このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2019033677) METHOD AND APPARATUS FOR DETERMINING WHETHER USER BEHAVIOR INDICATES DISENGAGEMENT, AND ELECTRONIC DEVICE
Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131  

权利要求书

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16  

附图

1   2   3  

说明书

发明名称 : 确定用户行为衰退倾向的方法、装置及电子设备

技术领域

[0001]
本公开涉及计算机技术领域,具体涉及一种确定用户行为衰退倾向的方法、装置、电子设备及计算机存储介质。

背景技术

[0002]
互联网技术的不断发展已经大大改变了人们的生活方式,比如人们的出行方式、购物方式、配送方式等都在发生巨大变化,为满足用户的各种需求,开发出了各种相应的应用程序(Application,简称APP)。每一个APP拥有一定的用户,这些用户在APP的使用过程可能会经历新用户期、上升期、稳定期、衰退期、流失期等一个或者多个阶段。用户下单量逐渐减少的时期称为用户行为的衰退期,用户行为衰退的程度称为衰退倾向。
[0003]
发明内容
[0004]
本公开实施例提供一种确定用户行为衰退倾向的方法、装置、电子设备及计算机存储介质。
[0005]
第一方面,本公开实施例中提供了一种确定用户行为衰退倾向的方法。
[0006]
具体的,确定用户行为衰退倾向的方法,包括:
[0007]
根据产生预定用户行为的次数确定第一衰退倾向因子;
[0008]
根据产生预定用户行为的时间间隔确定第二衰退倾向因子;
[0009]
基于第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。
[0010]
结合第一方面,本公开在第一方面的第一种实现方式中,根据产生预定用户行为的次数确定第一衰退倾向因子,包括:
[0011]
根据在预定时间周期内产生预定用户行为的平均次数变化确定第一衰退倾向因子。
[0012]
结合第一方面、第一方面的第一种实现方式,第一衰退倾向因子如下计算:
[0013]
[数0001]


[0014]
其中,GF为第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为第一预定时间周期i内产生预定用户行为的平均次数,R j为第二预定时间周期j内产生预定用户行为的平均次数,其中,第一预定时间周期i的时间起点比第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[0015]
结合第一方面,本公开在第一方面的第二种实现方式中,根据产生预定用户行为的时间间隔确定第二衰退倾向因子,包括:
[0016]
根据第一时间间隔和第二时间间隔的比率确定第二衰退倾向因子,第一时间间隔为最后一次产生预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产生预定用户行为的平均时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。
[0017]
结合第一方面、第一方面的第二种实现方式,第二衰退倾向因子如下计算:
[0018]
[数0002]


[0019]
其中,R表示第一时间间隔,Mi表示第二时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。
[0020]
结合第一方面,预定用户行为的总衰退倾向值如下计算:
[0021]
DI=b×GF+c×GR
[0022]
其中,DI为预定用户行为的总衰退倾向值,GF为第一衰退倾向因子,GR为第二衰退倾向因子,b为权重值。
[0023]
结合第一方面、第一方面的第一种实现方式或第一方面的第二种实现方式,本公开在第一方面的第三种实现方式中,方法还包括:
[0024]
按照预定用户行为的总衰退倾向值的高低输出预定用户行为的总衰退倾向值小于第一预定值的用户。
[0025]
第二方面,本公开实施例提供了一种确定用户行为衰退倾向的装置,包括:
[0026]
第一确定模块,被配置为根据产生预定用户行为的次数确定第一衰退倾向因子;
[0027]
第二确定模块,被配置为根据产生预定用户行为的时间间隔确定第二衰退倾向因子;
[0028]
第三确定模块,被配置为基于第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。
[0029]
结合第二方面,本公开在第二方面的第一种实现方式中,第一确定模块,包括:
[0030]
第一确定子模块,被配置为根据在预定时间周期内产生预定用户行为的平均次数变化确定第一衰退倾向因子。
[0031]
结合第二方面、第二方面的第一种实现方式,第一衰退倾向因子如下计算:
[0032]
[数0003]


[0033]
其中,GF为第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为第一预定时间周期i内产生预定用户行为的平均次数,R j为第二预定时间周期j内产生预定用户行为的平均次数,其中,第一预定时间周期i的时间起点比第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[0034]
结合第二方面,本公开在第二方面的第二种实现方式中,第二确定模块,包括:
[0035]
第二确定子模块,被配置为根据第一时间间隔和第二时间间隔的比率确定第二衰退倾向因子,第一时间间隔为最后一次产生预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产 生预定用户行为的平均时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。
[0036]
结合第二方面、第二方面的第二种实现方式,第二衰退倾向因子如下计算:
[0037]
[数0004]


