処理中

しばらくお待ちください...

設定

設定

出願の表示

1. US20120168875 - Semiconductor device

官庁 アメリカ合衆国
出願番号 13421010
出願日 15.03.2012
公開番号 20120168875
公開日 05.07.2012
特許番号 08692336
特許付与日 08.04.2014
公報種別 B2
IPC
H01L 27/088
H電気
01基本的電気素子
L半導体装置,他に属さない電気的固体装置
271つの共通基板内または上に形成された複数の半導体構成部品または他の固体構成部品からなる装置
02整流,発振,増幅またはスイッチングに特に適用される半導体構成部品を含むものであり,少なくとも1つの電位障壁または表面障壁を有するもの;少なくとも1つの電位障壁または表面障壁を有する集積化された受動回路素子を含むもの
04基板が半導体本体であるもの
081種類の半導体構成部品だけを含むもの
085電界効果構成部品のみを含むもの
088構成部品が絶縁ゲートを有する電界効果トランジスタであるもの
CPC
H01L 27/11807
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
27Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
02including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
04the substrate being a semiconductor body
10including a plurality of individual components in a repetitive configuration
118Masterslice integrated circuits
11803using field effect technology
11807CMOS gate arrays
H01L 21/823892
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
21Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
78with subsequent division of the substrate into plural individual devices
82to produce devices, e.g. integrated circuits, each consisting of a plurality of components
822the substrate being a semiconductor, using silicon technology
8232Field-effect technology
8234MIS technology ; , i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
8238Complementary field-effect transistors, e.g. CMOS
823892with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
H01L 27/0207
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
27Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
02including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
0203Particular design considerations for integrated circuits
0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
H01L 27/0928
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
27Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
02including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
04the substrate being a semiconductor body
08including only semiconductor components of a single kind
085including field-effect components only
088the components being field-effect transistors with insulated gate
092complementary MIS field-effect transistors
0928comprising both N- and P- wells in the substrate, e.g. twin-tub
H01L 27/11898
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
27Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
02including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
04the substrate being a semiconductor body
10including a plurality of individual components in a repetitive configuration
118Masterslice integrated circuits
11898Input and output buffer/driver structures
H01L 2027/11866
HELECTRICITY
01BASIC ELECTRIC ELEMENTS
LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
27Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
02including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
04the substrate being a semiconductor body
10including a plurality of individual components in a repetitive configuration
118Masterslice integrated circuits
11803using field effect technology
11807CMOS gate arrays
11809Microarchitecture
11859Connectibility characteristics, i.e. diffusion and polysilicon geometries
11866Gate electrode terminals or contacts
出願人 Tamaru Masaki
Panasonic Corporation
Nakanishi Kazuyuki
Nishimura Hidetoshi
発明者 Tamaru Masaki
Nakanishi Kazuyuki
Nishimura Hidetoshi
代理人 Panasonic Patent Center
優先権情報 2009-294231 25.12.2009 JP
発明の名称
(EN) Semiconductor device
要約
(EN)

A well potential supply region is provided in an N-type well region of a cell array. Adjacent gates disposed in both sides of the well potential supply region in the horizontal direction and adjacent gates disposed in further both sides thereof are disposed at the same pitch. In addition, an adjacent cell array includes four gates each of which is opposed to the adjacent gates in the vertical direction. In other words, regularity in the shape of the gate patterns in the periphery of the well potential supply region is maintained.