このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2019031609) 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
Document

明 細 書

発明の名称 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

発明が解決しようとする課題

0005   0006  

課題を解決するための手段

0007   0008  

発明の効果

0009  

発明を実施するための形態

0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055  

実施例

0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084  

産業上の利用可能性

0085  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21  

明 細 書

発明の名称 : 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料

技術分野

[0001]
 本発明は、改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料に関する。

背景技術

[0002]
 温室効果ガス削減の観点からカーボンニュートラルである植物由来物質のプラスチック材料への利用が期待されている。植物由来物質には、主として糖由来のセルロース、ヘミセルロース、さらにリグニン等が含まれる。このうち、リグニンは、芳香環や、脂肪族水酸基及び芳香族水酸基を有していることからプラスチック材料として有用利用が望まれる。しかし、リグニンは生分解されにくく、溶剤に殆ど溶けず、また軟化点が高いため取り扱いにくいだけでなく、既存のプラスチック材料との反応性に乏しいことから、プラスチック材料としての用途が殆ど見出されていない。そのため、リグニンをプラスチック材料として好適なものとするため適切な改質を施し、さらにこの改質したリグニンを利用する技術の検討がなされている。
[0003]
 例えば、特許文献1にはリグニンを低分子化することなくベンゾオキサジン骨格をリグニンへ導入して反応性を付与させた変性リグニン、及び当該変性リグニンを含有することにより成形品の機械的強度等を向上させた成形材料に関する技術が開示されている。
 また、特許文献2では、リグニンとフェノール類を触媒の存在下で反応させてフェノール化した後、アルカリと共に加熱することでアルカリ化リグニンとし、さらにそこへアルデヒド類を加えることでヒドロキシメチル化リグニンとしてリングニンの反応性を上げる技術、及び当該反応性を上げたリグニンを結合剤組成物へ利用する技術が開示されている。
 また、特許文献3にはリグニン、フェノール類及びアルデヒド類を酸の存在下で反応させる製法により、硬化性を向上させて樹脂強度を改良させたフェノール変性リグニン樹脂等が開示されている。

先行技術文献

特許文献

[0004]
特許文献1 : 特許5671430号公報
特許文献2 : 特表2016-540058号公報
特許文献3 : 国際公開第2015/147165号

発明の概要

発明が解決しようとする課題

[0005]
 従来技術によれば、リグニンを含む材料の硬化反応性を向上させることがある程度可能である。ところが、金属部材代替の様な高品質材料を想定した場合、従来技術の手法では成形材の性能、例えば曲げ強度等が不十分である。そのため、リグニンのさらなる反応性の改良を行う必要がある。
[0006]
 そこで本発明は、既存のプラスチック材料との反応性を向上させた改質リグニン及び改質ポリフェノールの製造方法、並びに曲げ強度等の物性が向上した成形品を与えることができる改質リグニン含有樹脂組成材料を提供することを課題とする。

課題を解決するための手段

[0007]
 上記課題を解決すべく鋭意検討した結果、本発明者らはリグニンの基本骨格の骨格比率変換、脂肪族水酸基削減、さらには低分子量化を一つの反応で達成することで、上記課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[0008]
[1] 31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、
  31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である改質リグニン。
[2]ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物とを反応させる工程を有する、改質ポリフェノールの製造方法。
[3]前記改質リグニンを含む改質リグニン含有樹脂組成材料。

発明の効果

[0009]
 本発明によれば、既存のプラスチック材料との反応性を向上させた改質リグニン及び改質ポリフェノールの製造方法、並びに曲げ強度等の物性が向上した成形品を与えることができる改質リグニン含有樹脂組成材料を提供することができる。

発明を実施するための形態

[0010]
[改質リグニン]
(リグニンの基本骨格)
 リグニンは、p-ヒドロキシケイ皮アルコール類である3種類のリグニンモノマーが重合した高分子化合物であり、下記式(2)で表される基本骨格を有する。
[0011]
[化1]