[0038]
其中,R表示第一时间间隔,Mi表示第二时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。
[0039]
结合第二方面,预定用户行为的总衰退倾向值如下计算:
[0040]
DI=b×GF+c×GR
[0041]
其中,DI为预定用户行为的总衰退倾向值,GF为第一衰退倾向因子,GR为第二衰退倾向因子,b为权重值。
[0042]
结合第二方面、第二方面的第一种实现方式或第二方面的第二种实现方式,本公开在第二方面的第三种实现方式中,装置还包括:
[0043]
输出模块,被配置为按照预定用户行为的总衰退倾向值的高低输出预定用户行为的总衰退倾向值小于第一预定值的用户。
[0044]
功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
[0045]
在一个可能的设计中,确定用户行为衰退倾向的装置的结构中包括存储器和处理器,存储器用于存储一条或多条支持确定预定用户行为衰退倾向的装置执行上述第一方面中确定定用户行为衰退倾向的方法的计算机指令,处理器被配置为用于执行存储器中存储的计算机指令。确定用户行为衰退倾向的装置还可以包括通信接口,用于确定用户行为衰退倾向的装置与其他设备或通信网络通信。
[0046]
第三方面,本公开实施例还提供了一种电子设备,电子设备包括存储器和处理器;其中,存储器用于存储一条或多条计算机指令,其中,一条或多条计算机指令被处理器执行以实现第一方面的确定用户行为衰退倾向的方法。
[0047]
第三方面,本公开实施例提供了一种计算机可读存储介质,用于存储确定用户行为衰退倾向的装置所用的计算机指令,其包含用于执行上述第一方面中确定用户行为衰退倾向的方法所涉及的计算机指令。
[0048]
本公开实施例提供的技术方案可以包括以下有益效果:
[0049]
本公开实施例根据产生预定用户行为的次数确定第一衰退倾向因子,并根据产生预定用户行为的时间间隔确定第二衰退倾向因子,并综合考虑第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。本公开实施例通过第一衰退因子将用户产生预定用户行为的频率下降作为用户衰退程度刻画的参考指标,能够尽快获取到系统平台中处于衰退期的用户,又进一步通过第二衰退因子将用户近期未产生预定用户行为的时间间隔相对于之前产生预定用户行为的时间间隔的比率作为用户衰退程度刻画的另一参考指标,相较于已有技术中单一的根据用户近期未产生预定行为的时间间隔来说更加全面,并且通过综合以上两种因子,能够更加全面准确的确定用户行为的衰退倾向,从而采取及时干预措施,能大大减少应用平台的损失。
[0050]
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。

附图说明

[0051]
结合附图,通过以下非限制性实施方式的详细描述,本公开的其它特征、目的和优点将变得更加明显。在附图中:
[0052]
图1示出根据本公开一实施方式的确定用户行为衰退倾向的方法的流程图;
[0053]
图2示出根据本公开一实施方式的确定用户行为衰退倾向装置的结构框图;
[0054]
图3是适于用来实现根据本公开一实施方式的确定用户行为衰退倾向方法的电子设备的结构示意图。

具体实施方式

[0055]
下文中,将参考附图详细描述本公开的示例性实施方式,以使本领域技术人员可容易地实现它们。此外,为了清楚起见,在附图中省略了与描述示例性实施方式无关的部分。
[0056]
在本公开中,应理解,诸如“包括”或“具有”等的术语旨在指示本说明书中所公开的特征、数字、步骤、行为、部件、部分或其组合的存在,并且不欲排除一个或多个其他特征、数字、步骤、行为、部件、部分或其组合存在或被添加的可能性。
[0057]
另外还需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
[0058]
已有技术对于平台用户衰退倾向的刻画往往只考虑最近产生预定用户行为的时间这一个参量,没有对用户进行针对性判别,衰退倾向的刻画采用的特征非常单一,对衰退倾向的刻画不够准确,比如对于原先产生预定用户行为的时间间隔不同的用户,当他们的未产生预定用户行为的时间间隔相同时,采用已有技术得到的两者的衰退倾向值却相同,这显然不客观。
[0059]
本公开实施例,根据产生预定用户行为的次数确定第一衰退倾向因子,并根据产生预定用户行为的时间间隔确定第二衰退倾向因子,并综合考虑第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。通过第一衰退因子将用户产生预定用户行为的频率下降作为用户衰退程度刻画的参考指标,能够尽快获取到系统平台中处于衰退期的用户,又进一步通过第二衰退因子将用户近期未产生预定用户行为的时间间隔相对于之前产生预定用户行为的时间间隔的比率作为用户衰退程度刻画的另一参考指标,相较于已有技术中单一的根据用户近期未产生预定行为的时间间隔来说更加全面,并且通过综合以上两种因子,能够更加全面准确的确定用户行为的衰退倾向,从而采取及时干预措施,能大大减少应用平台的损失。
[0060]
图1示出根据本公开一实施方式的确定用户行为衰退倾向的方法的流程图。如图1所示,确定用户行为衰退倾向的方法包括以下步 骤S101-S103:
[0061]
在步骤S101中,根据产生预定用户行为的次数确定第一衰退倾向因子;
[0062]
在步骤S102中,根据产生预定用户行为的时间间隔确定第二衰退倾向因子;
[0063]
在步骤S103中,基于第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。
[0064]
用户行为可以是用户在系统中的有效行为,包括用户对于系统对象的各种操作,例如,对于商业运营应用平台,用户利用该应用平台进行下单的用户行为。预定用户行为是应用平台欲通过其衡量用户衰退倾向的预定义的用户行为,例如,对于外卖应用平台,衡量用户衰退倾向最好的用户行为可能是用户的下单行为,而对于某产品推销网站应用平台,横向用户衰退倾向最好的用户行为可能是用户的浏览行为等。预定用户行为根据应用平台所涉及内容的不同而可能不同,具体根据实际情况设定。用户在某个时间段内产生预定用户行为的次数减少的时期可以称为衰退期,而用户的预定用户行为目前衰退的程度称为衰退倾向。例如,对于商业运营应用平台,用户在某个时间段内下单的次数减少,则这段时间为用户下单的衰退期,而用户下单次数减少的程度为用户下单的衰退倾向。
[0065]
本公开实施例中,通过综合考虑用户产生预定用户行为的次数以及时间间隔来确定用户的某一预定用户行为的总衰退倾向值。例如,对于商业运营应用平台,用户在某一个时间段内下单的次数减少,且下单的时间间隔也较长的情况下,可以通过用户下单的总衰退倾向值判定用户在这段时间有衰退倾向,商业运营平台在及时捕捉到用户衰退倾向的情况下,通过各种措施进行干预,防止用户流失。
[0066]
可以理解的是,上述确定用户衰退倾向的方法不仅仅适用于商业运营应用平台,还可适用于各种供用户使用的应用平台,应用平台可以通过确定用户衰退倾向来反馈用户对本应用平台涉及产品或服务的关注度以及使用情况,进而根据这些反馈信息进一步提高应用平台为用户提供的产品或服务的质量等,能够促进应用平台的进一步发展, 提高用户的体验。
[0067]
在本实施例的一个可选实现方式中,步骤S101,即根据产生预定用户行为的次数确定第一衰退倾向因子的步骤,进一步包括以下步骤:根据在预定时间周期内产生预定用户行为的平均次数变化确定第一衰退倾向因子。该可选实现方式中,可以通过用户在一段时间内产生预定用户行为的次数变化来确定第一衰退因子,按照时间先后,如果次数逐渐减小,可以推断出用户产生的预定用户行为在减少,而这能够反映出用户在一定程度上呈现出了衰退倾向。例如,用户在一商业运营应用平台上,前一周7天的下单总次数为Ri,而最近一周7天的下单总次数为Rj,且Ri>Rj,此时可以初步确定用户下单的行为处于衰退期,用户有衰退倾向,而衰退倾向的大小与Ri与Rj的差值的绝对值有关。如果Ri>Rj,且Ri与Rj的差值的绝对值较大,说明用户的衰退倾向较大,差值的绝对值较小,说明用户的衰退倾向较小。本实施例通过将用户产生的预定用户行为的次数变化作为衡量用户行为衰退倾向的一个因子,能尽快获取到衰退的平台高价值用户,从而可以根据用户行为的衰退倾向采取及时干预措施,能大大减少应用平台的损失。
[0068]
在本实施例的一个可选实现方式中,第一衰退倾向因子可如下计算:
[0069]
[数0005]


