このアプリケーションの一部のコンテンツは現時点では利用できません。
このような状況が続く場合は、にお問い合わせくださいフィードバック & お問い合わせ
1. (WO2018180932) 熱交換器又は冷凍装置
Document

明 細 書

発明の名称 熱交換器又は冷凍装置

技術分野

0001  

背景技術

0002   0003  

発明の開示

発明が解決しようとする課題

0004   0005   0006  

課題を解決するための手段

0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033  

発明の効果

0034   0035   0036   0037   0038   0039   0040  

図面の簡単な説明

0041  

発明を実施するための形態

0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179   0180   0181   0182   0183   0184   0185   0186   0187   0188   0189   0190   0191   0192   0193   0194   0195   0196   0197   0198   0199   0200   0201   0202   0203   0204   0205   0206   0207   0208   0209   0210   0211   0212   0213   0214   0215   0216   0217   0218   0219   0220   0221   0222   0223   0224   0225   0226   0227   0228   0229   0230   0231   0232   0233   0234   0235   0236   0237   0238   0239   0240   0241   0242   0243   0244  

産業上の利用可能性

0245  

符号の説明

0246  

先行技術文献

特許文献

0247  

請求の範囲

1   2   3   4   5   6   7   8  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  

明 細 書

発明の名称 : 熱交換器又は冷凍装置

技術分野

[0001]
 本発明は、熱交換器又は冷凍装置に関する。

背景技術

[0002]
 従来、冷媒が流れる扁平管が積層される扁平管熱交換器が知られている。例えば、特許文献1(特開2016-38192号公報)には、扁平管熱交換器では配管長が大きくなるほど冷媒の圧力損失が生じやすいことに鑑みて、扁平管群を有する熱交換部を風上側及び風下側に並べて配置することで圧力損失の抑制を図った、二列扁平管熱交換器が開示されている。
[0003]
 また、例えば、特許文献2(特開2012-163319号公報)には、水平方向に延びる複数の扁平管が鉛直方向に積層され、鉛直方向に延び各扁平管に当接する複数の伝熱フィンが水平方向に並べられた空調機用の扁平管熱交換器が開示されている。

発明の開示

発明が解決しようとする課題

[0004]
 しかし、特許文献1の二列扁平管熱交換器が冷媒の凝縮器として用いられる場合、風上側の熱交換部における過熱域(過熱状態のガス冷媒が流れることが想定される扁平管群)と、風下側の熱交換部における過冷却域(過冷却状態の液冷媒が流れることが想定される扁平管群)と、が空気流の流れ方向から見て部分的に重畳あるいは近接しているため、過熱域を通過した空気流が、風下側の熱交換部における過冷却域を通過することとなる。このことから、風下側の熱交換部における過冷却域において、冷媒と空気流との温度差が適正に確保されにくくなり熱交換が良好に行われないケースが想定される。すなわち、風下側の熱交換部を流れる冷媒の過冷却度が適正に確保されにくいことが想定され、これに関連して熱交換器の性能低下(又は当該熱交換器を有する冷凍装置の性能低下)が生じることが懸念される。
[0005]
 また、特許文献2の扁平管熱交換器が冷媒の凝縮器として用いられる場合、過熱域と過冷却域とが上下に隣接することとなるため、場合によっては、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で伝熱フィンを介した熱交換が行われることとなる。これに関連して、冷媒の過冷却度が適正に確保されないケースが想定される。
[0006]
 そこで、本発明の課題は、性能低下を抑制する扁平管熱交換器(又は性能低下を抑制する冷凍装置)を提供することである。

課題を解決するための手段

[0007]
 本発明の第1観点に係る熱交換器は、第1入口及び第2入口から流入する冷媒を空気流と熱交換させ出口から流出させる熱交換器であって、風上熱交換部と、風下熱交換部と、流路形成部と、を備える。風下熱交換部は、設置状態において、風上熱交換部の風下側で風上熱交換部と並んで配置される。風下熱交換部は、第2入口を形成される。流路形成部は、風上熱交換部及び風下熱交換部間で冷媒流路を形成する。風上熱交換部及び風下熱交換部は、第1ヘッダと、第2ヘッダと、複数の扁平管と、をそれぞれ含む。第1ヘッダは、第1ヘッダ空間を内部に形成する。第2ヘッダは、第2ヘッダ空間を内部に形成する。扁平管は、第1ヘッダ及び第2ヘッダに接続される。複数の扁平管は、第1ヘッダ及び第2ヘッダの長手方向に並ぶ。扁平管は、第1ヘッダ空間及び第2ヘッダ空間を連通させる。第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、風上熱交換部において、過冷却域が形成されるとともに、風上出口側空間及び風上上流側空間が形成される。過冷却域は、過冷却状態の液冷媒が流れる領域である。風上出口側空間は、出口に連通する第1ヘッダ空間又は第2ヘッダ空間である。風上上流側空間は、風上出口側空間の冷媒流れの上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、冷媒流路は、風下下流側空間と、風上上流側空間と、を連通させる。風下下流側空間は、風下熱交換部において冷媒流れの最も下流側に配置される第2ヘッダ空間である。
[0008]
 本発明の第1観点に係る熱交換器では、第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、風上熱交換部において、過冷却状態の液冷媒が流れる領域である過冷却域が形成されるとともに、風上出口側空間(出口に連通する第1ヘッダ空間又は第2ヘッダ空間)、及び風上上流側空間(風上出口側空間の冷媒流れの上流側に配置される第1ヘッダ空間又は第2ヘッダ空間)が形成され、風上熱交換部及び風下熱交換部間で形成される冷媒流路は風下下流側空間(風下熱交換部において冷媒流れの最も下流側に配置される第2ヘッダ空間)と風上上流側空間とを連通させる。
[0009]
 これにより、冷媒の凝縮器として用いられる場合に、風下熱交換部を通過した冷媒が風上熱交換部に送られた後に出口から排出されることとなる。その結果、過冷却域を風上側の風上熱交換部に集中的に配置することが可能となる。このため、風上側の過熱域(過熱状態のガス冷媒が流れることが想定される領域)と、風下側の過冷却域(過冷却状態の液冷媒が流れることが想定される領域)と、が空気流の流れ方向から見て部分的に重畳あるいは近接することが抑制される。このことから、過熱域を通過した空気流が、過冷却域を通過することが抑制される。よって、過冷却域において、冷媒と空気流との温度差が適正に確保されやすくなり、熱交換が良好に行われない事態が抑制される。すなわち、風下熱交換部を流れる冷媒に関し過冷却度が適正に確保されやすくなる。
[0010]
 また、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように風下熱交換部を構成することが可能となる。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることが促進される。
[0011]
 したがって、性能低下が抑制される。
[0012]
 なお、ここでの「第1入口」及び「第2入口」は、凝縮器として使用される場合に冷媒(主として過熱状態のガス冷媒)の入口として機能する開口である。また、「出口」は、凝縮器として使用される場合に冷媒(主として、過冷却状態の液冷媒)の出口として機能する開口である。また、「流路形成部」は、風上熱交換部及び風下熱交換部間で冷媒流路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
[0013]
 本発明の第2観点に係る熱交換器は、第1観点に係る熱交換器であって、風上熱交換部において、第1ヘッダ空間は、風上第1空間と、風上第2空間と、風上第3空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第4空間と、風上第5空間と、風上第6空間と、に仕切られる。風上第4空間は、扁平管を介して、風上第1空間と連通する。風上第5空間は、扁平管を介して、風上第2空間と連通する。風上第6空間は、扁平管を介して、風上第3空間と連通する。風上熱交換部は、連通路形成部をさらに含む。連通路形成部は、連通路を形成する。連通路は、風上第4空間と風上第5空間とを連通させる流路である。第1入口は、風上第1空間に連通する。第2入口は、風下熱交換部において冷媒流れの最も上流側に配置される第1ヘッダ空間に連通する。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第2空間に連通する。第2出口は、風上出口側空間に連通する。風上第3空間又は風上第6空間の一方は、風上出口側空間に該当する。風上第3空間又は風上第6空間の他方は、風上上流側空間に該当する。
[0014]
 本発明の第2観点に係る熱交換器では、風上熱交換部において複数のパスが形成される。すなわち、風上熱交換部において、風上第1空間、扁平管、風上第4空間、連通路、風上第5空間、扁平管、及び風上第2空間で形成されるパスと、風上第3空間、扁平管及び風上第6空間で形成されるパスと、が形成される。そのうえで、風上第3空間、扁平管及び風上第6空間で形成されるパスが、流路形成部によって形成される冷媒流路を介して風下下流側空間と連通する。これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関し過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
[0015]
 また、本発明の第2観点に係る熱交換器では、風上第1空間、扁平管、風上第4空間、連通路、風上第5空間、扁平管、及び風上第2空間で形成されるパスにおいて、第2ヘッダ内の風上第4空間と風上第5空間とが連通路で連通される。これにより、係るパスを流れる冷媒は、風上第4空間及び風上第5空間の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。このため、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。
[0016]
 よって、性能低下がさらに抑制される。
[0017]
 なお、ここでの「連通路形成部」は、風上第4空間と風上第5空間とを連通させる連通路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
[0018]
 また、「パス」とは、熱交換器に含まれる要素の内部空間が他の要素の内部空間と連通することによって形成される冷媒の流路である。
[0019]
 本発明の第3観点に係る熱交換器は、第1観点に係る熱交換器であって、風上熱交換部において、第1ヘッダ空間は、風上第1空間と、風上第2空間と、風上第3空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第4空間と、風上第5空間と、風上第6空間と、に仕切られる。風上第4空間は、扁平管を介して風上第1空間と連通する。風上第5空間は、扁平管を介して風上第2空間と連通する。風上第6空間は、扁平管を介して風上第3空間と連通する。風上熱交換部は、第2連通路形成部をさらに含む。第2連通路形成部は、第2連通路を形成する。第2連通路は、風上第2空間と風上第4空間とを連通させる流路である。第1入口は、風上第1空間に連通する。第2入口は、風下熱交換部において冷媒流れの最も上流側に配置される第1ヘッダ空間に連通する。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第5空間に連通する。第2出口は、風上出口側空間に連通する。風上第3空間又は風上第6空間の一方は、風上出口側空間に該当する。風上第3空間又は風上第6空間の他方は、風上上流側空間に該当する。
[0020]
 本発明の第3観点に係る熱交換器では、風上熱交換部において複数のパスが形成される。すなわち、風上熱交換部において、風上第1空間、扁平管、風上第4空間、第2連通路、風上第2空間、扁平管、及び風上第5空間で形成されるパスと、風上第3空間、扁平管及び風上第6空間で形成されるパスと、が形成される。そのうえで、風上第3空間、扁平管及び風上第6空間で形成されるパスが、流路形成部によって形成される冷媒流路を介して風下下流側空間と連通する。これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関し過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
[0021]
 また、本発明の第3観点に係る熱交換器では、風上第1空間、扁平管、風上第4空間、第2連通路、風上第2空間、扁平管、及び風上第5空間で形成されるパスにおいて、第2ヘッダ内の風上第4空間と第1ヘッダ内の風上第2空間とが連通路で連通される。これにより、係るパスを流れる冷媒は、風上第4空間及び風上第2空間の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。このため、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。
[0022]
 よって、性能低下がさらに抑制される。
[0023]
 なお、ここでの「第2連通路形成部」は、風上第2空間と風上第4空間とを連通させる第2連通路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
[0024]
 本発明の第4観点に係る熱交換器は、第1観点に係る熱交換器であって、風下熱交換部を複数備える。風上熱交換部において、第1ヘッダ空間は、風上第7空間と、風上第8空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第9空間と、風上第10空間と、に仕切られる。風上第9空間は、扁平管を介して、風上第7空間と連通する。風上第10空間は、扁平管を介して、風上第8空間と連通する。第2入口は、風下第1上流側空間に連通する。風下第1上流側空間は、風上側に配置される風下熱交換部の、最も上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。第1入口は、風下第2上流側空間に連通する。風下第2上流側空間は、風下側に配置される風下熱交換部の、最も上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、いずれかに連通する。第2出口は、風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、他のいずれかに連通する。風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、第1出口又は第2出口に連通する各空間が、風上出口側空間に該当する。風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、他の各空間が風上上流側空間に該当する。冷媒流路には、第1冷媒流路及び第2冷媒流路が含まれる。第1冷媒流路は、風上側に配置される風下熱交換部の風下下流側空間と、いずれかの風上上流側空間と、を連通させる。第2冷媒流路は、風下側に配置される風下熱交換部の風下下流側空間と、他の風上上流側空間とを連通させる。
[0025]
 本発明の第4観点に係る熱交換器では、風上熱交換部において複数のパス(冷媒流路)が形成される。すなわち、風上熱交換部において、風上第7空間、扁平管及び風上第9空間で形成されるパスと、風上第8空間、扁平管及び風上第10空間で形成されるパスと、が形成される。これにより、複数の風下熱交換部を有する3列以上の扁平管熱交換器が冷媒の凝縮器として用いられる場合に、各風下熱交換部を流れる冷媒の過冷却域が風上熱交換部の対応するパスにおいて形成されることが促進される。すなわち、過冷却域を風上側の風上熱交換部に集中的に配置することが促進される。よって、特に複数の風下熱交換部を有する3列以上の扁平管熱交換器において、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
[0026]
 また、冷媒の入口(第1入口及び第2入口)を各風下熱交換部において個別に形成することにより、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
[0027]
 本発明の第5観点に係る熱交換器は、第1観点から第4観点のいずれかに係る熱交換器であって、風上熱交換部及び風下熱交換部においては、第1入口又は第2入口から流入した過熱状態のガス冷媒が空気流と熱交換を行って出口から過冷却状態の液冷媒として流出する場合に、過熱域が形成される。過熱域は、過熱状態のガス冷媒が流れる領域である。風上熱交換部の過熱域を流れる冷媒の流れ方向は、風下熱交換部の過熱域を流れる冷媒の流れ方向に対向する。
[0028]
 これにより、風上熱交換部及び風下熱交換部の過熱域の冷媒が互いに対向して流れることとなる。その結果、風上熱交換部及び風下熱交換部を通過した空気流のうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制される。よって、熱交換器を通過した空気の温度ムラが抑制される。
[0029]
 本発明の第6観点に係る熱交換器は、第1観点から第5観点のいずれかに係る熱交換器であって、過冷却域は、風上熱交換部のうち、通過する空気流の風速が他の部分よりも小さい部分に位置する。これにより、設置状態において、通過する空気流に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される扁平管熱交換器において、過熱域を通過した空気流が過冷却域を通過することが抑制され、性能低下が抑制される。
[0030]
 本発明の第7観点に係る熱交換器は、第1観点から第6観点のいずれかに係る熱交換器であって、設置状態において、風上熱交換部及び風下熱交換部は、第1部と、第2部と、を有する。第1部では、扁平管が第1方向に向かって延びる。第2部では、扁平管が第2方向に向かって延びる。第2方向は、第1方向に交差する方向である。設置状態において、風下熱交換部の第1部は、風上熱交換部の第1部の風下側に並んで配置される。設置状態において、風下熱交換部の第2部は、風上熱交換部の第2部の風下側に並んで配置される。
[0031]
 これにより、互いに異なる方向に向かって延びる第1部及び第2部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器において、過熱域を通過した空気流が、過冷却域を通過することが抑制され、性能低下が抑制される。
[0032]
 本発明の第8観点に係る冷凍装置は、第1観点から第7観点のいずれかに係る熱交換器と、ケーシングと、を備える。ケーシングは、熱交換器を収容する。ケーシングには、連絡配管挿入口が形成される。連絡配管挿入口は、冷媒連絡配管を挿入するための孔である。熱交換器において、風上熱交換部及び風下熱交換部は、第3部と、第4部と、を有する。第3部は、扁平管が第3方向に向かって延びる。第4部は、扁平管が第4方向に向かって延びる。第4方向は、第3方向とは異なる方向である。風上熱交換部において、第1ヘッダ及び第2ヘッダのうち、一方は第3部の末端に位置する。風上熱交換部において、第1ヘッダ及び第2ヘッダのうち、他方は第3部の末端と離間する第4部の先端に位置する。風下熱交換部において、第1ヘッダ及び第2ヘッダのうち、一方は第3部の末端に位置する。風下熱交換部において、第1ヘッダ及び第2ヘッダのうち、他方は第3部の末端と離間する第4部の先端に位置する。風上熱交換部及び風下熱交換部において、第3部の末端は、第3部の先端よりも連絡配管挿入口の近傍に配置される。風上熱交換部及び風下熱交換部において、第4部の先端は、第4部の末端よりも連絡配管挿入口の近傍に配置される。
[0033]
 これにより、互いに異なる方向に向かって延びる第3部及び第4部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器、を含む冷凍装置において、ケーシング内における配管(例えば熱交換器の入口又は出口に接続される冷媒連絡配管、又は流路形成部等)の長さを短くすることが可能となる。その結果、ケーシング内における配管の取り回しが容易となる。これに関連して、冷凍装置の施工性、組立性及びコンパクト性が向上する。

