも一部にモリブデン化合物が存在する無機充填材であれば、特に限定されない。モリブデン化合物は、無機充填材として使用できることが知られているが、前記第1の無機充填材は、モリブデン化合物そのものではなく、モリブデン化合物以外の無機物の表面の一部又は全部にモリブデン化合物が存在する無機充填材である。「表面に存在している」とは、モリブデン化合物以外の無機充填材(無機物)の表面の少なくとも一部にモリブデン化合物が担持された状態、及びモリブデン化合物以外の無機充填材(無機物)の表面の少なくとも一部にモリブデン化合物が被覆された状態等を指す。
[0087]
 前記モリブデン化合物としては、無機充填材として使用できるモリブデン化合物等が挙げられ、より具体的には、モリブデン酸亜鉛、モリブデン酸カルシウム、及びモリブデン酸マグネシウム等が挙げられる。前記モリブデン化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらのモリブデン化合物を用いることによって、前記第1の無機充填材を添加する効果、例えば、前記加工性を高める効果をより奏することができる。
[0088]
 前記第1の無機充填材における、モリブデン化合物を存在(担持)させる無機充填材(前記第1の無機充填材における前記モリブデン化合物の被担持体等)としては、モリブデン化合物以外の無機充填材であれば、特に限定されない。例えば、加工性、耐熱性、及び耐薬品性等の観点から、タルクが好ましく用いられる。
[0089]
 前記第2の無機充填材は、前記第1の無機充填材以外の無機充填材であれば、特に限定されず、例えば、球状シリカ、酸化ケイ素粉、及び破砕シリカ等のシリカ、硫酸バリウム、焼成タルク等のタルク、チタン酸バリウム、酸化チタン、クレー、アルミナ、マイカ、ベーマイト、ホウ酸亜鉛、スズ酸亜鉛、その他の金属酸化物や金属水和物等が挙げられる。前記第2の無機充填材は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの第2の無機充填材を用いることによって、積層板等の熱膨張を抑制でき、寸法安定性を高めることができると考えられる。さらに、シリカを用いることが、積層板の耐熱性を高め、誘電正接を低くすることができるという利点もあるため、好ましい。
[0090]
 前記充填材として、前記第1の無機充填材と、前記第2の無機充填材とを組み合わせて含有させる場合、前記第1の無機充填材の含有量は、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤との合計質量100質量部に対して、0.1~15質量部であることが好ましく、0.1~5質量部であることがより好ましい。また、前記第2の無機充填材の含有量は、前記合計量100質量部に対して、200質量部以下であることが好ましく、50~200質量部であることがより好ましい。
[0091]
 [樹脂組成物の誘電特性]
 前記樹脂組成物は、その硬化物の比誘電率が、2.6~3.8であることが好ましい。前記樹脂組成物の硬化物の比誘電率が、上記範囲内であると、低誘電特性に優れたプリプレグが得られる。樹脂組成物の硬化物の比誘電率が上記範囲内であると、低誘電特性に優れており、スキューの発生も抑制できる。前記樹脂組成物の硬化物の比誘電率が上記範囲内になるように、樹脂組成物の組成、例えば、無機充填材及び開始剤等の含有量等を調整することが好ましい。また、前記樹脂組成物は、その硬化物の誘電正接が、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることがさらに好ましい。なお、ここでの比誘電率及び誘電正接は、10GHzにおける樹脂組成物の硬化物の比誘電率及び誘電正接等が挙げられ、より具体的には、空洞共振器摂動法で測定した、10GHzにおける樹脂組成物の硬化物の比誘電率及び誘電正接等が挙げられる。
[0092]
 [樹脂ワニス]
 本実施形態で用いる樹脂組成物は、ワニス状に調製して用いてもよい。例えば、プリプレグを製造する際に、プリプレグを形成するための基材(繊維質基材)に含浸することを目的として、ワニス状に調製して用いてもよい。すなわち、樹脂組成物は、ワニス状に調製されたもの(樹脂ワニス)として用いてもよい。また、本実施形態で用いる樹脂組成物において、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤は、樹脂ワニス中に溶解されたものである。このようなワニス状の組成物(樹脂ワニス)は、例えば、以下のようにして調製される。
[0093]
 まず、有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の組成物が調製される。ここで用いられる有機溶媒としては、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤とを溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。
[0094]
 [繊維質基材]
 本実施形態で用いる繊維質基材は、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである。前記繊維質基材としては、例えば、石英ガラス(Qガラス)クロス、QLガラスクロス、及びL2ガラスクロス等が挙げられる。