[0070]
其中,GF为第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为第一预定时间周期i内产生预定用户行为的平均次数,R j为第二预定时间周期j内产生预定用户行为的平均次数,其中,第一预定时间周期i的时间起点比第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[0071]
该可选实现方式中,第一预定时间周期i的时间起点比第二预定时间周期j的早,第一预定时间周期i的时间终点可以比第二预定时 间周期j早,也可以相同。例如,第二预定时间周期j可以是前N(N>=1)天,而第一预定时间周期i为前M(M>=1)天,M>N;或者第一预定时间周期i为最近1周,而第二预定时间周期j为上一周等,第一预定时间周期i和第一预定时间周期j可根据实际情况进行选择,只要能够使得R i和R j表现出从前往后用户产生预定用户行为的平均次数的变化即可。例如,对于商业运营应用平台,第二预定时间周期j为最近一周,R j则为最近一周7天内的平均下单次数,第一预定时间周期i为最近一个月,R i则为最近一个月内的平均下单次数。该可选实现方式中采用指数函数量化用户产生预定用户行为的次数的下降趋势,在第一预定时间周期内产生预定用户行为的平均次数大于第二预定时间周期内产生预定用户行为的平均次数与次数阈值n之和时,即近期产生预定用户行为的平均次数相较于前期减少了,且减少量大于次数阈值n时,采用底数为a的指数函数量化产生预定用户行为的下降趋势,而第一预定时间周期内产生预定用户行为的平均次数小于或等于第二预定时间周期内产生预定用户行为的平均次数与次数阈值n之和时,即近期产生预定用户行为的平均次数相较于前期而言并未减少,或者减少量依然在次数阈值n范围之内时,则直接置第一衰退倾向因子为0。
[0072]
该可选实现方式中,i、j、a、n等参数的取值可根据实际情况进行设置。例如,对于外卖类的商业运营应用平台,把连续40天未下单的用户基本认定为流失,所以衰退倾向只刻画未下单时间不超过40天的用户,因此可以根据以下原则确定上述参数的选择:
[0073]
因为考虑到用户40天未下单可以认定为已经流失,所以可以初步选择i为最近2周的时间周期,而j为最近6周的时间周期。指数函数底数a的确定可以遵循以下原则:第一衰退倾向因子侧重于单量的下降,假如认为用户7日平均下单量下降大于2时,由于单量下降巨大的用户其价值高,因此总衰退倾向值可以以第一衰退倾向因子的值为主导。而为了在用户7日平均下单量下降大于2时,使第一衰退倾向因子的值起主导作用,因此可以考虑使得第一衰退倾向因子的最小值大于或等于第二衰退倾向因子的最大值,这样通过使得a 2约等 于第二衰退倾向因子的最大值,进而确定出底数a的值,当然也还可以根据其他情况对底数a的值进行调整设置,对此本实施例不做任何限制。而次数阈值n可以取大于等于0的整数,具体可视实际情况而定,而且还可以在不同时期调整成不同的值,例如确定用户下单行为的衰退倾向时,促销淡季可以将n的值设置成较大值,而在促销旺季将n的值设置成较小值,因为促销淡季用户下单的次数比促销旺季下单次数少是正常的,因此可以通过对次数阈值n的调整能够更加客观地刻画用户衰退倾向。
[0074]
该可选实现方式中第一衰退倾向因子的计算公式采用指数函数,使得随着用户产生预定用户行为的次数下降越大,第一衰退倾向因子的值越大,使得衰减倾向增长越快。因为用户产生预定用户行为次数高的用户通常是应用平台的高价值用户,这类用户的衰退倾向需要更及时干预,而通过该可选实现方式中第一衰退因子可以及时监测到用户产生预定用户行为的下降区域并予以及时干预。
[0075]
在本实施例的另一个可选实现方式中,在步骤102中,即根据产生预定用户行为的时间间隔确定第二衰退倾向因子的步骤,进一步包括以下步骤:根据第一时间间隔和第二时间间隔的比率确定第二衰退倾向因子,第一时间间隔为最后一次产生预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产生预定用户行为的平均时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。该可选实现方式中,通过最近产生预定用户行为距当前时间的时间间隔与之前产生预定用户行为的平均时间间隔的比率来确定第二衰退倾向因子,如果比率越大,则第二衰退倾向因子越大,说明用户的衰退倾向也越大。第一时间间隔可以通过计算当前时间与用户最后一次产生预定行为的时间差值确定,计量单位可以是天、小时等。例如,系统平台记录用户最后产生预定行为的时间为4天前,则距当前时间的时间间隔为4天,而4天前的一段时间(如7天或半个月等)内产生预定用户行为的平均时间间隔为2天,两者的比率为2,这时第二衰退倾向因子的大小由比率2来确定。
[0076]
在本实施例的一可选实现方式中,第二衰退倾向因子如下计算:
[0077]
[数0006]