発明の効果

[0034]
 本発明の第1観点に係る熱交換器では、冷媒の凝縮器として用いられる場合に、過熱域を通過した空気流が、過冷却域を通過することが抑制される。よって、過冷却域において、冷媒と空気流との温度差が適正に確保されやすくなり、熱交換が良好に行われない事態が抑制される。すなわち、風下熱交換部を流れる冷媒に関し過冷却度が適正に確保されやすくなる。また、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように風下熱交換部を構成することが可能となる。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることが促進される。したがって、性能低下が抑制される。
[0035]
 本発明の第2観点又は第3観点に係る熱交換器では、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関して過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。また、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
[0036]
 本発明の第4観点に係る熱交換器では、特に複数の風下熱交換部を有する3列以上の扁平管熱交換器において、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。また、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
[0037]
 本発明の第5観点に係る熱交換器では、熱交換器を通過した空気の温度ムラが抑制される。
[0038]
 本発明の第6観点に係る熱交換器では、設置状態において、熱交換器を通過する空気流に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される扁平管熱交換器において、性能低下が抑制される。
[0039]
 本発明の第7観点に係る熱交換器では、互いに異なる方向に向かって延びる第1部及び第2部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器において、性能低下が抑制される。
[0040]
 本発明の第8観点に係る冷凍装置では、施工性、組立性及びコンパクト性が向上する。

図面の簡単な説明

[0041]
[図1] 本発明の一実施形態に係る空気調和装置の概略構成図。
[図2] 室内ユニットの斜視図。
[図3] 図2のIII-III線断面を示した模式図。
[図4] 下面視において室内ユニットの概略構成を示した模式図。
[図5] 伝熱管積層方向から見た、本発明の一実施形態に係る室内熱交換器を概略的に示した模式図。
[図6] 室内熱交換器の斜視図。
[図7] 熱交換部の一部を示した斜視図。
[図8] 図5のVIII-VIII線断面の模式図。
[図9] 室内熱交換器の構成態様を概略的に示した模式図。
[図10] 風上熱交換部の構成態様を概略的に示した模式図。
[図11] 風下熱交換部の構成態様を概略的に示した模式図。
[図12] 室内熱交換器において形成される冷媒のパスを概略的に示した模式図。
[図13] 冷房運転時の風上熱交換部における冷媒の流れを概略的に示した模式図。
[図14] 冷房運転時の風下熱交換部における冷媒の流れを概略的に示した模式図。
[図15] 暖房運転時の風上熱交換部における冷媒の流れを概略的に示した模式図。
[図16] 暖房運転時の風下熱交換部における冷媒の流れを概略的に示した模式図。
[図17] 変形例2に係る風上熱交換部の構成態様を概略的に示した模式図。
[図18] 変形例2に係る風上熱交換部を含む室内熱交換器において形成される冷媒のパスを概略的に示した模式図。
[図19] 変形例2に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。
[図20] 変形例3に係る風上熱交換部の構成態様を概略的に示した模式図。
[図21] 変形例3に係る風上熱交換部を含む室内熱交換器において形成される冷媒のパスを概略的に示した模式図。
[図22] 変形例3に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。
[図23] 伝熱管積層方向から見た、変形例5に係る室内熱交換器を概略的に示した模式図。
[図24] 変形例5に係る室内熱交換器の構成態様を概略的に示した模式図。
[図25] 変形例5に係る室内熱交換器において形成される冷媒のパスを概略的に示した模式図。
[図26] 変形例5に係る風上熱交換部の構成態様を概略的に示した模式図。
[図27] 変形例5に係る第2風下熱交換部の構成態様を概略的に示した模式図。
[図28] 変形例5に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。
[図29] 変形例5に係る第2風下熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。
[図30] 変形例5に係る室内熱交換器において形成されうる他の冷媒のパスを概略的に示した模式図。