[0095]
 前記繊維質基材は、配線板における伝送損失及びスキューを小さくするためには、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスであることが好ましく、伝送損失及びスキューをさらに小さくするためには、比誘電率が3.3超3.8以下であり、誘電正接が0.0017以下であるQガラスクロスであることが好ましい。また、前記繊維質基材は、伝送損失及びスキューを小さくし、ドリル加工性も高めるためには、比誘電率及び誘電正接が、下記L2ガラスクロス又はQLガラスクロスの範囲内(比誘電率が3.8超4.7以下であり、誘電正接が0.0015超0.0033以下)であるガラスクロスであることが好ましく、比誘電率が4.2超4.7以下であり、誘電正接が0.0015超0.0025以下であるL2ガラスクロスであることが好ましい。
[0096]
 石英ガラスクロスは、石英ガラスヤーンからなるガラスクロスであって、ガラスクロスを構成するガラスが、二酸化ケイ素(SiO )の含有率が99質量%以上の石英ガラス(Qガラス)である。石英ガラスクロスは、例えば、石英ガラス繊維を用いて製織することによって得られる。
[0097]
 L2ガラスクロスは、L2ガラスヤーンからなるガラスクロスであって、ガラスクロスを構成するガラスが、二酸化ケイ素(SiO )が50~60質量%程度と、B が10~25質量%と、CaOが15質量%以下と、P が3質量%以上とを含むL2ガラスである。L2ガラスクロスは、例えば、L2ガラス繊維を用いて製織することによって得られる。
[0098]
 QLガラスクロスは、前記QガラスとLガラスとで構成されるハイブリッド構成のガラスクロスである。なお、Lガラスとは、二酸化ケイ素(SiO )が50~60質量%程度と、B が10~25質量%と、CaOが15質量%以下とを含むガラスである。QLガラスクロスは、例えば、QガラスヤーンとLガラスヤーンを用いて製織することによって得られるガラスクロスであり、通常、経糸としてLガラスヤーンを用い、緯糸としてQガラスヤーンを用いて製織することによって得られるガラスクロスである。
[0099]
 上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は、以下の通りである。
[0100]
 Qガラスクロスは、Dkが3.3超3.8以下であり、Dfが0.0017以下である。
[0101]
 L2ガラスクロスは、Dkが4.2超4.7以下であり、Dfが0.0015超0.0025以下である。
[0102]
 QLガラスクロスは、Dkが3.8超4.3以下であり、Dfが0.0023超0.0033以下である。
[0103]
 Lガラスクロスは、Dkが4.2超4.7以下であり、Dfが0.0033超0.0043以下である。
[0104]
 なお、本実施形態における、上記各ガラスクロスの比誘電率(Dk)と誘電正接(Df)は、以下の測定方法で求めた値である。まず、プリプレグ100質量%あたりの樹脂含量が60質量%となるように基板(銅張積層板)を作製し、作製した銅張積層板から銅箔を除去して、比誘電率(Dk)及び誘電正接(Df)の評価のための試料を得る。得られた試料の周波数10GHzにおけるDk及びDfを、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用いて、空洞共振器摂動法で測定した。得られた試料(プリプレグの硬化物)のDk及びDfの値から、ガラスクロスの体積分率及び基板作製に用いた樹脂組成物から、その樹脂組成物の硬化物を空洞共振器摂動法で測定した、10GHzにおけるDk及びDfをもとに、ガラスクロスのDk及びDfを算出する。
[0105]
 本実施形態で用いる繊維質基材としては、そのまま用いてもよいし、シランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、及びアクリル基等の官能基を分子中に有するシランカップリング剤が挙げられる。
[0106]
 前記繊維質基材の形状としては、ガラスクロスを用いる。また、前記ガラスクロスは、開繊処理を施すことによって、通気度を調整したものがより好ましい。前記開繊処理としては、例えば、ガラスクロスに高圧水を吹き付けることで行う処理、及び、プレスロールにて適宜の圧力で連続的にヤーンを加圧して、偏平に圧縮することにより行う処理等が挙げられる。前記ガラスクロスの通気度は、200cm /cm /秒以下であることが好ましく、3~100cm /cm /秒であることがより好ましく、3~50cm /cm /秒であることがさらに好ましい。この通気度が大きすぎる場合、ガラスクロスの開繊が不充分な傾向がある。ガラスクロスの開繊が不充分であると、プリプレグ製造時にピンホールが発生したり、ヤーンの粗密が大きくなってスキューが発生しやすくなったり、ドリル等の加工時の均一性にむらが発生したりする。また、前記通気度が小さすぎる場合、それだけ強力な開繊処理が施されたということになり、ガラスクロスに毛羽立ち等の問題が発生する傾向がある。なお、前記通気度としては、JIS R 3420(2013)に準拠して、フラジール形通気性試験機で測定された通気度である。また、繊維質基材の厚みは、特に限定されないが、例えば、0.01~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.1mmであることがさらに好ましい。
