処理中

しばらくお待ちください...

設定

設定

出願の表示

1. JPWO2011077730 - ロボットおよびロボットを制御する方法

Document

Description

Title of Invention ロボットおよびロボットを制御する方法 JP 2009291000 20091222 20150708 G05D 1/02 B25J 5/00 G01N 27/62 特開2003−315298(JP,A) 特開2000−171424(JP,A) 特開平09−127069(JP,A) 特開2004−164303(JP,A) 特開2007−242056(JP,A) 特開2004−081851(JP,A) 特開2006−255402(JP,A) 特表2007−506083(JP,A) 特開平07−260618(JP,A) 特開2005−024426(JP,A) 特開2001−091416(JP,A) 特開平09−304319(JP,A) 特開2005−061836(JP,A) 特開平07−012671(JP,A) 特開平08−261893(JP,A) 勝又聡一郎,安藤規泰,神崎亮平,昆虫匂い源探索アルゴリズム評価のための小型大気イオン源探索ロボット,日本ロボット学会誌,社団法人日本ロボット学会,2009年 9月15日,第27巻 第7号,p.711−717 JP2010007454 20101222 WO2011077730 20110630 20131202 稲垣 浩司

Technical Field

0001  

Background Art

0002  

Summary of Invention

0003  

Technical Solution

0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017  

Brief Description of Drawings

0018  

Description of Embodiments

0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079  

Claims

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19  

Drawings

1   2   3   4   5    

Description

ロボットおよびロボットを制御する方法

JP 2009291000 20091222 20150708 G05D 1/02 B25J 5/00 G01N 27/62 patcit 1 : 特開2003−315298(JP,A)
patcit 2 : 特開2000−171424(JP,A)
patcit 3 : 特開平09−127069(JP,A)
patcit 4 : 特開2004−164303(JP,A)
patcit 5 : 特開2007−242056(JP,A)
patcit 6 : 特開2004−081851(JP,A)
patcit 7 : 特開2006−255402(JP,A)
patcit 8 : 特表2007−506083(JP,A)
patcit 9 : 特開平07−260618(JP,A)
patcit 10 : 特開2005−024426(JP,A)
patcit 11 : 特開2001−091416(JP,A)
patcit 12 : 特開平09−304319(JP,A)
patcit 13 : 特開2005−061836(JP,A)
patcit 14 : 特開平07−012671(JP,A)
patcit 15 : 特開平08−261893(JP,A)
nplcit 1 : 勝又聡一郎,安藤規泰,神崎亮平,昆虫匂い源探索アルゴリズム評価のための小型大気イオン源探索ロボット,日本ロボット学会誌,社団法人日本ロボット学会,2009年 9月15日,第27巻 第7号,p.711−717
JP2010007454 20101222 WO2011077730 20110630 20131202 稲垣 浩司

Technical Field

[0001]
本発明は、化学物質を検出するロボットに関するものである。

Background Art

[0002]
WO2006/013396(日本国特表2008−508693号公報)には、複数の電極を有する少なくとも1つのイオンチャネルの形状のイオンフィルタを有するイオン移動度分光計が記載されている。WO2005/052546(日本国特表2007−513340号公報)には、サンプル分析のためのイオン移動度ベースのシステム、方法および装置が記載されている。

Summary of Invention

[0003]
嗅覚は特定の化学物質の分子を受容体で受け取ることで生じる感覚の1つであると定義されている。本発明においては、嗅覚に相当する能力を備えたロボットを提供することを目的としている。

