このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2019030920) 燃料電池のスタック構造および燃料電池スタックの熱歪吸収方法
Document

明 細 書

発明の名称 燃料電池のスタック構造および燃料電池スタックの熱歪吸収方法

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の概要

発明が解決しようとする課題

0004   0005  

課題を解決するための手段

0006   0007  

図面の簡単な説明

0008  

発明を実施するための形態

0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126  

符号の説明

0127  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19A   19B   19C   20A   20B   20C   21A   21B   21C   22A   22B  

明 細 書

発明の名称 : 燃料電池のスタック構造および燃料電池スタックの熱歪吸収方法

技術分野

[0001]
 本発明は、燃料電池のスタック構造および燃料電池スタックの熱歪吸収方法に関する。

背景技術

[0002]
 従来から、燃料電池は、電解質を燃料極と酸化剤極で挟んで構成した発電セルを含む積層部材に対してガスを供給して発電している。燃料電池は、状況に応じてガスを高速で供給したり高温で供給したりすることがあることから、積層部材に付与する荷重を調整して、その積層部材を保護する技術が知られている(例えば、特許文献1を参照。)。

先行技術文献

特許文献

[0003]
特許文献1 : 特開2013-20886号公報

発明の概要

発明が解決しようとする課題

[0004]
 特許文献1に記載の構成では、燃料電池を定常的に運転しているときには問題無いが、例えば運転前の燃料電池にガスを供給しつつ昇温しているときには積層部材に負荷が掛かって歪が生じる虞がある。すなわち、特許文献1に記載の構成では、歪みに伴うガスリークや荷重抜け、それらに起因する性能低下が生じる虞がある。
[0005]
 本発明の目的は、積層部材に発生する歪みを十分に抑制することができる燃料電池のスタック構造を提供することである。

課題を解決するための手段

[0006]
 上記目的を達成するための本発明の燃料電池のスタック構造は、電解質を燃料極と酸化剤極とで挟んで構成し供給されたガスによって発電する発電セルと前記発電セルにガスを供給する流路部と前記流路部にガスを流入させるガス流入口と前記流路部からガスを流出させるガス流出口とを形成したセパレータとを交互に積層した複数組の積層体を端部プレートに固定手段を用いて固定した構造である。ここで、前記積層体は、並列に配置され、その間に積層方向と直交する方向の熱歪を吸収する第1熱歪吸収部を形成した。
[0007]
 上記目的を達成するための本発明の燃料電池スタックの熱歪吸収方法は、電解質を燃料極と酸化剤極とで挟んで発電セルを形成し、前記発電セルを一対のセパレータで狭持して積層体を形成し、複数の前記積層体を積層して複数組の前記積層体の列を形成し、複数の前記積層体の列で空間部を形成しながら並列に配置し、前記積層体列間の前記空間部で積層方向と直交する方向の熱歪を吸収する。

図面の簡単な説明

[0008]
[図1] 第1実施形態の燃料電池を示す斜視図である。
[図2] 図1の燃料電池を部分的に分解して示す斜視図である。
[図3] 図2の燃料電池の一部を拡大して示す斜視図である。
[図4] 図2の燃料電池を別の方位(下方)から示す斜視図である。
[図5] 図2のセルスタックアッセンブリーと外部マニホールドを示す斜視図である。
[図6] 図5の上部エンドプレート(右半分)とスタック(右側)および下部エンドプレート(右半分)を示す斜視図である。
[図7] 図2のスタックを上部モジュールユニットと複数の中部モジュールユニットおよび下部モジュールユニットに分解した状態を示す斜視図である。
[図8] 図7の上部モジュールユニットを分解して示す斜視図である。
[図9] 図7の中部モジュールユニットを分解して示す斜視図である。
[図10] 図7の下部モジュールユニットを分解して示す斜視図である。
[図11] 図5~図7の一のセルユニットを分解し、かつ、その一のセルユニットの下方に位置する他のセルユニット(メタルサポートセルアッセンブリー以外の構成)を分解して示す斜視図である。
[図12] 図11のメタルサポートセルアッセンブリーを分解して示す斜視図である。
[図13] 図11のメタルサポートセルアッセンブリーを断面で示す側面図である。
[図14] 図11のセパレータをカソード側(図11と同じくセパレータ102を上方から視認した側)から示す斜視図である。
[図15] 図14のセパレータを部分的(図14中の領域15)に示す斜視図である。
[図16] 図11のセパレータをアノード側(図11と異なりセパレータ102を下方から視認した側)から示す斜視図である。
[図17] 図16のセパレータを部分的(図16中の領域17)に示す斜視図である。
[図18] 図11のメタルサポートセルアッセンブリーとセパレータおよび集電補助層を積層した状態で部分的に示す断面図である。
[図19A] 燃料電池におけるアノードガスおよびカソードガスの流れを模式的に示す斜視図である。
[図19B] 燃料電池におけるカソードガスの流れ(片方)を模式的に示す斜視図である。
[図19C] 燃料電池におけるアノードガスの流れ(片方)を模式的に示す斜視図である。
[図20A] 第1実施形態の燃料電池を示す模式図であって、起動前における燃料電池の状態を示す図である。
[図20B] 第1実施形態の燃料電池を示す模式図であって、急速昇温時における燃料電池の状態を示す図である。
[図20C] 第1実施形態の燃料電池を示す模式図であって、定常運転時における燃料電池の状態を示す図である。
[図21A] 第2実施形態の燃料電池を示す模式図であって、起動前における燃料電池の状態を示す図である。
[図21B] 第2実施形態の燃料電池を示す模式図であって、急速昇温時における燃料電池の状態を示す図である。
[図21C] 第2実施形態の燃料電池を示す模式図であって、定常運転時における燃料電池の状態を示す図である。
[図22A] 第3実施形態の燃料電池を示す模式図であって、起動前における燃料電池の状態を示す図である。
[図22B] 第3実施形態の燃料電池を示す模式図であって、急速昇温時における燃料電池の状態を示す図である。