発明を実施するための形態

[0042]
 以下、図面を参照しながら、本発明の一実施形態に係る室内熱交換器25(熱交換器)及び空気調和装置100(冷凍装置)について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。また、以下の実施形態において、上、下、左、右、前又は後といった方向は、図2から図6に示す方向を意味する。
[0043]
 また、以下の説明においては、特にことわりのない限り、「ガス冷媒」には飽和状態又は過熱状態のガス冷媒のみならず気液二相状態の冷媒も含まれ、「液冷媒」には飽和状態又は過冷却状態の液冷媒のみならず気液二相状態の冷媒も含まれる。
[0044]
 (1)空気調和装置100
 図1は、本発明の一実施形態に係る室内熱交換器25を含む空気調和装置100の概略構成図である。
[0045]
 空気調和装置100は、冷房運転又は暖房運転を行って、対象空間の空気調和を実現する装置である。具体的に、空気調和装置100は、冷媒回路RCを有し、蒸気圧縮式の冷凍サイクルを行う。空気調和装置100は、主として、熱源ユニットとしての室外ユニット10と、利用ユニットとしての室内ユニット20と、を有している。空気調和装置100においては、室外ユニット10と室内ユニット20とが、ガス側連絡配管GP及び液側連絡配管LPによって接続されることで、冷媒回路RCが構成されている。冷媒回路RCに封入される冷媒については、特に限定されないが、例えば、R32やR410AのようなHFC冷媒が封入されている。
[0046]
 (1-1)室外ユニット10
 室外ユニット10は、室外に設置される。室外ユニット10は、主として、圧縮機11と、四路切換弁12と、室外熱交換器13と、膨張弁14と、室外ファン15と、を有している。
[0047]
 圧縮機11は、低圧のガス冷媒を吸入し、圧縮して吐出する機構である。圧縮機11は、運転中、インバータ制御され、状況に応じて回転数を調整される。
[0048]
 四路切換弁12は、冷房運転(正サイクル運転)と暖房運転(逆サイクル運転)との切換時に、冷媒の流れる方向を切り換えるための切換弁である。四路切換弁12は、運転モードに応じて状態(冷媒流路)を切り換えられる。
[0049]
 室外熱交換器13は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器13は、複数の伝熱管及び複数の伝熱フィンを有する(図示省略)。
[0050]
 膨張弁14は、流入する高圧の冷媒を減圧する電動弁である。膨張弁14は、運転状況に応じて開度を適宜調整される。
[0051]
 室外ファン15は、外部から室外ユニット10内に流入し室外熱交換器13を通過してから室外ユニット10外へ流出する室外空気流を生成する送風機である。
[0052]
 (1-2)室内ユニット20
 室内ユニット20は、室内(より詳細には空気調和が行われる対象空間)に設置される。室内ユニット20は、主として、室内熱交換器25及び室内ファン28を有している。
[0053]
 室内熱交換器25(特許請求の範囲記載の「熱交換器」に相当)は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の凝縮器として機能する熱交換器である。室内熱交換器25は、ガス冷媒の出入口(ガス側出入口GH)にガス側連絡配管GPが接続され、液冷媒の出入口(液側出入口LH)に液側連絡配管LPが接続されている。室内熱交換器25の詳細については後述する。
[0054]
 室内ファン28は、外部から室内ユニット20内に流入し室内熱交換器25を通過してから室内ユニット20外へ流出する空気流(室内空気流AF;図3-図5、図7及び図8等参照)を生成する送風機である。室内ファン28は、運転中、図示しない制御部によって、駆動を制御され、回転数を適宜調整される。
[0055]
 (1-3)ガス側連絡配管GP、液側連絡配管LP
 ガス側連絡配管GP及び液側連絡配管LPは、施工現場において設置される配管である。ガス側連絡配管GP及び液側連絡配管LPの配管径や配管長は、設計仕様や設置環境に応じて、個別に選択される。
[0056]
 ガス側連絡配管GP(特許請求の範囲記載の「冷媒連絡配管」に相当)は、室外ユニット10及び室内ユニット20間で主としてガス冷媒を連絡するための配管である。ガス側連絡配管GPは、室内ユニット20側において第1ガス側連絡配管GP1と第2ガス側連絡配管GP2とに分岐している(図6及び図9等参照)。
[0057]
 液側連絡配管LP(特許請求の範囲記載の「冷媒連絡配管」に相当)は、室外ユニット10及び室内ユニット20間で主として液冷媒を連絡するための配管である。液側連絡配管LPは、室内ユニット20側において第1液側連絡配管LP1と第2液側連絡配管LP2とに分岐している(図5及び図6等参照)。
[0058]
 (2)空気調和装置100における冷媒の流れ
 空気調和装置100では、冷房運転(正サイクル運転)時又は暖房運転(逆サイクル運転)時には冷媒回路RCにおいて以下に示すような流れで冷媒が循環する。
[0059]
 (2-1)冷房運転時
 冷房運転時には、四路切換弁12が図1の実線で示される状態となり、圧縮機11の吐出側が室外熱交換器13のガス側と連通し、且つ圧縮機11の吸入側が室内熱交換器25のガス側と連通する。
[0060]
 係る状態で圧縮機11が駆動すると、低圧のガス冷媒は、圧縮機11で圧縮されて高圧のガス冷媒となる。高圧のガス冷媒は、四路切換弁12を経て室外熱交換器13に送られる。その後、高圧のガス冷媒は、室外熱交換器13において、室外空気流と熱交換を行うことで、凝縮して高圧の液冷媒(過冷却状態の液冷媒)となる。室外熱交換器13から流出した高圧の液冷媒は、膨張弁14に送られる。膨張弁14において減圧された低圧の冷媒は、液側連絡配管LPを流れ液側出入口LHから室内熱交換器25に流入する。室内熱交換器25に流入した冷媒は、室内空気流AFと熱交換を行うことで蒸発して低圧のガス冷媒(過熱状態のガス冷媒)となってガス側出入口GHを介して室内熱交換器25から流出する。室内熱交換器25から流出した冷媒は、ガス側連絡配管GPを流れて圧縮機11に吸入される。
[0061]
 (2-2)暖房運転時
 暖房運転時には、四路切換弁12が図1の破線で示される状態となり、圧縮機11の吐出側が室内熱交換器25のガス側と連通し、且つ圧縮機11の吸入側が室外熱交換器13のガス側と連通する。
[0062]
 係る状態で圧縮機11が駆動すると、低圧のガス冷媒は、圧縮機11で圧縮されて高圧のガス冷媒となり、四路切換弁12及びガス側連絡配管GPを経て、室内熱交換器25に送られる。室内熱交換器25に送られた高圧のガス冷媒は、ガス側出入口GHを介して室内熱交換器25に流入し、室内空気流AFと熱交換を行うことで凝縮して高圧の液冷媒(過冷却状態の液冷媒)となった後、液側出入口LH(特許請求の範囲記載の「出口」に相当)を介して室内熱交換器25から流出する。室内熱交換器25から流出した冷媒は、液側連絡配管LPを経由して膨張弁14に送られる。膨張弁14に送られた高圧のガス冷媒は、膨張弁14を通過する際に、膨張弁14の弁開度に応じて減圧される。膨張弁14を通過した低圧の冷媒は、室外熱交換器13に流入する。室外熱交換器13に流入した低圧の冷媒は、室外空気流と熱交換を行って蒸発して低圧のガス冷媒となり、四路切換弁12を経由して圧縮機11に吸入される。
[0063]
 (3)室内ユニット20の詳細
 図2は、室内ユニット20の斜視図である。図3は、図2のIII-III線断面を示した模式図である。図4は、下面視において室内ユニット20の概略構成を示した模式図である。
[0064]
 室内ユニット20は、いわゆる天井埋込型の空調室内機であり、対象空間の天井に設置されている。室内ユニット20は、外郭を構成するケーシング30を有している。
[0065]
 ケーシング30は、室内熱交換器25や室内ファン28等の機器を収容している。ケーシング30は、図3に示されるように、対象空間の天井面CLに形成された開口を介して天井面CLと上階の床面又は屋根との間に形成される天井裏空間CSに設置されている。ケーシング30は、天板31a、側板31b、及び底板31c及び化粧パネル32を含んでいる。
[0066]
 天板31aは、ケーシング30の天面部分を構成する部材であり、長辺と短辺とが交互に連続して形成された略8角形状を呈している。
[0067]
 側板31bは、ケーシング30の側面部分を構成する部材であり、天板31aの長辺及び短弁に1対1に対応する面部分を含んでいる。側板31bには、ガス側連絡配管GP及び液側連絡配管LPをケーシング30内に挿入する(引き込む)ための開口(連絡配管挿入口30a)が形成されている(図4の1点鎖線参照)
 底板31cは、ケーシング30の底面部分を構成する部材であり、中央に略四角形の大開口311が形成されるとともに当該大開口311の周囲に複数の開口312が形成されている。底板31cは、下面側(対象空間側)に化粧パネル32を取り付けられている。
[0068]
 化粧パネル32は、対象空間に露出する板状部材であり、平面視で略四角形状を呈している。化粧パネル32は、天井面CLの開口に嵌め込まれて設置されている。化粧パネル32には、室内空気流AFの吸込口33や吹出口34が形成されている。吸込口33は、化粧パネル32の中央部分において、平面視で底板31cの大開口311と重畳する位置に略四角形状に大きく形成されている。吹出口34は、吸込口33の周囲において吸込口33を囲むように形成されている。
[0069]
 ケーシング30内の空間には、吸込口33を介してケーシング30内に流入した室内空気流AFを室内熱交換器25へと導くための吸込流路FP1と、室内熱交換器25を通過した室内空気流AFを吹出口34へと送る吹出流路FP2と、が形成されている。吹出流路FP2は、吸込流路FP1の外側において吸込流路FP1を囲むように配置されている。
[0070]
 ケーシング30内においては、中央部分に室内ファン28が配置され、室内ファン28を囲むように室内熱交換器25が配置されている。室内ファン28は、平面視において、吸込口33と重畳している。室内熱交換器25は、平面視において、略四角形状を呈し、吸込口33を囲み且つ吹出口34に囲まれるように配置されている。
[0071]
 室内ユニット20では、上述のような態様で吸込口33、吹出口34、吸込流路FP1、及び吹出流路FP2が形成されるとともに室内熱交換器25及び室内ファン28が配置されることで、運転中、室内ファン28によって生成された室内空気流AFが、吸込口33を介してケーシング30内に流入し、吸込流路FP1を介して室内熱交換器25へ導かれて室内熱交換器25内の冷媒と熱交換を行った後、吹出流路FP2を介して吹出口34へと送られ、吹出口34から対象空間へ吹き出されるようになっている。
[0072]
 以下の説明においては、室内空気流AFが室内熱交換器25を通過する際に流れる方向を「空気流れ方向dr3」と称する。本実施形態において、空気流れ方向dr3は、水平方向に相当する。
[0073]
 (4)室内熱交換器25の詳細
 (4-1)室内熱交換器25の構成
 図5は、伝熱管積層方向dr2から見た室内熱交換器25を概略的に示した模式図である。図6は、室内熱交換器25の斜視図である。図7は、熱交換面40の一部を示した斜視図である。図8は、図5のVIII-VIII線断面の模式図である。
[0074]
 室内熱交換器25は、上述のように、ガス側出入口GHと液側出入口LHを介して冷媒を流入又は流出させる。暖房運転時(すなわち室内熱交換器25が凝縮器として使用される時)に、ガス側出入口GHは冷媒(主として過熱状態のガス冷媒)の入口として機能し、液側出入口LHは冷媒(主として過冷却状態の液冷媒)の出口として機能する。
[0075]
 室内熱交換器25においては、暖房運転時に、過熱状態の冷媒が流れる領域である過熱域(図15及び図16に示すSH3、SH4)と、過冷却状態の冷媒が流れる領域である過冷却域(図15及び図16に示すSC1、SC2)とが形成される。
[0076]
 室内熱交換器25には、複数(ここでは2つ)のガス側出入口GHと、複数(ここでは2つ)の液側出入口LHが形成されている。具体的に、室内熱交換器25には、ガス側出入口GHとして、第1ガス側出入口GH1(特許請求の範囲記載の「第1入口」に相当)及び第2ガス側出入口GH2(特許請求の範囲記載の「第2入口」に相当)が形成されている。また、室内熱交換器25には、液側出入口LHとして、第1液側出入口LH1(特許請求の範囲記載の「第1出口」に相当)及び第2液側出入口LH2(特許請求の範囲記載の「第2出口」に相当)が形成されている。第1ガス側出入口GH1及び第2ガス側出入口GH2は、第1液側出入口LH1及び第2液側出入口LH2よりも上方に位置している。
[0077]
 室内熱交換器25は、室内空気流AFと熱交換を行うための熱交換面40を、室内空気流AFの風上側及び風下側に有している。室内熱交換器25は、各熱交換面40において、冷媒が流れる複数(ここでは19本)の伝熱管45(図7及び図8等参照)と、冷媒と室内空気流AFとの熱交換を促進させる複数の伝熱フィン48(図7及び図8等参照)と、を有する。
[0078]
 各伝熱管45は、所定の伝熱管延伸方向dr1(ここでは水平方向)に延びるように配置され、所定の伝熱管積層方向dr2(ここでは鉛直方向)に間隔を置いて積層されている。伝熱管延伸方向dr1は、伝熱管積層方向dr2及び空気流れ方向dr3に交差する方向であり、平面視において、当該伝熱管45が含まれる熱交換面40が延びる方向に対応している。伝熱管積層方向dr2は、伝熱管延伸方向dr1及び空気流れ方向dr3に交差する方向である。本実施形態において、室内熱交換器25は熱交換面40を風上側及び風下側に有しているため、室内熱交換器25においては、空気流れ方向dr3に沿って2列に並ぶ伝熱管45が伝熱管積層方向dr2に複数段に積層されている。なお、熱交換面40に含まれる伝熱管45の本数、列数、段数については、設計仕様に応じて適宜変更が可能である。
[0079]
 伝熱管45は、断面が扁平形状を呈するように構成された、アルミニウム製若しくはアルミニウム合金製の扁平管である(すなわち、伝熱管45は、特許請求の範囲記載の「扁平管」に相当する)。より詳細には、伝熱管45は、内部に、伝熱管延伸方向dr1に沿って延びる複数の冷媒流路(伝熱管流路451)を形成された扁平多穴管である(図8参照)。複数の伝熱管流路451は、伝熱管45内において、空気流れ方向dr3に沿って並んでいる。
[0080]
 伝熱フィン48は、伝熱管45と室内空気流AFとの伝熱面積を増大させる平板状の部材である。伝熱フィン48は、アルミニウム製もしくはアルミニウム合金製である。伝熱フィン48は、長手方向が、伝熱管45に交差するように伝熱管積層方向dr2に沿って延びている。伝熱フィン48には、伝熱管積層方向dr2に沿って複数のスリット48aが間隔を空けて並べて形成されており、各スリット48aに伝熱管45が挿入されている(図8参照)。
[0081]
 各伝熱フィン48は、熱交換面40において、他の伝熱フィン48とともに伝熱管延伸方向dr1に沿って間隔を空けて並べられている。本実施形態において、室内熱交換器25は熱交換面40を風上側及び風下側に有しているため、室内熱交換器25においては、伝熱管積層方向dr2に沿って延びる伝熱フィン48が、空気流れ方向dr3に沿って2列に並べられ、伝熱管延伸方向dr1に沿って多数並べられている。なお、熱交換面40に含まれる伝熱フィン48の数については、伝熱管45の伝熱管延伸方向dr1の長さ寸法に応じて選択され、設計仕様に応じて適宜選択、変更が可能である。
[0082]
 図9は、室内熱交換器25の構成態様を概略的に示した模式図である。室内熱交換器25は、主として、風上側に配置される熱交換面40を含む風上熱交換部50と、風下側に配置される熱交換面40を含む風下熱交換部60と、風上熱交換部50及び風下熱交換部60を接続する接続配管70と、を有している。空気流れ方向dr3から見て、風上熱交換部50は風下熱交換部60よりも風上側に配置されている(すなわち風下熱交換部60は風上熱交換部50よりも風下側に配置されている)。
[0083]
 (4-1-1)風上熱交換部50
 図10は、風上熱交換部50の構成態様を概略的に示した模式図である。風上熱交換部50は、主として、熱交換面40としての風上第1熱交換面51、風上第2熱交換面52、風上第3熱交換面53及び風上第4熱交換面54(以下、これらを併せて「風上熱交換面55」と称する)と、風上第1ヘッダ56と、風上第2ヘッダ57と、折返し配管58と、を有している。なお、設置状態における風上熱交換部50を通過する室内空気流AFに関する風速分布においては、上段側よりも下段側のほうが風速が小さい。具体的には、風上熱交換部50のうち1点鎖線L1(図10参照)より下方の部分を通過する室内空気流AFについては、1点鎖線L1より上方の部分を通過する室内空気流AFよりも風速が小さい。
[0084]
 (4-1-1-1)風上熱交換面55
 風上第1熱交換面51(特許請求の範囲記載の「第1部」又は「第3部」に相当)は、風上熱交換面55のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。風上第1熱交換面51は、風上熱交換面55のうち、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において風上第1ヘッダ56を接続されており、主として左から右に向かって延びている。風上第1熱交換面51は、風上第2熱交換面52及び風上第3熱交換面53よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風上第1熱交換面51は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
[0085]
 風上第2熱交換面52(特許請求の範囲記載の「第2部」に相当)は、風上熱交換面55のうち、冷房運転時に風上第1熱交換面51の冷媒流れの上流側に位置し、暖房運転時に風上第1熱交換面51の冷媒流れの下流側に位置する。風上第2熱交換面52は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第1熱交換面51の先端に接続され、主として後から前に向かって延びている。
[0086]
 風上第3熱交換面53は、風上熱交換面55のうち、冷房運転時に風上第2熱交換面52の冷媒流れの上流側に位置し、暖房運転時に風上第2熱交換面52の冷媒流れの下流側に位置する。風上第3熱交換面53は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第2熱交換面52の先端に接続され、主として右から左に向かって延びている。
[0087]
 風上第4熱交換面54(特許請求の範囲記載の「第4部」に相当)は、風上熱交換面55のうち、冷房運転時に風上第3熱交換面53の冷媒流れの上流側に位置し、暖房運転時に風上第3熱交換面53の冷媒流れの下流側に位置する。風上第4熱交換面54は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第3熱交換面53の先端に接続され、主として前から後に向かって延びている。風上第4熱交換面54は、その先端において風上第2ヘッダ57を接続されている。風上第4熱交換面54は、風上第2熱交換面52及び風上第3熱交換面53よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風上第4熱交換面54は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
[0088]
 このような風上第1熱交換面51、風上第2熱交換面52、風上第3熱交換面53及び風上第4熱交換面54を含むことで、風上熱交換部50の風上熱交換面55は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、風上熱交換部50は、4つの風上熱交換面55を有している。
[0089]
 (4-1-1-2)風上第1ヘッダ56
 風上第1ヘッダ56(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風上第1ヘッダ56は、設置状態において長手方向が鉛直方向(上下方向)である。
