このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2019003259) プラズマ処理機
Document

明 細 書

発明の名称 プラズマ処理機

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の解決しようとする課題

0004  

課題を解決するための手段

0005  

発明の効果

0006  

図面の簡単な説明

0007  

発明を実施するための形態

0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022  

実施例

0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043  

符号の説明

0044  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19  

図面

1   2   3   4   5  

明 細 書

発明の名称 : プラズマ処理機

技術分野

[0001]
 本発明は、プラズマ化されたガスをワークに照射してそのワークの表面に処理を施すためのプラズマ処理機に関する。

背景技術

[0002]
 従来から、下記特許文献に記載されているようなプラズマ発生装置を照射ヘッドとし、その照射ヘッドとワークとを相対移動させて、その照射ヘッドから射出されるプラズマ化ガスによってそのワークの表面に処理(以下、「プラズマ処理」と言う場合がある)を施すプラズマ処理機が存在する。

先行技術文献

特許文献

[0003]
特許文献1 : 特開2016-38940号公報

発明の概要

発明の解決しようとする課題

[0004]
 上記プラズマ処理機では、プラズマ処理の効果(以下、単に「処理効果」と言う場合がある)が所望するレベルで安定的であることが望まれ、また、照射ヘッドにおけるプラズマ化ガスを発生させる部分(以下、「プラズマ化ガス発生部」という場合がある)の消耗に起因した構成部品の交換等の頻度を適正化することも望まれる。本発明は、そのような実情に鑑みてなされたものであり、実用的なプラズマ処理機を提供することを課題とする。

課題を解決するための手段

[0005]
 上記課題を解決するために、本発明のプラズマ処理機は、
 プラズマ化されたガスであるプラズマ化ガスによってワークの表面に処理を行うプラズマ処理機であって、
 電源と、
 その電源によって複数の電極の間に電圧が印加されてプラズマ化ガスを発生させ、そのプラズマ化ガスをノズルからワークの表面に照射するための照射ヘッドと、
 その照射ヘッドとワークとを相対移動させる相対移動装置と、
 当該プラズマ処理機の制御を司る制御装置と
 を備え、
 前記制御装置が、処理の際の当該プラズマ処理機のステータスと、処理の効果との少なくとも一方に基づいて、処理条件を変更するように構成されたことを特徴とする。

発明の効果

[0006]
 本発明のプラズマ処理機によれば、処理効果や、当該プラズマ処理機のステータス、特にプラズマ化ガス発生部の状態の変化に応じて、プラズマ処理の諸条件を変更できるため、安定した処理効果が得られることとなる。また、処理効果が低下した場合であっても、いきなり上記構成部品の交換等を行うのではなく、処理効果を高めるようにプラズマ処理の条件を変更できるため、当該プラズマ処理機の稼動ロスをも小さくすることが可能である。

図面の簡単な説明

[0007]
[図1] 実施例のプラズマ処理機の全体構成を示す斜視図である。
[図2] 図1のプラズマ処理機が有する照射ヘッドを、カバーを外した状態で示す斜視図である。
[図3] 図2の照射ヘッドの断面図である。
[図4] ワークと照射ヘッドのノズルとの距離、および、ワークと照射ヘッドとの相対移動の速度を説明するための概念図である。
[図5] プラズマ化ガスの発光状態を検知するために用いられる透過型分光計を説明するための模式図である。