発明を実施するための形態

[0009]
 以下、添付した図面を参照しながら、本発明の第1~第3実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、第1~第3実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。
[0010]
 各図において、X、Y、およびZで表す矢印を用いて、燃料電池を構成する部材の方位を示している。Xによって表す矢印の方向は、燃料電池100における1つのスタック100Sの短手方向Xを示している。Yによって表す矢印の方向は、燃料電池100における1つのスタック100Sの長手方向Yを示している。Zによって表す矢印の方向は、燃料電池100の積層方向Zを示している。
[0011]
 (第1実施形態)
 (燃料電池100の構成)
 図1は、第1実施形態の燃料電池100を示す斜視図である。図2は、図1の燃料電池100を部分的に分解して示す斜視図である。図3は、図2の燃料電池100の一部を拡大して示す斜視図である。図4は、図2の燃料電池100を別の方位(下方)から示す斜視図である。図5は、図2のセルスタックアッセンブリー100Mと外部マニホールド113を示す斜視図である。図6は、図5の上部エンドプレート109(右半分)とスタック100S(右側)および下部エンドプレート108(右半分)を示す斜視図である。図7は、図2のスタック100Sを上部モジュールユニット100Pと複数の中部モジュールユニット100Qおよび下部モジュールユニット100Rに分解した状態を示す斜視図である。図8は、図7の上部モジュールユニット100Pを分解して示す斜視図である。図9は、図7の中部モジュールユニット100Qを分解して示す斜視図である。図10は、図7の下部モジュールユニット100Rを分解して示す斜視図である。図11は、図8~図10の一のセルユニット100Tを分解し、かつ、その一のセルユニット100Tの下方に位置する他のセルユニット100T(メタルサポートセルアッセンブリー101以外の構成)を分解して示す斜視図である。
[0012]
 図12は、図11のメタルサポートセルアッセンブリー101を分解して示す斜視図である。図13は、図11のメタルサポートセルアッセンブリー101を断面で示す側面図である。図14は、図11のセパレータ102をカソード側(図11と同じくセパレータ102を上方から視認した側)から示す斜視図である。図15は、図14のセパレータ102を部分的(図14中の領域15)に示す斜視図である。図16は、図11のセパレータ102をアノード側(図11と異なりセパレータ102を下方から視認した側)から示す斜視図である。図17は、図16のセパレータ102を部分的(図16中の領域17)に示す斜視図である。図18は、図11のメタルサポートセルアッセンブリー101とセパレータ102および集電補助層103を積層した状態で部分的に示す断面図である。
[0013]
 燃料電池100は、図1および図2に示すように、セルスタックアッセンブリー100Mを、外部からガスを供給する外部マニホールド113と、セルスタックアッセンブリー100Mを保護するカバー115によって上下から挟み込んで、構成している。
[0014]
 セルスタックアッセンブリー100Mは、図2~図4に示すように、一対のスタック100Sを、一対の下部エンドプレート108と1つの上部エンドプレート109によって上下から挟み込み、カソードガスCGを封止するエアーシェルター112によって覆って、構成している。各々のスタック100Sは、図2~図7(特に図7)に示すように、上部モジュールユニット100P、複数の中部モジュールユニット100Qおよび下部モジュールユニット100Rを積層して、構成している。
[0015]
 燃料電池100において、上部モジュールユニット100Pは、図8に示すように、複数積層したセルユニット100Tを、セルユニット100Tで発電された電力を外部に出力する上部集電板106と、エンドプレートに相当するモジュールエンド105によって上下から挟み込んで構成している。中部モジュールユニット100Qは、図9に示すように、複数積層したセルユニット100Tを、一対のモジュールエンド105によって上下から挟み込んで構成している。下部モジュールユニット100Rは、図10に示すように、複数積層したセルユニット100Tを、モジュールエンド105と下部集電板107によって上下から挟み込んで構成している。
[0016]
 燃料電池100のユニット構造において、セルユニット100Tは、図11に示すように、供給されたガスによって発電する発電セル101Mを設けたメタルサポートセルアッセンブリー101、積層方向Zに沿って隣り合うメタルサポートセルアッセンブリー101の発電セル101Mを隔てるセパレータ102、メタルサポートセルアッセンブリー101の発電セル101Mとセパレータ102との間にガスを通す空間を形成しつつ面圧を均等にする集電補助層103、およびメタルサポートセルアッセンブリー101とセパレータ102のマニホールドの部分の縁を封止してガスの流れを制限する封止部材104を含んでいる。集電補助層103および封止部材104は、その構造上、積層方向Zに沿って隣り合うメタルサポートセルアッセンブリー101とセパレータ102との間に配置するものである。
[0017]
 ここで、燃料電池100の製造方法上、メタルサポートセルアッセンブリー101およびセパレータ102は、図11の中央に示すように、各々の外縁を接合ラインVに沿って環状に接合して接合体100Uを構成する。このため、積層方向Zに沿って隣り合う接合体100U(メタルサポートセルアッセンブリー101およびセパレータ102)の間に、集電補助層103および封止部材104を配置する構成としている。すなわち、集電補助層103および封止部材104は、図11の下方に示すように、一の接合体100Uのメタルサポートセルアッセンブリー101と、一の接合体100Uと積層方向Zに沿って隣り合う他の接合体100Uのセパレータ102との間に、配置している。
[0018]
 以下、燃料電池100を構成毎に説明する。
[0019]
 メタルサポートセルアッセンブリー101は、図12および図13に示すように、供給されたガスによって発電する発電セル101Mを設けたものである。
[0020]
 メタルサポートセルアッセンブリー101は、図12および図13に示すように、長手方向Yに沿って2つ並べて配置したメタルサポートセル101Nと、メタルサポートセル101Nを周囲から保持するセルフレーム101Wによって構成している。
[0021]
 メタルサポートセル101Nは、発電セル101Mと、発電セル101Mを一方から支持するサポートメタル101Vによって構成している。メタルサポートセルアッセンブリー101において、発電セル101Mは、図12および図13に示すように、電解質101Sをアノード101Tとカソード101Uで挟み込んで構成している。
[0022]
 アノード101Tは、図12および図13に示すように、燃料極であって、アノードガスAG(例えば水素)と酸化物イオンを反応させて、アノードガスAGの酸化物を生成するとともに電子を取り出す。アノード101Tは、還元雰囲気に耐性を有し、アノードガスAGを透過させ、電気伝導度が高く、アノードガスAGを酸化物イオンと反応させる触媒作用を有する。アノード101Tは、電解質101Sよりも大きい長方体形状から形成されている。アノード101Tは、例えば、ニッケル等の金属、イットリア安定化ジルコニア等の酸化物イオン伝導体を混在させた超硬合金からなる。アノード101Tは、図12および図13に示すように、薄板状であって長方形状からなる。
[0023]
 電解質101Sは、図12および図13に示すように、カソード101Uからアノード101Tに向かって酸化物イオンを透過させるものである。電解質101Sは、酸化物イオンを通過させつつ、ガスと電子を通過させない。電解質101Sは、長方体形状から形成されている。電解質101Sは、例えば、イットリア、酸化ネオジム、サマリア、ガドリア、スカンジア等を固溶した安定化ジルコニアなどの固体酸化物セラミックスからなる。電解質101Sは、図12および図13に示すように、薄板状であって、アノード101Tよりも若干大きい長方形状からなる。電解質101Sの外縁は、図10に示すように、アノード101Tの側に向かって屈折して、アノード101Tの積層方向Zに沿った側面に接触している。電解質101Sの外縁の先端は、サポートメタル101Vに接触している。
[0024]
 カソード101Uは、図12および図13に示すように、酸化剤極であって、カソードガスCG(例えば空気に含まれる酸素)と電子を反応させて、酸素分子を酸化物イオンに変換する。カソード101Uは、酸化雰囲気に耐性を有し、カソードガスCGを透過させ、電気伝導度が高く、酸素分子を酸化物イオンに変換する触媒作用を有する。カソード101Uは、電解質101Sよりも小さい長方体形状から形成されている。カソード101Uは、例えば、ランタン、ストロンチウム、マンガン、コバルト等の酸化物からなる。カソード101Uは、図12および図13に示すように、アノード101Tと同様に、薄板状であって長方形状からなる。カソード101Uは、電解質101Sを介して、アノード101Tと対向している。電解質101Sの外縁がアノード101T側に屈折していることから、カソード101Uの外縁は、アノード101Tの外縁と接触することがない。