[0090]
 風上第1ヘッダ56は、筒状に構成され、内部において空間(以下、「風上第1ヘッダ空間Sa1」と称する)を形成している(風上第1ヘッダ空間Sa1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。風上第1ヘッダ56は、風上第1熱交換面51の末端に接続されている。風上第1ヘッダ56は、風上第1熱交換面51に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風上第1ヘッダ空間Sa1とを連通させている。
[0091]
 風上第1ヘッダ56内には複数(ここでは2つ)の水平仕切板561が配置されており、風上第1ヘッダ空間Sa1は伝熱管積層方向dr2に複数(ここでは3つ)の空間(具体的には風上第1空間A1、風上第2空間A2及び風上第3空間A3)に仕切られている。換言すると、風上第1ヘッダ56内には、風上第1空間A1、風上第2空間A2及び風上第3空間A3が上下方向に並ぶように形成されている。
[0092]
 風上第1空間A1は、最も上段に配置される風上第1ヘッダ空間Sa1である。風上第2空間A2は、中段(風上第1空間A1の下段であって風上第3空間A3の上段)に配置される風上第1ヘッダ空間Sa1である。風上第3空間A3は、最も下段に配置される風上第1ヘッダ空間Sa1である。
[0093]
 風上第1ヘッダ56には、第1ガス側出入口GH1が形成されている。第1ガス側出入口GH1は、風上第1空間A1に連通している。第1ガス側出入口GH1には、第1ガス側連絡配管GP1が接続されている。
[0094]
 風上第1ヘッダ56には、第1液側出入口LH1及び第2液側出入口LH2が形成されている。第1液側出入口LH1は、風上第2空間A2に連通している。第1液側出入口LH1には、第1液側連絡配管LP1が接続されている。第2液側出入口LH2は、風上第3空間A3に連通している。第2液側出入口LH2には、第2液側連絡配管LP2が接続されている。なお、液側出入口LHに連通する風上第3空間A3は、特許請求の範囲記載の「風上出口側空間」に相当する。
[0095]
 (4-1-1-3)風上第2ヘッダ57
 風上第2ヘッダ57(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風上第2ヘッダ57は、設置状態において長手方向が鉛直方向(上下方向)である。
[0096]
 風上第2ヘッダ57は、筒状に構成され、内部において空間(以下、「風上第2ヘッダ空間Sa2」と称する)を形成している(風上第2ヘッダ空間Sa2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。風上第2ヘッダ57は、風上第4熱交換面54の先端に接続されている。風上第2ヘッダ57は、風上第4熱交換面54に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風上第2ヘッダ空間Sa2とを連通させている。
[0097]
 風上第2ヘッダ57内には複数(ここでは2つ)の水平仕切板571が配置されており、風上第2ヘッダ空間Sa2は伝熱管積層方向dr2に複数(ここでは3つ)の空間(具体的には風上第4空間A4、風上第5空間A5及び風上第6空間A6)に仕切られている。換言すると、風上第2ヘッダ57内には、風上第4空間A4、風上第5空間A5及び風上第6空間A6が上下方向に並ぶように形成されている。
[0098]
 風上第4空間A4は、最も上段に配置される風上第2ヘッダ空間Sa2である。風上第4空間A4は、伝熱管45を介して風上第1空間A1と連通している。
[0099]
 風上第5空間A5は、中段(風上第4空間A4の下段であって風上第6空間A6の上段)に配置される風上第2ヘッダ空間Sa2である。風上第5空間A5は、伝熱管45を介して風上第2空間A2と連通している。風上第5空間A5は、折返し配管58を介して風上第4空間A4と連通している。
[0100]
 風上第6空間A6は、最も下段に配置される風上第2ヘッダ空間Sa2である。風上第6空間A6は、伝熱管45を介して風上第3空間A3と連通している。
[0101]
 風上第2ヘッダ57には、折返し配管58の一端を接続するための第1接続孔H1が形成されている。第1接続孔H1は、風上第4空間A4に連通している。
[0102]
 また、風上第2ヘッダ57には、折返し配管58の他端を接続するための第2接続孔H2が形成されている。第2接続孔H2は、風上第5空間A5に連通している。
[0103]
 また、風上第2ヘッダ57には、接続配管70の一端を接続するための第3接続孔H3が形成されている。第3接続孔H3は、風上第6空間A6に連通している。第3接続孔H3には、風上第6空間A6と風下第2ヘッダ空間Sb2(後述)が連通するように、接続配管70の一端が接続されている。なお、接続配管70に連通する風上第6空間A6は、特許請求の範囲記載の「風上上流側空間」に相当する。
[0104]
 (4-1-1-4)折返し配管58
 折返し配管58(特許請求の範囲記載の「連通路形成部」に相当)は、伝熱管45を通過して風上第2ヘッダ57のいずれかの風上第2ヘッダ空間Sa2(ここでは風上第4空間A4又は風上第5空間A5)に流入した冷媒を折り返して他の風上第2ヘッダ空間Sa2(ここでは風上第5空間A5又は風上第4空間A4)へ流入させる折返し流路JP(特許請求の範囲記載の「連通路」に相当)を形成するための配管である。本実施形態において、折返し配管58は、一端が風上第4空間A4に連通するように風上第2ヘッダ57に接続され、他端が風上第5空間A5に連通するように風上第2ヘッダ57に接続されている。すなわち、折返し流路JPは、風上第4空間A4及び風上第5空間A5を連通させている。
[0105]
 (4-1-2)風下熱交換部60
 図11は、風下熱交換部60の構成態様を概略的に示した模式図である。風下熱交換部60は、主として、熱交換面40としての風下第1熱交換面61、風下第2熱交換面62、風下第3熱交換面63及び風下第4熱交換面64(以下、これらを併せて「風下熱交換面65」と称する)と、風下第1ヘッダ66と、風下第2ヘッダ67と、を有している。なお、設置状態における風下熱交換部60を通過する室内空気流AFに関する風速分布においては、上段側よりも下段側のほうが風速が小さい。具体的には、風下熱交換部60のうち1点鎖線L1(図12参照)より下方の部分を通過する室内空気流AFについては、1点鎖線L1より上方の部分を通過する室内空気流AFよりも風速が小さい。
[0106]
 (4-1-2-1)風下熱交換面65
 風下第1熱交換面61(特許請求の範囲記載の「第3部」に相当)は、風下熱交換面65のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。風下第1熱交換面61は、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において風下第1ヘッダ66を接続されており、主として後から前に向かって延びている。風下第1熱交換面61は、風上第4熱交換面54と空気流れ方向dr3から見た面積が略同一であり、風上第4熱交換面54の空気流れ方向dr3の風下側に隣接している。風下第1熱交換面61は、風下第2熱交換面62及び風下第3熱交換面63よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風下第1熱交換面61は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
[0107]
 風下第2熱交換面62は、風下熱交換面65のうち、冷房運転時に風下第1熱交換面61の冷媒流れの上流側に位置し、暖房運転時に風下第1熱交換面61の冷媒流れの下流側に位置する。風下第2熱交換面62は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第1熱交換面61の先端に接続され、主として左から右に向かって延びている。風下第2熱交換面62は、風上第3熱交換面53と空気流れ方向dr3から見た面積が略同一であり、風上第3熱交換面53の空気流れ方向dr3の風下側に隣接している。
[0108]
 風下第3熱交換面63(特許請求の範囲記載の「第2部」に相当)は、風下熱交換面65のうち、冷房運転時に風下第2熱交換面62の冷媒流れの上流側に位置し、暖房運転時に風下第2熱交換面62の冷媒流れの下流側に位置する。風下第3熱交換面63は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第2熱交換面62の先端に接続され、主として前から後に向かって延びている。風下第3熱交換面63は、風上第2熱交換面52と空気流れ方向dr3から見た面積が略同一であり、風上第2熱交換面52の空気流れ方向dr3の風下側に隣接している。
[0109]
 風下第4熱交換面64(特許請求の範囲記載の「第1部」及び「第4部」に相当)は、風下熱交換面65のうち、冷房運転時に風下第3熱交換面63の冷媒流れの上流側に位置し、暖房運転時に風下第3熱交換面63の冷媒流れの下流側に位置する。風下第4熱交換面64は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第3熱交換面63の先端に接続され、主として右から左に向かって延びている。風下第4熱交換面64は、その先端において風下第2ヘッダ67を接続されている。風下第4熱交換面64は、風上第1熱交換面51と空気流れ方向dr3から見た面積が略同一であり、風上第1熱交換面51の空気流れ方向dr3の風下側に隣接している。風下第4熱交換面64は、風下第2熱交換面62及び風下第3熱交換面63よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風下第4熱交換面64は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
[0110]
 このような風下第1熱交換面61、風下第2熱交換面62、風下第3熱交換面63及び風下第4熱交換面64を含むことで、風下熱交換部60の風下熱交換面65は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、風下熱交換部60は、4つの風下熱交換面65を有している。
[0111]
 (4-1-2-2)風下第1ヘッダ66
 風下第1ヘッダ66(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風下第1ヘッダ66は、設置状態において長手方向が鉛直方向(上下方向)である。
[0112]
 風下第1ヘッダ66は、筒状に構成され、内部において空間(以下、「風下第1ヘッダ空間Sb1」と称する)を形成している(風下第1ヘッダ空間Sb1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。風下第1ヘッダ空間Sb1は、冷房運転時には風下熱交換部60において最も冷媒流れの下流側に位置し、暖房運転時には風下熱交換部60において最も冷媒流れの上流側に位置する。風下第1ヘッダ66は、風下第1熱交換面61の末端に接続されている。風下第1ヘッダ66は、風下第1熱交換面61に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風下第1ヘッダ空間Sb1とを連通させている。風下第1ヘッダ66は、風上第2ヘッダ57の空気流れ方向dr3の風下側に隣接している。
[0113]
 風下第1ヘッダ66には、第2ガス側出入口GH2が形成されている。第2ガス側出入口GH2は、風下第1ヘッダ空間Sb1に連通している。第2ガス側出入口GH2には、第2ガス側連絡配管GP2が接続されている。
[0114]
 (4-1-2-3)風下第2ヘッダ67
 風下第2ヘッダ67(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風下第2ヘッダ67は、設置状態において長手方向が鉛直方向(上下方向)である。
[0115]
 風下第2ヘッダ67は、筒状に構成され、内部において空間(以下、「風下第2ヘッダ空間Sb2」と称する)を形成している(風下第2ヘッダ空間Sb2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。風下第2ヘッダ空間Sb2は、冷房運転時には風下熱交換部60において最も冷媒流れの上流側に位置し、暖房運転時には風下熱交換部60において最も冷媒流れの下流側に位置する。
[0116]
 風下第2ヘッダ67は、風下第4熱交換面64の先端に接続されている。風下第2ヘッダ67は、風下第4熱交換面64に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風下第2ヘッダ空間Sb2とを連通させている。風下第2ヘッダ67は、風上第1ヘッダ56の空気流れ方向dr3の風下側に隣接している。
[0117]
 また、風下第2ヘッダ67には、接続配管70の他端を接続するための第4接続孔H4が形成されている。第4接続孔H4は、風下第2ヘッダ空間Sb2に連通している。第4接続孔H4には、風下第2ヘッダ空間Sb2及び風上第6空間A6が連通するように、接続配管70の他端が接続されている。なお、接続配管70に連通する風下第2ヘッダ空間Sb2は、特許請求の範囲記載の「風下下流側空間」に相当する。
[0118]
 (4-1-3)接続配管70
 接続配管70は、風上熱交換部50及び風下熱交換部60間で接続流路RPを形成する冷媒配管である。接続流路RPは、風下第2ヘッダ空間Sb2と、風上第6空間A6と、を連通させる冷媒の流路である。
[0119]
 接続配管70によって接続流路RPが形成されることで、冷房運転時には風上第6空間A6から風下第2ヘッダ空間Sb2へ向かって冷媒が流れ、暖房運転時には風下第2ヘッダ空間Sb2から風上第6空間A6へ向かって冷媒が流れる。
[0120]
 (4-2)室内熱交換器25における冷媒のパス
 図12は、室内熱交換器25において形成される冷媒のパスを概略的に示した模式図である。なお、ここでの「パス」は、室内熱交換器25に含まれる各要素が連通することで形成される冷媒の流路である。
[0121]
 本実施形態において、室内熱交換器25では、複数のパスが形成されている。具体的に、室内熱交換器25では、第1パスP1、第2パスP2、第3パスP3及び第4パスP4が形成される。すなわち、室内熱交換器25では、冷媒の流路が4つに分岐している。
[0122]
 (4-2-1)第1パスP1
 第1パスP1は、風上熱交換部50において形成される。本実施形態では、第1パスP1は、風上熱交換部50の1点鎖線L1(図9、図10及び図12等)より上方において形成される。第1パスP1は、第1ガス側出入口GH1が風上第1空間A1に連通し、風上第1空間A1が伝熱管流路451(伝熱管45)を介して風上第4空間A4に連通し、風上第4空間A4が第1接続孔H1と連通することで形成される冷媒の流路である。換言すると、第1パスP1は、第1ガス側出入口GH1、風上第1ヘッダ56内の風上第1空間A1、伝熱管45内の伝熱管流路451、風上第2ヘッダ57内の風上第4空間A4、及び第1接続孔H1を含む冷媒の流路である。
[0123]
 なお、図10及び図12に示されるように、1点鎖線L1は、上から数えて12本目の伝熱管45と13本目の伝熱管45の間に位置している。すなわち、本実施形態において、第1パスP1は、上から数えて12本の伝熱管45の伝熱管流路451を含む。
[0124]
 (4-2-2)第2パスP2
 第2パスP2は、風上熱交換部50において形成される。本実施形態では、第2パスP2は、風上熱交換部50の1点鎖線L1より下方であって1点鎖線L2(図9、図10及び図12等)より上方において形成される。第2パスP2は、第2接続孔H2が風上第5空間A5に連通し、風上第5空間A5が伝熱管流路451(伝熱管45)を介して風上第2空間A2に連通し、風上第2空間A2が第1液側出入口LH1に連通することで形成される冷媒の流路である。すなわち、第2パスP2は、第2接続孔H2、風上第2ヘッダ57内の風上第5空間A5、伝熱管45内の伝熱管流路451、風上第1ヘッダ56内の風上第2空間A2、及び第1液側出入口LH1を含む冷媒の流路である。
[0125]
 なお、第2パスP2は、折返し流路JP(折返し配管58)を介して第1パスP1に連通している。このため、第2パスP2を第1パスP1と併せて1本のパスと解釈することも可能である。
[0126]
 また、図10及び図12に示されるように、1点鎖線L2は、上から数えて16本目の伝熱管45と17本目の伝熱管45の間に位置している。すなわち、本実施形態において、第2パスP2は、上から数えて13本目から16本目の伝熱管45(換言すると4本の伝熱管45)の伝熱管流路451を含む。
[0127]
 (4-2-3)第3パスP3
 第3パスP3は、風上熱交換部50において形成される。本実施形態では、第3パスP3は、風上熱交換部50の1点鎖線L2より下方において形成される。第3パスP3は、第3接続孔H3が風上第6空間A6に連通し、風上第6空間A6が伝熱管流路451(伝熱管45)を介して風上第3空間A3に連通し、風上第3空間A3が第2液側出入口LH2に連通することで形成される冷媒の流路である。すなわち、第3パスP3は、第3接続孔H3、風上第2ヘッダ57内の風上第6空間A6、伝熱管45内の伝熱管流路451、風上第1ヘッダ56内の風上第3空間A3、及び第2液側出入口LH2を含む冷媒の流路である。第3パスP3は、接続流路RP(接続配管70)を介して第4パスP4に連通している。
[0128]
 本実施形態において、第3パスP3は、上から数えて17本目から19本目の伝熱管45(換言すると下から数えて3本の伝熱管45)の伝熱管流路451を含んでいる。
[0129]
 (4-2-4)第4パスP4
 第4パスP4は、風下熱交換部60において形成される。第4パスP4は、第2ガス側出入口GH2が風下第1ヘッダ空間Sb1に連通し、風下第1ヘッダ空間Sb1が伝熱管流路451(伝熱管45)を介して風下第2ヘッダ空間Sb2に連通し、風下第2ヘッダ空間Sb2が第4接続孔H4に連通することで形成される冷媒の流路である。すなわち、第4パスP4は、第2ガス側出入口GH2、風下第1ヘッダ66内の風下第1ヘッダ空間Sb1、伝熱管45内の伝熱管流路451、風下第2ヘッダ67内の風下第2ヘッダ空間Sb2、及び第4接続孔H4を含む冷媒の流路である。第4パスP4は、接続流路RP(接続配管70)を介して第3パスP3に連通している。
[0130]
 (4-3)室内熱交換器25における冷媒の流れ
 (4-3-1)冷房運転時
 図13は、冷房運転時の風上熱交換部50における冷媒の流れを概略的に示した模式図である。図14は、冷房運転時の風下熱交換部60における冷媒の流れを概略的に示した模式図である。なお、図13及び図14において破線矢印は冷媒の流れ方向を示している。
[0131]
 冷房運転時には、第1液側連絡配管LP1を流れた冷媒が第1液側出入口LH1を介して風上熱交換部50の第2パスP2に流入する。第2パスP2に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第2パスP2を通過し、折返し流路JP(折返し配管58)を介して第1パスP1に流入する。第1パスP1に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第1パスP1を通過し、第1ガス側出入口GH1を介して第1ガス側連絡配管GP1へ流出する。
[0132]
 また、冷房運転時には、第2液側連絡配管LP2を流れた冷媒が第2液側出入口LH2を介して風上熱交換部50の第3パスP3に流入する。第3パスP3に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第3パスP3を通過し、接続流路RP(接続配管70)を介して風下熱交換部60の第4パスP4に流入する。第4パスP4に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第4パスP4を通過し、第2ガス側出入口GH2を介して第2ガス側連絡配管GP2へ流出する。