[0107]
 [シランカップリング剤]
 前記プリプレグは、シランカップリング剤を含んでいてもよい。このシランカップリング剤としては、特に限定されないが、例えば、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤等が挙げられる。前記シランカップリング剤は、プリプレグに含有していれば、その添加方法には限定されない。前記シランカップリング剤の添加方法としては、例えば、前記樹脂組成物を製造する際に、前記シランカップリング剤で予め表面処理した無機充填材を添加することによって、前記シランカップリング剤を添加してもよいし、前記シリカ及び前記シランカップリング剤をインテグラルブレンド法で添加してもよい。また、前記プリプレグを製造する際に、前記シランカップリング剤で予め表面処理した繊維質基材を用いることで、前記シランカップリング剤を前記プリプレグに添加してもよい。この中でも、前記シランカップリング剤で予め表面処理した無機充填材を添加する方法や前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法が好ましい。すなわち、前記無機充填材としては、シランカップリング剤で予め表面処理された無機充填材が好ましく、前記繊維質基材としては、シランカップリング剤で予め表面処理された繊維質基材が好ましい。また、前記シランカップリング剤の添加方法としては、前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法がより好ましく、前記シランカップリング剤で予め表面処理した無機充填材を添加する方法と前記シランカップリング剤で予め表面処理した繊維質基材を用いる方法とを併用する方法がさらに好ましい。すなわち、前記無機充填材としては、シランカップリング剤で予め表面処理された無機充填材を用い、前記繊維質基材としては、シランカップリング剤で予め表面処理された繊維質基材を用いることが好ましい。
[0108]
 前記炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤であれば、特に限定されない。このシランカップリング剤としては、具体的には、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリル基、及びアクリル基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。
[0109]
 前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。
[0110]
 前記シランカップリング剤としては、スチリル基を有するものとして、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。
[0111]
 前記シランカップリング剤としては、メタクリル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。
[0112]
 前記シランカップリング剤としては、アクリル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。
[0113]
 前記シランカップリング剤は、上記の中でも、メタクリル基及びアクリル基の少なくとも一方を分子中に有するシランカップリング剤が好ましい。すなわち、前記シランカップリング剤は、メタクリル基を有するシランカップリング剤及びアクリル基を有するシランカップリング剤が好ましい。これらのシランカップリング剤を用いると、得られたプリプレグの耐熱性が高まり、例えば、吸湿条件が厳しい条件であっても充分に高い耐熱性を発揮することができる。
[0114]
 [プリプレグの誘電特性]
 前記プリプレグは、その硬化物の比誘電率が、2.7~3.8である。また、前記プリプレグは、その硬化物の誘電正接が、0.002以下である。前記プリプレグの硬化物の誘電正接は小さければ小さいほど好ましく、0であることが好ましい。このことから、前記プリプレグの硬化物の誘電正接は、0~0.002であることが好ましい。プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内であると、低誘電特性に優れている。プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、樹脂組成物の組成、例えば、無機充填材及び開始剤等の含有量等を調整することが好ましい。なお、ここでの比誘電率及び誘電正接は、10GHzにおけるプリプレグの硬化物の比誘電率及び誘電正接等が挙げられる。
[0115]
 [プリプレグにおけるレジンコンテント]
 前記プリプレグにおけるレジンコンテントは、特に限定されないが、例えば、40~90質量%であることが好ましく、50~90質量%であることがより好ましく、60~80質量%であることがさらに好ましい。前記レジンコンテントが低すぎると、低誘電特性が得られにくくなる傾向がある。また、前記レジンコンテントが高すぎると、熱膨張係数(CTE)が高くなったり、板厚精度が低下する傾向がある。なお、ここでのレジンコンテントは、プリプレグの質量に対する、プリプレグの質量から繊維質基材の質量を引いた分の質量の割合[=(プリプレグの質量-繊維質基材の質量)/プリプレグの質量×100]である。