[0025]
 サポートメタル101Vは、図12および図13に示すように、発電セル101Mをアノード101Tの側から支持するものである。サポートメタル101Vは、ガス透過性を有し、電気伝導度が高く、十分な強度を有する。サポートメタル101Vは、アノード101Tよりも十分に大きい長方体形状から形成されている。サポートメタル101Vは、例えば、ニッケルやクロムを含有する耐食合金や耐食鋼、ステンレス鋼からなる。
[0026]
 セルフレーム101Wは、図12および図13に示すように、メタルサポートセル101Nを周囲から保持するものである。セルフレーム101Wは、薄い長方形状から形成している。セルフレーム101Wは、一対の開口部101kを、長手方向Yに沿って設けている。セルフレーム101Wの一対の開口部101kは、それぞれ長方形状の貫通口からなり、サポートメタル101Vの外形よりも小さい。セルフレーム101Wは、金属からなり、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セルフレーム101Wに酸化アルミニウムを固着させて構成する。セルフレーム101Wの開口部101kの内縁に、サポートメタル101Vの外縁を接合することによって、セルフレーム101Wにメタルサポートセルアッセンブリー101を接合している。
[0027]
 セルフレーム101Wは、図12および図13に示すように、長手方向Yに沿った一辺の右端と中央と左端から、面方向に延ばした円形状の延在部(第1延在部101p、第2延在部101qおよび第3延在部101r)を設けている。セルフレーム101Wは、長手方向Yに沿った他辺の中央から離間した2箇所から、面方向に延ばした円形状の延在部(第4延在部101sおよび第5延在部101t)を設けている。セルフレーム101Wにおいて、第1延在部101p、第2延在部101qおよび第3延在部101rと、第4延在部101sおよび第5延在部101tは、一対の開口部101kを隔てて、長手方向Yに沿って交互に位置している。
[0028]
 セルフレーム101Wは、図12に示すように、アノードガスAGを通過(流入)させるアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101cを、第1延在部101p、第2延在部101qおよび第3延在部101rに設けている。セルフレーム101Wは、アノードガスAGを通過(流出)させるアノード側第1流出口101dおよびアノード側第2流出口101eを、第4延在部101sおよび第5延在部101tに設けている。アノードガスAGのアノード側第1流入口101a、アノード側第2流入口101b、アノード側第3流入口101c、アノード側第1流出口101dおよびアノード側第2流出口101eは、いわゆる、マニホールドである。
[0029]
 セルフレーム101Wは、図12に示すように、カソードガスCGを通過(流入)させるカソード側第1流入口101fを、第1延在部101pと第2延在部101qの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流入)させるカソード側第2流入口101gを、第2延在部101qと第3延在部101rの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第1流出口101hを、第4延在部101sよりも図12中の右側に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第2流出口101iを、第4延在部101sと第5延在部101tの間の空間に設けている。セルフレーム101Wは、カソードガスCGを通過(流出)させるカソード側第3流出口101jを、第5延在部101tよりも図12中の左側に設けている。セルフレーム101Wにおいて、カソード側第1流入口101f、カソード側第2流入口101g、カソード側第1流出口101h、カソード側第2流出口101iおよびカソード側第3流出口101jは、セルフレーム101Wの外周面とエアーシェルター112の内側面との空間に相当する。
[0030]
 セパレータ102は、図11および図14~図18に示すように、積層するメタルサポートセルアッセンブリー101の各々の発電セル101Mと発電セル101Mとの間に設け、隣り合う発電セル101Mを隔てるものである。
[0031]
 セパレータ102は、メタルサポートセルアッセンブリー101と対向して配置している。セパレータ102は、メタルサポートセルアッセンブリー101と同様の外形形状からなる。セパレータ102は、金属からなり、発電セル101Mと対向する領域(流路部102L)を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、セパレータ102に酸化アルミニウムを固着させて構成する。セパレータ102は、流路部102Lを、発電セル101Mと対向するように長手方向Yに並べて設けている。
[0032]
 セパレータ102において、流路部102Lは、図11および図14~図18に示すように、ガスの流れの方向(短手方向X)に沿って延ばした流路を、ガスの流れの方向(短手方向X)と直交する方向(長手方向Y)に並べることによって形成している。流路部102Lは、図15、図17および図18に示すように、長手方向Yおよび短手方向Xの面内において平坦な平坦部102xから下方に突出するように、凸状のアノード側突起102yを一定の間隔で設けている。アノード側突起102yは、ガスの流れの方向(短手方向X)に沿って延びている。アノード側突起102yは、セパレータ102の下端から下方に向かって突出している。流路部102Lは、図15、図17および図18に示すように、平坦部102xから上方に突出するように、凸状のカソード側突起102zを一定の間隔で設けている。カソード側突起102zは、ガスの流れの方向(短手方向X)に沿って延びている。カソード側突起102zは、セパレータ102の上端から上方に向かって突出している。流路部102Lは、アノード側突起102yと凸状のカソード側突起102zを、平坦部102xを隔てて、長手方向Yに沿って交互に設けている。
[0033]
 セパレータ102は、図17および図18に示すように、流路部102Lと、その下方(図18中では右方)に位置するメタルサポートセルアッセンブリー101との隙間を、アノードガスAGの流路として構成している。アノードガスAGは、図16に示すセパレータ102のアノード側第2流入口102b等から、図16および図17に示す複数の溝102qを通り、アノード側の流路部102Lに流入する。セパレータ102は、図16および図17に示すように、複数の溝102qを、アノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102cから、それぞれアノード側の流路部102Lに向かって放射状に形成している。セパレータ102は、図15および図18に示すように、流路部102Lと、その上方(図18中では左方)に位置するメタルサポートセルアッセンブリー101との隙間を、カソードガスCGの流路として構成している。カソードガスCGは、図14に示すセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gから、図14および図15に示すセパレータ102のカソード側の外縁102pを越えて、カソード側の流路部102Lに流入する。セパレータ102は、図15に示すように、カソード側の外縁102pを、他の部分よりも肉薄に形成している。
[0034]
 セパレータ102は、図11、図14および図16に示すように、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口102a、アノード側第2流入口102b、アノード側第3流入口102c、アノード側第1流出口102dおよびアノード側第2流出口102eを設けている。セパレータ102は、メタルサポートセルアッセンブリー101と積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを設けている。セパレータ102において、カソードガスCGのカソード側第1流入口102f、カソード側第2流入口102g、カソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jは、セパレータ102の外周面とエアーシェルター112の内側面との空間に相当する。
[0035]
 集電補助層103は、図11に示すように、発電セル101Mとセパレータ102との間にガスを通す空間を形成しつつ面圧を均等にして、発電セル101Mとセパレータ102との電気的な接触を補助するものである。
[0036]
 集電補助層103は、いわゆる、エキスパンドメタルである。集電補助層103は、発電セル101Mとセパレータ102の流路部102Lとの間に配置している。集電補助層103は、発電セル101Mと同様の外形形状からなる。集電補助層103は、菱形等の開口を格子状に設けた金網状からなる。
[0037]
 封止部材104は、図11に示すように、メタルサポートセルアッセンブリー101とセパレータ102との隙間を部分的に封止してガスの流れを制限するものである。
[0038]