[0078]
其中,R表示第一时间间隔,即最后一次产生预定用户行为距当前时间的时间间隔,Mi表示第二时间间隔,即在第三预定时间周期内产生预定用户行为的平均时间间隔,m为时间间隔阈值。
[0079]
该可选实现方式中,最后一次产生预定用户行为距当前时间的第一时间间隔小于或等于第三预定时间周期内产生预定用户行为的平均时间间隔即第二时间间隔与时间间隔阈值之和时,可以确定用户产生预定用户行为的时间间隔并未增大,或者时间间隔的增大量依然在时间间隔阈值m范围之内时,此时用户处于正常时期,并未进入衰退期,因此可将第二衰退倾向因子置为0;而在最后一次产生预定用户行为距当前时间的第一时间间隔大于第三预定时间周期内产生预定用户行为的平均时间间隔即第二时间间隔与时间间隔阈值之和时,可以确定用户产生预定用户行为的时间间隔增大,并且超出了预先设置的时间间隔阈值m范围之外时,此时用户处于衰退期,因此通过上述对数函数确定第二衰退倾向因子。
[0080]
第三预定时间周期、m等参数的值可根据实际情况进行设置。假如,对于外卖类的商业运营应用平台,把连续40天未下单的用户基本认定为流失,那么可以将第三预定时间周期设置成40,Mi为用户最后一次下单之前的40天内的平均下单时间间隔。而时间间隔阈值m可以取大于等于0的整数,具体可视实际情况而定,而且还可以在不同时期调整成不同的值,例如在确定用户下单行为的衰退倾向时,促销淡季可以将m的值设置成较大值,而在促销旺季将m的值设置成较小值,因为促销淡季用户下单的时间间隔比促销旺季下单的时间间隔长是正常的,因此可以通过对时间间隔阈值m的调整能够更加客观地刻画用户衰退倾向。
[0081]
在本实施例的另一可选实现方式中,预定用户行为的总衰退倾向 值如下计算:
[0082]
DI=b×GF+c×GR
[0083]
其中,DI为预定用户行为的总衰退倾向值,GF为第一衰退倾向因子,GR为第二衰退倾向因子,b、c为权重值。
[0084]
该可选实现方式中,通过将第一衰退倾向因子和第二衰退倾向因子加权后相加来确定总衰退倾向值。b、c的值可以根据实际情况进行设置,对于不同行业、不同情况下第一衰退倾向因子和第二衰退倾向因子的影响力可以不同,有的行业第一衰退倾向因子更能体现用户的衰退倾向,有的行业第二衰退倾向因子可能更能体现用户的衰退倾向,同一行业在不同时期第一衰退倾向因子和第二衰退倾向因子在用户的衰退倾向上的比重也有可能不同,具体需要根据实际情况来判定,并设置参数b、c的值。
[0085]
在本实施例的另一种可选实现方式中,方法还包括以下步骤:按照预定用户行为的总衰退倾向值的高低输出预定用户行为的总衰退倾向值小于第一预定值的用户。该可选实现方式中,确定出用户的总衰退倾向值以后,如果总衰退倾向值小于第一预定值(可根据实际情况设置),则说明该用户处于衰退期,可以采取相应的干预措施,以防止用户的流失。按照顺序将总衰退倾向值小于第一预定值的所有用户进行输出,并针对不同的用户或用户群体采用不同的干预策略,可以防止应用平台用户的流失。
[0086]
例如,对于商业运营应于平台,在选定计算第一衰退因子、第二衰退因子和总衰退倾向值相关的参数并计算出用户的总衰退倾向值后,对于总衰退倾向值高于第一预定值的用户进行营销干预。为了评测这些用户是否会在一定周期内恢复到原先状态,可以采用六周次数未恢复用户率k作为评测指标,其具体计算公式如下:
[0087]
[0088]
下面是针对某商业运营应用平台进行测试得出的数据,下面三张表分别为xx年m月1号,m+1月1号,和m+2月1号得到的总衰退 倾向值排名百分比数据以及相应的k值数据,具体如下:
[0089]
表1:xx年m月1日
[0090]
[表0001]
用户排名前百分比 用户数 k值
1% 95937 89%
2% 191874 88%
5% 479687 85%
10% 959374 81%
20% 1918748 78%
50% 4796871 73%
100% 9593743 67%