[0116]
 [プリプレグの厚み]
 前記プリプレグの厚みは、特に限定されないが、例えば、0.015~0.2mmであることが好ましく、0.02~0.15mmであることがより好ましく、0.03~0.13mmであることがさらに好ましい。前記プリプレグが薄すぎると、所望の基板厚みを得るために必要なプリプレグの枚数が多くなる。また、前記プリプレグが厚すぎると、レジンコンテントが低くなる傾向があり、所望の低誘電特性が得られにくくなる傾向がある。
[0117]
 [製造方法]
 次に、本実施形態に係るプリプレグの製造方法について説明する。
[0118]
 前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態で用いる樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。
[0119]
 プリプレグ1を製造する方法としては、例えば、樹脂組成物2、例えば、ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。
[0120]
 樹脂組成物2は、繊維質基材3へ、浸漬及び塗布等によって含浸される。必要に応じて複数回繰り返して含浸することも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。
[0121]
 樹脂組成物(樹脂ワニス)2が含浸された繊維質基材3は、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下加熱される。加熱によって、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。
[0122]
 <金属張積層板>
 図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
[0123]
 金属張積層板11は、図2に示すように、図1に示すプリプレグ1の硬化物を含む絶縁層12と、絶縁層12とともに積層される金属箔13とから構成されている。すなわち、金属張積層板11は、前記プリプレグ1の硬化物を含む絶縁層12と、絶縁層12に接合された金属箔13とを有する。また、絶縁層12は、プリプレグ1の硬化物からなるものであってもよい。
[0124]
 プリプレグ1を用いて金属張積層板11を作製する方法として、プリプレグ1を1枚又は複数枚重ね、さらに、その上下の両面又は片面に銅箔等の金属箔13を重ね、金属箔13およびプリプレグ1を加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層板11を作製する方法が挙げられる。すなわち、金属張積層板11は、プリプレグ1に金属箔13を積層して、加熱加圧成形して得られる。また、加熱加圧条件は、製造する金属張積層板11の厚みやプリプレグ1の組成物の種類等により適宜設定することができる。例えば、温度を170~210℃、圧力を3.5~4MPa、時間を60~150分間とすることができる。また、金属張積層板は、プリプレグを用いずに、製造してもよい。例えば、ワニス状の樹脂組成物等を金属箔上に塗布し、金属箔上に樹脂組成物を含む層を形成した後、加熱加圧する方法等が挙げられる。
[0125]
 本実施形態に係るプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。このため、このプリプレグを用いて得られた金属張積層板は、プリプレグ同様、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できる。
[0126]
 図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
[0127]
 本実施形態に係る配線板21は、図3に示すように、図1に示すプリプレグ1の硬化物を含む絶縁層12と、絶縁層12ともに積層され、金属箔13を部分的に除去して形成された配線14とから構成されている。すなわち、前記配線板21は、前記プリプレグ1の硬化物を含む絶縁層12と、絶縁層12に接合された配線14とを有する。また、絶縁層12は、プリプレグ1の硬化物からなるものであってもよい。
[0128]
 プリプレグ1を用いて配線板21を作製する方法としては、上記のようにして作製された金属張積層板11の表面の金属箔13をエッチング加工等して配線形成をすることによって、絶縁層12の表面に回路として配線が設けられた配線板21を得ることができる。すなわち、配線板21は、金属張積層板11の表面の金属箔13を部分的に除去することにより回路形成して得られる。
[0129]
 本実施形態に係るプリプレグは、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグである。このため、このプリプレグを用いて得られた配線板は、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板である。
[0130]
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
[0131]