[0012]
 上記式(2)において、置換基であるR 及びR は水素原子又はメトキシ基を示す。R 及びR の両方が水素原子のものはp-ヒドロキシフェニル核(H型骨格)、R 及びR のいずれか一方が水素原子のものはグアイアシル核(G型骨格)、R 及びR の両方が水素原子でないものはシリンギル核(S型骨格)と称される。
 なお、上記式(2)中のXは炭素原子、Yは水素原子又は炭素原子に結合していることを示す。
[0013]
 リグニンの基本骨格においてR 及びR と結合する炭素原子が反応性の高い反応点(以下、単に「反応点」と称すことがある。)となるが、R 及びR がメトキシ基である場合当該炭素原子の反応性が乏しくなる。そのためリグニンを反応させるためには、R 及びR は水素原子である必要がある。
 また、リグニンには上記芳香族部位だけではなく脂肪族部位も存在し、脂肪族部位に存在する水酸基は酸化安定性に乏しい(酸化によりアルデヒドやカルボン酸に変化しやすい)ため、脂肪族水酸基はできるだけ少ない方が既存プラスチック材料との反応性が好適である。
 さらにリグニンは、軟化点を大きく降下させることなく低分子量化させることで混合性が向上し、既存プラスチック材料との反応性が向上する。
 すなわち、脂肪族水酸基が少なく、反応性に富むH型骨格及びG型骨格のこれら2種の骨格が多く存在するリグニンであり、かつ軟化点を大きく降下させずに低分子量化したリグニンであれば、反応性に富み、プラスチック材料として好適なものとなる。
[0014]
 しかしながら、上記基本骨格の各型の存在率と脂肪族水酸基は、リグニンの原料植物の種類によって異なる。また、天然リグニンは元々分子量が測定できないほどの巨大分子であり、既存の分離手法では分子量を下げると軟化点も大きく下がってしまう欠点があった。
 例えば、木本系バイオマスにおいて、広葉樹由来のリグニンには上記G型骨格及びS型骨格が存在し、針葉樹由来のリグニンには上記G型骨格及びS型骨格が存在するがG型骨格の方が多く存在する。さらに、広葉樹及び針葉樹由来のリグニンにはH型骨格がほとんど存在しない。
 また、草本系バイオマス由来のリグニンには、上記H型骨格、G型骨格及びS型骨格が存在するがH型骨格の存在率は低い。
 また、針葉樹由来リグニンには脂肪族水酸基が多く、広葉樹由来リグニン、草本系リグニンの順番で脂肪族水酸基の存在は減少する。
 そこで、リグニンの反応性を上げるためには、H型骨格及びG型骨格の存在率を増やし、脂肪族水酸基を減少させ、軟化点を大きく下げないような低分子量化手法を用いてリグニン改質することが必要となる。
[0015]
(改質リグニン)
 本発明の改質リグニンは、 31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、同じく 31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である。さらに、本発明の改質リグニンは低分子量化されて数平均分子量が1,000未満であり、軟化点は90℃以上であることが好ましい。
[0016]
〈反応点(H型骨格×2+G型骨格)と非反応点(S型骨格)の存在率の比[(2H+G)/S]、及び脂肪族水酸基の存在率〉
 後述する製造方法における置換反応により原料リグニンは、上記R 及びR が水素原子となり、改質リグニンの反応点が増加し、また脂肪族水酸基が減少し、さらに軟化点を大幅に下げることなく低分子量化される。
 上述のとおりH型には反応点が2箇所、G型には1箇所であり、上記比[(2H+G)/S]が示すように、本発明の改質リグニンには反応点が多く存在し、反応性が良好なものである。
 しかしながら、スギ材等の針葉樹由来リグニンでは、改質前に上記比[(2H+G)/S]が3以上になることが分析上判明しているが、脂肪族水酸基が全水酸基(脂肪族水酸基及び芳香族水酸基の存在率の合計)に対して20%以上存在しておりプラスチック材料として好ましくない。
 したがって、上記比が2.5未満であるか、あるいは脂肪族水酸基の存在率が20%以上である場合、改質リグニンとしての反応性が十分でないためプラスチック材料としては好適なものとはならず、また曲げ強度等の物性が向上した成形品を与えることも期待できない。
[0017]
 これに対し本発明の改質リグニンは、前記存在率の比[(2H+G)/S]が2.5以上であり、かつ脂肪族水酸基及び芳香族水酸基の存在率の合計に対する脂肪族水酸基の存在率が20%未満である。また、改質リグニンの反応性をさらに向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる観点から、上記比[(2H+G)/S]は、2.8以上が好ましく、3.0以上がより好ましく、3.5以上がさらに好ましく、4.5以上がよりさらに好ましく、5.5以上がよりさらに好ましく、7.0以上がよりさらに好ましく、9.0以上がよりさらに好ましく、12.0以上がよりさらに好ましく、14.0以上がよりさらに好ましい。また、同観点から、脂肪族水酸基の上記存在率は、15%未満が好ましく、12%未満がより好ましく、10%未満がさらに好ましく、6%未満がよりさらに好ましく、3%未満がよりさらに好ましい。
[0018]
 なお、S型骨格、H型骨格及びG型骨格の相対存在率と脂肪族水酸基の上記存在率は、 31P-NMRで測定される積分値から求めた値であり、 31P-NMR測定についてより詳しくは、MAGNETIC RESONANCE IN CHEMISTRY, VOL. 33, 375-382 (1995) に記載のとおりである。本発明において、より具体的には、後述する実施例に記載する方法により測定することができる。
[0019]
〈低分子量化と軟化点〉
 本発明の改質リグニンは、後述する製造方法における置換反応により、R 及びR の分子鎖が改変されるため分子量が低下する。このように、リグニンは低分子量化されることによって、他のプラスチック材料との混合性(混練性又は攪拌性)が向上し、さらに曲げ強度等の物性が向上した成形品を与えることが期待できる。
[0020]
 上述のとおり、原料リグニンは置換反応により炭素鎖の開裂が発生することで低分子量化する。しかしながら、本発明の改質リグニンは、後述の製造方法において置換部位にフェノール化合物が必ず挿入されるため、低分子量化が起こってもさほど軟化点の低下は起こらない。したがって、本発明の改質リグニンは、軟化点が好ましくは90℃以上であり、より好ましくは130℃以上であり、さらに好ましくは160℃以上となることが可能である。上記軟化点が90℃以上であれば改質リグニンを含有する樹脂組成材料の成形・後硬化時に膨れ等の不具合が生じにくくなる。また、改質リグニンの軟化点は、好ましくは200℃以下であり、より好ましくは190℃以下であり、さらに好ましくは180℃以下であり、よりさらに好ましくは170℃以下である。上記軟化点が200℃以下であれば改質リグニンを含有する樹脂組成材料をより取扱いやすくなる。
 また、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下かつ重量平均分子量が1,900以上2,700以下であることが好ましく、数平均分子量が600以上900未満かつ重量平均分子量が1,100以上1,900未満であることが好ましく、数平均分子量が500以上600未満かつ重量平均分子量が900以上1,100未満であることが好ましい。
[0021]
 本発明の改質リグニンは、例えば分子量分布(Mw/Mn)が通常1.2~3.0程度であり、1.3~2.8であることが好ましく、1.4~2.5であることがより好ましく、1.5~2.0であることがさらに好ましく、1.5~1.9であることがよりさらに好ましく、1.5~1.8であることがよりさらに好ましい。
[0022]
 さらに、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下であれば軟化点は160℃以上200℃以下であることが好ましく、数平均分子量が600以上900未満であれば軟化点は130℃以上190℃以下であることが好ましく、数平均分子量が500以上600未満であれば軟化点は110℃以上170℃以下であることが好ましく、数平均分子量が300以上500未満であれば軟化点は90℃以上170℃以下であることが好ましい。
 また、本発明の改質リグニンは、例えば数平均分子量が900以上1,200以下かつ重量平均分子量が2,400以上3,000以下であれば軟化点は160℃以上200℃以下であることが好ましく、数平均分子量が600以上900未満かつ重量平均分子量が1,100以上2,400未満であれば軟化点は130℃以上190℃以下であることが好ましく、数平均分子量が500以上600未満かつ重量平均分子量が900以上1,100未満であれば軟化点は110℃以上170℃以下であることが好ましく、数平均分子量が300以上500未満かつ重量平均分子量が600以上900未満であれば軟化点は90℃以上170℃以下であることが好ましい。反応させる既存プラスチック材料の性質によってこれらを使い分けることが可能であり、混合性の改善により改質リグニンの反応性を向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる。
 なお、上記数平均分子量及び重量平均分子量は、後述する実施例に記載する方法により測定することができる。
[0023]
[改質ポリフェノールの製造方法]
 本発明の改質ポリフェノールの製造方法は、ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物(以下、単に「フェノール化合物」と称すことがある。)とを反応させる工程を有する。
[0024]
 本発明の改質ポリフェノールの製造方法は、例えばタンニン及びリグニン等のポリフェノール含有組成物の改質に適用した改質ポリフェノールの製造方法である。特に本発明の改質ポリフェノールの製造方法において、上記ポリフェノール含有組成物中に含まれる原料ポリフェノールは、プラスチック材料としての有用性の観点から、リグニンであることが好ましい。したがって、上記ポリフェノール含有組成物は、好ましくはリグニン含有組成物又はリグニンであり、より好ましくはリグニンであり、また、上記改質ポリフェノールは、好ましくは改質リグニンである。
 以下において、上記ポリフェノール含有組成物中に含まれる原料ポリフェノールがリグニン(以下、「原料リグニン」と称すことがある。)であって、改質ポリフェノールが改質リグニンである場合を例にして具体的に説明するが、本発明の改質ポリフェノールの製造方法はこれら原料リグニン及び改質リグニンに限定されるものではない。
[0025]
(反応工程)
〈リグニン〉
 本発明の改質ポリフェノールの製造方法において原料として用いられる原料リグニンは、木本系バイオマス及び草本系バイオマスの植物系バイオマス由来のものである。
 なお、本発明の改質リグニンの製造方法において、リグニン含有組成物として、木本系バイオマス及び草本系バイオマスの植物系バイオマス由来のバイオマス残渣等を使用することもできる。
 バイオマス残渣としては、黒液(サルファイトリグニン、クラフトリグニン、ソーダリグニン等)、及びタンニン等が挙げられ、これは1種又は2種以上を併用してもよい。
[0026]
 植物系バイオマスとしては、木本系バイオマス、草本系バイオマスが挙げられる。木本系バイオマスとしては、スギ、ヒノキ、ヒバ、サクラ、ユーカリ、ブナ、タケ等の針葉樹、広葉樹が挙げられる。
 草本系バイオマスとしては、パームヤシの樹幹・空房、パームヤシ果実の繊維及び種子、バガス(さとうきび及び高バイオマス量さとうきびの搾り滓)、ケーントップ(さとうきびのトップ及びリーフ)、エナジーケーン、稲わら、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、ヤトロファ種の皮及び殻、カシュー殻、スイッチグラス、エリアンサス、高バイオマス収量作物、エネルギー作物等が挙げられる。
 これらのなかでも、入手容易性や本発明において適用する製造方法との適合性の観点から、草本系バイオマスであることが好ましく、パームヤシの空房、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーン、それら有用成分抽出後の残渣がより好ましく、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーンがさらに好ましい。なお、上記有用成分には、例えば、ヘミセルロース、糖質、ミネラル、水分等が含まれる。
 バガスには、5~30質量%程度のリグニンが含まれる。また、バガス中のリグニンは基本骨格として、H核、G核及びS核の全てを含む。
 植物系バイオマスは、粉砕されたものを用いることもできる。また、ブロック、チップ、粉末、また水が含まれた含水物のいずれの形態でもよい。
[0027]
 植物系バイオマスから原料リグニンを分離する方法としては、オルガノソルブ法、加圧熱水法、水蒸気爆砕法、アンモニア処理法、アンモニア爆砕法、酸処理法、アルカリ処理法、酸化分解法、熱分解及びマイクロ波加熱法等が挙げられる。これらの中では、溶媒を容易に除去できる観点から、オルガノソルブ法が好ましい。
 具体的には、例えば、有機溶媒又は有機溶媒及び水を含む溶媒を用い、高温で処理することで植物系バイオマスに含まれるリグニンを溶媒に溶出させ、当該リグニン含有溶液を濾過してセルロース等を除去した後、溶液を濃縮、乾固することにより、原料リグニンを分離することができる。
[0028]
 原料リグニンの数平均分子量(Mn)は、通常500~10,000程度であり、1,000~5,000であることが好ましく、1,250~3,000であることがより好ましく、1,250~2,500であることがさらに好ましい。上記の範囲であれば、フェノール化合物への原料リグニンの溶解を反応温度においてスムーズに進行させることができる。
 また、原料リグニンの重量平均分子量(Mw)は、同上の理由から、通常1,000~100,000程度であり、2,000~10,000であることが好ましく、2,500~4,000程度であることがより好ましく、2,500~3,500であることがさらに好ましい。
 また、原料リグニンの分子量分布(Mw/Mn)は、同上の理由から、通常1.5~10.0程度であり、2.0~5.0であることが好ましく、2.0~3.0であることがより好ましく、2.0~2.5であることがさらに好ましい。
 なお、上記数平均分子量、重量平均分子量及び分子量分布は、後述する実施例に記載する方法により測定することができる。
[0029]
 上記バイオマス残渣をリグニン含有組成物(原料)として用いる場合は、まず含水状態のバイオマス残渣のpHを酸性へ調整する。そこにフェノール化合物を原料に含有されるリグニン量と重量で同量以上添加する。加熱を行い、水分を熱時除去する(フェノール化合物は高沸点でありディーン-スターク等の適切な油水分離装置を設けることで水分は除去可能である)。水分除去後1~2時間加熱を継続する。加熱液は不溶物を含んでおり、5C濾紙を用いて熱時濾過する。濾過固体は未反応物と無機夾雑物である。濾過液は減圧下で蒸留し、未反応フェノール化合物を除去する。蒸留で除去しきれないフェノール化合物は必要に応じてアセトンに溶解させ、貧溶媒である水で再沈殿等を繰り返すことで除去される。分離される固体は既に改質された改質リグニンである。蒸留時に残るフェノール化合物が後反応で問題にならなければそのまま使用することも可能である。
[0030]
〈フェノール化合物〉
 本発明の改質ポリフェノールの製造方法において用いられるフェノール化合物は、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子である必要がある。これは、上記2位、4位及び6位の位置(即ち、オルト位及びパラ位)が水素原子であるフェノール化合物は、その配向性により置換反応による置換基の受け皿として特に好適であり、原料リグニンとフェノール化合物を混合させることで、前述の式(2)で表される原料リグニンの基本骨格におけるR 及びR の置換基が、フェノール化合物の上記2位又は4位又は6位へ転移するからである。当該置換反応により、原料リグニンのR 又はR 又は両方が水素原子となり、前述の反応点が増加した改質リグニンとすることができる。
 したがって、当該置換反応により原料リグニン中のS型骨格が減少し、G型骨格及びH型骨格が増加して反応性が改善される。また、前述のとおり当該置換反応により原料リグニンの分子鎖が改変されることで分子量の低下が起こり、改質リグニンの混合性が改良されることとなる。
 フェノール化合物は、1種又は2種以上を併用してもよい。
[0031]
 また、フェノール化合物は下記式(1)で表される化合物であることが好ましい。当該フェノール化合物であることにより、上記置換基の受け皿が少なくとも3箇所となるため置換反応を良好に進行させることができる。
[0032]
[化2]