[0091]
表2:xx年m+1月1日
[0092]
[表0002]
用户排名前百分比 用户数 k值
1% 82592 88%
2% 165185 86%
5% 412963 81%
10% 825926 75%
20% 1651853 75%
50% 4129632 69%
100% 8259265 60%

[0093]
表3:xx年m+2月1日
[0094]
[表0003]
用户排名前百分比 用户数 k值
1% 109323 81%
2% 218646 80%
5% 546616 80%
10% 1093232 81%
20% 2186465 78%
50% 5466164 78%
100% 10932329 73%

[0095]
表1-表3中第一列为用户下单行为的总衰倾向值按大小排名后的百分比数据,第二列为对应百分比下的用户数目,第三列为这些用户数的k值。退根据上述数据分析得出,随着用户下单行为的总衰倾向值的百分比数的降低,k值会降低,而排名前2%的用户k值总体大于88%,用户体量约18万,因此可以确定这批用户属于下单次数高,对这批用户进行营销干预比较合适。因此,通过本公开上述实施例得到的用户行为的总衰退倾向值,确定出需要进行干预的用户,并采取 对应的营销干预措施,能够防止应用平台用户的流失,促进应用平台业务的发展。
[0096]
下述为本公开装置实施例,可以用于执行本公开方法实施例。
[0097]
图2示出根据本公开一实施方式的确定用户行为衰退倾向的装置的结构框图,该装置可以通过软件、硬件或者两者的结合实现成为电子设备的部分或者全部。如图2所示,确定用户行为衰退倾向的装置包括第一确定模块201、第二确定模块202和第三确定模块203:
[0098]
第一确定模块201,被配置为根据产生预定用户行为的次数确定第一衰退倾向因子;
[0099]
第二确定模块202,被配置为根据产生预定用户行为的时间间隔确定第二衰退倾向因子;
[0100]
第三确定模块203,被配置为基于第一衰退倾向因子和第二衰退倾向因子确定预定用户行为的总衰退倾向值。
[0101]
用户行为可以是用户在系统中的有效行为,包括用户对于系统对象的各种操作,例如,对于商业运营应用平台,用户利用该应用平台进行下单的用户行为。预定用户行为是应用平台欲通过其衡量用户衰退倾向的预定义的用户行为,例如,对于外卖应用平台,衡量用户衰退倾向最好的用户行为可能是用户的下单行为,而对于某产品推销网站应用平台,横向用户衰退倾向最好的用户行为可能是用户的浏览行为等。预定用户行为根据应用平台所涉及内容的不同而可能不同,具体根据实际情况设定。用户在某个时间段内产生预定用户行为的次数减少的时期可以称为衰退期,而用户的预定用户行为目前衰退的程度称为衰退倾向。例如,对于商业运营应用平台,用户在某个时间段内下单的次数减少,则这段时间为用户下单的衰退期,而用户下单次数减少的程度为用户下单的衰退倾向。
[0102]
本公开实施例中,通过综合考虑用户产生预定用户行为的次数以及时间间隔来确定用户的某一预定用户行为的总衰退倾向值。例如,对于商业运营应用平台,用户在某一个时间段内下单的次数减少,且下单的时间间隔也较长的情况下,可以通过用户下单的总衰退倾向值判定用户在这段时间有衰退倾向,商业运营平台在及时捕捉到用户衰 退倾向的情况下,通过各种措施进行干预,防止用户流失。
[0103]
可以理解的是,上述确定用户衰退倾向的方法不仅仅适用于商业运营应用平台,还可适用于各种供用户使用的应用平台,应用平台可以通过确定用户衰退倾向来反馈用户对本应用平台涉及产品或服务的关注度以及使用情况,进而根据这些反馈信息进一步提高应用平台为用户提供的产品或服务的质量等,能够促进应用平台的进一步发展,提高用户的体验。
[0104]
在本实施例的一个可选实现方式中,第一确定模块201包括:第一确定子模块,被配置为根据在预定时间周期内产生预定用户行为的平均次数变化确定第一衰退倾向因子。该可选实现方式中,可以通过用户在一段时间内产生预定用户行为的次数变化来确定第一衰退因子,按照时间先后,如果次数逐渐减小,可以推断出用户产生的预定用户行为在减少,而这能够反映出用户在一定程度上呈现出了衰退倾向。例如,用户在一商业运营应用平台上,前一周7天的下单总次数为Ri,而最近一周7天的下单总次数为Rj,且Ri>Rj,此时可以初步确定用户下单的行为处于衰退期,用户有衰退倾向,而衰退倾向的大小与Ri与Rj的差值的绝对值有关。如果Ri>Rj,且Ri与Rj的差值的绝对值较大,说明用户的衰退倾向较大,差值的绝对值较小,说明用户的衰退倾向较小。本实施例通过将用户产生的预定用户行为的次数变化作为衡量用户行为衰退倾向的一个因子,能尽快获取到衰退的平台高价值用户,从而可以根据用户行为的衰退倾向采取及时干预措施,能大大减少应用平台的损失。
[0105]
在本实施例的一个可选实现方式中,第一衰退倾向因子可如下计算:
[0106]
[数0007]