 封止部材104は、スペーサーとシールの機能を備え、いわゆるガスケットである。封止部材104は、セパレータ102のアノード側流入口(例えばアノード側第1流入口102a)およびアノード側流出口(例えばアノード側第1流出口102d)から、セパレータ102のカソード側の流路に向かって、アノードガスAGが混入することを防止する。封止部材104は、リング状に形成している。封止部材104は、セパレータ102のカソード側の面に臨んでいるアノード側流入口(例えばアノード側第1流入口102a)、およびアノード側流出口(例えばアノード側第1流出口102d)の内周縁に接合する。封止部材104は、例えば、耐熱性およびシール性を有するサーミキュライトからなる。
[0039]
 モジュールエンド105は、図8~図10に示すように、複数積層したセルユニット100Tの下端または上端を保持するプレートである。
[0040]
 モジュールエンド105は、複数積層したセルユニット100Tの下端または上端に配置している。モジュールエンド105は、セルユニット100Tと同様の外形形状からなる。モジュールエンド105は、ガスを透過させない導電性材料からなり、発電セル101Mおよび他のモジュールエンド105と対向する一部の領域を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、モジュールエンド105に酸化アルミニウムを固着させて構成する。
[0041]
 モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口105a、アノード側第2流入口105b、アノード側第3流入口105c、アノード側第1流出口105dおよびアノード側第2流出口105eを設けている。モジュールエンド105は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jを設けている。モジュールエンド105において、カソード側第1流入口105f、カソード側第2流入口105g、カソード側第1流出口105h、カソード側第2流出口105iおよびカソード側第3流出口105jは、モジュールエンド105の外周面とエアーシェルター112の内側面との空間に相当する。
[0042]
 上部集電板106は、図8に示し、セルユニット100Tで発電された電力を外部に出力するものである。
[0043]
 上部集電板106は、図8に示すように、上部モジュールユニット100Pの上端に配置している。上部集電板106は、セルユニット100Tと同様の外形形状からなる。上部集電板106は、外部の通電部材と接続される端子(不図示)を設けている。上部集電板106は、バネ110を配置するための円筒形状の窪部106aを、上面に複数設けている。上部集電板106は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部集電板106に酸化アルミニウムを固着させて構成する。
[0044]
 下部集電板107は、図10に示し、セルユニット100Tで発電された電力を外部に出力するものである。
[0045]
 下部集電板107は、図10に示すように、下部モジュールユニット100Rの下端に配置している。下部集電板107は、上部集電板106と同様の外形形状からなる。下部集電板107は、外部の通電部材と接続される端子(不図示)を設けている。下部集電板107は、ガスを透過させない導電性材料からなり、セルユニット100Tの発電セル101Mと対向する領域および端子の部分を除いて、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部集電板107に酸化アルミニウムを固着させて構成する。
[0046]
 下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口107a、アノード側第2流入口107b、アノード側第3流入口107c、アノード側第1流出口107dおよびアノード側第2流出口107eを設けている。下部集電板107は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jを設けている。下部集電板107において、カソード側第1流入口107f、カソード側第2流入口107g、カソード側第1流出口107h、カソード側第2流出口107iおよびカソード側第3流出口107jは、下部集電板107の外周面とエアーシェルター112の内側面との空間に相当する。
[0047]
 下部エンドプレート108は、一対からなり、図2、図3、図5および図6(特に図5)に示すように、一対のスタック100Sを下方から保持するものである。
[0048]
 下部エンドプレート108は、一対からなり、カソードガスCGを流出させる側の外縁を対向させるように短手方向Xに沿って並べた状態で、スタック100Sの下端に配置している。下部エンドプレート108は、一部を除いて、セルユニット100Tと同様の外形形状からなる。下部エンドプレート108は、カソードガスCGの流入口および排出口を形成するために、長手方向Yに沿った両端を直線状に伸長させて形成している。下部エンドプレート108は、図3および図6に示すように、長手方向Yに沿ったカソードガスCGの流入口の側の外縁の両端に、第1締結ボルト111をネジ留めするための一対のネジ穴108mを設けている。下部エンドプレート108は、図3および図6に示すように、長手方向Yに沿った一対のネジ穴108mよりも内方に、第2締結ボルト114を挿入するための一対の挿入穴108nを設けている。下部エンドプレート108は、セルユニット100Tよりも十分に厚く形成している。下部エンドプレート108は、例えば、金属からなり、下部集電板107と接触する上面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、下部エンドプレート108に酸化アルミニウムを固着させて構成する。
[0049]
 下部エンドプレート108は、図6に示すように、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口108a、アノード側第2流入口108b、アノード側第3流入口108c、アノード側第1流出口108dおよびアノード側第2流出口108eを設けている。下部エンドプレート108は、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソードガスCGを通過させるカソード側第1流入口108f、カソード側第2流入口108g、カソード側第1流出口108h、カソード側第2流出口108iおよびカソード側第3流出口108jを設けている。
[0050]
 上部エンドプレート109は、図2~図6(特に図5)に示すように、一対のスタック100Sを上方から保持するものである。
[0051]
 上部エンドプレート109は、スタック100Sの上端に配置している。上部エンドプレート109は、下部エンドプレート108を長手方向Yを軸にして短手方向Xに沿って左右対称に一体化した外形形状からなる。上部エンドプレート109は、図3および図6に示すように、長手方向Yに沿ったカソードガスCGの流入口の側の外縁の両端に、第1締結ボルト111を挿入するための一対の挿入穴109nを設けている。上部エンドプレート109は、下部エンドプレート108と異なり、ガスの流入口および排出口を設けていない。上部エンドプレート109は、例えば、金属からなり、上部集電板106と接触する下面を、絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、上部エンドプレート109に酸化アルミニウムを固着させて構成する。
[0052]
 バネ110は、図5および図6に示すように、一対のスタック100Sに弾性力を与えるものである。
[0053]
 バネ110は、上部集電板106の複数の窪部106aと上部エンドプレート109の間に、それぞれ配置している。バネ110は、例えば、耐クリープ性を備えた螺旋状の金属バネからなる。バネ110は、いわゆる板バネによって構成してもよい。
[0054]
 第1締結ボルト111は、図3~図5(特に図3)に示すように、一対のスタック100SのカソードガスCGの流入口の側に締結力を与えるものである。
[0055]
 第1締結ボルト111は、図5に示すように、4つ設け、上部エンドプレート109に四箇所設けられた挿入穴109nに挿入して、一対の下部エンドプレート108にそれぞれ二箇所設けられたネジ穴108mにネジ留めしている。第1締結ボルト111は、上部エンドプレート109と一対の下部エンドプレート108との間に配置された一対のスタック100Sに対して、各々のカソードガスCGの流入口の側に締結力を与える。
[0056]
 エアーシェルター112は、図2および図4に示すように、一対のスタック100Sとの間において、カソードガスCGの流路を形成するものである。
[0057]
 エアーシェルター112は、図2および図4に示すように、一対の下部エンドプレート108と1つの上部エンドプレート109によって挟み込まれた一対のスタック100Sを上方から覆う。エアーシェルター112は、エアーシェルター112の内側面とスタック100Sの側面との隙間の部分によって、スタック100Sの構成部材のカソードガスCGの流入口と流出口を形成する。エアーシェルター112は、箱形状からなり、下部の全てと側部の一部を開口している。エアーシェルター112は、例えば、金属からなり、内側面を絶縁材またはコーティングを用いて絶縁している。絶縁材は、例えば、エアーシェルター112に酸化アルミニウムを固着させて構成する。