[0033]
 上記式(1)において、R 1及びR 2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R 1及びR 2は同一でも異なっていてもよい。
 炭素数1~15のアルキル基としては、直鎖状であってもよく分岐状であってよい。好ましくは炭素数1~15の直鎖状又は分岐状のアルキル基であり、より好ましくは炭素数1~10の直鎖状又は分岐状のアルキル基であり、さらに好ましくは炭素数1~5の直鎖状又は分岐状のアルキル基であり、よりさらに好ましくは炭素数1~5の直鎖状のアルキル基である。
[0034]
 上記式(1)で表されるフェノール化合物としては、フェノール、レゾルシノール、フロログルシン;メタクレゾール、3-エチルフェノール、及び3-プロピルフェノール等の3-アルキルフェノール;5-メチルレゾルシノール、5-エチルレゾルシノール、及び5-プロピルレゾルシノール等の5-アルキルレゾルシノール;3,5-ジメチルフェノール、3-メチル-5-エチル-フェノール、及び3,5-ジエチルフェノール等の3,5-ジアルキルフェノール等が挙げられる。
[0035]
 また、フェノール化合物が複数の水酸基を有することにより化合物の酸性度が上がり、触媒不要で反応が進行することが期待できる観点から、R 1及びR 2のうち少なくとも一方が水酸基であることがより好ましい。このようなフェノール化合物として具体的には、レゾルシノール、フロログルシン、5-アルキルレゾノシノール(5-メチルレゾルシノール、5-エチルレゾルシノール等)等が挙げられる。
[0036]
〈質量比[フェノール化合物/原料ポリフェノール]〉
 本発明の製造方法において、原料リグニン(原料ポリフェノール、バイオマス残渣の場合はバイオマス残渣中のリグニン)に対するフェノール化合物の質量比[フェノール化合物/原料リグニン]は通常0.1~15程度であるが、0.3~15が好ましく、0.5~15がより好ましく、1~15がさらに好ましく、1~13がよりさらに好ましく、1~12がよりさらに好ましく、1~10がよりさらに好ましく、1~5がよりさらに好ましい。原料リグニンに対するフェノール化合物の質量比が上記範囲であることによって、上述の置換反応を良好に進行させることができる。
 なお、バイオマス残渣に含まれるリグニンの含有量の算出は、ウィレーミルを用いて試料となる原料を粉砕し、105℃で乾燥する前処理を行った後、構成糖分析によって測定する。
[0037]
〈酸触媒〉
 本発明の製造方法において、リグニンとフェノール化合物との反応は、無触媒、又は、原料リグニン及び前記フェノール化合物の合計量に対し好ましくは0超~3.0質量%、さらには0.2~3.0質量%の酸触媒の存在下で反応が行われることが好ましい。
 上述のとおり反応に用いるフェノール化合物によって無触媒で反応を進行させることができる。反応が無触媒で進行することによって、例えば反応工程後の後処理(精製工程)を省略することが可能となり、また得られた改質リグニンをプラスチック材料として用いた成形品の曲げ強度等の物性向上を期待することができる。
[0038]
 また、酸触媒としては、リン酸、リン酸エステル、塩酸、硫酸、及び硫酸エステル等の無機酸、酢酸、ギ酸、シュウ酸、及びp-トルエンスルホン酸等の有機酸等が挙げられる。酸触媒は、1種又は2種以上を併用してもよい。
 上記反応に酸触媒を用いる場合、原料リグニン及びフェノール化合物の合計量に対し酸触媒の使用量は通常0超であれば特に制限はないが、酸触媒を添加することによる効果を良好に発揮でき、改質リグニン中に残存する不純物の観点から通常0.01~3.0質量%の酸触媒の存在下で反応が行われ、0.1~3.0質量%が好ましく、0.2~3.0質量%がより好ましく、0.4~2.6質量%がさらに好ましい。酸触媒の使用量が上記範囲であれば、上述の置換反応を良好に進行させることができる。
[0039]
〈反応温度及び時間〉
 反応温度は通常100℃以上であれば特に限定されないが、通常140℃超及び350℃以下程度であるが、140℃超及び300℃以下が好ましく、140℃超及び270℃以下がより好ましく、140℃超及び250℃以下がさらに好ましく、150~230℃がよりさらに好ましく、150~200℃がよりさらに好ましい。140℃超であればほとんどのフェノール化合物が溶解して反応を進行させることができ、また300℃以下であれば逆反応の進行を防ぐことができる。
 反応時間は通常0.1~15時間程度であるが、反応が十分に進行し原料リグニンを改質することができる観点から0.5時間以上であることが好ましく、1時間以上であることがより好ましく、また反応時間が長すぎても反応進行が期待できない観点から上限は10時間以下であることが好ましく、2~8時間であることがより好ましい。
[0040]
〈溶媒〉
 原料リグニンとフェノール化合物との反応は、無溶媒で行うことができる。また、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、及び芳香族類等の有機溶媒や水のいずれか1種以上を用いてもよく、エタノール、アセトン、水のいずれか1種以上を用いることが好ましい。改質リグニンに溶媒の混入を防ぎ、また反応後に溶媒を除去する工程を必要とせず効率的にする観点からは、無溶媒で行うことが好ましい。
[0041]
(精製工程)
 本発明の改質リグニンは、上述の反応工程を行うことにより製造される。よって、反応工程により得られた改質リグニン含有物をそのままプラスチック材料として用いることが可能であるが、反応工程の後に精製工程を行ってもよい。
〈固液分離〉
 上述の反応後、改質リグニンはフェノール化合物に溶解しているが、未反応物や無機残渣は固体として液中に存在している。これらは濾過(熱時)により除去することが好ましい。例えば、反応液はNO.5CあるいはNO.2等の濾紙を取り付けた加圧熱時濾過器に入れ、20~150℃程度、通常40~90℃程度で、0.1~0.99MPa程度、通常0.1~0.4MPa程度で加圧濾過する。濾過固体は適宜フェノール化合物で希釈及び/又は洗浄し、濾過してもよい。当該濾過において改質リグニンは濾液中に含まれる。また、例えば、反応生成液を水、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、テトラヒドロフラン等のエーテル類等の低沸点汎用親水性溶媒のいずれか1種以上で希釈及び/又は洗浄し、固液分離してもよい。当該固液分離において改質リグニンは溶液中に含まれる。
 固液分離を行う方法は特に限定されないが、濾過、フィルタープレス、遠心分離、脱水機等を挙げることができる。
〈蒸留〉
 蒸留は、例えば、反応工程により得られた改質リグニン含有物を、40~200℃程度、通常80~150℃程度の温度、3~20kPa程度、通常5~10kPa程度の減圧下、減圧蒸留して反応後のフェノール化合物を除去して精製することができる。当該蒸留において改質リグニンは固体として得られる。また、例えば、フェノール化合物以外の希釈溶媒を用いる場合は、フェノール化合物以外の溶媒を、溶媒の沸点を考慮した適当な温度で、減圧蒸留して低沸点汎用親水性溶媒を除去し、その後、上記と同様の方法でフェノール化合物を除去して行うことができる。当該蒸留において改質リグニンは固体として得られる。
〈減圧乾固〉
 蒸留により得られた改質リグニンを、通常50~200℃に加熱して、固体あるいは溶融状態で、真空乾燥することにより、反応後のフェノール化合物を除去して精製してもよい。また、蒸留後の加熱された流動状態にある改質リグニンを、そのまま同様の真空乾燥をすることにより、反応後のフェノール化合物を除去して精製してもよい。
〈再沈殿〉
 また、反応工程により得られた改質リグニン含有物を、アセトン等の溶媒に溶解させ、改質リグニンの貧溶媒であるイオン交換水等を加えて再沈殿させることにより反応後のフェノール化合物を除去して精製することができる。
 また、精製において、上記濾過、減圧蒸留、減圧乾固及び再沈殿を組み合わせてもよく、同じ工程を繰り返し行ってもよい。
 なお、改質リグニン中に残留するフェノール化合物は、特に限定されないが、通常30%未満であり、10%未満が好ましく、5%未満がより好ましく、1%未満がさらに好ましい。
[0042]
(改質度)
 本発明の改質ポリフェノールの製造方法により、原料リグニンの基本骨格に比べ、改質リグニンのH型骨格及びG型骨格が多く存在すると同時に原料リグニンの脂肪族水酸基は減少して、反応点が増加しかつ脂肪族水酸基が減少した改質リグニンを得ることができる。
 また、本発明の改質ポリフェノールの製造方法により、ポリフェノール含有組成物中の原料ポリフェノールよりも改質ポリフェノールの方が数平均分子量及び重量平均分子量が小さくなる。したがって、上述の製造方法により得られた改質リグニンは低分子量化して混合性が改善される。