発明を実施するための形態

[0008]
 本プラズマ処理機、詳しくは、照射ヘッドにおけるプラズマ化ガス発生部の構成については、特に限定されないが、例えば、複数の電極の間に電圧が印加され、大気圧下で電極の間に擬似アークが発生させられ、ガスをその擬似アークを通過させることによって、そのガスをプラズマ化させるような構成、つまり、いわゆる大気圧プラズマを発生させるような構成を採用することが可能である。プラズマ化ガスの元となるガスを、反応ガスと呼べば、その反応ガスについても、特に限定されず、例えば、酸素ガスを採用することができる。また、反応ガスのプラズマ化を行う箇所を反応室と呼べば、その反応室に反応ガスとともにキャリアガスを流入させるようにすることができ、そのキャリアガスとして、窒素ガス等の活性度の低いガス(以下、「不活性ガス」と言う場合がある)を採用することができる。
[0009]
 本プラズマ処理機における相対移動装置は、照射ヘッドだけを移動させるものであっても、また、ワークだけを移動させるものであってもよく、また、それらの両方を移動させるものであってもよい。照射ヘッドを移動させる相対移動装置として、例えば、シリアルリンク型のロボット,XYZ型の移動装置等を採用することが可能である。
[0010]
 プラズマ化ガスを発生させるための電源は、所望の電圧を電極間に安定して印加できるものであれば、それの構成が限定されるものではないが、例えば、インバータ,トランス等によって構成されるものを採用することができる。
[0011]
 上記電源とプラズマ化ガス発生部とを合わせてプラズマ化ガス発生装置と呼べば、本プラズマ処理機の制御装置は、そのプラズマ化ガス発生装置と相対移動装置との少なくとも一方を制御するものである。プラズマ化ガス発生装置を制御する場合には、電極間に印加される電圧(以下、「電極間印加電圧」と言う場合がある)を制御可能であることが望ましく、また、相対移動装置を制御する場合には、プラズマ処理における照射ヘッドとワークとの相対位置,相対移動速度を制御可能であることが望ましい。
[0012]
 本プラズマ化処理機の制御装置は、いわゆるコンピュータを主体とするものを採用可能であり、制御依拠指標としての当該プラズマ化処理機のステータスと、プラズマ処理効果との少なくとも一方に基づいて、プラズマ処理の条件を変更するような制御処理を行う。この制御処理は、自動で、つまり、当該プラズマ化処理機の操作者による操作に拠らずに行われることが望ましい。この自動で行われる制御処理は、例えば、オートチューニングと呼ぶことができる。
[0013]
 上記制御処理における制御依拠指標の1つである上記ステータスとして、例えば、電源の消費電流,照射ヘッドのプラズマ化ガスの射出口を構成する部分(以下、「ノズル」と言う場合がある)の近傍の温度,ノズルから射出されるプラズマ化ガスの発光状態等を採用することができる。
[0014]
 上記ステータスに基づく上記制御処理では、例えば、電源の消費電流が減少した場合、ノズル近傍の温度が低下した場合、プラズマ化ガスの発光状態がプラズマ処理効果の低下を示すように変化した場合等において、プラズマ処理効果が低下した若しくは低下すると推定し、プラズマ処理効果を高くするように処理条件を変更する。具体的には、処理条件の変更として、電極間印加電圧を上昇させればよい。そのような条件変更により、プラズマ化ガス発生部が使用に耐えられない程度には劣化若しくは消耗していない場合において、構成部品の交換等の頻度を小さくして、当該プラズマ処理機の稼動率を向上させることが、つまり、当該プラズマ処理機による処理のスループットを上昇させることが可能となる。
[0015]
 なお、例えば、上記電源の消費電流は、電源が有する電流計によって、プラズマ化ガスの発光状態は、プラズマ化ガスを透過した光のスペクトル分析によって、ノズル近傍の温度は、接触型温度計によって、それぞれ、検出することが可能である。
[0016]