 本発明の一局面は、樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋型硬化剤とを含有し、前記変性ポリフェニレンエーテル化合物の含有率は、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤の合計質量に対して、40~90質量%であり、前記樹脂組成物の硬化物の比誘電率は、2.6~3.8であり、前記繊維質基材が、石英ガラスクロスであり、前記プリプレグの硬化物の比誘電率が、2.7~3.8であり、前記プリプレグの硬化物の誘電正接が、0.002以下であるプリプレグである。
[0132]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグを提供することができる。まず、プリプレグを構成する繊維質基材として、比較的低い誘電率を有する石英ガラスクロスを用いることによって、得られたプリプレグは、その硬化物の低誘電特性に優れたものになると考えられる。しかしながら、繊維質基材として、石英ガラスクロスを単に用いただけでは、その硬化物の低誘電特性が充分には高くならなかったり、硬化物の耐熱性が充分に高いものにならない場合があった。そこで、前記プリプレグは、繊維質基材として、石英ガラスクロスを単に用いるだけではなく、プリプレグを構成する樹脂組成物として、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤とを所定比となるように含有する樹脂組成物を用いる。さらに、前記プリプレグは、前記樹脂組成物の硬化物の比誘電率、前記プリプレグの硬化物の比誘電率及び誘電正接が上記範囲内になるように、前記樹脂組成物の組成や石英ガラスクロスの状態等を調整する。そうすることによって、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグが得られる。
[0133]
 また、前記プリプレグにおいて、前記繊維質基材は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤で表面処理された基材であることが好ましい。
[0134]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
[0135]
 また、前記プリプレグにおいて、前記架橋型硬化剤は、スチレン、ジビニルベンゼン、アクリレート化合物、メタクリレート化合物、トリアルケニルイソシアヌレート化合物、ポリブタジエン化合物、及びマレイミド化合物からなる群から選ばれる少なくとも1種であることが好ましい。
[0136]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
[0137]
 また、前記プリプレグにおいて、前記シランカップリング剤は、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を分子中に有するシランカップリング剤であることが好ましい。
[0138]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
[0139]
 また、前記プリプレグにおいて、前記変性ポリフェニレンエーテル化合物における前記置換基が、ビニルベンジル基、ビニル基、アクリレート基、及びメタクリレート基からなる群から選ばれる少なくとも1種であることが好ましい。
[0140]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できるプリプレグを提供することができる。
[0141]
 また、本発明の他の一局面は、前記プリプレグの硬化物を含む絶縁層と、金属箔とを備える金属張積層板である。
[0142]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板をより好適に製造できる金属張積層板を提供することができる。
[0143]
 また、本発明の他の一局面は、前記プリプレグの硬化物を含む絶縁層と、配線とを備える配線板である。
[0144]
 このような構成によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を提供することができる。
[0145]
 本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板を提供することができる。また、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板が提供される。
[0146]
 以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
実施例
[0147]
 [実施例1~13、比較例1~6]
 本実施例において、プリプレグを調製する際に用いる各成分について説明する。
[0148]
 (ポリフェニレンエーテル:PPE)
 変性PPE-1:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル(上記式(2)で表され、式(2)中のXがメタクリル基であり、式(2)の中のYがジメチルメチレン基(式(3)で表され、式(3)中のR 17及びR 18がメチル基である基)である変性ポリフェニレンエーテル化合物、SABICイノベーティブプラスチックス社製のSA9000、重量平均分子量Mw2000、末端官能基数2個)