 さらに、本発明の改質ポリフェノールの製造方法により、ポリフェノール含有組成物中の原料ポリフェノールよりも改質ポリフェノールの分子量分布(Mw/Mn)が小さくなることが好ましい。
 具体的には、本発明の製造方法により、 31P-NMRで測定される積分値から求めたH型骨格の相対存在率H(%)及びG型骨格の相対存在率H(%)に基づく反応点の合計[2H+G]を、改質の前後で通常3%以上増加させ、好ましくは4%以上増加させ、また上述した脂肪族水酸基の存在率が20%未満である改質リグニンにすることも可能である。さらに上記改質リグニンは、原料リグニンに比べ数平均分子量及び重量平均分子量は低下するが、好ましくは軟化点が90℃未満には下がらないものである。
[0043]
[改質リグニン含有樹脂組成材料及び成形品]
 本発明は、前述の改質リグニン又は前述の製造方法で製造される改質リグニンを含む改質リグニン含有材料、特に改質リグニン含有樹脂組成材料、並びにそれを用いた成形品をも提供する。また上記製造方法により得られた改質リグニン以外に、熱硬化性樹脂、熱可塑性樹脂等の樹脂成分が含まれていてもよい。改質リグニン以外の成分について、以下に説明する。
(熱硬化性樹脂)
 上記改質リグニン含有樹脂組成材料は、熱硬化性樹脂をさらに含有することができる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、アルキド樹脂等の他の一般的な熱硬化性樹脂が挙げられる。これらの中でも、改質リグニンと同様に、フェノール性水酸基を有しており、改質リグニンと反応することができ、改質リグニンの希釈剤としても使用可能であることから、フェノール樹脂が好ましい。フェノール樹脂の中でもノボラック系フェノール樹脂及びレゾール系フェノール樹脂がより好ましい。これら熱硬化性樹脂は、1種又は2種以上を併用してもよい。
[0044]
 上記改質リグニン含有樹脂組成材料における熱硬化性樹脂の含有量は、目的に応じて決定すればよいが、良好な物性や成形性を得る観点から、改質リグニン100質量部に対し、好ましくは100~300質量部、より好ましくは150~250質量部である。
[0045]
(アルデヒド類)
 また、上記改質リグニン含有樹脂組成材料は、アルデヒド類をさらに含有することができる。
 改質リグニンとアルデヒド類を含む改質リグニン含有樹脂組成材料により自己硬化型の成形材料とすることができる。
 アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、フルフラール、ベンズアルデヒド、フェニルアセトアルデヒド、サルチルアルデヒド等が挙げられ、これらの中でもホルムアルデヒドが好ましい。
[0046]
 改質リグニン中に含まれるフェノール基とホルムアルデヒドのモル比[ホルムアルデヒド/フェノール基]は、1.0~2.5であることが好ましく、1.2~2.0であることがより好ましい。モル比が上記範囲であれば反応時の硬化速度が低下するおそれがない。
 改質リグニンとアルデヒド類の硬化反応を促進させる観点からアルカリを用いることが好ましい。アルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリム、炭酸カリウム、アンモニア、テトラメチルアンモニウムヒドロキシド、アルキルアミン等を使用することができる。
 改質リグニンとアルデヒド類の硬化反応時の温度及び反応時間に制限はないが、通常60~130℃程度であり、反応時間は通常0.5時間~5時間程度である。
 なお、上記改質リグニン含有樹脂組成材料には、熱硬化性樹脂及びアルデヒド類から選ばれる1種又は2種以上を併用してさらに含有させてもよい。
[0047]
(充填剤)
 上記改質リグニン含有樹脂組成材料には、充填材をさらに含有させてもよい。充填材は、無機充填材であっても有機充填材であってもよい。
 無機充填材としては、球状又は破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、ガラス繊維、ガラスフレーク、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、酸化マグネシウム等が挙げられる。
 また有機充填材としては炭素繊維、アラミド繊維、紙粉、木粉、セルロース繊維、セルロース粉、籾殻粉、果実殻・ナッツ粉、キチン粉、澱粉等が挙げられる。
[0048]
 無機充填材及び有機充填材は1種又は2種以上を併用してもよく、その含有量は目的に応じて決定される。無機充填材及び/又は有機充填材が含有される場合には、無機充填材及び/又は有機充填材の含有量が適量であることが良好な物性や成形性を得るために望ましい。この観点から、無機充填材及び/又は有機充填材の含有量は、改質リグニン100質量部に対し、好ましくは50~200質量部、より好ましくは80~150質量部である。
[0049]
(硬化剤)
 改質リグニン含有樹脂組成材料には硬化剤をさらに含有させてもよい。
 硬化剤としては、ヘキサメチレンテトラミン、ヘキサホルムアルデヒド、及びパラホルムアルデヒド等が挙げられる。これらは、1種又は2種以上を併用してもよい。
 硬化剤に加え、さらに硬化速度及び硬化度を増進するためには、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、酸化カルシウム、及び酸化マグネシウム等の無機塩基、塩化亜鉛及び酢酸亜鉛等のルイス酸、トリエチルアミン等の触媒を用いてもよい。これらは、1種又は2種以上を併用してもよい。
[0050]
(その他の添加剤)
 本実施形態に係る樹脂組成材料には、該樹脂組成材料から得られる成形品の特性を損ねない範囲で各種添加剤を添加することができる。また、目的に応じてさらに、相溶化剤、界面活性剤等を添加することができる。
 相溶化剤としては、熱可塑性樹脂に無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用してもよい。
 また、界面活性剤としては、ステアリン酸、パルミチン酸、オレイン酸等の直鎖脂肪酸、またロジン類との分岐・環状脂肪酸等が挙げられるが、特にこれに限定されない。
 さらに、上述したものの他に配合可能な添加剤としては、可撓化剤、熱安定剤、紫外線吸収剤、難燃剤、帯電防止剤、消泡剤、チキソトロピー性付与剤、離型剤、酸化防止剤、可塑剤、低応力化剤、カップリング剤、染料、光散乱剤、少量の熱可塑性樹脂などが挙げられる。これらは、1種又は2種以上を併用してもよい。
[0051]
(熱可塑性樹脂)
 改質リグニン含有樹脂組成材料に配合可能な熱可塑性樹脂としては、200℃以下のガラス転移温度を持つ非晶性熱可塑性樹脂、若しくは融点が200℃以下である結晶性熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、例えば、ポリカーボネート系樹脂、スチレン系樹脂、ポリスチレン系エラストマー、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリル系樹脂(ポリメチルメタクリレート樹脂等)、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリアミド樹脂、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオールの組み合わせのポリエステルに代表される低融点ポリエステル樹脂(PET、PBT等)、ポリ乳酸及び/又はポリ乳酸を含む共重合体、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリフェニレンオキサイド樹脂(PPO)、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂(PPS)、フッ素樹脂、ケイ素樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂、ポリアミドエラストマー等、及びこれらと他のモノマーとの共重合体が挙げられる。
[0052]
 改質リグニンを熱可塑性樹脂の添加剤として使用する場合、例えば、特開2014-15579、国際公開第2016/104634号等に挙げられる従来公知の手法を用いることができる。当該改質リグニン樹脂組成材料における熱可塑性樹脂の含有量は、顕著な流動性及び強度を得る観点から、当該樹脂組成材料の全体量に対して、30質量%以上99.9質量%以下であることが好ましく、40質量%以上99.9質量%以下がより好ましく、45質量%以上99.9質量%以下が更に好ましく、50質量%以上99.9質量%以下が特に好ましい。