 上記制御処理における制御依拠指標のもう1つである上記処理の効果は、つまり、プラズマ処理の効果は、例えば、専用のインジケータを使用して認定若しくは推定することができる。このインジケータは、具体的な構造,組成等について限定されるものではないが、例えばリトマス試験紙のように、効果の程度に応じて自身の色味が変わるものを採用することが可能である。具体的には、例えば、特開2013-178922号公報に記載されているようなものを採用することができる。
[0017]
 インジケータは、例えば、紙片のような形態となっているものを使用できる。そのような形態のインジケータは、例えば、当該プラズマ処理機においてプラズマ化ガスが照射可能な領域に設置され、ワークに対してプラズマ処理を行うついでに、ワークに行うプラズマ処理の処理条件と同じ条件で、そのインジケータに対してプラズマ処理が行われるようにして用いればよい。なお、ワークに付設するようにして用いることもできる。
[0018]
 インジケータを利用したプラズマ処理効果の特定は、当該インジケータに対して行うプラズマ処理の前後の当該インジケータの色差に基づいて行えばよく、例えば、その色差が大きい場合に、プラズマ処理効果が高いと判断すればよい。色差は、例えば、撮像装置によるインジケータの撮像データに基づいて演算により色味を求めることで求めてもよく、また、色差計を利用して求めてもよい。撮像装置,色差計は、例えば、相対移動装置によって照射ヘッドと一体的にワークと相対移動可能に配設することもでき、そのように配設した場合には、撮像装置,色差計を移動させるための専用の装置が不要となるため、簡便なプラズマ処理機が実現されることになる。
[0019]
 プラズマ処理効果の特定は、例えば、1つのワークに対するプラズマ処理を行った都度行うようにしてもよく、設定された数のワークに対するプラズマ処理を行う毎に、或いは、設定された時間の経過毎に行うようにしてもよい。
[0020]
 プラズマ処理効果に基づいて処理条件を変更する場合、例えば、プラズマ処理効果が低い場合には、当該プラズマ処理機の処理能力を大きくするように処理条件の変更を行えばよく、また、プラズマ処理効果が高い場合には、当該プラズマ処理機の処理能力を小さくするように処理条件の変更を行えばよい。そのような条件変更により、安定したプラズマ処理能力が得られ、その結果、安定したプラズマ処理効果が得られることになる。
[0021]
 変更する処理条件としては、例えば、相対移動装置による照射ヘッドとワークとの相対移動速度(以下、「ワーク/ヘッド相対速度」と言う場合がある),照射ヘッドのノズルとワークの表面との距離(以下、「照射距離」と言う場合がある),ワークの同じ箇所におけるプラズマ処理の回数(以下、「処理回数」と言う場合がある),電極間印加電圧等が挙げられる。また、当該プラズマ処理機が、ノズルから射出されるプラズマ化ガスの周囲(射出方向と交差する方向における周囲)をシールドするためのガス、つまり、シールドガス(「ヒートガス」と呼ぶこともできる)をも放出するように構成されている場合において、そのシールドガスの温度も、変更する処理条件とすることも可能である。
[0022]
 具体的に言えば、プラズマ処理効果が低い場合,低すぎる場合には、ワーク/ヘッド相対速度を小さくする、照射距離を小さくする、処理回数を増加させる、電極間印加電圧を上昇させる、シールドガスの温度を高くするといった条件変更を行えばよく、逆に、プラズマ処理効果が高い場合,高すぎる場合には、ワーク/ヘッド相対速度を大きくする、照射距離を大きくする、処理回数を減少させる、電極間印加電圧を下降させる、シールドガスの温度を低くするといった条件変更を行えばよい。
実施例
[0023]
 以下に本発明の実施例となるプラズマ処理機について、図を参照しつつ詳しく説明する。なお、本発明は、下記の実施例に限られず、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
[0024]
[A]プラズマ処理機の構成