 変性PPE-2:ポリフェニレンエーテルとクロロメチルスチレンとを反応させて得られた変性ポリフェニレンエーテルである。
[0149]
 具体的には、以下のように反応させて得られた変性ポリフェニレンエーテルである。
[0150]
 まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、重量平均分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
[0151]
 得られた固体を、 H-NMR(400MHz、CDCl 、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基(エテニルベンジル基)に由来するピークが確認された。これにより、得られた固体が、分子末端に、前記置換基としてビニルベンジル基を分子中に有する変性ポリフェニレンエーテルであることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。この得られた変性ポリフェニレンエーテル化合物は、上記式(2)で表され、式(2)中のXが、ビニルベンジル基(エテニルベンジル基)であり、式(2)の中のYがジメチルメチレン基(式(3)で表され、式(3)中のR 17及びR 18がメチル基である基)である変性ポリフェニレンエーテル化合物である。
[0152]
 また、変性ポリフェニレンエーテルの末端官能基数を、以下のようにして測定した。
[0153]
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。
[0154]
  残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×10
 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
[0155]
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能基数が、2個であった。
[0156]
 また、変性ポリフェニレンエーテルの、25℃の塩化メチレン中で固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの固有粘度(IV)を、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、変性ポリフェニレンエーテルの固有粘度(IV)は、0.086dl/gであった。
[0157]
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した。その結果、Mwは、2300であった。
[0158]
 無変性PPE:ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、末端水酸基数2個、重量平均分子量Mw1700)
 (架橋型硬化剤)
 TAIC:トリアリルイソシアヌレート(日本化成株式会社製のTAIC、分子量249、末端二重結合数3個)
 DCP:トリシクロデカンジメタノールジメタクリレート(新中村化学株式会社製のDCP、末端二重結合数2個)
 (エポキシ樹脂)
 エポキシ樹脂:ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製のエピクロンHP7200、平均エポキシ基数2.3個)
 (開始剤)
 PBP:1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン(日油株式会社製のパーブチルP)
 (触媒)
 2E4MZ:2-エチル-4-メチルイミダゾール(イミダゾール触媒、四国化成工業株式会社製の2E4MZ)
 (無機充填材)
 シリカ:分子中にビニル基を有するシランカップリング剤で表面処理されたシリカ粒子(株式会社アドマテックス製のSC2300-SVJ)
 アルミナ:アルミナ粒子(住友化学株式会社製のAES-11C)
 Mo酸Znタルク:表面の少なくとも一部にモリブデン酸亜鉛が存在するタルク(モリブデン酸亜鉛担持タルク、Huber社製のKG-911C)
 (繊維質基材)
 Qガラス:分子中にメタクリル基を有するシランカップリング剤で表面処理された石英ガラスクロス(信越化学工業株式会社製のSQF1078C-04、#1078タイプ、比誘電率:3.5、誘電正接:0.0015、通気度:25cm /cm /秒)
 QLガラス:QLガラスクロス(旭化成株式会社製、#1078タイプ、比誘電率:4.0、誘電正接:0.0028、通気度:20cm /cm /秒)
 L2ガラス:L2ガラスクロス(旭化成株式会社製、#1078タイプ、比誘電率:4.4、誘電正接:0.0018、通気度:20cm /cm /秒)
 Lガラス:Lガラスクロス(汎用低誘電ガラスクロス、旭化成株式会社製のL1078、#1078タイプ、比誘電率:4.5、誘電正接:0.0038、通気度:20cm /cm /秒)
[0159]
 [調製方法]
 まず、無機充填材以外の各成分を表1及び表2に記載の配合割合(質量部)で、固形分濃度が60質量%となるように、トルエンに添加し、混合させた。その混合物を、室温で60分間攪拌した。その後、得られた液体に無機充填材を添加し、ビーズミルで無機充填材を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