[0058]
 外部マニホールド113は、図1~図5に示すように、外部から複数のセルユニット100Tにガスを供給するものである。
[0059]
 外部マニホールド113は、セルスタックアッセンブリー100Mの下方に配置している。外部マニホールド113は、下部エンドプレート108の形状を単純化した外形形状からなる。外部マニホールド113は、図5に示すように、長手方向Yに沿ったカソードガスCGの流入口の側の外縁に、第2締結ボルト114をネジ留めするためのネジ穴113mを設けている。外部マニホールド113は、下部エンドプレート108よりも十分に厚く形成している。外部マニホールド113は、例えば、金属からなる。
[0060]
 外部マニホールド113は、図5に示すように、セルユニット100Tと積層方向Zに沿って相対的な位置が合うように、アノードガスAGを通過させるアノード側第1流入口113a、アノード側第2流入口113b、アノード側第3流入口113c、アノード側第1流出口113dおよびアノード側第2流出口113eを設けている。外部マニホールド113は、カソードガスCGを通過させるセルユニット100Tと積層方向Zに沿って相対的な位置が合うように、カソード側第1流入口113f、カソード側第2流入口113g、カソード側第1流出口113h、カソード側第2流出口113iおよびカソード側第3流出口113jを設けている。外部マニホールド113は、カソード側第1流入口113f、カソード側第2流入口113g、カソード側第1流出口113h、カソード側第2流出口113iおよびカソード側第3流出口113jを、長手方向Yを軸にして短手方向Xに沿って左右対称に2組設けている。
[0061]
 第2締結ボルト114は、図3~図5(特に図3)に示すように、一対の下部エンドプレート108のカソードガスCGの流入口の側に締結力を与えるものである。
[0062]
 第2締結ボルト114は、図5に示すように、4つ設け、一対の下部エンドプレート108にそれぞれ二箇所設けられた挿入穴108nに挿入して、外部マニホールド113に四箇所設けられたネジ穴113mにネジ留めしている。第2締結ボルト114は、一対の下部エンドプレート108に対して、各々のカソードガスCGの流入口の側に締結力を与える。
[0063]
 カバー115は、図1、図2および図4に示すように、セルスタックアッセンブリー100Mを被覆して保護するものである。
[0064]
 カバー115は、セルスタックアッセンブリー100Mを、外部マニホールド113とともに上下から挟み込んでいる。カバー115は、箱形状からなり、下部を開口させている。カバー115は、例えば、金属からなり、内側面を絶縁材によって絶縁している。
[0065]
 (燃料電池100におけるガスの流れ)
 図19Aは、燃料電池100におけるアノードガスAGおよびカソードガスCGの流れを模式的に示す斜視図である。図19Bは、燃料電池100におけるカソードガスCGの流れ(片方)を模式的に示す斜視図である。図19Cは、燃料電池100におけるアノードガスAGの流れ(片方)を模式的に示す斜視図である。
[0066]
 アノードガスAGは、外部マニホールド113、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、各々の発電セル101Mのアノード101Tに供給される。すなわち、アノードガスAGは、外部マニホールド113から終端の上部集電板106に至るまで、交互に積層されたセパレータ102とメタルサポートセルアッセンブリー101との隙間に設けられたアノード側の流路に分配して供給される。その後、アノードガスAGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。
[0067]
 アノードガスAGは、図19Aに示すように、セパレータ102を隔てて、カソードガスCGと交差するように、流路部102Lに供給される。アノードガスAGは、図19Cにおいて、図19Cの下方に位置するセパレータ102のアノード側第1流入口102a、アノード側第2流入口102bおよびアノード側第3流入口102cを通過し、メタルサポートセルアッセンブリー101のアノード側第1流入口101a、アノード側第2流入口101bおよびアノード側第3流入口101cを通過した後、図19Cの上方に位置するセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのアノード101Tに供給される。アノード101Tで反応した後のアノードガスAGは、排気ガスの状態で、図19Cの上方に位置するセパレータ102の流路部102Lから流出して、メタルサポートセルアッセンブリー101のアノード側第1流出口101dおよびアノード側第2流出口101eを通過し、図19C中の下方に位置するセパレータ102のアノード側第1流出口102dおよびアノード側第2流出口102eを通過して外部に排出される。
[0068]
 カソードガスCGは、外部マニホールド113、下部エンドプレート108、モジュールエンド105、セパレータ102、およびメタルサポートセルアッセンブリー101の各々の流入口を通過して、発電セル101Mのカソード101Uに供給される。すなわち、カソードガスCGは、外部マニホールド113から終端の上部集電板106に至るまで、交互に積層されたメタルサポートセルアッセンブリー101とセパレータ102との隙間に設けられたカソード側の流路に分配して供給される。その後、カソードガスCGは、発電セル101Mで反応し、上記の各構成部材の各々の流出口を通過して排ガスの状態で排出される。上記の各構成部材におけるカソードガスCGの流入口および流出口は、各々の構成部材の外周面と、エアーシェルター112の内側面との間の隙間によって、構成している。
[0069]
 カソードガスCGは、図19Bにおいて、図19Bの下方に位置するセパレータ102のカソード側第1流入口102fおよびカソード側第2流入口102gを通過し、そのセパレータ102の流路部102Lに流入して、メタルサポートセルアッセンブリー101の発電セル101Mのカソード101Uに供給される。カソード101Uで反応した後のカソードガスCGは、排気ガスの状態で、図19B中の下方に位置するセパレータ102の流路部102Lから流出して、そのセパレータ102のカソード側第1流出口102h、カソード側第2流出口102iおよびカソード側第3流出口102jを通過して外部に排出される。
[0070]
 (燃料電池100の締結構造)
 図20Aは、第1実施形態の燃料電池100を示す模式図であって、起動前における燃料電池100の状態を示す図である。図20Bは、第1実施形態の燃料電池100を示す模式図であって、急速昇温時における燃料電池100の状態を示す図である。図20Cは、第1実施形態の燃料電池100を示す模式図であって、定常運転時における燃料電池100の状態を示す図である。
[0071]
 図20Aに示すように、起動前(スタック100Sにおいて、定常的に、ガス流入口100xとガス流出口100yの温度が等しく、ガスの流れの上流側から下流側における積層方向Zに沿った厚みが等しい状態の時)における燃料電池100において、一対のスタック100Sや一対の下部エンドプレート108は、伸長していない。
[0072]
 図20Bに示すように、急速昇温時(スタック100Sにおいて、一時的に、ガス流入口100xよりもガス流出口100yの方が相対的に温度が低く、ガスの流れの下流側よりも上流側の方が相対的に積層方向Zに沿って膨張している状態の時)における燃料電池100において、一対のスタック100Sや一対の下部エンドプレート108は、短手方向Xの内方に向かってスムーズに伸長する。このような構成は、複数の下部エンドプレート108と上部エンドプレート109との間における各々のスタック100Sの締結力を、ガス流出口100yの側よりもガス流入口100xの側の方が大きくなるようにしていることから、実現される。すなわち、ガス流入口100xの側は第1締結ボルト111等によって一定の締結力が発生しているが、ガス流出口100yの側は第1締結ボルト111等が存在しないことから相対的に締結力が小さい。
[0073]
 図20Cに示すように、定常運転時(スタック100Sにおいて、定常的に、ガス流出口100yよりもガス流入口100xの方が相対的に温度が低く、ガスの流れの上流側よりも下流側の方が相対的に積層方向Zに沿って膨張している状態の時)における燃料電池100において、一対のスタック100Sや一対の下部エンドプレート108は、短手方向Xの外方に向かって戻った状態で安定する。常運転時におけるガス流出口100yとガス流入口100xの温度差は、急速昇温時におけるガス流出口100yとガス流入口100xの温度差よりも、十分に小さい。より具体的には、定常時には、短手方向Xに沿って隣り合う一対のスタック100S、下部エンドプレート108、上部エンドプレート109、および外部マニホールド113の温度差が相対的に小さいことから、これら部品間の平面方向(短手方向Xおよび長手方向Y)の膨張量が同程度になる。すなわち、定常時には、短手方向Xに沿って隣り合う一対のスタック100Sの隙間が、起動前の状態に近くなる。