 前記改質リグニン含有樹脂組成材料は、上述したセルロース含有固形物、熱可塑性樹脂のほかに、熱可塑性樹脂組成材料と相溶可能な樹脂、添加剤、充填材が含まれていてもよい。
[0053]
(混練及び成形)
 改質リグニン含有樹脂組成材料に用いられる各成分の配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、ロール混練機、コニーダ等を用いる方法で行うことができる。混練の際の加熱温度は、通常100~300℃の範囲で適宜選択される。
 改質リグニン含有樹脂組成材料を成形する方法としては特に限定されない。例えば、プレス成形法、射出成形法、トランスファ成形法、中型成形、FRP成形法等が挙げられる。また、樹脂組成材料が熱可塑性樹脂組成材料である場合は、所定形状に成形する方法には、押出成形法、射出成形法等が挙げられる。
[0054]
 改質リグニン含有樹脂組成材料を用いた成形品の一例としては、改質リグニンと硬化剤とが配合されてなる樹脂組成材料を硬化させたもの、また各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じてさらに配合し、所定形状に成形した後に硬化させたもの、あるいは硬化させた後に成形加工したもの、改質リグニンを熱可塑性樹脂と混合してなる樹脂組成材料を成形加工したもの等を挙げることができる。このような改質リグニン含有樹脂組成材料を用いた成形品として、例えば、住宅用の断熱材、電子部品、フラックサンド用樹脂、コーテッドサンド用樹脂、含浸用樹脂、積層用樹脂、FRP成型用樹脂、自動車部品、自動車タイヤの補強材、OA機器、機械、情報通信機器、産業資材等が挙げられる。
[0055]
 改質リグニンは、樹脂組成材料以外にも、改質リグニン含有材料への利用可能性がある。改質リグニン含有樹脂組成材料以外の改質リグニン含有材料としては、例えば、カーボンブラック・炭素繊維等の炭素材料、グリース基材等の潤滑剤、抗酸化性・抗菌性等の食品・化粧品、セメント添加剤、コンクリート添加剤、バインダ、ゴム組成物、ガスバリアフィルム等の包装資材、植物活力剤・土壌改良剤等の農業資材、インク・トナー、接着剤、界面活性剤、紫外線吸収剤、蓄電池電極材料、水産生物等の成長促進剤、食品用変色防止剤等が挙げられる。
実施例
[0056]
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
[0057]
 実施例で得られた改質リグニン及び原料リグニンについて、下記の方法で各種測定を行った。
〈分子量測定〉
 各実施例で得られた改質リグニン並びに原料リグニン1及び2について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)を、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。なお、原料リグニン2はテトラヒドロフランに全溶解しないため、可溶分のみ測定した。測定装置及び条件は、以下のとおりである。
・分離カラム :東ソー株式会社製 「TSKgel SuperMultiporeHZ-M2本」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/min
・検出器   :示唆屈折率(RI)
・測定温度  :40℃
[0058]
〈基本骨格の相対存在率(%)及び水酸基割合(%)〉
(1)重クロロホルム、ピリジン、シクロヘキサノール(内部標準)を混合した溶媒を各実施例で得られた改質リグニン又は原料リグニン1及び2に加え、さらに、誘導体化試薬として2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholaneを添加し、50℃、1時間加熱した。なお、原料リグニン2はテトラヒドロフランに全溶解しないため、可溶分のみ測定した。その後、以下の測定条件で 31P-NMR測定を実施した。
・パルス幅   :30°
・繰り返し時間 :2秒
・測定範囲   :-60~200ppm
・積算回数   :200回
 内部標準であるシクロヘキサノール由来シグナルを145.2ppmとし、144.0~142.0ppmをS型骨格、141.0~136.6ppmをG型骨格と同定し、積分値から各基本骨格の相対存在率%を算出した。H型骨格の相対存在率は全芳香族水酸基量からS型骨格及びG型骨格の相対存在率を差引いて算出した。
 さらに、150.0~145.5ppmを脂肪族水酸基、144.7~136.6ppmを芳香族水酸基と同定し、積分曲線より脂肪族水酸基量(mol/g)、芳香族水酸基量(mol/g)を算出してそれぞれの水酸基割合%を求めた。
(2)存在率の比及び反応点
 上記各基本骨格の相対存在率%に基づき、
・S型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]、
・H型骨格の相対存在率H(%)及びG型骨格の相対存在率G(%)に基づく反応点の合計[2H+G]、
・[2H+G]についての改質前後の増加割合(%)
を算出した。
[0059]
〈軟化点(℃)〉
 各実施例で得られた改質リグニン又は原料リグニン1あるいは2(固体試料)を乳鉢で粉砕し、篩(40メッシュ)にかけて大きな粒子を取り除き、砕いた試料をアルミ製カップ(円形上部φ60、下部φ53×深さ15mm)に10~20mgに入れた。試料を入れたアルミ製カップをホットプレート(ASONEND-2A)に置き、ガラス板(厚さ0.5mm)でふたをした。80℃まで加熱後、10℃刻みに温度を上げ、ガラス越しに目視観察を行い、目視により溶解した温度を軟化点として採用した。
[0060]
<原料リグニン1>
 バガス(サトウキビの搾りカスを乾燥させたもの)500gを、1-ブタノール2.1Lと水3.3Lの存在下で、200℃、4時間、熱処理し1-ブタノール層を取り出した。取り出した1-ブタノール層を濾過(ワットマンNO.2ろ紙)し、セルロース含有固形物を除去した。濾液を濃縮し、乾固することで原料リグニン1を90g得た。
[0061]
<改質リグニン>
[実施例1]
(1)反応工程
 原料リグニン1を100質量部(100.0g)、フェノール100質量部、リン酸1質量部を撹拌可能な1.0Lの耐圧容器に入れて加熱し、フェノールが溶解したところで撹拌を開始した。そのまま加熱し続け、200℃で4時間加熱した。
(2)精製工程
・フェノールの蒸留除去:
 耐圧容器から反応液を取出し、クーゲルロールを用い、減圧下(5~10kPa)加熱(100~130℃)して反応液を減圧蒸留してフェノールを除去した。クーゲルロールでは反応後のフェノールは完全には除去できず改質リグニンに対し、約10質量%残留していた。
・改質リグニン再沈殿:
 上記フェノールを蒸留除去した改質リグニン1質量部(5.0g)に、2質量部のアセトンを加え、完全に溶解させた。ここに40質量部のイオン交換水を加えて改質リグニンを沈殿させた。沈殿した改質リグニンは遠心分離し回収した。この操作を3~4回繰り返し、反応後のフェノールを完全に除去し、改質リグニン1(4.5g)を得た。
[0062]
[実施例2]
 酸触媒を使用しない以外は実施例1と同様に行い、改質リグニン2(4.5g)を得た。
[実施例3]
 原料リグニン1を19質量部、フェノールを181質量部とした以外は実施例1と同様に行い、改質リグニン3(4.4g)を得た。
[実施例4]
 反応時間を8hにした以外は実施例3と同様に行い、改質リグニン4(4.5g)を得た。
[実施例5]
 反応温度を220℃にした以外は実施例3と同様に行い、改質リグニン5(4.5g)を得た。
[実施例6]
 触媒量を5質量部にする以外は実施例3と同様に行い、改質リグニン6(4.4g)を得た。
[実施例7]
 フェノールの代りにm-クレゾールを用いた以外は実施例3と同様に行い、改質リグニン7(4.5g)を得た。
[実施例8]
 原料リグニン1を61質量部、フェノールを139質量部とした以外は実施例1と同様に行い、改質リグニン8(4.6g)を得た。
[実施例9]
 酸触媒を使用しない以外は実施例8と同様に行い、改質リグニン9(4.5g)を得た。
[実施例10]
 反応温度を150℃、反応時間を1時間にした以外は実施例1と同様に行い、改質リグニン10(4.4g)を得た。
[実施例11]
 酸触媒を硫酸とした以外は実施例10と同様に行い、改質リグニン11(4.6g)を得た。
[実施例12]
 酸触媒を硫酸0.2質量部とした以外は実施例3と同様に行い、改質リグニン12(4.5g)を得た。
[0063]
 上記実施例1~12で得られた改質リグニン1~12、及び原料リグニン1の性状を表1に示す。
[0064]
[表1]