Technical Solution

[0004]
本発明の一態様は、複数のサンプリングポイントを有するロボット、すなわち、プログラマブルな機械的装置である。このロボットは、複数のサンプリングポイントにおける流体に含まれる化学物質に関連する化学物質関連情報を取得する少なくとも1つの検出ユニットと、複数のサンプリングポイントのそれぞれにおいて取得された化学物質関連情報の変化により、イベントの発生および当該ロボットに対するイベントの発生方向を判断するイベント監視ユニットとを有する。化学物質関連情報の変化には、流体に新しい化学物質が含まれることによる化学物質関連情報の変化、化学物質の濃度が変化することによる化学物質関連情報の変化などが含まれる。1つのロボットに設けられた複数のサンプリングポイントで空気などの流体に含まれる化学物質を検出することにより、化学物質の発生元の方向を推測できる。このため、検出された化学物質が発生したイベントの発生方向を推測することができる。 ロボットは、さらに、特定の化学物質の濃度変化を含むスペクトルデータに基づき、記憶する手段に記憶された自己の化学物質を探索する第1の機能と、第1の機能と並行して、不特定の化学物質の濃度変化を含むスペクトルデータに基づき、通信ユニットを介して他のロボットと連携して探索を行う第2の機能とを有する。
[0005]
ロボットは、ロボットをイベント発生方向に動かす移動ユニットをさらに有することが望ましい。イベントが発生していると推測されるイベント発生方向に動かすことにより、すなわち旋回したり、移動したりすることにより、ロボットで検出できる化学物質の濃度は一般に高くなる。したがって、イベントの発生方向をさらに精度よく推測できる。また、イベントの発生元を確認したり、イベントの発生元を追跡したりすることができる。
[0006]
ロボットは、取得された化学物質関連情報(化学物質関連情報の変化)により、イベントの発生要因を判断する要因推定ユニットをさらに有することが望ましい。イベントの発生方向に旋回したり、発生元に近づいたりすることによりイベントの発生要因の推定精度が向上する。
[0007]
ロボットは、イベントの発生要因に関わる警告(ワーニング)を視覚および聴覚の少なくともいずれかにより認識できる情報として出力するアラーム発生ユニットをさらに有することが望ましい。これにより何らかの脅威となるイベントであると推測される場合に警報を出力できる。
[0008]
ロボットは、発生方向の画像、音、当該ロボットの場所、発生方向の方位、流体の移動方向、当該ロボットの周囲の環境データの少なくともいずれかを含むイベント付属情報を取得する情報取得ユニットをさらに有することが望ましい。これによりロボットはイベントの発生方向が推測できるので、その方向の画像、音などを含むイベント付属情報を取得できる。
[0009]
ロボットは、取得された化学物質関連情報およびイベント付属情報により、イベントの発生要因を判断する要因推定ユニットをさらに有することが望ましい。イベント発生方向の画像、音などを含むイベント付属情報を加味することによりイベントの発生要因をさらに精度よく推定できる。
[0010]
ロボットは、イベントの発生を含むイベント情報を外部に伝送する通信ユニットをさらに有することが望ましい。通信ユニットは、有線または無線であってよい。通信ユニットは、イントラネットまたはインターネットにアクセスできるものであってもよい。
[0011]
ロボットは、通信ユニットを介してイベントの発生要因を取得し、発生要因に関わる警告(ワーニング)を視覚および聴覚の少なくともいずれかにより認識できる情報として出力するアラーム発生ユニットをさらに有することが望ましい。通信ユニットにより発生要因の推定のために外部のリソースを利用できるので、発生要因の推測精度を向上できる。
[0012]
ロボットは、当該ロボットをイベント発生方向に移動させる移動ユニットと、通信ユニットを介して他のロボットと情報交換し、他のロボットと連携するように移動ユニットを制御する制御ユニットをさらに有することが望ましい。複数のロボットとイベント発生方向の情報を共有することによりイベントの発生元を精度よく特定できる。また、イベントの発生元が移動する場合には、その移動を追跡したり、包囲したりすることができる。
[0013]
通信ユニットは可視光通信ユニットを含むことが望ましい。通信範囲を限定することができ、通信精度を向上しやすい。また交換する情報を秘匿しやすい。
[0014]
ロボットは、当該ロボットを移動する移動ユニットと、所定の匂いの発生元となる化学物質を放出する匂い出力ユニットとをさらに有することが望ましい。匂いを付けることにより、同様の機能を備えたロボットに追跡させることができる。
[0015]
少なくとも1つの検出ユニットは、複数のサンプリングポイントにそれぞれ対応した複数の検出ユニットを含んでもよい。少なくとも1つの検出ユニットは、複数のサンプリングポイントに共通の検出センサーと、複数のサンプリングポイントから共通の検出センサーに対し流体を時分割で供給する供給ユニットとを含んでもよい。典型的な検出センサーはイオン移動度センサー(IMS)である。
[0016]
本発明の他の態様の1つは、ロボットを制御する方法であり、複数のサンプリングポイントのそれぞれにおいて取得された化学物質関連情報の変化により、イベントの発生および当該ロボットに対するイベントの発生方向を判断することを含む。
[0017]
方法は、さらに、不特定の化学物質の濃度変化を含むスペクトルデータに基づき、メモリに記憶された自己の化学物質を探索する第1の探索ステップと、第1の探索ステップと並行して、不特定の化学物質の濃度変化を含むスペクトルデータに基づき、通信ユニットを介して他のロボットと連携して探索を行う第2の探索ステップとを有する