[0074]
 以上説明した第1実施形態の作用効果を説明する。
[0075]
 燃料電池100のスタック構造は、電解質101Sを燃料極(アノード101T)と酸化剤極(カソード101U)とで挟んで構成し供給されたガス(アノードガスAGおよびカソードガスCG)によって発電する発電セル101Mと発電セル101Mにガスを供給する流路部102Lと流路部102Lにガスを流入させるガス流入口100xと流路部102Lからガスを流出させるガス流出口100yとを形成したセパレータ102とを交互に積層した複数組の積層体(スタック100S)を端部プレート(上部エンドプレート109および下部エンドプレート108)に固定手段(第1締結ボルト111)を用いて固定した構造である。ここで、スタック100Sは、並列に配置され、その間に積層方向Zと直交する方向の熱歪を吸収する第1熱歪吸収部を形成した。
[0076]
 燃料電池スタックの熱歪吸収方法は、電解質101Sを燃料極(アノード101T)と酸化剤極(カソード101U)とで挟んで発電セル101Mを形成し、発電セル101Mを一対のセパレータ102で狭持して積層体(スタック100S)を形成し、複数のスタック100Sを積層して複数組のスタック100Sの列を形成し、複数のスタック100Sの列で空間部100Kを形成しながら並列に配置し、スタック100S体列間の空間部100Kで積層方向と直交する方向の熱歪を吸収する。
[0077]
 かかる燃料電池100によれば、積層方向Zと直交する方向のスタック100Sの熱歪を吸収する第1熱歪吸収部によって、積層部材(スタック100Sを含む)に発生する歪みを十分に抑制することができる。
[0078]
 第1熱歪吸収部は、並列に配置されたスタック100Sの間に形成した空間部100Kからなることが好ましい。
[0079]
 空間部100Kは、並列に配置されたスタック100Sの互いに対向する面を離間して配置して端部プレート(上部エンドプレート109および下部エンドプレート108)に固定して形成することが好ましい。
[0080]
 かかる燃料電池100によれば、対向するスタック100Sが互いに近づくように伸長しても、接触することを回避できる。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。
[0081]
 発電セル101Mにガスを供給する流通口を備えた外部マニホールド113を設け、外部マニホールド113は、端部プレート(上部エンドプレート109および下部エンドプレート108)の外側に配置し、第1熱歪吸収部を形成することが好ましい。
[0082]
 かかる燃料電池100によれば、外部マニホールド113を含めて、積層部材(スタック100Sを含む)に発生する歪みを十分に抑制することができる。
[0083]
 端部プレート(上部エンドプレート109および下部エンドプレート108)にスタック100Sを固定する固定手段は締結部材(第1締結ボルト111)からなることが好ましい。
[0084]
 かかる燃料電池100によれば、第1締結ボルト111を用いた非常に簡便な構成によって、任意の締結力を発揮できる固定手段を具現化することができる。
[0085]
 端部プレート(上部エンドプレート109および下部エンドプレート108)にスタック100Sを固定する第1締結ボルト111は、並列に配置されたスタック100Sの各々の少なくとも外周側を端部プレート(上部エンドプレート109および下部エンドプレート108)に固定し、端部プレート(上部エンドプレート109および下部エンドプレート108)は、複数のスタック100Sを狭持する上部エンドプレートおよび下部エンドプレートからなることが好ましい。
[0086]
 かかる燃料電池100によれば、上部エンドプレートおよび下部エンドプレートから構成した端部プレートを用いた非常に簡便な構成によって、任意の締結力を発揮できる。
[0087]
 スタック100Sは、ガス流入口100xとガス流出口100yとを備え、並列に配置されたスタック100Sの外周側にガス流入口100xを設け、互いに対向する面を有する側にガス流出口100yを設けることが好ましい。
[0088]
 かかる燃料電池100によれば、対向するスタック100Sの伸長または縮小を互いの変形(変形が生じる向きが正反対)によってキャンセルすることができる。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。
[0089]
 ここで、対向するスタック100Sは、ガス流出側を互いに内側に位置させた構成であるが、外側の締結力を相対的に大きくし、内側の締結力を相対的に小さするものであり、外側をボルト締結するという構成を具現化し易い。すなわち、仮に実施形態と異なり、内側の締結力を相対的大きくするために内側をボルト締結する構成にすると、外側に締結力を掛ける手段が複雑になってしまう。
[0090]
 端部プレート(上部エンドプレート109および下部エンドプレート108)とスタック100Sとの間に積層方向Zの熱歪を吸収する第2熱歪吸収部(バネ110)を設けることが好ましい。
[0091]
 第2熱歪吸収部(バネ110)は、スタック100Sのガス流入口100xとガス流出口100yとに対応して配置することが好ましい。
[0092]
 かかる燃料電池100によれば、温度変化による膨張や収縮が発生し易いガス流入口およびガス流出口の変形を、バネ110の伸縮によって吸収することができる。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。特に、かかる燃料電池100によれば、スタック100Sに、熱伝導率や線膨張係数に大きな差異があっても、その差異に起因して反り返ったりすることを、バネ110の弾発力によって抑制することができる。
[0093]
 第2熱歪吸収部(バネ110)は、バネ機構からなり、積層方向Zに沿った熱膨張量が最大になる部分と最小になる部分の差よりも大きい圧縮量を予め付与することが好ましい。
[0094]
 第2熱歪吸収部(バネ110)は、スタック100Sの内部に配置された電解質101S膜に対応して配置し、初期圧縮量またはバネ定数をガス流入口100xまたはガス流出口100yに配置したバネよりも小さくすることが好ましい。
[0095]
 かかる燃料電池100によれば、例えば、相対的に低温(例えば起動前)時においても、常にバネ110の弾発力が働いていることから、熱膨張量が最小の部分で荷重抜けが発生することなく、せん断力の入力や発電効率の低下を防止することができる。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。
[0096]
 燃料電池100は、複数の下部エンドプレート108と上部エンドプレート109との間における各々のスタック100Sの締結力がガス流出口の側よりもガス流入口の側の方が大きい。
[0097]
 かかる燃料電池100によれば、複数の下部エンドプレート108と上部エンドプレート109との間における各々のスタック100Sの締結力を、ガス流出口の側よりもガス流入口の側の方が大きくなるように規定している。このような構成の燃料電池100によれば、積層部材が状態の変化(例えばガスの流通に伴う温度の上昇)に応じて、変形が生じる方向に沿ってスムーズに伸長または縮小することができる。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。
[0098]
 ここで、締結力(バネ110のばね反力)をガス流入口>ガス流出口とするための手段は、ガス流入口の近傍の部分をボルト締結および上部エンドプレート109の上凸反りによって、自然にガス流入口>ガス流出口の関係にさせることである。また、別な手段として、急速昇温時の積層方向Zに沿った膨張量(ばね圧縮量)がガス流入口>ガス流出口となることから、自然に締結力をガス流入口>ガス流出口の関係にさせることである。さらに、別な手段として、バネ110のばね定数をガス流入口>ガス流出口とすることによって、起動前、起動中、および起動後に関わらず、締結力をガス流入口>ガス流出口の関係とすることである。
[0099]
 特に、かかる燃料電池100によれば、ガス流入口からガス流出口に向かってガスの温度が上昇して積層部材が伸長するような場合に、ガス流入口からガス流出口に沿った変形を許容することによって、変形量が異なる積層部材の間で発生する歪みを効果的に抑制することができる。
[0100]
 下部エンドプレート108と上部エンドプレート109との締結力が、ガス流入口<ガス流出口であれば、ガス流入口側で下部エンドプレート108の平面方向(短手方向Xおよび長手方向Y)に変位が生じるが、急速昇温時にガス流入口側で積層方向膨張が大きいために締結力が増大し、ガス流入口側での平面方向変位が徐々に生じ難くなる。その結果、ガス流出口側で変位を生じさせるような応力が作用するが、ボルト締結しているガス流出口側は動きが規制されていることから、下部エンドプレート108には反り変形が生じるようになる。
[0101]
 ここで、下部エンドプレート108とマニホールドとの締結力がガス流入口>ガス流出口となること(条件Aと称する)と、下部エンドプレート108と上部エンドプレート109との締結力がガス流入口>ガス流出口となること(条件Bと称する)の2つの条件が重要である。