 実施例のプラズマ処理機は、図1に示すように、ワークWが載置されるテーブル10と、テーブル10の傍らに配置されたシリアルリンク型ロボット(「多間接型ロボット」と呼ぶこともでき、以下、単に「ロボット」と略す)12と、ロボット12に保持されてプラズマ化ガスを照射するための照射ヘッド14と、照射ヘッド14への電源であり照射ヘッド14へのガスの供給を担う電源・ガス供給ユニット16と、当該プラズマ処理機の制御を司る制御装置としてのコントローラ18とを含んで構成されている。
[0025]
 照射ヘッド14は、カバーを外した状態を示す図2、および、断面図である図3を参照しつつ説明すれば、概してセラミック製のハウジング20を有しており、そのハウジング20の内部に、プラズマ化ガスを発生させるための反応室22が形成されている。そして、反応室22に臨み出るようにして、1対の電極24が保持されている。また、ハウジング20内には、上方から反応室22に反応ガスを流入させるための反応ガス流路26と、キャリアガスを流入させるための1対のキャリアガス流路28とが形成されている。反応ガスは、酸素(O 2)であるが、反応ガス流路26からは、酸素と窒素(N 2)との混合気体(例えば、空気)が、電極24の間に流入させられる。キャリアガスは、窒素であり、それぞれのキャリアガス流路28から、それぞれの電極24を取り巻くようにして流入させられる。照射ヘッド14の下部は、ノズル30とされており、ノズル30には、複数の放出口32が一列に並ぶようにして形成されている。そして、反応室22から下方に向かって各放出口32に繋がるように複数の放出路34が形成されている。
[0026]
 1対の電極24の間には、電源・ガス供給ユニット16の電源部によって、交流の電圧が印加される。この印加によって、例えば、図3に示すように、反応室22内において、1対の電極24の各々の下端の間に、擬似アークAが発生させられる。この擬似アークAを反応ガスが通過する際に、その反応ガスがプラズマ化され、プラズマ化されたガスであるプラズマ化ガスが、キャリアガスとともに、ノズル30から放出される。プラズマ化ガスは、放出口32からある程度の距離において有効に存在し、放出口32から放出されるガスは、あたかもフレアのような様相を呈するため、以下、「フレア」と呼ぶ場合があることとする。
[0027]
 なお、ノズル30の周囲には、ノズル30を囲うようにしてスリーブ36が設けられている。スリーブ36とノズル30との間の環状空間38には、供給管40を介して、シールドガス(本プラズマ処理機では、空気が採用されている)が供給され、そのシールドガスは、ノズル30から射出されるプラズマ化ガスの周囲を取り巻くようにして、プラズマ化ガスの流れに沿って放出される。シールドガスは、プラズマ化ガスの効能を担保するために加熱されたものが放出される。そのため、供給管40の途中には、シールドガスを加熱するためのヒータ42が設けられている。
[0028]
 テーブル10は、固定的に設けられ、ワークWは、プラズマ処理を行う場合に、テーブル10の所定位置に固定して載置される。ロボット12は、照射ヘッド14を、ワークWの表面の所定の処理領域にプラズマ化ガスを照射すべく、移動させる。したがって、ロボット12は、ワークWと照射ヘッド14とを相対移動させる相対移動装置として機能する。なお、ロボット12には、駆動回路としての動作ドライバ44が搭載されている。
[0029]
 電源・ガス供給ユニット16は、電源部とガス供給部とを含んで構成されている。電源部は、照射ヘッド14の1対の電極24間に電圧を印加するための電源を有しており、ガス供給部は、上述の反応ガス,キャリアガス,シールドガスの供給を行う。各ガスの流量の調整は、ガス供給部によって行われ、また、上述のシールドガスを加熱するためのヒータ42の調節も、ガス供給部によって行われる。したがって、本プラズマ処理機では、電源・ガス供給ユニット16と照射ヘッド14とを含んで、プラズマ化ガス発生装置が構成されていると考えることができるのである。
[0030]
[B]プラズマ処理機の制御