[0107]
其中,GF为第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为第一预定时间周期i内产生预定用户行为的平 均次数,R j为第二预定时间周期j内产生预定用户行为的平均次数,其中,第一预定时间周期i的时间起点比第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[0108]
该可选实现方式中,第一预定时间周期i的时间起点比第二预定时间周期j的早,第一预定时间周期i的时间终点可以比第二预定时间周期j早,也可以相同。例如,第二预定时间周期j可以是前N(N>=1)天,而第一预定时间周期i为前M(M>=1)天,M>N;或者第一预定时间周期i为最近1周,而第二预定时间周期j为上一周等,第一预定时间周期i和第一预定时间周期j可根据实际情况进行选择,只要能够使得R i和R j表现出从前往后用户产生预定用户行为的平均次数的变化即可。例如,对于商业运营应用平台,第二预定时间周期j为最近一周,R j则为最近一周7天内的平均下单次数,第一预定时间周期i为最近一个月,R i则为最近一个月内的平均下单次数。该可选实现方式中采用指数函数量化用户产生预定用户行为的次数的下降趋势,在第一预定时间周期内产生预定用户行为的平均次数大于第二预定时间周期内产生预定用户行为的平均次数与次数阈值n之和时,即近期产生预定用户行为的平均次数相较于前期减少了,且减少量大于次数阈值n时,采用底数为a的指数函数量化产生预定用户行为的下降趋势,而第一预定时间周期内产生预定用户行为的平均次数小于或等于第二预定时间周期内产生预定用户行为的平均次数与次数阈值n之和时,即近期产生预定用户行为的平均次数相较于前期而言并未减少,或者减少量依然在次数阈值n范围之内时,则直接置第一衰退倾向因子为0。
[0109]
该可选实现方式中,i、j、a、n等参数的取值可根据实际情况进行设置。例如,对于外卖类的商业运营应用平台,把连续40天未下单的用户基本认定为流失,所以衰退倾向只刻画未下单时间不超过40天的用户,因此可以根据以下原则确定上述参数的选择:
[0110]
因为考虑到用户40天未下单可以认定为已经流失,所以可以初步选择i为最近2周的时间周期,而j为最近6周的时间周期。指数函数底数a的确定可以遵循以下原则:第一衰退倾向因子侧重于单量 的下降,假如认为用户7日平均下单量下降大于2时,由于单量下降巨大的用户其价值高,因此总衰退倾向值可以以第一衰退倾向因子的值为主导。而为了在用户7日平均下单量下降大于2时,使第一衰退倾向因子的值起主导作用,因此可以考虑使得第一衰退倾向因子的最小值大于或等于第二衰退倾向因子的最大值,这样通过使得a 2约等于第二衰退倾向因子的最大值,进而确定出底数a的值,当然也还可以根据其他情况对底数a的值进行调整设置,对此本实施例不做任何限制。而次数阈值n可以取大于等于0的整数,具体可视实际情况而定,而且还可以在不同时期调整成不同的值,例如确定用户下单行为的衰退倾向时,促销淡季可以将n的值设置成较大值,而在促销旺季将n的值设置成较小值,因为促销淡季用户下单的次数比促销旺季下单次数少是正常的,因此可以通过对次数阈值n的调整能够更加客观地刻画用户衰退倾向。
[0111]
该可选实现方式中第一衰退倾向因子的计算公式采用指数函数,使得随着用户产生预定用户行为的次数下降越大,第一衰退倾向因子的值越大,使得衰减倾向增长越快。因为用户产生预定用户行为次数高的用户通常是应用平台的高价值用户,这类用户的衰退倾向需要更及时干预,而通过该可选实现方式中第一衰退因子可以及时监测到用户产生预定用户行为的下降区域并予以及时干预。
[0112]
在本实施例的另一个可选实现方式中,第二确定模块202包括:第二确定子模块,根据第一时间间隔和第二时间间隔的比率确定第二衰退倾向因子,第一时间间隔为最后一次产生预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产生预定用户行为的平均时间间隔,第三预定时间周期的终点在最后一次产生预定用户行为的时间之前。该可选实现方式中,通过最近产生预定用户行为距当前时间的时间间隔与之前产生预定用户行为的平均时间间隔的比率来确定第二衰退倾向因子,如果比率越大,则第二衰退倾向因子越大,说明用户的衰退倾向也越大。第一时间间隔可以通过计算当前时间与用户最后一次产生预定行为的时间差值确定,计量单位可以是天、小时等。例如,系统平台记录用户最后产生预定行为的时间为4 天前,则距当前时间的时间间隔为4天,而4天前的一段时间(如7天或半个月等)内产生预定用户行为的平均时间间隔为2天,两者的比率为2,这时第二衰退倾向因子的大小由比率2来确定。
[0113]
在本实施例的一可选实现方式中,第二衰退倾向因子如下计算:
[0114]
[数0008]