[0133]
 このように冷房運転時には、室内熱交換器25では、第2パスP2に流入し第1パスP1を経て流出する冷媒の流れ(すなわち第1パスP1及び第2パスP2によって形成される冷媒の流れ)と、第3パスP3に流入し第4パスP4を経て流出する冷媒の流れ(すなわち第3パスP3及び第4パスP4によって形成される冷媒の流れ)と、が生じる。
[0134]
 第1パスP1及び第2パスP2によって形成される冷媒の流れでは、第1液側出入口LH1、風上第2空間A2、第2パスP2内の伝熱管流路451(伝熱管45)、風上第5空間A5、折返し流路JP(折返し配管58)、風上第4空間A4、第1パスP1内の伝熱管流路451(伝熱管45)、風上第1空間A1、第1ガス側出入口GH1、の順に冷媒が流れることとなる。
[0135]
 第3パスP3及び第4パスP4によって形成される冷媒の流れでは、第2液側出入口LH2、風上第3空間A3、第3パスP3内の伝熱管流路451(伝熱管45)、風上第6空間A6、接続流路RP(接続配管70)、風下第2ヘッダ空間Sb2、第4パスP4内の伝熱管流路451(伝熱管45)、風下第1ヘッダ空間Sb1、第2ガス側出入口GH2、の順に冷媒が流れることとなる。
[0136]
 冷房運転時には、室内熱交換器25では、第1パスP1内の伝熱管流路451(特に、風上第1熱交換面51の第1パスP1に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH1)が形成される。また、第4パスP4内の伝熱管流路451(特に、風下第1熱交換面61の第4パスP4に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH2)が形成されることとなる。
[0137]
 (4-3-2)暖房運転時
 図15は、暖房運転時の風上熱交換部50における冷媒の流れを概略的に示した模式図である。図16は、暖房運転時の風下熱交換部60における冷媒の流れを概略的に示した模式図である。なお、図15及び図16において破線矢印は冷媒の流れ方向を示している。
[0138]
 暖房運転時には、第1ガス側連絡配管GP1を流れた過熱状態のガス冷媒が第1ガス側出入口GH1を介して風上熱交換部50の第1パスP1に流入する。第1パスP1に流入した冷媒は、室内空気流AFと熱交換し冷却されながら第1パスP1を通過し、折返し流路JP(折返し配管58)を介して第2パスP2に流入する。第2パスP2に流入した冷媒は、室内空気流AFと熱交換し過冷却状態となりながら第2パスP2を通過し、第1液側出入口LH1を介して第1液側連絡配管LP1へ流出する。
[0139]
 また、暖房運転時には、第2ガス側連絡配管GP2を流れた過熱状態のガス冷媒が第2ガス側出入口GH2を介して風下熱交換部60の第4パスP4に流入する。第4パスP4に流入した冷媒は、室内空気流AFと熱交換し冷却されながら第4パスP4を通過し、接続流路RP(接続配管70)を介して風上熱交換部50の第3パスP3に流入する。第3パスP3に流入した冷媒は、室内空気流AFと熱交換し過冷却状態となりながら第3パスP3を通過し、第2液側出入口LH2を介して第2液側連絡配管LP2へ流出する。
[0140]
 このように暖房運転時には、室内熱交換器25では、第1パスP1に流入し第2パスP2を経て流出する冷媒の流れ(すなわち第1パスP1及び第2パスP2によって形成される冷媒の流れ)と、第4パスP4に流入し第3パスP3を経て流出する冷媒の流れ(すなわち第3パスP3及び第4パスP4によって形成される冷媒の流れ)と、が生じる。
[0141]
 第1パスP1及び第2パスP2によって形成される冷媒の流れでは、第1ガス側出入口GH1、風上第1空間A1、第1パスP1内の伝熱管流路451(伝熱管45)、風上第4空間A4、折返し流路JP(折返し配管58)、風上第5空間A5、第2パスP2内の伝熱管流路451(伝熱管45)、風上第2空間A2、第1液側出入口LH1、の順に冷媒が流れることとなる。
[0142]
 第3パスP3及び第4パスP4によって形成される冷媒の流れでは、第2ガス側出入口GH2、風下第1ヘッダ空間Sb1、第4パスP4内の伝熱管流路451(伝熱管45)、風下第2ヘッダ空間Sb2、接続流路RP(接続配管70)、風上第6空間A6、第3パスP3内の伝熱管流路451(伝熱管45)、風上第3空間A3、第2液側出入口LH2、の順に冷媒が流れることとなる。
[0143]
 また、暖房運転時には、室内熱交換器25では、第1パスP1内の伝熱管流路451(特に、風上第1熱交換面51の第1パスP1に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH3)が形成される。また、第4パスP4内の伝熱管流路451(特に、風下第1熱交換面61の第4パスP4に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH4)が形成されることとなる。なお、図15及び図16に示されるように、風上熱交換部50の過熱域SH3を流れる冷媒と、風下熱交換部60の過熱域SH4を流れる冷媒とは、流れる方向が対向している(すなわち対向流である)。
[0144]
 また、暖房運転時には、室内熱交換器25では、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において、過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成されている。また、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。図15及び図16に示されるように、風上熱交換部50の過冷却域SC1及びSC2と、風下熱交換部60の過熱域SH4とは、空気流れ方向dr3において完全に若しくは大部分において重畳していない。
[0145]
 なお、風上熱交換面55及び風下熱交換面65のうち、暖房運転時に、過冷却域に該当しない領域は、メイン熱交換領域である。メイン熱交換領域は、過冷却域と比較して、冷媒と室内空気流AFとの熱交換量が大きい。風上熱交換面55及び風下熱交換面65において、メイン熱交換領域は過冷却域よりも伝熱面積が大きい。
[0146]
 (4-4)室内熱交換器25による機能
 室内熱交換器25では、風上熱交換面55及び風下熱交換面65の空気流れ方向dr3から見た面積が略同一に構成されている。また、風上熱交換部50及び風下熱交換部60に流れる冷媒の流量を調整するための流量調整弁を個別に有していない。そのうえで、暖房運転時に、風下熱交換部60を通過した冷媒に関して過冷却域SC2が風上熱交換部50に形成されている。その結果、風上熱交換部50におけるメイン熱交換領域が小さくなっている。これにより、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、をより近づけることが可能となっている。
[0147]
 すなわち、風上熱交換部50におけるメイン熱交換領域が大きくなるほど、風上熱交換部50における冷媒と室内空気流AFとの熱交換量が大きくなり、これに関連して風下熱交換部60において冷媒と室内空気流AFとの温度差が小さくなって熱交換量が低減することとなる。その結果、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、の差分値が大きくなる。
[0148]
 これに対し、上記実施形態に係る室内熱交換器25では、風上熱交換部50において、風下熱交換部60を流れる冷媒に関して過冷却域(SC2)が形成されることでメイン熱交換領域が小さくなっている。これにより、風上熱交換部50における冷媒と室内空気流AFとの熱交換量が小さくなり、これに関連して風下熱交換部60において冷媒と室内空気流AFとの温度差が小さくなることが抑制され、熱交換量を向上させうる。その結果、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、の差分値が増大することが抑制され、両者をより近づけることが可能となっている。このように室内熱交換器25は、暖房運転時における風上熱交換部50及び風下熱交換部60の流量を近づける機能を有している。
[0149]
 また、暖房運転時に、風下熱交換部60を通過した冷媒に関して過冷却域SC2が風上熱交換部50に形成されることで、風下熱交換面65をすべてメイン熱交換領域として機能させうる。これにより、風下熱交換面65における冷媒と室内空気流AFとの熱交換量を増大させることが可能となり、室内熱交換器25の性能向上に寄与しうる。このように室内熱交換器25は、暖房運転時に風下熱交換部60のメイン熱交換領域を大きく形成しうることと関連して、風下熱交換面65における冷媒と室内空気流AFとの熱交換量を増大させる機能を有している。
[0150]
 (5)特徴
 (5-1)
 上記実施形態に係る室内熱交換器25では、暖房運転時(すなわち第1ガス側出入口GH1及び第2ガス側出入口GH2から流入した冷媒が室内空気流AFと熱交換して過冷却状態の液冷媒として第1液側出入口LH1及び第2液側出入口LH2から流出する時)には、風上熱交換部50において、過冷却状態の液冷媒が流れる領域である過冷却域(SC1、SC2)が形成されるとともに、「風上出口側空間」(ここでは風上第6空間A6)、及び「風上上流側空間」(ここでは風上第3空間A3)が形成され、風上熱交換部50及び風下熱交換部60間で形成される接続流路RPにより「風下下流側空間」(ここでは風下第2ヘッダ空間Sb2)と「風上上流側空間」(風上第3空間A3)とが連通するようになっている。
[0151]
 これにより、冷媒の凝縮器として用いられる場合に、風下熱交換部60を通過した冷媒が風上熱交換部50に送られた後に第2液側出入口LH2から排出されることとなる。その結果、過冷却域(SC1、SC2)を風上側の風上熱交換部50に集中的に配置することが可能となっている。このため、風上側の過熱域と、風下側の過冷却域と、が空気流れ方向dr3において重畳又は近接することが回避されている。
[0152]
 具体的に、上記実施形態では、暖房運転時に、風下熱交換部60を流れる冷媒に関して、従来において風下熱交換部60に形成されていた過冷却域が過冷却域SC2として風上熱交換部50に形成されており、風上側の過熱域SH3と、風下側の過冷却域と、が空気流れ方向dr3において重畳又は近接しないように構成されている。このことから、風上側の過熱域(SH3、SH4)を通過した室内空気流AFが、過冷却域(SC1、SC2)を通過することが抑制されている。よって、過冷却域(SC1、SC2)において、冷媒と室内空気流AFとの温度差が適正に確保されやすいように構成されており、風下熱交換部60を通過する冷媒に関し過冷却度が適正に確保されることが促進されている。すなわち、熱交換器の性能低下が抑制され、性能向上が促進されている。
[0153]
 (5-2)
 また、上記実施形態に係る室内熱交換器25では、暖房運転時に、風下熱交換部60を流れる冷媒に関して、従来において風下熱交換部60に形成されていた過冷却域が過冷却域SC2として風上熱交換部50に形成されている。その結果、風下熱交換部60においては、過熱域と過冷却域とが上下に隣接しないようになっており、過熱域(SH3、SH4)を通過する冷媒と過冷却域(SC2)を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域(SC2)における冷媒の過冷却度が適正に確保されることが促進されている。すなわち、熱交換器の性能低下が抑制され、性能向上が促進されている。
[0154]
 (5-3)
 上記実施形態に係る室内熱交換器25では、風上熱交換部50において複数のパス(P1-P3)が形成されている。すなわち、風上熱交換部50において、風上第1空間A1、第1パスP1の伝熱管流路451、風上第4空間A4、折返し流路JP、風上第5空間A5、第2パスP2の伝熱管流路451、及び風上第2空間A2で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)と、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)と、が形成されている。そのうえで、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)が、接続配管70によって形成される接続流路RPを介して風下下流側空間(風下第2ヘッダ空間Sb2)と連通している。
[0155]
 これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部50の、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)において、風下熱交換部60を流れた冷媒に関し過冷却域SC2が形成されることが促進されている。よって、風下熱交換部60を流れる冷媒に関して過冷却度が適正に確保されることが促進されている。
[0156]
 (5-4)
 上記実施形態に係る室内熱交換器25では、風上第1空間A1、伝熱管45、風上第4空間A4、折返し流路JP、風上第5空間A5、伝熱管45、及び風上第2空間A2で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)において、風上第2ヘッダ57内の風上第4空間A4と風上第5空間A5とが折返し流路JPで連通される。これにより、係るパスを流れる冷媒は、風上第4空間A4及び風上第5空間A5の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、風上熱交換部50を流れる冷媒の過熱域SH3と、風下熱交換部60を流れる冷媒の過冷却域SC2とが上下に隣接しないように構成可能となっている。このため、過熱域SH3を通過する冷媒と過冷却域SC2を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域SC2における冷媒の過冷却度が適正に確保されることが促進されている。
[0157]
 (5-5)
 上記実施形態に係る室内熱交換器25では、暖房運転時(すなわち、第1ガス側出入口GH1又は第2ガス側出入口GH2から流入した過熱状態のガス冷媒が室内空気流AFと熱交換を行って液側出入口LHから過冷却状態の液冷媒として流出する時)に、風上熱交換部50の過熱域SH3を流れる冷媒の流れ方向は、風下熱交換部60の過熱域SH4を流れる冷媒の流れ方向に対向している。
[0158]
 これにより、風上熱交換部50の過熱域SH3を流れる冷媒と、風下熱交換部60の過熱域SH4を流れる冷媒と、が互いに対向して流れるようになっている。その結果、風上熱交換部50及び風下熱交換部60を通過した室内空気流AFのうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制されている。よって、室内熱交換器25を通過した空気の温度ムラが抑制されている。
[0159]
 (5-6)
 上記実施形態に係る室内熱交換器25では、過冷却域(SC1、SC2)は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分よりも小さい部分(下段部分)に位置している。すなわち、通過する空気流(室内空気流AF)に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される室内熱交換器25において、性能低下が抑制されている。
[0160]
 (5-7)
 上記実施形態に係る室内熱交換器25では、設置状態において、風上熱交換部50は、伝熱管45が左右方向(第1方向)に向かって延びる風上第1熱交換面51(「第1部」)と、伝熱管45が前後方向(第2方向)に向かって延びる風上第2熱交換面52(「第2部」)とを有しており、風下熱交換部60は、伝熱管45が左右方向(第1方向)に向かって延びる風下第4熱交換面64(「第1部」)と、伝熱管45が前後方向(第2方向)に向かって延びる風下第3熱交換面63(「第2部」)とを有している。風下熱交換部60の風下第4熱交換面64は、風上熱交換部50の風上第1熱交換面51の風下側に並んで配置され、風下熱交換部60の風下第3熱交換面63は、風上熱交換部50の風上第2熱交換面52の風下側に並んで配置されている。
[0161]
 これにより、互いに異なる方向に向かって延びる熱交換面40(「第1部」及び「第2部」)を有する複数の熱交換部が風上側及び風下側に並べて配置される室内熱交換器25において、風上側の熱交換部(風上熱交換部50)の過熱域(SH3)を通過した室内空気流AFが、過冷却域を通過することが抑制されており、性能低下が抑制されている。
[0162]
 (5-8)
 上記実施形態に係る空気調和装置100では、室内熱交換器25はケーシング30に収容され、ケーシング30には連絡配管挿入口30aが形成されている。室内熱交換器25において、風上熱交換部50は、伝熱管45が右方向に向かって延びる風上第1熱交換面51(「第3部」)と、伝熱管45が後方向に向かって延びる風上第4熱交換面54(「第4部」)と、を有している。また、風下熱交換部60は、伝熱管45が前方向に向かって延びる風下第1熱交換面61(「第3部」)と、伝熱管45が左方向に向かって延びる風下第4熱交換面64(「第4部」)と、を有している。風上熱交換部50において、風上第1ヘッダ56は風上第1熱交換面51の末端に位置し、風上第2ヘッダ57は風上第1熱交換面51の末端と離間する風上第4熱交換面54の先端に位置する。風下熱交換部60において、風下第1ヘッダ66は風下第1熱交換面61の末端に位置し、風下第2ヘッダ67は風下第1熱交換面61の末端と離間する風下第4熱交換面64の先端に位置する。風上熱交換部50及び風下熱交換部60において、風上第1熱交換面51及び風下第1熱交換面61は、末端が先端よりも連絡配管挿入口30aの近傍に配置されている。また、風上熱交換部50及び風下熱交換部60において、風上第4熱交換面54及び風下第4熱交換面64は、先端が末端よりも連絡配管挿入口30aの近傍に配置されている。
[0163]
 これにより、互いに異なる方向に向かって延びる複数の熱交換面40を有する熱交換部が風上側及び風下側に並べて配置される室内熱交換器25、を含む空気調和装置100において、ケーシング30内における各配管(例えば室内熱交換器25に接続されるガス側連絡配管GPや液側連絡配管LP、及び風上熱交換部50及び風下熱交換部60間で延びる接続配管70)の長さを短くすることが可能となっている。その結果、ケーシング30内における配管の取り回しが容易となっている。これに関連して、冷凍装置の施工性や組立性及びコンパクト性の向上が促進されている。
[0164]
 (6)変形例
 上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
[0165]
 (6-1)変形例1
 上記実施形態では、第1パスP1は、第1ガス側出入口GH1が風上第1空間A1に連通し、第1接続孔H1が風上第4空間A4に連通することで形成された。しかし、第1パスP1は、他の態様によって形成されてもよい。例えば、第1パスP1は、第1ガス側出入口GH1が風上第4空間A4に連通し、第1接続孔H1が風上第1空間A1に連通することで形成されてもよい。係る場合でも、上記実施形態と同様の作用効果を実現しうる。
[0166]
 (6-2)変形例2
 上記実施形態では、第2パスP2は、第2接続孔H2が風上第5空間A5に連通し、第1液側出入口LH1が風上第2空間A2に連通することで、形成されていた。しかし、第2パスP2は、他の態様によって形成されてもよい。例えば、第2パスP2は、第2接続孔H2が風上第2空間A2に連通し、第1液側出入口LH1が風上第5空間A5に連通することで、形成されてもよい。
[0167]
 係る場合、風上熱交換部50は、図17に示す風上熱交換部50aのように構成されてもよい。図17は、風上熱交換部50aの構成態様を概略的に示した模式図である。図18は、風上熱交換部50aを含む室内熱交換器25aにおいて形成される冷媒のパスを概略的に示した模式図である。
[0168]