[0102]
 条件Aおよび条件Bともに「否」の場合(ともにガス流入口<ガス流出口)、ガス流入口側で下部エンドプレート108と外部マニホールド113の平面方向の変位が生じるが、急速昇温時にガス流入口側で積層方向膨張が大きいために締結力が増大し、ガス流入口側での平面方向変位が徐々に生じにくくなる。その結果、ガス流出口側で変位しようとするが、ボルト締結しているガス流出口側は動きが規制されていることから、下部エンドプレート108の反り変形を防止する必要がある。
[0103]
 条件A「正」および条件B「否」の場合、下部エンドプレート108に変位が生じるガス流出口側で上部エンドプレート109と下部エンドプレート108が強く締結されていることから、急速昇温時に熱膨張の大きい下部エンドプレート108と、熱膨張の小さい上部エンドプレート109の間でずれが生じ、上部エンドプレート109と下部エンドプレート108の反り変形や、上部エンドプレート109と下部エンドプレート108間の締結ボルトの変形や破損を防止する必要がある。
[0104]
 条件A「否」および条件B「正」の場合、下部エンドプレート108に変位が生じるガス流入口側で上部エンドプレート109と下部エンドプレート108が締結されていることから、急速昇温時に熱膨張の大きい下部エンドプレート108と、熱膨張の小さい上部エンドプレート109の間でずれが生じ、上部エンドプレート109と下部エンドプレート108の反り変形や、上部エンドプレート109と下部エンドプレート108の締結ボルトの変形や破損を防止する必要がある。
[0105]
 したがって、急速昇温時の上部エンドプレート109と下部エンドプレート108の反り変形(荷重抜けやガスリークに至るモード)を防止するためには、条件A,条件Bともに「正」となる構造が必要となる。
[0106]
 また、かかる燃料電池100によれば、スタック100S、下部エンドプレート108および上部エンドプレート109に、熱伝導率や線膨張係数の差異があっても、その差異に起因して反り返ったり、積層方向Zと交差する方向に沿ってせん断力が発生したりすることを防止できる。例えば、相対的に線膨張係数が低い封止部材104が、他の積層部材に引っ張られるようなことを防止できることから、封止部材104を保護し、封止部材104によるガスのシール性を維持することができる。
[0107]
 燃料電池100は、バネ110にカソード101Uに供給する加熱したカソードガスCGを供給することが好ましい。
[0108]
 かかる燃料電池100によれば、スタック100Sの温度と、バネ110の温度を近似させつつ、高温(例えば急速昇温時)時において、バネ110の圧縮量を増大させると共にバネ定数を低下させることによって、バネ110による荷重の増大を抑制できる。すなわち、バネ110の温度の上昇に伴いばね圧縮量が増大する作用と、バネ110の温度の降下に伴いバネ定数が小さく作用が、同時に働く。したがって、燃料電池100は、積層部材に発生する歪みを十分に抑制することができる。
[0109]
 (第2実施形態)
 第2実施形態の燃料電池200は、外部マニホールド213がガス流入部とガス流出部を隔てて分割されている点において、上述した第1実施形態の燃料電池100と相違する。
[0110]
 図21Aは、第2実施形態の燃料電池200を示す模式図であって、起動前における燃料電池200の状態を示す図である。図21Bは、第2実施形態の燃料電池200を示す模式図であって、急速昇温時における燃料電池200の状態を示す図である。図21Cは、第2実施形態の燃料電池200を示す模式図であって、定常運転時における燃料電池200の状態を示す図である。
[0111]
 燃料電池200は、図21A~図21Cに示すように、第3の締結部材(外部マニホールド213)について、ガス流入口200xにガスを流入させるガス流入部と、ガス流出口200yからガスを流出させるガス流出部とを積層方向Zと交差する方向に沿って分割して構成している。すなわち、外部マニホールド213は、ガス流入口200xに対応する第1基部213S(積層方向Zと交差する短手方向Xにおける外方に対向して2つ配置)と、ガス流出口200yに対応する第2基部213T(積層方向Zと交差する短手方向Xにおける内方に対向して2つ配置)と、中央に対応する第3基部213U(積層方向Zと交差する短手方向Xにおける中央に1つ配置)と、から構成している。外部マニホールド213は、一対の下部エンドプレート108と接合している。
[0112]
 図21Aに示すように、起動前(スタック100Sにおいて、定常的に、ガス流入口200xとガス流出口200yの温度が等しく、ガスの流れの上流側から下流側における積層方向Zに沿った厚みが等しい状態の時)における燃料電池200において、第1基部213Sと第2基部213Tは、短手方向Xに沿って互いに接触している。第2基部213Tと第3基部213Uは、短手方向Xに沿って互いに離間している。
[0113]
 図21Bに示すように、急速昇温時(スタック100Sにおいて、一時的に、ガス流入口200xよりもガス流出口200yの方が相対的に温度が低く、ガスの流れの下流側よりも上流側の方が相対的に積層方向Zに沿って膨張している状態の時)における燃料電池200において、スタック100S等が短手方向Xの内方に向かってスムーズに伸長することから、その伸長に従動した第2基部213Tが、第1基部213Sから離間して、第3基部213Uに接触する。
[0114]
 図21Cに示すように、定常運転時(スタック100Sにおいて、定常的に、ガス流出口200yよりもガス流入口200xの方が相対的に温度が低く、ガスの流れの上流側よりも下流側の方が相対的に積層方向Zに沿って膨張している状態の時)における燃料電池200において、スタック100S等の伸長が一定になることから、その伸長に従動した第2基部213Tが、第3基部213Uから離間して、再び第1基部213Sに接触する。
[0115]
 以上説明した第2実施形態の作用効果を説明する。
[0116]
 燃料電池200は、ガス流入口にガスを流入させるガス流入部とガス流出口からガスを流出させるガス流出部とが積層方向Zと交差する方向に沿って分割された第3の締結部材(外部マニホールド213)をさらに有し、外部マニホールド213が各々の下部エンドプレート108と接合されている。
[0117]
 かかる燃料電池200によれば、外部マニホールド213がガス流入部およびガス流出口を中心に面方向に移動できることから、せん断力をキャンセルすることができる。したがって、燃料電池200は、積層部材に発生する歪みを十分に抑制することができる。
[0118]
 (第3実施形態)
 第3実施形態の燃料電池300は、バネ110が発電セル101Mと積層方向Zに沿って重なる部分にも配置されている点において、上述した第2実施形態の燃料電池200と相違する。
[0119]
 図22Aは、第3実施形態の燃料電池300を示す模式図であって、起動前における燃料電池300の状態を示す図である。図22Bは、第3実施形態の燃料電池300を示す模式図であって、急速昇温時における燃料電池300の状態を示す図である。
[0120]
 燃料電池300は、図22Aおよび図22Bに示すように、バネ110を、発電セル101Mと積層方向Zに沿って重なる部分にもマトリクス状に複数配置している。それらのバネ110は、ガス流入口300xおよびガス流出口300yと積層方向Zに沿って重なる位置に配置されたバネ110(第1実施形態や第2実施形態のバネ110に相当)よりも、弾発力が低いものを選択している。
[0121]
 以上説明した第3実施形態の作用効果を説明する。
[0122]
 燃料電池300は、バネ110が発電セル101Mと積層方向Zに沿って重なる部分にも配置され、ガス流入口300xおよびガス流出口300yと積層方向Zに沿って重なる位置よりも弾発力が小さい。
[0123]
 かかる燃料電池300によれば、ガスの流れ方向の温度勾配が非線形の場合であっても、発電セル101Mに対して確実に面圧を与えることができる。燃料電池300は、バネ110の温度によらず、発電セル101Mに対して常にバネ110の弾発力が働いていることから、発電セル101Mの積層方向Zと交差した方向への荷重抜けが発生することなく、せん断力の入力や発電効率の低下を防止することができる。したがって、燃料電池300は、積層部材に発生する歪みを十分に抑制することができる。
[0124]
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
[0125]
 第1~第3実施形態において、燃料電池は、固体酸化物形燃料電池(SOFC、Solid Oxide Fuel Cell)として説明したが、固体高分子膜形燃料電池(PEMFC、Polymer Electrolyte Membrane Fuel Cell)、リン酸形燃料電池(PAFC、Phosphoric Acid Fuel Cell)または溶融炭酸塩形燃料電池(MCFC、Molten Carbonate Fuel Cell)として構成してもよい。すなわち、燃料電池は、固体酸化物形燃料電池(SOFC)に加えて、固体高分子膜形燃料電池(PEMFC)、リン酸形燃料電池(PAFC)または溶融炭酸塩形燃料電池(MCFC)に適用することができる。
[0126]
 燃料電池は、第1~第3実施形態の仕様を適宜組み合わせて構成してもよい。