[0115]
其中,R表示第一时间间隔,即最后一次产生预定用户行为距当前时间的时间间隔,Mi表示第二时间间隔,即在第三预定时间周期内产生预定用户行为的平均时间间隔,m为时间间隔阈值。
[0116]
该可选实现方式中,最后一次产生预定用户行为距当前时间的第一时间间隔小于或等于第三预定时间周期内产生预定用户行为的平均时间间隔即第二时间间隔与时间间隔阈值之和时,可以确定用户产生预定用户行为的时间间隔并未增大,或者时间间隔的增大量依然在时间间隔阈值m范围之内时,此时用户处于正常时期,并未进入衰退期,因此可将第二衰退倾向因子置为0;而在最后一次产生预定用户行为距当前时间的第一时间间隔大于第三预定时间周期内产生预定用户行为的平均时间间隔第二时间间隔与时间间隔阈值之和时,可以确定用户产生预定用户行为的时间间隔增大,并且超出了预先设置的时间间隔阈值m范围之外时,此时用户处于衰退期,因此通过上述对数函数确定第二衰退倾向因子。
[0117]
第三预定时间周期、m等参数的值可根据实际情况进行设置。假如,对于外卖类的商业运营应用平台,把连续40天未下单的用户基本认定为流失,那么可以将第三预定时间周期设置成40,Mi为用户最后一次下单之前的40天内的平均下单时间间隔。而时间间隔阈值m可以取大于等于0的整数,具体可视实际情况而定,而且还可以在不同时期调整成不同的值,例如在确定用户下单行为的衰退倾向时,促销淡季可以将m的值设置成较大值,而在促销旺季将m的值设置成 较小值,因为促销淡季用户下单的时间间隔比促销旺季下单的时间间隔长是正常的,因此可以通过对时间间隔阈值m的调整能够更加客观地刻画用户衰退倾向。
[0118]
在本实施例的另一可选实现方式中,预定用户行为的总衰退倾向值如下计算:
[0119]
DI=b×GF+c×GR
[0120]
其中,DI为预定用户行为的总衰退倾向值,GF为第一衰退倾向因子,GR为第二衰退倾向因子,b、c为权重值。
[0121]
该可选实现方式中,通过将第一衰退倾向因子和第二衰退倾向因子加权后相加来确定总衰退倾向值。b、c的值可以根据实际情况进行设置,对于不同行业、不同情况下第一衰退倾向因子和第二衰退倾向因子的影响力可以不同,有的行业第一衰退倾向因子更能体现用户的衰退倾向,有的行业第二衰退倾向因子可能更能体现用户的衰退倾向,同一行业在不同时期第一衰退倾向因子和第二衰退倾向因子在用户的衰退倾向上的比重也有可能不同,具体需要根据实际情况来判定,并设置参数b、c的值。
[0122]
在本实施例的另一种可选实现方式中,装置还包括:输出模块,被配置为按照预定用户行为的总衰退倾向值的高低输出预定用户行为的总衰退倾向值小于第一预定值的用户。该可选实现方式中,确定出用户的总衰退倾向值以后,如果总衰退倾向值小于第一预定值(可根据实际情况设置),则说明该用户处于衰退期,可以采取相应的干预措施,以防止用户的流失。按照顺序将总衰退倾向值小于第一预定值的所有用户进行输出,并针对不同的用户或用户群体采用不同的干预策略,可以防止应用平台用户的流失。
[0123]
本领域技术人员可以理解,上述数确定用户行为的衰退倾向的装置还包括一些其他公知结构,例如处理器、存储器等,为了不必要地模糊本公开的实施例,这些公知的结构在图2中未示出。
[0124]
图3是适于用来实现根据本公开实施方式的确定用户行为的衰退倾向方法的电子设备的结构示意图。
[0125]
如图3所示,电子设备300包括中央处理单元(CPU)301,其可 以根据存储在只读存储器(ROM)302中的程序或者从存储部分308加载到随机访问存储器(RAM)303中的程序而执行上述图1所示的实施方式中的各种处理。在RAM303中,还存储有系统300操作所需的各种程序和数据。CPU301、ROM302以及RAM303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。
[0126]
以下部件连接至I/O接口305:包括键盘、鼠标等的输入部分306;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分307;包括硬盘等的存储部分308;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分309。通信部分309经由诸如因特网的网络执行通信处理。驱动器310也根据需要连接至I/O接口305。可拆卸介质311,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器310上,以便于从其上读出的计算机程序根据需要被安装入存储部分308。
[0127]
特别地,根据本公开的实施方式,上文参考图1描述的方法可以被实现为计算机软件程序。例如,本公开的实施方式包括一种计算机程序产品,其包括有形地包含在及其可读介质上的计算机程序,计算机程序包含用于执行图1的键值数据处理方法的程序代码。在这样的实施方式中,该计算机程序可以通过通信部分309从网络上被下载和安装,和/或从可拆卸介质311被安装。
[0128]
附图中的流程图和框图,图示了按照本公开各种实施方式的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,路程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序产生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
[0129]
描述于本公开实施方式中所涉及到的单元或模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元或模块也可以设置在处理器中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定。
[0130]
作为另一方面,本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施方式中装置中所包含的计算机可读存储介质;也可以是单独存在,未装配入设备中的计算机可读存储介质。计算机可读存储介质存储有一个或者一个以上程序,程序被一个或者一个以上的处理器用来执行描述于本公开的方法。
[0131]
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