 風上熱交換部50aは、折返し配管58に代えて折返し配管59を有している。折返し配管59(特許請求の範囲記載の「第2連通路形成部」に相当)は、風上第4空間A4と風上第2空間A2とを連通させる折返し流路JP´(特許請求の範囲記載の「第2連通路」に相当)を形成する。すなわち、風上熱交換部50aでは、風上第4空間A4は、折返し流路JP´(折返し配管59)を介して、風上第5空間A5ではなく風上第2空間A2と連通している。また、風上熱交換部50aでは、第1液側出入口LH1は、風上第2空間A2ではなく、風上第5空間A5に連通している。風上熱交換部50aの他の構成については、風上熱交換部50と略同一である。
[0169]
 図19は、暖房運転時の風上熱交換部50aにおける冷媒の流れを概略的に示した模式図である。風上熱交換部50aを有する室内熱交換器25aでは、暖房運転時に、第1パスP1及び第2パスP2により形成される冷媒の流れにおいて、第1ガス側出入口GH1、風上第1空間A1、第1パスP1内の伝熱管流路451(伝熱管45)、風上第4空間A4、折返し流路JP´(折返し配管59)、風上第2空間A2、第2パスP2内の伝熱管流路451(伝熱管45)、風上第5空間A5、第1液側出入口LH1、の順に冷媒が流れることとなる。
[0170]
 これにより、風上熱交換部50aでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第4熱交換面54の第2パスP2に含まれる伝熱管流路451)において、過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成され、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。
[0171]
 このような風上熱交換部50aを含む室内熱交換器25aでは、風上第1空間A1、伝熱管45、風上第4空間A4、折返し流路JP´、風上第2空間A2、伝熱管45、及び風上第5空間A5で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)において、風上第2ヘッダ57内の風上第4空間A4と風上第1ヘッダ56内の風上第2空間A2とが折返し流路JP´で連通される。これにより、係るパスを流れる冷媒は、風上第4空間A4及び風上第2空間A2の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、風上熱交換部50aを流れる冷媒の過熱域SH3と、風下熱交換部60を流れる冷媒の過冷却域SC2とが上下に隣接しないように風下熱交換部60を構成することが促進されている。このため、過熱域SH3を通過する冷媒と過冷却域SC2を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域SC2における冷媒の過冷却度が適正に確保されることが促進されている。
[0172]
 さらに、風上熱交換部50aを含む室内熱交換器25aでは、風上熱交換部50aを流れる冷媒の過熱域SH3と、風上熱交換部50aを流れる冷媒の過冷却域SC1とが上下に隣接しないように風下熱交換部60を構成することについても促進されている。
このため、過熱域SH3を通過する冷媒と過冷却域SC1を通過する冷媒との間で熱交換が行われることについても抑制されている。これに関連して、過冷却域SC1における冷媒の過冷却度が適正に確保されることについても促進されている。よって、風上熱交換部50aを含む室内熱交換器25aでは、性能向上にさらに寄与しうる。
[0173]
 (6-3)変形例3
 上記実施形態では、第3パスP3は、第3接続孔H3が風上第6空間A6に連通し、第2液側出入口LH2が風上第3空間A3に連通することで、形成されていた。しかし、第3パスP3は、他の態様によって形成されてもよい。例えば、第3パスP3は、第3接続孔H3が風上第3空間A3に連通し、第2液側出入口LH2が風上第6空間A6に連通することで、形成されてもよい。
[0174]
 係る場合、風上熱交換部50は、図20に示す風上熱交換部50bのように構成されてもよい。図20は、風上熱交換部50bの構成態様を概略的に示した模式図である。図21は、風上熱交換部50bを含む室内熱交換器25bにおいて形成される冷媒のパスを概略的に示した模式図である。
[0175]
 風上熱交換部50bでは、第2液側出入口LH2が、風上第6空間A6ではなく風上第3空間A3に形成されている。また、風上熱交換部50bでは、第3接続孔H3が、風上第3空間A3ではなく、風上第6空間A6に形成されている。風上熱交換部50bの他の構成については、風上熱交換部50と略同一である。
[0176]
 風上熱交換部50bを有する室内熱交換器25bでは、接続配管70によって、風下第2ヘッダ空間Sb2と風上第3空間A3とを連通させる接続流路RP´が形成される。
[0177]
 図22は、暖房運転時の風上熱交換部50bにおける冷媒の流れを概略的に示した模式図である。風上熱交換部50bを有する室内熱交換器25bでは、暖房運転時に、第3パスP3及び第4パスP4によって形成される冷媒の流れにおいて、第2ガス側出入口GH2、風下第1ヘッダ空間Sb1、第4パスP4内の伝熱管流路451(伝熱管45)、風下第2ヘッダ空間Sb2、接続流路RP´(接続配管70)、風上第3空間A3、第3パスP3内の伝熱管流路451(伝熱管45)、風上第6空間A6、第2液側出入口LH2、の順に冷媒が流れることとなる。
[0178]
 このような風上熱交換部50bを有する室内熱交換器25bにおいても、上記実施形態と同様の作用効果を実現しうる。また、風上熱交換部50bを有する室内熱交換器25bでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成され、第3パスP3内の伝熱管流路451(特に、風下第4熱交換面64の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。風上熱交換部50bを有する室内熱交換器25bでは、図22に示されるように、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とは、流れる方向が対向している(すなわち対向流である)。これに関連して、暖房運転時に室内熱交換器25bを通過する室内空気流AFの温度ムラが抑制されるようになっている。
[0179]
 (6-4)変形例4
 上記実施形態では、風上第1ヘッダ56内において風上第1ヘッダ空間Sa1は、上から下に向かって、風上第1空間A1、風上第2空間A2、風上第3空間A3の順に並ぶように構成された。また、風上第2ヘッダ57内において、風上第2ヘッダ空間Sa2は、上から下に向かって、風上第4空間A4、風上第5空間A5、風上第6空間A6の順に並ぶように構成された。すなわち、風上熱交換部50において形成されるパスは、第1パスP1が最上段に位置し、第2パスP2が中段に位置し、第3パスP3が最下段に位置するように形成された。
[0180]
 しかし、風上第1ヘッダ空間Sa1及び風上第2ヘッダ空間Sa2の形成態様、並びに風上熱交換部50におけるパスの形成態様については、必ずしもこれに限定されず、上記実施形態と同様の作用効果を実現可能である限り、設計仕様や設置環境に応じて適宜変更が可能である。
[0181]
 例えば、風上第1ヘッダ空間Sa1は、下から上に向かって、風上第1空間A1、風上第2空間A2、風上第3空間A3の順に並ぶように構成されてもよい。係る場合、風上第2ヘッダ57内においても、風上第2ヘッダ空間Sa2が、下から上に向かって、風上第4空間A4、風上第5空間A5、風上第6空間A6の順に並ぶように構成される。その結果、風上熱交換部50において形成されるパスは、第1パスP1が最下段に位置し、第2パスP2が中段に位置し、第3パスP3が最上段に位置するように形成されることとなる。
[0182]
 また、例えば、風上第1ヘッダ空間Sa1は、上から下に向かって、風上第2空間A2、風上第1空間A1、風上第3空間A3、の順に並ぶように構成されてもよい。係る場合、風上第2ヘッダ57内においても、風上第2ヘッダ空間Sa2が、上から下に向かって、風上第5空間A5、風上第4空間A4、風上第6空間A6の順に並ぶように構成される。その結果、風上熱交換部50において形成されるパスは、第2パスP2が最上段に位置し、第1パスP1が中段に位置し、第3パスP3が最下段に位置するように形成されることとなる。
[0183]
 なお、パスの位置が変更される場合、パスに連通する開口(GH1、GH2、LH1、LH2、H1-H4)の形成位置についても、対応するように適宜変更される。
[0184]
 (6-5)変形例5
 上記実施形態に係る室内熱交換器25は、図23及び図24に示す室内熱交換器25cのように構成されてもよい。以下、室内熱交換器25cについて説明する。なお、以下において説明を省略する部分は、特にことわりのない限り、室内熱交換器25と略同一と解釈しうる。
[0185]
 図23は、伝熱管積層方向dr2から見た室内熱交換器25cを概略的に示した模式図である。図24は、室内熱交換器25cの構成態様を概略的に示した模式図である。図25は、室内熱交換器25cにおいて形成される冷媒のパスを概略的に示した模式図である。
[0186]
 室内熱交換器25cは、風上熱交換部50に代えて、風上熱交換部50cを有している。また、室内熱交換器25cは、風下熱交換部60に加えて、第2風下熱交換部80を有している。また、室内熱交換器25cは、接続配管70に加えて、第2接続配管75を有している。
[0187]
 図26は、風上熱交換部50cの構成態様を概略的に示した模式図である。風上熱交換部50cでは、風上第1ヘッダ56において、水平仕切板561が一枚しか配置されておらず、風上第1空間A1が省略されている。また、風上熱交換部50cでは、風上第2ヘッダ57においても、水平仕切板571が一枚しか配置されておらず、風上第4空間A4が省略されている。これに関連して、風上熱交換部50cでは、第1パスP1が省略されている。具体的に、風上熱交換部50cでは、第2パスP2が1点鎖線L3(図23及び図24)より上方に形成され、第3パスP3が1点鎖線L3より下方に形成されている。
[0188]
 本実施形態において1点鎖線L3は、上から数えて11本目の伝熱管45と12本目の伝熱管45の間に位置している。すなわち、風上熱交換部50cでは、第2パスP2が上から数えて11本目以上の伝熱管45の伝熱管流路451を含み、第3パスP3が上から数えて12本目以下の伝熱管45の伝熱管流路451を含むように形成されている。但し、1点鎖線L3の位置は適宜変更が可能である(すなわち、第2パスP2及び第3パスP3に含まれる伝熱管45の本数は適宜変更が可能である)。
[0189]
 また、風上熱交換部50cでは、第1接続孔H1及び折返し配管58が省略されている。また、風上熱交換部50cでは、第1ガス側出入口GH1が省略されている(第1ガス側出入口GH1は、第2風下熱交換部80に形成されている)。また、風上熱交換部50cでは、第2接続孔H2が風上第5空間A5の上端近傍に連通するように形成され、第2接続孔H2に第2接続配管75の一端が接続されている。
[0190]
 図27は、第2風下熱交換部80の構成態様を概略的に示した模式図である。第2風下熱交換部80は、風下熱交換部60の風下側(すなわち空気流れ方向dr3において最下流)に配置される熱交換部である。第2風下熱交換部80は、主として、熱交換面40としての最下流第1熱交換面81、最下流第2熱交換面82、最下流第3熱交換面83及び最下流第4熱交換面84(以下、これらを併せて「最下流熱交換面85」と称する)と、最下流第1ヘッダ86と、最下流第2ヘッダ87と、を有している。
[0191]
 最下流第1熱交換面81(特許請求の範囲記載の「第1部」又は「第3部」に相当)は、最下流熱交換面85のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。最下流第1熱交換面81は、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において最下流第1ヘッダ86を接続されており、主として左から右に向かって延びている。最下流第1熱交換面81は、風下第4熱交換面64の空気流れ方向dr3の風下側に隣接している。最下流第1熱交換面81は、最下流第2熱交換面82及び最下流第3熱交換面83よりも連絡配管挿入口30aの近傍に位置している。より詳細には、最下流第1熱交換面81は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
[0192]
 最下流第2熱交換面82(特許請求の範囲記載の「第2部」に相当)は、最下流熱交換面85のうち、冷房運転時に最下流第1熱交換面81の冷媒流れの上流側に位置し、暖房運転時に最下流第1熱交換面81の冷媒流れの下流側に位置する。最下流第2熱交換面82は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第1熱交換面81の先端に接続され、主として後から前に向かって延びている。最下流第2熱交換面82は、風下第3熱交換面63の空気流れ方向dr3の風下側に隣接している。
[0193]
 最下流第3熱交換面83は、最下流熱交換面85のうち、冷房運転時に最下流第2熱交換面82の冷媒流れの上流側に位置し、暖房運転時に最下流第2熱交換面82の冷媒流れの下流側に位置する。最下流第3熱交換面83は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第2熱交換面82の先端に接続され、主として右から左に向かって延びている。最下流第3熱交換面83は、風下第2熱交換面62の空気流れ方向dr3の風下側に隣接している。
[0194]
 最下流第4熱交換面84(特許請求の範囲記載の「第4部」に相当)は、最下流熱交換面85のうち、冷房運転時に最下流第3熱交換面83の冷媒流れの上流側に位置し、暖房運転時に最下流第3熱交換面83の冷媒流れの下流側に位置する。最下流第4熱交換面84は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第3熱交換面83の先端に接続され、主として前から後に向かって延びている。最下流第4熱交換面84は、その先端において最下流第2ヘッダ87を接続されている。最下流第4熱交換面84は、風下第1熱交換面61の空気流れ方向dr3の風下側に隣接している。最下流第4熱交換面84は、最下流第2熱交換面82及び最下流第3熱交換面83よりも連絡配管挿入口30aの近傍に位置している。より詳細には、最下流第4熱交換面84は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
[0195]
 このような最下流第1熱交換面81、最下流第2熱交換面82、最下流第3熱交換面83及び最下流第4熱交換面84を含むことで、第2風下熱交換部80の最下流熱交換面85は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、第2風下熱交換部80は、4つの最下流熱交換面85を有している。
[0196]
 最下流第1ヘッダ86(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。最下流第1ヘッダ86は、設置状態において長手方向が鉛直方向(上下方向)である。最下流第1ヘッダ86は、筒状に構成され、内部において空間(以下、「最下流第1ヘッダ空間Sc1」と称する)を形成している(最下流第1ヘッダ空間Sc1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。最下流第1ヘッダ86は、冷房運転時には第2風下熱交換部80において最も冷媒流れの下流側に位置し、暖房運転時には第2風下熱交換部80において最も冷媒流れの上流側に位置する。最下流第1ヘッダ86は、最下流第1熱交換面81の末端に接続されている。最下流第1ヘッダ86は、最下流第1熱交換面81に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と最下流第1ヘッダ空間Sc1とを連通させている。最下流第1ヘッダ86は、風下第2ヘッダ67の空気流れ方向dr3の風下側に隣接している。最下流第1ヘッダ86には、第1ガス側出入口GH1が形成されている。第1ガス側出入口GH1は、最下流第1ヘッダ空間Sc1に連通している。第1ガス側出入口GH1には、第1ガス側連絡配管GP1が接続されている。
[0197]
 最下流第2ヘッダ87(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。最下流第2ヘッダ87は、設置状態において長手方向が鉛直方向(上下方向)である。最下流第2ヘッダ87は、筒状に構成され、内部において空間(以下、「最下流第2ヘッダ空間Sc2」と称する)を形成している(最下流第2ヘッダ空間Sc2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。最下流第2ヘッダ空間Sc2は、冷房運転時には第2風下熱交換部80において最も冷媒流れの上流側に位置し、暖房運転時には第2風下熱交換部80において最も冷媒流れの下流側に位置する。最下流第2ヘッダ87は、最下流第4熱交換面84の先端に接続されている。最下流第2ヘッダ87は、最下流第4熱交換面84に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と最下流第2ヘッダ空間Sc2とを連通させている。最下流第2ヘッダ87は、風下第1ヘッダ66の空気流れ方向dr3の風下側に隣接している。また、最下流第2ヘッダ87には、第2接続配管75の他端を接続するための第5接続孔H5が形成されている。第5接続孔H5は、最下流第2ヘッダ空間Sc2に連通している。第5接続孔H5には、最下流第2ヘッダ空間Sc2及び風上第5空間A5が連通するように、第2接続配管75の他端が接続されている。なお、第2接続配管75に連通する最下流第2ヘッダ空間Sc2は、特許請求の範囲記載の「風下下流側空間」に相当する。
[0198]
 第2接続配管75は、風上熱交換部50c及び第2風下熱交換部80間で第2接続流路RP2を形成する冷媒配管である。第2接続流路RP2(特許請求の範囲記載の「第2冷媒流路」に相当)は、最下流第2ヘッダ空間Sc2と、風上第5空間A5と、を連通させる冷媒の流路である。第2接続配管75は、一端が第2接続孔H2に接続され、他端が第5接続孔H5に接続されている。第2接続配管75によって第2接続流路RP2が形成されることで、冷房運転時には風上第5空間A5から最下流第2ヘッダ空間Sc2へ向かって冷媒が流れ、暖房運転時には最下流第2ヘッダ空間Sc2から風上第5空間A5へ向かって冷媒が流れる。
[0199]
 室内熱交換器25cでは、第2パスP2、第3パスP3、第4パスP4に加えて第5パスP5が形成される。第5パスP5は、第2風下熱交換部80において形成される。第5パスP5は、第1ガス側出入口GH1が最下流第1ヘッダ空間Sc1に連通し、最下流第1ヘッダ空間Sc1が伝熱管流路451(伝熱管45)を介して最下流第2ヘッダ空間Sc2に連通し、最下流第2ヘッダ空間Sc2が第5接続孔H5に連通することで形成される冷媒の流路である。すなわち、第5パスP5は、第1ガス側出入口GH1、最下流第1ヘッダ86内の最下流第1ヘッダ空間Sc1、伝熱管45内の伝熱管流路451、最下流第2ヘッダ87内の最下流第2ヘッダ空間Sc2、及び第5接続孔H5を含む冷媒の流路である。第5パスP5は、第2接続流路RP2(第2接続配管75)を介して第2パスP2に連通している。
[0200]
 図28は、暖房運転時の風上熱交換部50cにおける冷媒の流れを概略的に示した模式図である。図29は、暖房運転時の第2風下熱交換部80における冷媒の流れを概略的に示した模式図である。室内熱交換器25cでは、暖房運転時に、第2パスP2及び第5パスP5によって形成される冷媒の流れにおいて、第1ガス側出入口GH1、最下流第1ヘッダ空間Sc1、第5パスP5内の伝熱管流路451(伝熱管45)、最下流第2ヘッダ空間Sc2、第2接続流路RP2(第2接続配管75)、風上第5空間A5、第2パスP2内の伝熱管流路451(伝熱管45)、風上第2空間A2、第1液側出入口LH1、の順に冷媒が流れることとなる。