符号の説明

[0127]
100,200,300 燃料電池、
100K 空間部、
100M セルスタックアッセンブリー、
100S スタック、
100T セルユニット、
100U 接合体、
100P 上部モジュールユニット、
100Q 中部モジュールユニット、
100R 下部モジュールユニット、
101  メタルサポートセルアッセンブリー、
101M 発電セル、
101N メタルサポートセル、
101S 電解質、
101T アノード、
101U カソード、
101V サポートメタル、
101W セルフレーム、
101k 開口部、
102  セパレータ、
102L 流路部、
102p 外縁、
102q 溝、
102x 平坦部、
102y アノード側突起、
102z カソード側突起、
103  集電補助層、
104  封止部材、
105  モジュールエンド、
106  上部集電板、
106a 窪部、
107  下部集電板、
108  下部エンドプレート、
108m ネジ穴、
108n 挿入穴、
109  上部エンドプレート、
109n 挿入孔、
110 バネ、
111 第1締結ボルト、
112  エアーシェルター、
113,213  外部マニホールド、
113m ネジ穴、
213S 第1基部、
213T 第2基部、
213U 第3基部、
101a,102a,105a,107a,108a,113a アノード側第1流入口、
101b,102b,105b,107b,113b,108b アノード側第2流入口、
101c,102c,105c,107c,113c,108c アノード側第3流入口、
101d,102d,108d,107d,113d,105d アノード側第1流出口、
101e,102e,105e,107e,113e,108e アノード側第2流出口、
101f,108f,102f,105f,107f,113f カソード側第1流入口、
101g,102g,105g,107g,108g,113g カソード側第2流入口、
101h,102h,113h,105h,107h,108h カソード側第1流出口、
101i,102i,105i,107i,108i,113i カソード側第2流出口、
101j,102j,105j,107j,108j,113j カソード側第3流出口、
100x,200X,300x ガス流入口、
100y,200y,300y ガス流出口、
114 第2締結ボルト、
115  カバー、
V    接合ライン、
AG   アノードガス、
CG   カソードガス、
X    (燃料電池における1つのスタック100Sの)短手方向、
Y    (燃料電池における1つのスタック100Sの)長手方向、
Z    (燃料電池の)積層方向。

請求の範囲

[請求項1]
 電解質を燃料極と酸化剤極とで挟んで構成し供給されたガスによって発電する発電セルと前記発電セルにガスを供給する流路部と前記流路部にガスを流入させるガス流入口と前記流路部からガスを流出させるガス流出口とを形成したセパレータとを交互に積層した複数組の積層体を端部プレートに固定手段を用いて固定した燃料電池のスタック構造であって、
 前記積層体は、並列に配置され、その間に積層方向と直交する方向の熱歪を吸収する第1熱歪吸収部を形成した、燃料電池のスタック構造。
[請求項2]
 前記第1熱歪吸収部は、並列に配置された前記積層体の間に形成した空間部からなる、請求項1に記載の燃料電池のスタック構造。
[請求項3]
 前記空間部は、並列に配置された前記積層体の互いに対向する面を離間して配置して前記端部プレートに固定して形成した、請求項2に記載の燃料電池のスタック構造。
[請求項4]
 前記発電セルにガスを供給する流通口を備えた外部マニホールドを設け、
 前記外部マニホールドは、前記端部プレートの外側に配置し、前記第1熱歪吸収部を形成した、請求項1~3のいずれか1項に記載の燃料電池のスタック構造。
[請求項5]
 前記端部プレートに前記積層体を固定する前記固定手段は締結部材(ボルトナット)からなる、請求項1~4のいずれか1項に記載の燃料電池のスタック構造。
[請求項6]
 前記端部プレートに前記積層体を固定する前記固定手段は、並列に配置された前記積層体の各々の少なくとも外周側を前記端部プレートに固定し、
 前記端部プレートは、複数の前記積層体を狭持する上部エンドプレートおよび下部エンドプレートからなる、請求項1~5のいずれか1項に記載の燃料電池のスタック構造。
[請求項7]
 前記積層体は、ガス流入部とガス流出部とを備え、並列に配置された前記積層体の外周側にガス流入部を設け、互いに対向する面を有する側にガス流出部を設けた、請求項1~6のいずれか1項に記載の燃料電池のスタック構造。
[請求項8]
 前記端部プレートと前記積層体との間に積層方向の熱歪を吸収する第2熱歪吸収部を設けた、請求項1~7のいずれか1項に記載の燃料電池のスタック構造。
[請求項9]
 前記第2熱歪吸収部は、前記積層体のガス流入部とガス流出部とに対応して配置した、請求項8に記載の燃料電池のスタック構造。
[請求項10]
 前記第2熱歪吸収部は、バネ機構からなり、積層方向に沿った熱膨張量が最大になる部分と最小になる部分の差よりも大きい圧縮量を予め付与する、請求項8または9に記載の燃料電池のスタック構造。
[請求項11]
 前記第2熱歪吸収部は、前記積層体の内部に配置された電解質膜に対応して配置し、初期圧縮量またはバネ定数をガス流入口またはガス流出口に配置したバネよりも小さくする、請求項8~10のいずれか1項に記載の燃料電池のスタック構造。
[請求項12]
 電解質を燃料極と酸化剤極とで挟んで発電セルを形成し、
 前記発電セルを一対のセパレータで狭持して積層体を形成し、
 複数の前記積層体を積層して複数組の前記積層体の列を形成し、
 複数の前記積層体の列で空間部を形成しながら並列に配置し、
 前記積層体列間の前記空間部で積層方向と直交する方向の熱歪を吸収する燃料電池スタックの熱歪吸収方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]

[ 図 19A]

[ 図 19B]

[ 図 19C]

[ 図 20A]

[ 図 20B]

[ 図 20C]

[ 図 21A]

[ 図 21B]

[ 図 21C]

[ 図 22A]

[ 図 22B]