[0065]
<硬化物>
 次に、実施例1~12で得られた改質リグニン又は原料リグニン1を用い、次の各実施例及び比較例において樹脂組成材料及びこれを用いてなる成形体を製造した。
 また、当該樹脂組成材料及び成形体について下記の方法で評価を行った。
(混練容易性)
 実施例13~24及び比較例1において、混練時の容易性を次の指標に基づき評価した。
○:混練容易
△:困難だが混練可能
×:混練不可能
[0066]
(攪拌性)
 実施例25~36及び比較例2において、反応時の攪拌容易性を次の指標に基づき評価した。
○:攪拌容易
△:困難だが攪拌可能
×:攪拌不可能
[0067]
(曲げ強度)
 各実施例及び比較例において得られた成形体から、5mm×50mm×1mmの試料を切り出し、インストロンジャパン社製、インストロン5566型を用いて3点曲げモード、スパン30mm、速度2mm/分の条件で曲げ強度を測定し、指標に基づき評価した。
○:試料が割れにくかった
△:試料が割れた
×:試料がすぐに割れた
-:成形不良
[0068]
[実施例13~24]
 100質量部のノボラック型フェノール樹脂(住友ベークライト株式会社製、PR-53195)、50質量部の木粉、50質量部(50.0g)の上記実施例1~12で得られた改質リグニン1~12の各々、硬化剤としてヘキサメチレンテトラミンを20質量部、及び内部離型剤としてステアリン酸亜鉛を1質量部混合し、2本ロール混練機にて100~110℃で3分間混練して、改質リグニン含有樹脂組成材料を得た。
 上記得られた改質リグニン含有樹脂組成材料を、加熱した金型キャビティ内に圧入してトランスファ成形法により170℃、5分の成形条件にて成形し、オーブンで180℃、8時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表2に示す。
[0069]
[比較例1]
 改質リグニンの代わりに原料リグニン1を用いた以外は、実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表2(表2-1又は表2-2)に示す。
[0070]
[表2]