[0201]
 室内熱交換器25cでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成され、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。)。
[0202]
 室内熱交換器25cでは、複数の風下熱交換部(60、80)を有する3列の扁平管熱交換器が冷媒の凝縮器として用いられる場合に、各風下熱交換部(60、80)を流れる冷媒の過冷却域が風上熱交換部50cにおいてに集中的に配置されている。よって、複数の風下熱交換部(60、80)を有する3列の扁平管熱交換器において、風下熱交換部(60、80)を流れる冷媒に関して過冷却度が適正に確保されることが促進されている。
[0203]
 また、冷媒の入口(第1ガス側出入口GH1及び第2ガス側出入口GH2)を各風下熱交換部(60、80)において個別に形成することにより、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように室内熱交換器25cを構成可能となっている。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが特に抑制されている。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進されている。よって、性能低下がさらに抑制される。
[0204]
 また、室内熱交換器25cでは、暖房運転時に、風上熱交換部50cにおいては、過熱域が形成されないことから、過熱域と過冷却域とが上下に隣接しないようになっており、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが特に抑制されている。これに関連して、過冷却域(SC1、SC2)における冷媒の過冷却度が適正に確保されることが特に促進されている。
[0205]
 なお、室内熱交換器25cでは、接続流路RPは、特許請求の範囲記載の「第1冷媒流路に相当する。
[0206]
 また、室内熱交換器25cでは、風上熱交換部50cにおける第5接続孔H5及び第1液側出入口LH1の位置を変更する、又は第3接続孔H3及び第2液側出入口LH2の位置を変更することで、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とが、流れる方向が対向するように構成することも可能である。
[0207]
 例えば、図30に示されるように、風上熱交換部50cにおいて第2接続孔H2を風上第2空間A2に形成するとともに、第2液側出入口LH2を風上第5空間A5に形成することで、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とが、流れる方向が対向するように構成しうる。その結果、室内熱交換器25cを通過した室内空気流AFのうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制され、室内熱交換器25cを通過した空気の温度ムラが抑制される。
[0208]
 このように、室内熱交換器25cでは、第2パスP2において、第5接続孔H5が連通する空間と、第1液側出入口LH1が連通する空間と、は適宜入れ換えられてもよい。また、室内熱交換器25cでは、第3パスP3において、第3接続孔H3が連通する空間と、第2液側出入口LH2が連通する空間と、は適宜入れ換えられてもよい。
また、室内熱交換器25cでは、第4パスP4において、第4接続孔H4が連通する空間と、第2ガス側出入口GH2が連通する空間と、は適宜入れ換えられてもよい。また、室内熱交換器25cでは、第5パスP5において、第5接続孔H5が連通する空間と、第1ガス側出入口GH1が連通する空間と、は適宜入れ換えられてもよい。
[0209]
 なお、室内熱交換器25cでは、第2風下熱交換部80が配置されることで、3列の扁平管熱交換器として構成された。しかし、室内熱交換器25cは、風下熱交換部60及び第2風下熱交換部80以外の新たな風下熱交換部を有する、4列以上の扁平管熱交換器として構成されてもよい。係る場合、風下熱交換部の増加分に応じて、風上熱交換部50cにおいてパス数を増加させるとともに更なる第2接続配管75を新たに設置し、更なる第2接続流路RP2を新たに形成することで、新たな風下熱交換部と風上熱交換部50c内のパスを連通させることで、新たな風下熱交換部を通過する冷媒に関して過冷却域を風上熱交換部50cに形成することが可能となる。すなわち、4列以上の扁平管熱交換器として構成される場合においても、上記実施形態と同様の作用効果を実現しうる。
[0210]
 (6-6)変形例6
 上記実施形態では、接続配管70によって接続流路RPが形成された。しかし、接続流路RPの形成態様については、必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。
[0211]
 例えば、風上熱交換部50において接続流路RPと連通する空間(上記実施形態では風上第6空間A6)を形成するヘッダ集合管(上記実施形態では風上第2ヘッダ57)と、風下熱交換部60において接続流路RPと連通する空間(上記実施形態では風下第2ヘッダ空間Sb2)を形成するヘッダ集合管(上記実施形態では風下第2ヘッダ67)と、が一体に構成され、両者の内部空間がヘッダの長手方向に沿って延びる仕切板を介して仕切られるような場合には、仕切板に形成される開口を介して両空間を連通させてもよい。係る場合、仕切板に形成される開口が特許請求の範囲記載の「冷媒流路」に相当し、当該開口を形成する仕切板が特許請求の範囲記載の「冷媒流路形成部」に相当する。また、上記「変形例5」に記載の第2接続流路RP2についても、同様の変更が可能である。また、上記「変形例2」に記載の折返し流路JP´についても、同様の変更が可能である。
[0212]
 (6-7)変形例7
 上記実施形態では、折返し配管58によって折返し流路JPが形成された。しかし、折返し流路JPの形成態様については、必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。
[0213]
 例えば、風上熱交換部50において折返し流路JPで連通する両空間(上記実施形態では風上第4空間A4と風上第5空間A5)を仕切る仕切板(上記実施形態では水平仕切板571)に開口を形成し、係る開口を介して両空間を連通させてもよい。係る場合、仕切板に形成される開口が特許請求の範囲記載の「連通路」に相当し、当該開口を形成する仕切板が特許請求の範囲記載の「連通路形成部」に相当する。
[0214]
 (6-8)変形例8
 上記実施形態では、風上熱交換部50及び風下熱交換部60が、4つの熱交換面40(風上熱交換面55又は風下熱交換面65)を有する場合について説明した。しかし、風上熱交換部50及び風下熱交換部60が有する熱交換面40の数については、特に限定されず、設計仕様や設置環境に応じて適宜変更が可能であり、3つ以下であってもよいし5つ以上であってもよい。
[0215]
 例えば、風上熱交換部50及び風下熱交換部60は、それぞれ2つの熱交換面40を有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる。特に、平面視又は側面視において略V字状を呈するように構成されることで、上記(5-8)で記載した作用効果についても実現しうる(係る場合、風上熱交換部50及び風下熱交換部60において、一方の熱交換面40が「第1部」に相当し、他方の熱交換面40が「第2部」に相当する)。
[0216]
 また、風上熱交換部50及び風下熱交換部60は、それぞれ3つの熱交換面40を有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる。特に、平面視又は側面視において略U字状を呈するように構成されることで、上記(5-8)で記載した作用効果についても実現しうる(係る場合、風上熱交換部50及び風下熱交換部60において、一方のヘッダ集合管を接続される熱交換面40が「第1部」に相当し、他方のヘッダ集合管を接続される熱交換面40が「第2部」に相当する)。
[0217]
 また、風上熱交換部50及び風下熱交換部60は、1つの熱交換面40のみを有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる(上記(5-7)で記載した作用効果については除く)。
[0218]
 (6-9)変形例9
 上記実施形態では、風上熱交換部50の第1ガス側出入口GH1及び風下熱交換部60の第2ガス側出入口GH2にガス側連絡配管GP(GP1、GP2)が個別に接続されていた。また、風上熱交換部50の第1液側出入口LH1及び風下熱交換部60の第2液側出入口LH2に液側連絡配管LP(LP1、LP2)が個別に接続されていた。しかし、室内熱交換器25におけるガス側連絡配管GP及び液側連絡配管LPの接続態様は、必ずしもこれに限定されず、適宜変更が可能である。例えば、室内熱交換器25と、ガス側連絡配管GP又は液側連絡配管LPと、の間に分流器を配置し、分流器を介して両者を連通させるように構成してもよい。
[0219]
 また、風上熱交換部50及び風下熱交換部60は、冷媒の流れに矛盾が生じない限り、上記実施形態において説明したヘッダ集合管(56、57、66、67)とは別のヘッダ集合管を更に有していてもよい。
[0220]
 (6-10)変形例10
 上記実施形態では、第1パスP1は12本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第1パスP1の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第1パスP1は11本以下又は13本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
[0221]
 また、上記実施形態では、第2パスP2は、4本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第2パスP2の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第2パスP2は3本以下又は5本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
[0222]
 また、上記実施形態では、第3パスP3は、3本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第3パスP3の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第3パスP3は2本以下又は4本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
[0223]
 (6-11)変形例11
 上記実施形態では、室内熱交換器25は、19本の伝熱管45を有していた。しかし、室内熱交換器25に含まれる伝熱管45の本数については、設計仕様や設置環境に応じて、適宜変更が可能である。例えば、室内熱交換器25は、18本以下又は20本以上の伝熱管45を有していてもよい。
[0224]
 (6-12)変形例12
 上記実施形態では、伝熱管45は、内部に複数の伝熱管流路451を形成された扁平多穴管であった。しかし、伝熱管45の構成態様については適宜変更が可能である。例えば、内部に1つの冷媒流路が形成された扁平管を伝熱管45として採用してもよい。また、板状以外の形状を有する伝熱管(扁平管以外の伝熱管)を伝熱管45として採用してもよい。
[0225]
 また、伝熱管45は、必ずしもアルミニウム製若しくはアルミニウム合金製である必要はなく、素材については適宜変更が可能である。例えば伝熱管45は、銅製であってもよい。また、伝熱フィン48についても同様に、アルミニウム製若しくはアルミニウム合金製である必要はなく、素材については適宜変更が可能である。
[0226]
 (6-13)変形例13
 上記実施形態では、室内熱交換器25は、室内ファン28を囲むように配置された。しかし、室内熱交換器25は、必ずしも室内ファン28を囲むように配置される必要はなく、室内空気流AFと冷媒との熱交換が可能な態様である限り、配置態様については適宜変更が可能である。
[0227]
 (6-14)変形例14
 上記実施形態では、室内熱交換器25が、設置状態において、伝熱管延伸方向dr1が水平方向であり伝熱管積層方向dr2が鉛直方向(上下方向)である場合について説明した。しかし、必ずしもこれに限定されず、室内熱交換器25は、設置状態において、伝熱管延伸方向dr1が鉛直方向であり、伝熱管積層方向dr2が水平方向であるように構成・配置されてもよい。
[0228]
 また、上記実施形態では、空気流れ方向dr3が水平方向である場合について説明した。しかし、必ずしもこれに限定されず、空気流れ方向dr3は、室内熱交換器25の構成態様及び設置態様に応じて適宜変更されうる。例えば、空気流れ方向dr3は、伝熱管延伸方向dr1に交差する鉛直方向であってもよい。
[0229]
 また、上記実施形態では、過冷却域(SC1、SC2)は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分よりも小さい部分(下段部分)に位置していた。しかし、必ずしもこれに限定されず、過冷却域は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分と同一又は他の部分よりも大きい部分に形成されてもよい。
[0230]
 (6-15)変形例15
 上記実施形態では、空気流れ方向dr3に隣接して配置される風上第1ヘッダ56と風下第2ヘッダ67とは別体に構成され、同様に風上第2ヘッダ57と風下第1ヘッダ66とは別体に構成された。しかし、必ずしもこれに限定されず、室内熱交換器25において、空気流れ方向dr3に隣接して配置される複数のヘッダ集合管(ここでは、風上第1ヘッダ56と風下第2ヘッダ67、又は風上第2ヘッダ57と風下第1ヘッダ66)は一体に構成されてもよい。すなわち、空気流れ方向dr3に隣接して配置される複数のヘッダ集合管を1本のヘッダ集合管で構成し、係るヘッダ集合管の内部空間を、長手方向に仕切る長手仕切板によって2つの空間に分割することで、風上第1ヘッダ空間Sa1及び風下第2ヘッダ空間Sb2、又は風上第2ヘッダ空間Sa2及び風下第1ヘッダ空間Sb1が形成されてもよい。係る場合、ヘッダ集合管内に配置される長手仕切板等の流路形成部材に開口を形成することで、各空間を連通させる冷媒流路を形成しうる。
[0231]
 (6-16)変形例16
 上記実施形態では、風下第1熱交換面61は、風上第4熱交換面54と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第1熱交換面61は、必ずしも係る態様で構成される必要はなく、風上第4熱交換面54と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
[0232]
 また、上記実施形態では、風下第2熱交換面62は、風上第3熱交換面53と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第2熱交換面62は、必ずしも係る態様で構成される必要はなく、風上第3熱交換面53と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
[0233]
 また、上記実施形態では、風下第3熱交換面63は、風上第2熱交換面52と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第3熱交換面63は、必ずしも係る態様で構成される必要はなく、風上第2熱交換面52と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
[0234]
 また、上記実施形態では、風下第4熱交換面64は、風上第1熱交換面51と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第4熱交換面64は、必ずしも係る態様で構成される必要はなく、風上第1熱交換面51と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
[0235]
 (6-17)変形例17
 上記実施形態では、室内熱交換器25は、対象空間の天井裏空間CSに設置される天井埋込み型の室内ユニット20に適用された。しかし、室内熱交換器25が適用される室内ユニット20の型式については、特に限定されない。例えば、室内熱交換器25は、対象空間の天井面CLに固定される天井吊下げ型や、側壁に設置される壁掛け型、床面に設置される床置き型、床裏に設置される床埋込み型等の室内ユニットに適用されてもよい。
[0236]
 (6-18)変形例18
 上記実施形態における冷媒回路RCの構成態様については、設置環境や設計仕様に応じて適宜変更が可能である。具体的に、冷媒回路RCにおいて回路要素の一部が、他の機器に置き換えられてもよいし、必ずしも必要でない場合には適宜省略されてもよい。例えば、四路切換弁12については適宜省略され暖房運転用の空気調和装置として構成されてもよい。また、冷媒回路RCには、図1において図示されない機器(例えば、過冷却熱交換器やレシーバ等)や冷媒流路(冷媒をバイパスする回路等)が含まれていてもよい。また、例えば、上記実施形態においては、圧縮機11が直列或いは並列に複数台配置されてもよい。
[0237]
 (6-19)変形例19
 上記実施形態では、冷媒回路RCを循環する冷媒としてR32やR410AのようなHFC冷媒が用いられる場合について説明した。しかし、冷媒回路RCで用いられる冷媒は、特に限定されない。例えば、冷媒回路RCでは、HFO1234yf、HFO1234ze(E)やこれらの冷媒の混合冷媒などが用いられてもよい。また、冷媒回路RCでは、R407C等のHFC系冷媒が用いられてもよい。
[0238]
 (6-20)変形例20
 上記実施形態では、1台の室外ユニット10と、1台の室内ユニット20と、連絡配管(LP、GP)で接続されることで冷媒回路RCが構成されていた。しかし、室外ユニット10及び室内ユニット20の台数については、適宜変更が可能である。例えば、空気調和装置100は、直列又は並列に接続される複数台の室外ユニット10を有していてもよい。また、空気調和装置100は、例えば、直列又は並列に接続される複数台の室内ユニット20を有していてもよい。
[0239]
 (6-21)変形例21
 上記実施形態では、本発明は、室内熱交換器25に適用されたが、これに限定されず、他の熱交換器に適用されてもよい。例えば、本発明は、室外熱交換器13に適用されてもよい。係る場合、室外ファン15によって生成される室外空気流が上記実施形態における室内空気流AFに相当する。
[0240]
 また、本発明は、凝縮器又は蒸発器のいずれかのみとして機能する熱交換器に適用されてもよい。
[0241]
 例えば、本発明は、逆サイクル運転(例えば暖房運転)のみを行う冷凍装置に搭載され冷媒の凝縮器としてのみ機能する熱交換器に適用されてもよい。
[0242]
 また、例えば、本発明は、正サイクル運転(例えば冷房運転)のみを行う冷凍装置に搭載され冷媒の蒸発器としてのみ機能する熱交換器に適用されてもよい。係る場合、過冷却域は、気液二相冷媒のうち乾き度の小さい冷媒が流れる領域に対応する。また、過熱域は、過熱状態の冷媒、若しくは気液二相冷媒のうち乾き度の大きい冷媒が流れる領域に対応する。
[0243]
 (6-22)変形例22
 上記実施形態では、本発明は、冷凍装置としての空気調和装置100に適用された。しかし、本発明は、空気調和装置100以外の冷凍装置に適用されてもよい。例えば、本発明は、冷凍・冷蔵コンテナや倉庫・ショーケース等において用いられる低温用の冷凍装置や、給湯装置又はヒートポンプチラー等、冷媒回路及び熱交換器を有する他の冷凍装置に適用されてもよい。
[0244]
 また、例えば、本発明は、逆サイクル運転(例えば暖房運転)のみを行う冷凍装置、又は正サイクル運転(例えば冷房運転)のみを行う冷凍装置に適用されてもよい。