 本プラズマ処理機の制御は、コントローラ18によって行われる。詳しくは、ロボット12については、ロボット12が有する動作ドライバ44を介して、コントローラ18によって制御され、照射ヘッド14は、つまり、プラズマ化ガスの発生状態は、電源・ガス供給ユニット16がコントローラ18によって制御されることで、制御される。
[0031]
 プラズマ処理を行う場合、照射ヘッド14は、ワークWの表面に沿って、所定の処理領域にプラズマ処理が行われるように、移動させられる。コントローラ18は、処理のための照射ヘッド14の移動ルートを規定するための動作プログラムが格納されており、その動作プログラムに従った指令が、ロボット12の動作ドライバ44に送られることによって、照射ヘッド14は移動させられる。動作プログラムには、図4に示すところの、照射ヘッド14の移動に際してのワークWの表面とノズル30の先端との距離であるノズル-ワーク間距離L、および、照射ヘッド14とワークWとの相対移動速度であるヘッド移動速度vが、パラメータとして付随しており、それらのパラメータに従って、照射ヘッド14は移動させられる。
[0032]
 さらに、動作プログラムには、プラズマ化ガスの発生に関するパラメータとして、照射ヘッド14の1対の電極24の間に印加される電圧である印加電圧V,上述のシールドガス温度であるシールドガス温度H(実際は、ヒータ42への供給電力である)も付随している。さらにまた、同じ処理領域における処理の回数である処理回数Nも、別のパラメータとして、付随している。
[0033]
 なお、上記各種のパラメータは、当該プラズマ処理機の処理条件を規定するものであり、各パラメータの値は、コントローラ18によって変更可能とされている。
[0034]
[C]プラズマ処理機のステータス,プラズマ処理機による処理効果の検知
 上述のような構造の照射ヘッド14であるが、反応室22の内壁はプラズマ化ガスが接触する環境下に晒されているため、当該プラズマ処理機の稼動時間が長くなれば、損傷,消耗といった事態は避けられない。そのため、例えば、照射ヘッド14を構成する部品を交換するといったメンテナンスが行われる。このメンテナンスは、所定の稼動時間の経過によって行うようにすることもできるが、そのようにして行う場合、ある程度の余裕をもって、上記所定の稼動時間を設定するため、実際には、交換を予定している構成部品がまだ使用に耐えうる状態で交換してしまう可能性がある。また、メンテナンスの頻度が高くなると、稼動ロスが多くなり、当該プラズマ処理機の生産性を阻害することに繋がる。一方で、当該プラズマ処理機の処理能力は安定していることが望ましく、何らかの原因で、処理能力が変動することも予想される。そこで、本プラズマ処理機では、プラズマ処理機のステータス、および、プラズマ処理の処理効果を、モニタリング、つまり、検知するようにされている。
[0035]
 具体的には、当該プラズマ処理機のステータスとして、電源から照射ヘッド14の電極24間に供給される電流、つまり、プラズマ化ガスの発生に関する照射ヘッド14の消費電力Pをモニタリングするようにされている。この消費電力Pは、電源・ガス供給ユニット16に内蔵されている電流計50(図1参照)によって検知される。ちなみに、消費電力Pが低下した場合には、処理効果が低下することになる。
[0036]
 また、別のステータスとして、照射ヘッド14のノズル30から射出されるプラズマ化ガスの発光状態Sが検知される。発光状態Sの検知は、テーブル10に設置されている透過型分光計52(図1参照)を利用して行われる。透過型分光計52は、検知器の一種であり、図5に示すように、投光部54と受光部56とを有しており、その間に照射ヘッド14のノズル30から射出されるプラズマ化ガス、すなわち、フレアが位置するように、照射ヘッド14が移動させられて、検知が行われる。詳しく言えば、フレアを透過して受光部56が受けた光のスペクトル分析を行うことで、プラズマ化ガス自体の能力が数値化され、その数値化されたものが、発光状態Sとして検知される。発光状態Sの検知は、1つのワークWに対する処理を行う都度行われ、処理効果が低下すれば、その数値化された値が低下する。なお、分光計等の検出器は、照射ヘッド14に設けられていてもよい。