[0071]
[実施例25~36]
 還流装置と攪拌羽根を備えた0.5Lのセパラブルフラスコに、上記実施例1~12で得られた改質リグニン1~12の各々を50質量部(50.0g)、40質量%ホルムアルデヒド水溶液30質量部を加え攪拌した。ホルムアルデヒドと改質リグニン中のフェノールのモル比は1.5であった。50質量%炭酸ナトリウム水溶液35質量部を徐々に滴下しながら、100℃で2時間加熱し、液状の組成物を得た。
 さらに、木粉54質量部を加え均一になるまで攪拌し、改質リグニン含有樹脂組成材料を得た。
 上記得られた改質リグニン含有樹脂組成材料を、減圧して水分を除去し、面圧0.2MPa、180℃、10分でプレス成形した後、オーブンで200℃、4時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
[0072]
[比較例2]
 改質リグニンの代わりに原料リグニン1を用いた以外は、実施例25と同様に行い成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3(表3-1又は表3-2)に示す。
[0073]
[表3]



[0074]
 表2及び表3から、改質リグニン1~12は、原料リグニン1よりも容易な混練性、反応時の撹拌性が優れていることから、混合性について改良されていることが分かる。また、曲げ物性についても、原料リグニン1よりも改質リグニンを用いた成形体の方が良好なことが分かる。
[0075]
<原料リグニン2>
 原料リグニン2として、クラフトリグニン(SIGMA-ALDRICH社製のLignin,alkali(製品番号370959))を用いた。
<改質リグニン>
[実施例37]
 原料リグニン2を40質量部、フェノールを160質量部、酸触媒を硫酸0.4質量部、反応時間を2時間とした以外は実施例5と同様に行い、改質リグニン13(4.3g)を得た。
[0076]
[実施例38]
 酸触媒を使用せず、反応温度を300℃とした以外は実施例37と同様に行い、改質リグニン14(4.5g)を得た。
[0077]
 上記実施例37及び38で得られた改質リグニン13及び14、並びに原料リグニン2の性状を表4に示す。
[0078]
[表4]