[0160]
 次に、得られたワニスを、表1及び表2に示す繊維質基材(ガラスクロス)に含浸させた後、130℃で約3~8分間加熱乾燥することによりプリプレグを作製した。その際、変性ポリフェニレンエーテル化合物及び架橋型硬化剤等の、硬化反応により樹脂を構成する成分の含有量(レジンコンテント)が表1及び表2に示す値%となるように調整する。
[0161]
 そして、得られた各プリプレグを4枚重ねて、温度200℃、2時間、圧力3MPaの条件で加熱加圧することにより評価基板(プリプレグの硬化物)を得た。
[0162]
 また、得られた各プリプレグを表1及び表2に示す重ね枚数で重ねて、その両側に、銅箔(古河電気工業株式会社のFV-WS)を配置して被圧体とし、温度200℃、圧力3MPaの条件で2時間加熱・加圧して、200μmの厚みの、両面に銅箔が接着された評価基板(金属張積層板)である銅箔張積層板を作製した。
[0163]
 また、繊維質基材を用いないこと以外、評価基板(プリプレグの硬化物)と同様にして、樹脂組成物の硬化物からなる評価基板(樹脂組成物の硬化物)も作製した。
[0164]
 上記のように調製された評価基板(プリプレグの硬化物、金属張積層板、樹脂組成物の硬化物)を、以下に示す方法により評価を行った。
[0165]
 [誘電特性(比誘電率及び誘電正接)]
 10GHzにおける評価基板(プリプレグの硬化物、樹脂組成物の硬化物)の比誘電率及び誘電正接を、空洞共振器摂動法で測定した。具体的には、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用い、10GHzにおける評価基板の比誘電率及び誘電正接を測定した。
[0166]
 [スキュー(Skew):遅延時間差]
 評価基板(金属張積層板)の一方の金属箔(銅箔)を加工して、線幅100~300μm、線長100mm、線間20mmの配線を10本形成させた。この配線を形成させた基板の、配線を形成させた側の表面上に、表1及び表2に示す重ね枚数のプリプレグと金属箔(銅箔)とを2次積層することによって、3層板を作製した。なお、配線の線幅は、3層板を作製した後の回路の特性インピーダンスが50Ωとなるように、調整した。
[0167]
 得られた3層板の20GHzでの遅延時間を測定した。得られた遅延時間の最大値と最小値との差を算出した。このように算出した差は、遅延時間差であり、遅延時間差が大きいと、差動信号のスキューが発生しやすくなる。このことから、遅延時間差が、スキューによる信号品質を評価する指標になる。すなわち、遅延時間差が大きいと、スキューによる信号品質の低下が発生しやすく、遅延時間差が小さいと、スキューによる信号品質の低下が発生しにくい傾向がある。よって、スキューの評価として、上記算出した値が、2ピコ秒以下であれば、「◎」と評価し、2ピコ秒超5ピコ秒未満であれば、「○」と評価し、5ピコ秒以上であれば、「×」と評価した。
[0168]
 [ガラス転移温度(Tg)]
 セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS100」を用いて、プリプレグのTgを測定した。このとき、曲げモジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から280℃まで昇温した際のtanδが極大を示す温度をTgとした。
[0169]
 [伝送損失]
 評価基板(金属張積層板)の一方の金属箔(銅箔)を加工して、線幅100~300μm、線長1000mm、線間20mmの配線を10本形成させた。この配線を形成させた基板、配線を形成させた側の表面上に、表1及び表2に示す重ね枚数のプリプレグと金属箔(銅箔)とを2次積層することによって、3層板を作製した。なお、配線の線幅は、3層板を作製した後の回路の特性インピーダンスが50Ωとなるように、調整した。
[0170]
 得られた3層板に形成された配線の20GHzでの伝送損失(通過損失)(dB/m)は、ネットワーク・アナライザ(キーサイト・テクノロジー合同会社製のN5230A)を用いて、測定した。
[0171]
 [ドリル磨耗率]
 図4に示すように、評価基板(金属張積層板)11を2枚重ね、その上に、エントリーボード16を載せた。このエントリーボード16を載せた評価基板(金属張積層板)11を、下記加工条件でドリル15を用いて、エントリーボード16から、評価基板(金属張積層板)11に到る孔を3000個あけた。このドリル加工後のドリルの刃の大きさ(面積)を測定した。この測定したドリル加工後のドリルの刃の大きさ(面積)と、ドリル加工前のドリルの刃の大きさ(面積)とから、ドリル刃の磨耗率を算出した。
[0172]
 エントリーボード:Al 0.15mm
 重ね枚数:0.75mm×2枚重ね
 孔:直径0.3mm×深さ5.5mm
 ビット品番:NHUL020 回転数:160Krpm 送り速度:20μ/rev
[0173]
 上記各評価における結果は、表1及び表2に示す。
[0174]
[表1]


[0175]