[0037]
 さらにまた、さらに別のステータスとして、照射ヘッド14のノズル30の近傍の温度であるノズル温度Tがモニタリングされる。ノズル温度Tの検知は、ノズル30に付設された温度計58(図2参照)によって行われる。ノズル温度Tが低下する場合には、処理効果が低下することとなる。
[0038]
 処理効果の検知は、テーブル10に貼着されたインジケータ60(図1参照)を利用して行われる。このインジケータ60は、紙片として形成されており、処理効果、つまり、プラズマ化ガスの照射の効果に応じて、色が変化するものである。照射ヘッド14には、カラー画像が撮像可能な撮像装置としてのカメラ62が取付けられており、そのカメラ62は、照射ヘッド14と一体的に、ロボット12によって移動させられる。カメラ62によって取得されたインジケータ60の画像データを基に、コントローラ18は、インジケータ60の画像における色の3原色の各々の強度から、色相を求めるようにされている。ワークWに対して行うプラズマ処理と同じ処理条件でインジケータ60へのプラズマ化ガスの照射を行うのであるが、コントローラ18は、その照射の前後におけるインジケータ60の色相の差分、つまり、色相差Cを、数値化して検知する。そして、色相差Cの値が小さい場合に、処理効果が小さいと、大きい場合に、処理効果が大きいと判断する。ちなみに、インジケータ60の色相差Cの検知は、当該プラズマ処理機が所定時間稼動した毎に行われる。
[0039]
[D]ステータス,処理効果の検知に基づく処理条件の変更
 上述の当該プラズマ処理機のステータス、具体的には、上述した消費電力P,発光状態S,ノズル温度Tの検知に基づいて、コントローラ18は、上述の印加電圧V、つまり、印加電圧Vについての上記パラメータを変更する。詳しく言えば、消費電力P,発光状態S,ノズル温度Tが、処理効果が低下する向きに変化した場合に、より詳しく言えば、それらが、設定された閾値以下に小さく若しくは低くなった場合に、印加電圧Vが、設定された増加電圧ΔVだけ高くなるように、印加電圧Vについての上記パラメータが変更される。
[0040]
 また、色相差Cから得られた処理効果が変動した場合、詳しく言えば、現時点で行っているプラズマ処理に対して設定されている基準色相差C 0に対して、検知された色相差Cが、設定値以上変動した場合に、その変動の大きさに応じて、処理条件が変更される。つまり、上述のパラメータが変更される。色相差Cに基づいて変更される処理条件は、上述のノズル-ワーク間距離L,ヘッド移動速度v,印加電圧V,シールドガスの温度H,処理回数Nの1以上であり、いずれを変更するかは、コントローラ18に対する設定によって選択することが可能である。
[0041]
 色相差Cに基づいて処理効果が低いと判断された場合、つまり、取得された色相差Cが基準色相差C 0よりも設定値以上小さくなった場合に、処理能力を高くする処理条件の変更が行われる。変更する処理条件が、ノズル-ワーク間距離Lである場合には、小さくし、ヘッド移動速度vである場合には遅くし、印加電圧Vである場合は高くし,シールドガスの温度Hである場合には、高くし、処理回数Nである場合には、多くする。
[0042]
 逆に、色相差Cに基づいて処理効果が高いと判断された場合、つまり、取得された色相差Cが基準色相差C 0よりも設定値以上大きくなった場合に、処理能力を低くする処理条件の変更が行われる。変更する処理条件が、ノズル-ワーク間距離Lである場合には、大きくし、ヘッド移動速度vである場合には速くし、印加電圧Vである場合は低くし,シールドガスの温度Hである場合には、低くし、処理回数Nである場合には、少なくする。
[0043]
 本プラズマ処理機では、以上のような処理条件の変更により、先に説明したように、照射ヘッド14の構成部品の交換等のメンテナンスの時期の適正化、および、処理効果の安定化を図ることが可能となるのである。