[0079]
<硬化物>
 次に、実施例37で得られた改質リグニン13又は原料リグニン2を用い、次の各実施例及び比較例において樹脂組成材料及び成形体について前述の方法で、混練容易性、攪拌性、及び曲げ強度について評価を行った。
[0080]
[実施例39]
 改質リグニン13を用いた以外は実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表5に示す。
[比較例3]
 改質リグニンの代わりに原料リグニン2を用いた以外は、実施例13と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表5に示す。
[0081]
[表5]



[0082]
[実施例40]
 改質リグニン13を用いた以外は実施例25と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表6に示す。
[比較例4]
 改質リグニンの代わりに原料リグニン2を用いた以外は、実施例25と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表6に示す。
[0083]
[表6]



[0084]
 表5及び表6から、改質リグニン13は、原料リグニン2よりも容易な混練性、反応時の撹拌性が優れていることから、混合性について改良されていることが分かる。また、曲げ物性についても、原料リグニン2よりも改質リグニンを用いた成形体の方が良好なことが分かる。

産業上の利用可能性

[0085]
 本発明の改質リグニンは、低分子量化されて他のプラスチック材料との混合性が向上し、反応点が増加したものである。混合性の向上と反応点の増加により成形品の物性向上が期待でき、さらに混合が容易になることで硬化部材を製造するときにコストがかかる大掛かりな装置を不要とすることも可能である。また、これまでほとんど廃棄処分されていたリグニンが有効利用できるため、環境保全にも効果的である。

請求の範囲

[請求項1]
  31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]が2.5以上であり、
  31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率が20%未満である改質リグニン。
[請求項2]
 改質リグニンの軟化点が90℃以上である、請求項1に記載の改質リグニン。
[請求項3]
 改質リグニンの軟化点が130℃以上である、請求項1に記載の改質リグニン。
[請求項4]
 前記相対存在率の比[(2H+G)/S]が2.8以上である、請求項1~3に記載の改質リグニン。
[請求項5]
  31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する脂肪族水酸基の存在率が15%未満である、請求項1~4のいずれかに記載の改質リグニン。
[請求項6]
 ポリフェノール含有組成物と、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物とを反応させる工程を有する、改質ポリフェノールの製造方法。
[請求項7]
 前記フェノール化合物が下記式(1)で表される、請求項6に記載の改質ポリフェノールの製造方法。
[化1]



(式(1)において、R 1及びR 2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R 1及びR 2は同一でも異なっていてもよい。)
[請求項8]
 前記反応が、無触媒、又は、前記ポリフェノール含有組成物中の原料ポリフェノール及び前記フェノール化合物の合計量に対し0超~3.0質量%の酸触媒の存在下で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
[請求項9]
 前記反応が、無触媒、又は、前記ポリフェノール含有組成物中の原料ポリフェノール及び前記フェノール化合物の合計量に対し0.2~3.0質量%の酸触媒の存在下で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
[請求項10]
 前記反応が、無触媒で行われる、請求項6又は7に記載の改質ポリフェノールの製造方法。
[請求項11]
 前記ポリフェノール含有組成物中の原料ポリフェノールに対する前記フェノール化合物の質量比[フェノール化合物/原料ポリフェノール]が1~15である、請求項6~10のいずれかに記載の改質ポリフェノールの製造方法。
[請求項12]
 前記反応が、反応温度140℃超及び350℃以下で行われる、請求項6~11のいずれかに記載の改質ポリフェノールの製造方法。
[請求項13]
 前記反応が、反応温度140℃超及び250℃以下で行われる、請求項6~11のいずれかに記載の改質ポリフェノールの製造方法。
[請求項14]
 前記ポリフェノール含有組成物中の原料ポリフェノールよりも前記改質ポリフェノールの方が数平均分子量及び重量平均分子量が小さくなる、請求項6~13のいずれかに記載の改質ポリフェノールの製造方法。
[請求項15]
 前記ポリフェノール含有組成物がリグニン含有組成物であり、前記改質ポリフェノールが改質リグニンである、請求項6~14のいずれかに記載の改質ポリフェノールの製造方法。
[請求項16]
 前記ポリフェノール含有組成物がリグニンであり、前記改質ポリフェノールが改質リグニンである、請求項6~14のいずれかに記載の改質ポリフェノールの製造方法。
[請求項17]
  31P-NMRで測定される積分値から求めたH型骨格の相対存在率H(%)及びG型骨格の相対存在率H(%)に基づく反応点の合計[2H+G]が、改質の前後で4%以上増加する、請求項15又は16に記載の改質ポリフェノールの製造方法。
[請求項18]
 請求項1~5のいずれかに記載の改質リグニン及び請求項15~17のいずれかに記載の改質ポリフェノールの製造方法で製造される改質リグニンのいずれか1以上の改質リグニンを含む改質リグニン含有材料。
[請求項19]
 請求項1~5のいずれかに記載の改質リグニン及び請求項15~17のいずれかに記載の改質ポリフェノールの製造方法で製造される改質リグニンのいずれか1以上の改質リグニンを含む改質リグニン含有樹脂組成材料。
[請求項20]
 熱硬化性樹脂及びアルデヒド類のいずれか1種以上をさらに含有する、請求項19に記載の改質リグニン含有樹脂組成材料。
[請求項21]
 請求項19及び20に記載の改質リグニン含有樹脂組成材料のいずれか1以上を用いてなる成形品。