权利要求书

[权利要求 1]
一种确定用户衰退倾向的方法,其中,包括: 根据产生预定用户行为的次数确定第一衰退倾向因子; 根据产生所述预定用户行为的时间间隔确定第二衰退倾向因子; 基于所述第一衰退倾向因子和所述第二衰退倾向因子确定所述预定用户行为的总衰退倾向值。
[权利要求 2]
根据权利要求1所述的确定用户行为衰退倾向的方法,其中,根据产生预定用户行为的次数确定第一衰退倾向因子,包括: 根据在预定时间周期内产生所述预定用户行为的平均次数变化确定所述第一衰退倾向因子。
[权利要求 3]
根据权利要求1-2任一项所述的确定用户行为衰退倾向的方法,其中,所述第一衰退倾向因子如下计算: [数0001]


其中,GF为所述第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为所述第一预定时间周期i内产生所述预定用户行为的平均次数,R j为所述第二预定时间周期j内产生所述预定用户行为的平均次数,其中,所述第一预定时间周期i的时间起点比所述第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[权利要求 4]
根据权利要求1所述的确定用户行为衰退倾向的方法,其中,根据产生所述预定用户行为的时间间隔确定第二衰退倾向因子,包括: 根据第一时间间隔和第二时间间隔的比率确定所述第二衰退倾向因子,所述第一时间间隔为最后一次产生所述预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产生所述预定用户行为的平均时间间隔,所述第三预定时间周期的终点在最后一次产生所述预定用户行为的时间之前。
[权利要求 5]
根据权利要求1或4所述的确定用户行为衰退倾向的方法, 其中,所述第二衰退倾向因子如下计算: [数0002]


其中,R表示第一时间间隔,Mi表示第二时间间隔,所述第三预定时间周期的终点在最后一次产生所述预定用户行为的时间之前。
[权利要求 6]
根据权利要求1所述的确定用户行为衰退倾向的方法,其中,所述预定用户行为的总衰退倾向值如下计算: DI=b×GF+c×GR 其中,DI为所述预定用户行为的总衰退倾向值,GF为所述第一衰退倾向因子,所述GR为所述第二衰退倾向因子,b、c为权重值。
[权利要求 7]
根据权利要求1所述的确定用户行为衰退倾向的方法,其中,所述方法还包括: 按照所述预定用户行为的总衰退倾向值的高低输出所述预定用户行为的总衰退倾向值小于第一预定值的用户。
[权利要求 8]
一种确定用户行为衰退倾向的装置,其中,包括: 第一确定模块,被配置为根据产生预定用户行为的次数确定第一衰退倾向因子; 第二确定模块,被配置为根据产生所述预定用户行为的时间间隔确定第二衰退倾向因子; 第三确定模块,被配置为基于所述第一衰退倾向因子和所述第二衰退倾向因子确定所述预定用户行为的总衰退倾向值。
[权利要求 9]
根据权利要求8所述的确定用户行为衰退倾向的装置,其中,所述第一确定模块,包括: 第一确定子模块,被配置为根据在预定时间周期内产生所述预定用户行为的平均次数变化确定所述第一衰退倾向因子。
[权利要求 10]
根据权利要求8-9任一项所述的确定用户行为衰退倾向的装置,其中,所述第一衰退倾向因子如下计算: [数0003]


其中,GF为所述第一衰退倾向因子,i为第一预定时间周期,j为第二预定时间周期,R i为所述第一预定时间周期i内产生所述预定用户行为的平均次数,R j为所述第二预定时间周期j内产生所述预定用户行为的平均次数,其中,所述第一预定时间周期i的时间起点比所述第二预定时间周期j的早,a为底数,n为次数阈值,取值为大于或等于0的整数。
[权利要求 11]
根据权利要求8所述的确定用户行为衰退倾向的装置,其中,所述第二确定模块,包括: 第二确定子模块,被配置为根据第一时间间隔和第二时间间隔的比率确定所述第二衰退倾向因子,所述第一时间间隔为最后一次产生所述预定用户行为距当前时间的时间间隔,第二时间间隔为第三预定时间周期内产生所述预定用户行为的平均时间间隔,所述第三预定时间周期的终点在最后一次产生所述预定用户行为的时间之前。
[权利要求 12]
根据权利要求8或11所述的确定用户行为衰退倾向的装置,其中,所述第二衰退倾向因子如下计算: [数0004]


其中,R表示第一时间间隔,Mi表示第二时间间隔,所述第三预定时间周期的终点在最后一次产生所述预定用户行为的时间之前。
[权利要求 13]
根据权利要求8所述的确定用户行为衰退倾向的装置,其中,所述预定用户行为的总衰退倾向值如下计算: DI=b×GF+c×GR 其中,DI为所述预定用户行为的总衰退倾向值,GF为所述第一衰退倾向因子,所述GR为所述第二衰退倾向因子,b、c为权重值。
[权利要求 14]
根据权利要求8所述的确定用户行为衰退倾向的装置,其中,所述装置还包括: 输出模块,被配置为按照所述预定用户行为的总衰退倾向值的高低输出所述预定用户行为的总衰退倾向值小于第一预定值的用户。
[权利要求 15]
一种电子设备,其中,包括存储器和处理器;其中, 所述存储器用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被所述处理器执行以实现权利要求1-7任一项所述的方法。
[权利要求 16]
一种计算机可读存储介质,其上存储有计算机指令,其中,该计算机指令被处理器执行时实现权利要求1-7任一项所述的方法。

附图

[ 图 1]  
[ 图 2]  
[ 图 3]