符号の説明

[0044]
 12:シリアルリンク型ロボット〔相対移動装置〕  14:照射ヘッド  16:電源・ガス供給ユニット〔電源〕  18:コントローラ〔制御装置〕  22:反応室  24:電極  30:ノズル  36:スリーブ  40:供給管  42:ヒータ  50:電流計  52:透過型分光計  58:温度計  60:インジケータ  62:カメラ  W:ワーク

請求の範囲

[請求項1]
 プラズマ化されたガスであるプラズマ化ガスによってワークの表面に処理を行うプラズマ処理機であって、
 電源と、
 その電源によって複数の電極の間に電圧が印加されてプラズマ化ガスを発生させ、そのプラズマ化ガスをノズルからワークの表面に照射するための照射ヘッドと、
 その照射ヘッドとワークとを相対移動させる相対移動装置と、
 当該プラズマ処理機の制御を司る制御装置と
 を備え、
 前記制御装置が、処理の際の当該プラズマ処理機のステータスと、処理の効果との少なくとも一方に基づいて、処理条件を変更するように構成されたプラズマ処理機。
[請求項2]
 前記制御装置が、前記処理の効果が低下する方向に前記ステータスが変化した場合に、前記処理条件としての前記印加される電圧を上昇させるように構成された請求項1に記載のプラズマ処理機。
[請求項3]
 前記制御装置が、
 前記ステータスとしての前記電源の消費電流が減少した場合に、前記印加される電圧を上昇させるように構成された請求項2に記載のプラズマ処理機。
[請求項4]
 前記制御装置が、
 前記ステータスとしての前記ノズルから射出されるプラズマ化ガスの発光状態が変化した場合に、前記印加される電圧を上昇させるように構成された請求項2または請求項3に記載のプラズマ処理機。
[請求項5]
 前記制御装置が、
 前記ステータスとしての前記ノズル若しくは前記ノズルの近傍の温度が低下した場合に、前記印加される電圧を上昇させるように構成された請求項2ないし請求項4のいずれか1つに記載のプラズマ処理機。
[請求項6]
 前記制御装置が、前記処理の効果に基づいて、前記処理条件を変更するように構成された請求項1ないし請求項5のいずれか1つに記載のプラズマ処理機。
[請求項7]
 プラズマ化ガスの照射の効果に応じて色が変化するインジケータが、当該プラズマ処理機におけるプラズマ化ガスの照射可能領域に設けられている場合に、
 前記制御装置が、
 前記インジケータの処理の前後の色の変化に依拠する前記処理の効果に基づいて、前記処理条件を変更するように構成された請求項6に記載のプラズマ処理機。
[請求項8]
 前記制御装置が、
 前記処理の効果が低い場合に、当該プラズマ処理機の処理の能力を大きくするように前記処理条件を変更するように構成された請求項6または請求項7に記載のプラズマ処理機。
[請求項9]
 前記制御装置が、
 前記処理の効果が低い場合に、前記処理条件の変更として、前記相対移動装置による前記照射ヘッドとワークとの相対移動の速度を小さくするように構成された請求項8に記載のプラズマ処理機。
[請求項10]
 前記制御装置が、
 前記処理の効果が低い場合に、前記処理条件の変更として、処理における前記照射ヘッドの前記ノズルとワークの表面との距離を小さくするように構成された請求項8または請求項9に記載のプラズマ処理機。
[請求項11]
 前記制御装置が、
 前記処理の効果が低い場合に、前記処理条件の変更として、ワークの同じ箇所における処理の回数を増加させるように構成された請求項8ないし請求項10のいずれか1つに記載のプラズマ処理機。
[請求項12]
 前記制御装置が、
 前記処理の効果が低い場合に、前記処理条件の変更として、前記印加される電圧を上昇させるように構成された請求項8ないし請求項11のいずれか1つに記載のプラズマ処理機。
[請求項13]
 前記照射ヘッドが、
 前記ノズルから射出されるプラズマ化ガスの周囲をシールドするためのシールドガスを放出するように構成されており、
 前記制御装置が、
 前記処理の効果が低い場合に、前記処理条件の変更として、前記シールドガスの温度を高くするように構成された請求項8ないし請求項12のいずれか1つに記載のプラズマ処理機。
[請求項14]
 前記制御装置が、
 前記処理の効果が高い場合に、当該プラズマ処理機の処理の能力を小さくするように前記処理条件を変更するように構成された請求項6ないし請求項13のいずれか1つに記載のプラズマ処理機。
[請求項15]
 前記制御装置が、
 前記処理の効果が高い場合に、前記処理条件の変更として、前記相対移動装置による前記照射ヘッドとワークとの相対移動の速度を大きくするように構成された請求項14に記載のプラズマ処理機。
[請求項16]
 前記制御装置が、
 前記処理の効果が高い場合に、前記処理条件の変更として、処理における前記照射ヘッドの前記ノズルとワークの表面との距離を大きくするように構成された請求項14または請求項15に記載のプラズマ処理機。
[請求項17]
 前記制御装置が、
 前記処理の効果が高い場合に、前記処理条件の変更として、ワークの同じ箇所における処理の回数を減少させるように構成された請求項14ないし請求項16のいずれか1つに記載のプラズマ処理機。
[請求項18]
 前記制御装置が、
 前記処理の効果が高い場合に、前記処理条件の変更として、前記印加される電圧を下降させるように構成された請求項14ないし請求項17のいずれか1つに記載のプラズマ処理機。
[請求項19]
 前記照射ヘッドが、
 前記ノズルから射出されるプラズマ化ガスの周囲をシールドするためのシールドガスを射出するように構成されており、
 前記制御装置が、
 前記処理の効果が高い場合に、前記処理条件の変更として、前記シールドガスの温度を低くするように構成された請求項14ないし請求項18のいずれか1つに記載のプラズマ処理機。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]