産業上の利用可能性

[0245]
 本発明は、熱交換器又は冷凍装置に利用可能である。

符号の説明

[0246]
10  :室外ユニット
13  :室外熱交換器
20  :室内ユニット
25、25a、25b、25c:室内熱交換器(熱交換器)
28  :室内ファン
30  :ケーシング
30a :連絡配管挿入口
40  :熱交換面
45  :伝熱管(扁平管)
48  :伝熱フィン
50、50a、50b、50c:風上熱交換部
51  :風上第1熱交換面(第1部、第3部)
52  :風上第2熱交換面(第2部)
53  :風上第3熱交換面
54  :風上第4熱交換面(第4部)
55  :風上熱交換面
56  :風上第1ヘッダ(第1ヘッダ)
57  :風上第2ヘッダ(第2ヘッダ)
58、59:折返し配管(連通路形成部)
60  :風下熱交換部
61  :風下第1熱交換面(第3部)
62  :風下第2熱交換面
63  :風下第3熱交換面(第2部)
64  :風下第4熱交換面(第1部、第4部)
65  :風下熱交換面
66  :風下第1ヘッダ(第1ヘッダ)
67  :風下第2ヘッダ(第2ヘッダ)
70  :接続配管(流路形成部)
75  :第2接続配管(流路形成部)
80  :第2風下熱交換部
81  :最下流第1熱交換面(第1部、第3部)
82  :最下流第2熱交換面(第2部)
83  :最下流第3熱交換面
84  :最下流第4熱交換面(第4部)
85  :最下流熱交換面
86  :最下流第1ヘッダ(第1ヘッダ)
87  :最下流第2ヘッダ(第2ヘッダ)
100 :空気調和装置(冷凍装置)
451 :伝熱管流路
561、571:水平仕切板
A1  :風上第1空間
A2  :風上第2空間(風上第7空間)
A3  :風上第3空間(風上出口側空間/風上上流側空間、風上第8空間)
A4  :風上第4空間
A5  :風上第5空間(風上第9空間)
A6  :風上第6空間(風上上流側空間/風上出口側空間、風上第10空間)
AF  :室内空気流(空気流)
GH  :ガス側出入口
GH1 :第1ガス側出入口(第1入口)
GH2 :第2ガス側出入口(第2入口)
GP  :ガス側連絡配管(連絡配管)
GP1 :第1ガス側連絡配管(連絡配管)
GP2 :第2ガス側連絡配管(連絡配管)
H1-H5  :第1接続孔-第5接続孔
JP、JP´:折返し流路(連通路)
LH  :液側出入口(出口)
LH1 :第1液側出入口(第1出口)
LH2 :第2液側出入口(第2出口)
LP  :液側連絡配管(連絡配管)
LP1 :第1液側連絡配管(連絡配管)
LP2 :第2液側連絡配管(連絡配管)
P1-P5:第1パス-第5パス
RC  :冷媒回路
RP、RP´:接続流路(冷媒流路、第1冷媒流路)
RP2 :第2接続流路(第2冷媒流路)
SC1、SC2:過冷却域
SH1―SH4:過熱域
Sa1 :風上第1ヘッダ空間(第1ヘッダ空間)
Sa2 :風上第2ヘッダ空間(第2ヘッダ空間)
Sb1 :風下第1ヘッダ空間(第1ヘッダ空間、風下第1上流側空間)
Sb2 :風下第2ヘッダ空間(第2ヘッダ空間)
Sc1 :最下流第1ヘッダ空間(第1ヘッダ空間、風下第2上流側空間))
Sc2 :最下流第2ヘッダ空間(第2ヘッダ空間)
dr1 :伝熱管延伸方向
dr2 :伝熱管積層方向
dr3 :空気流れ方向

先行技術文献

特許文献

[0247]
特許文献1 : 特開2016-38192号公報
特許文献2 : 特開2012-163319号公報

請求の範囲

[請求項1]
 第1入口(GH1)及び第2入口(GH2)から流入する冷媒を空気流(AF)と熱交換させ出口(LH)から流出させる熱交換器(25)であって、
 風上熱交換部(50、50a、50b、50c)と、
 設置状態において前記風上熱交換部の風下側で前記風上熱交換部と並んで配置され、前記第2入口を形成される風下熱交換部(60、80)と、
 前記風上熱交換部及び前記風下熱交換部間で冷媒流路(RP、RP2)を形成する流路形成部(70、75)と、
を備え、
 前記風上熱交換部及び前記風下熱交換部は、
  第1ヘッダ空間(Sa1、Sb1、Sc1)を内部に形成する第1ヘッダ(56、66、86)と、
  第2ヘッダ空間(Sa2、Sb2、Sc2)を内部に形成する第2ヘッダ(57、67、87)と、
  前記第1ヘッダ及び前記第2ヘッダに接続され前記第1ヘッダ及び前記第2ヘッダの長手方向に並び、前記第1ヘッダ空間及び前記第2ヘッダ空間を連通させる複数の扁平管(45)と、
をそれぞれ含み、
 前記第1入口及び前記第2入口から流入した冷媒が前記空気流と熱交換して過冷却状態の液冷媒として前記出口から流出する場合には、
  前記風上熱交換部において、過冷却状態の液冷媒が流れる領域である過冷却域(SC1、SC2)が形成されるとともに、前記出口に連通する前記第1ヘッダ空間又は前記第2ヘッダ空間である風上出口側空間(A3/A6)、及び前記風上出口側空間の冷媒流れの上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風上上流側空間(A6/A3)が形成され、
  前記冷媒流路は、前記風下熱交換部において冷媒流れの最も下流側に配置される前記第2ヘッダ空間である風下下流側空間(Sb2、Sc2)と、前記風上上流側空間と、を連通させる、
熱交換器(25、25a、25b、25c)。
[請求項2]
 前記風上熱交換部(50、50b)において、前記第1ヘッダ空間は風上第1空間(A1)と風上第2空間(A2)と風上第3空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第1空間と連通する風上第4空間(A4)と、前記扁平管を介して前記風上第2空間と連通する風上第5空間(A5)と、前記扁平管を介して前記風上第3空間と連通する風上第6空間(A6)と、に仕切られ、
 前記風上熱交換部は、前記風上第4空間と前記風上第5空間とを連通させる連通路(JP)を形成する連通路形成部(58)をさらに含み、
 前記第1入口は、前記風上第1空間に連通し、
 前記第2入口は、前記風下熱交換部において冷媒流れの最も上流側に配置される前記第1ヘッダ空間(Sb1)に連通し、
 前記出口には、前記風上第2空間に連通する第1出口(LH1)と、前記風上出口側空間に連通する第2出口(LH2)と、が含まれ、
 前記風上第3空間又は前記風上第6空間の一方が前記風上出口側空間に該当し、他方が前記風上上流側空間に該当する、
請求項1に記載の熱交換器(25、25b)。
[請求項3]
 前記風上熱交換部(50a)において、前記第1ヘッダ空間は風上第1空間(A1)と風上第2空間(A2)と風上第3空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第1空間と連通する風上第4空間(A4)と、前記扁平管を介して前記風上第2空間と連通する風上第5空間(A5)と、前記扁平管を介して前記風上第3空間と連通する風上第6空間(A6)と、に仕切られ、
 前記風上熱交換部は、前記風上第2空間と前記風上第4空間とを連通させる第2連通路(JP1´)を形成する第2連通路形成部(59)をさらに含み、
 前記第1入口は、前記風上第1空間に連通し、
 前記第2入口は、前記風下熱交換部において冷媒流れの最も上流側に配置される前記第1ヘッダ空間(Sb1)に連通し、
 前記出口には、前記風上第5空間に連通する第1出口(LH1)と、前記風上出口側空間に連通する第2出口(LH2)と、が含まれ、
 前記風上第3空間又は前記風上第6空間の一方が前記風上出口側空間に該当し、他方が前記風上上流側空間に該当する、
請求項1に記載の熱交換器(25a)。
[請求項4]
 前記風下熱交換部(60、80)を複数備え、
 前記風上熱交換部(50c)において、前記第1ヘッダ空間は風上第7空間(A2)と風上第8空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第7空間と連通する風上第9空間(A5)と、前記扁平管を介して前記風上第8空間と連通する風上第10空間(A6)と、に仕切られ、
 前記第2入口(GH2)は、風上側に配置される前記風下熱交換部の最も上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風下第1上流側空間(Sb1/Sb2)に連通し、
 前記第1入口(GH1)は、風下側に配置される前記風下熱交換部の最も上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風下第2上流側空間(Sc1/Sc2)に連通し、
 前記出口には、前記風上第7空間、前記風上第8空間、前記風上第9空間及び前記風上第10空間のうち、いずれかに連通する第1出口(LH1)と、他のいずれかに連通する第2出口(LH2)と、が含まれ、
 前記風上第7空間、前記風上第8空間、前記風上第9空間及び前記風上第10空間のうち、前記第1出口又は前記第2出口に連通する各空間が前記風上出口側空間に該当し、他の各空間が前記風上上流側空間に該当し、
 前記冷媒流路には、風上側に配置される前記風下熱交換部の前記風下下流側空間といずれかの前記風上上流側空間とを連通させる第1冷媒流路(RP)、及び風下側に配置される前記風下熱交換部の前記風下下流側空間と他の前記風上上流側空間とを連通させる第2冷媒流路(RP2)が含まれる、
請求項1に記載の熱交換器(25c)。
[請求項5]
 前記風上熱交換部及び前記風下熱交換部においては、前記第1入口又は前記第2入口から流入した過熱状態のガス冷媒が前記空気流と熱交換を行って前記出口から過冷却状態の液冷媒として流出する場合に、過熱状態のガス冷媒が流れる領域である過熱域が形成され、
 前記風上熱交換部の前記過熱域を流れる冷媒の流れ方向は、前記風下熱交換部の前記過熱域を流れる冷媒の流れ方向に対向する、
請求項1から4のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
[請求項6]
 前記過冷却域は、前記風上熱交換部のうち、通過する前記空気流の風速が他の部分よりも小さい部分に位置する、
請求項1から5のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
[請求項7]
 設置状態において、
  前記風上熱交換部及び前記風下熱交換部は、前記扁平管が第1方向に向かって延びる第1部(51、64、81)と、前記扁平管が前記第1方向に交差する第2方向(dr2)に向かって延びる第2部(52、63、82)と、を有し、
  前記風下熱交換部の前記第1部は、前記風上熱交換部の前記第1部の風下側に並んで配置され、
  前記風下熱交換部の前記第2部は、前記風上熱交換部の前記第2部の風下側に並んで配置される、
請求項1から6のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
[請求項8]
 前記請求項1から7のいずれか1項に記載の熱交換器(25、25a、25b、25c)と、
 前記熱交換器を収容するケーシング(30)と、
を備え、
 前記ケーシングには、冷媒連絡配管(LP、GP)を挿入するための連絡配管挿入口(30a)が形成され、
 前記熱交換器において、前記風上熱交換部及び前記風下熱交換部は、前記扁平管が第3方向に向かって延びる第3部(51、61、81)と、前記扁平管が前記第3方向とは異なる第4方向に向かって延びる第4部(54、64、84)と、を有し、
 前記風上熱交換部において、前記第1ヘッダ及び前記第2ヘッダのうち、一方は前記第3部の末端に位置し、他方は前記第3部の末端と離間する前記第4部の先端に位置し、
 前記風下熱交換部において、前記第1ヘッダ及び前記第2ヘッダのうち、一方は前記第3部の末端に位置し、他方は前記第3部の末端と離間する前記第4部の先端に位置し、
 前記風上熱交換部及び前記風下熱交換部において、前記第3部の末端は前記第3部の先端よりも前記連絡配管挿入口の近傍に配置され、前記第4部の先端は前記第4部の末端よりも前記連絡配管挿入口の近傍に配置される、
冷凍装置(100)。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]

[ 図 26]

[ 図 27]

[ 図 28]

[ 図 29]

[ 図 30]