 表1から、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤とを所定比で含有する樹脂組成物であって、その硬化物の比誘電率が2.6~3.8である樹脂組成物又はその半硬化物と、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである繊維質基材とを備えるプリプレグであって、前記プリプレグの硬化物の比誘電率が2.7~3.8であり、誘電正接が0.002以下である場合(実施例1~11)は、そうでない場合と比較して、上述したように、比誘電率及び誘電正接が低く、信号伝送時の損失が充分に抑制されたことがわかった。さらに、信号伝送時の損失を充分に抑制できるだけではなく、スキューによる信号品質の低下も充分に抑制できることがわかった。また、実施例1~11に係るプリプレグの硬化物は、Tgが高いことから、耐熱性が高いことがわかった。
[0176]
[表2]


[0177]
 表2からわかるように、樹脂組成物に、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させた場合(実施例12、実施例13、及び比較例6)は、含有させていない場合(実施例1、実施例11、及び比較例2)よりドリル磨耗性が低かった。また、樹脂組成物に、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させた場合であっても、前記変性ポリフェニレンエーテル化合物と前記架橋型硬化剤とを所定比で含有する樹脂組成物であって、その硬化物の比誘電率が2.6~3.8である樹脂組成物又はその半硬化物と、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスである繊維質基材とを備えるプリプレグであって、前記プリプレグの硬化物の比誘電率が2.7~3.8であり、誘電正接が0.002以下である場合(実施例12及び実施例13)は、比誘電率及び誘電正接が低く、信号伝送時の損失が充分に抑制されたことがわかった。これらのことから、無機充填材として、表面の少なくとも一部にモリブデン酸亜鉛が存在するタルクを含有させると、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制させたまま、ドリル加工性も向上させることができることがわかった。
[0178]
 この出願は、2017年9月29日に出願された日本国特許出願特願2017-190781を基礎とするものであり、その内容は、本願に含まれるものである。
[0179]
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。

産業上の利用可能性

[0180]
 本発明によれば、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板を好適に製造できるプリプレグ及び金属張積層板が提供される。また、耐熱性に優れ、信号伝送時の損失及びスキューによる信号品質の低下が充分に抑制された配線板が提供される。

請求の範囲

[請求項1]
 樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグであって、
 前記樹脂組成物は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物と、炭素-炭素不飽和二重結合を分子中に有する架橋型硬化剤とを含有し、
 前記変性ポリフェニレンエーテル化合物の含有率は、前記変性ポリフェニレンエーテル化合物及び前記架橋型硬化剤の合計質量に対して、40~90質量%であり、
 前記樹脂組成物の硬化物の比誘電率は、2.6~3.8であり、
 前記繊維質基材が、比誘電率が4.7以下であり、誘電正接が0.0033以下であるガラスクロスであり、
 前記プリプレグの硬化物の比誘電率が、2.7~3.8であり、前記プリプレグの硬化物の誘電正接が、0.002以下であるプリプレグ。
[請求項2]
 前記繊維質基材は、炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤で表面処理された基材である請求項1に記載のプリプレグ。
[請求項3]
 前記架橋型硬化剤は、スチレン、ジビニルベンゼン、アクリレート化合物、メタクリレート化合物、トリアルケニルイソシアヌレート化合物、ポリブタジエン化合物、及びマレイミド化合物からなる群から選ばれる少なくとも1種である請求項1又は請求項2に記載のプリプレグ。
[請求項4]
 前記シランカップリング剤は、ビニル基、スチリル基、メタクリル基、及びアクリル基からなる群から選ばれる少なくとも1種の官能基を分子中に有するシランカップリング剤である請求項1~3のいずれか1項に記載のプリプレグ。
[請求項5]
 前記変性ポリフェニレンエーテル化合物における前記置換基が、ビニルベンジル基、ビニル基、アクリレート基、及びメタクリレート基からなる群から選ばれる少なくとも1種である請求項1~4のいずれか1項に記載のプリプレグ。
[請求項6]
 請求項1~5のいずれか1項に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを備える金属張積層板。
[請求項7]
 請求項1~5のいずれか1項に記載のプリプレグの硬化物を含む絶縁層と、配線とを備える配線板。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]