Brief Description of Drawings

[0018]
[fig. 1] ロボット犬の概略構成を示すブロック図。
[fig. 2] ロボット犬を正面から見た図。
[fig. 3] ロボット犬を上方から見た図。
[fig. 4] 検出ユニットを示すブロック図。
[fig. 5] ロボット犬の制御の概要を示すフローチャート。

Description of Embodiments

[0019]
図1に嗅覚を備えた犬型のロボット(ロボット犬)の概略構成を示している。また、図2に、ロボット犬を正面から見た様子を示している。図3に、ロボット犬を上から見た様子を示している。
[0020]
このロボット犬1は、IMS(Ion Mobility Spectrometry、イオン移動度分析装置)タイプのセンサー(検出ユニット)をベースにした嗅覚機能を有し、センサーの出力と化学物質データベースとを参照し、さらに、複数のロボット犬同士でコミュニケーションを取りながら、目標化学物質の特定や分析、移動体(犯人)の追跡や追い込みが可能なものである。なお、嗅覚は特定の化学物質の分子を受容体で受け取ることで生じる感覚の1つであると定義されている。したがって、大気(外気)などに含まれる化学物質を感知することを以下では嗅覚あるいは匂い(臭い)として説明するが、以下のシステム(装置、ロボット)においては、動物にとって匂いとして認識されない化学物質を検出することも可能である。
[0021]
におい(匂い、臭い)の要因は、周囲の空気に含まれる化合物、ガスなどの化学物質である。本明細書において化学物質とは、化合物、分子および元素を含み、成分あるいは組成物に限らず生成物も含む。化学物質は有機物および無機物を含む。嗅覚で感じられる化学物質は、官能基を備えたものが多いといわれている。官能基のグループの1つは炭化水素であり、たとえば、アルカン(鎖式飽和炭化水素)を挙げることができる。このグループには化学物質としてエタン、メタン、プロパン、ブタンなどが含まれる。官能基は、炭化水素の基に限らず、窒素を含む官能基としてはアミノ基などを挙げることができ、酸素を含む官能基にはアルコール基およびケトン基などを挙げることができる。これらは化学物質および官能基の一例に過ぎない。官能基の分子の中の原子は、同じであるか同様の化学反応を受けて、共通の匂いとしての特性を示すと考えられる。揮発性有機物と有機化合物は、匂いとして嗅覚を刺激する典型的なものである。化学物質は一酸化炭素や二酸化炭素などのガス(気体そのもの)であってよい。化学物質は炭素、アルミニウム、窒素などの無機物であってもよい。
[0022]
コンパクトで携帯が可能で、においの要因を検出できる分析装置の1つは、イオン移動度(イオン・モビリティ)センサーであり、MEMSを用いたチップタイプのデバイスが提供されている。イオン移動度センサー(イオン移動度分光計、Ion Mobility spectrometry)は、空気中の物質(分子)をイオン化し、イオン化された分子の移動度の差に基づくスペクトル(出力パターン、空気質パターン)を出力するセンサーであり、非対称電界イオン移動度スペクトロメータ(Field Asymmetric waveform Ion Mobility Spectrometry、FAIMS)または微分型電気移動度スペクトロメータ(Differential Ion Mobility Spectrometry、DIMS)が知られている。
[0023]
この種のスペクトロメータ型のセンサー、以降においては総称してIMSセンサーは、高圧−低圧に変化する非対称電界にイオン化した分子流を入力し、イオンの電界移動度に基づいてそれらをフィルタリングした結果を出力する。市販されているコンパクトなIMSセンサーとしては、SIONEX(ザイオネクス)社のmicroDMx、OWLSOTNE(オウルストーン)社のFAIMSデバイスを挙げることができる。
[0024]
IMSセンサーでは、流体(典型的には空気、窒素ガスなどのキャリアガス)に含まれる化学物質に関連した情報として、Vd電圧(Dispersion Voltage、電界電圧(Vrf)、交流)とVc電圧(Compensation Voltage、補償電圧、直流)の2つの変量に応じて変化するイオン電流を検出することが可能である。したがって、それらを含む3次元のデータ(波形データ、スペクトル)、3次元のいずれかのパラメータを固定した2次元スペクトルが化学物質に関連した情報として得られる。また、スペクトルの要素を示すスペクトル・シグネチャ(スペクトル特性、特徴)を化学物質に関連した情報として取得してもよい。スペクトル・シグネチャには、スペクトル・ピーク振幅、スペクトル・ピーク幅およびスペクトル・ピーク勾配、スペクトル・ピーク間隔、スペクトル・ピークの数、処理条件の変化によるスペクトル・ピークの相対的位置シフト、スペクトル不連続点、Vrf対Vcomp特性などが含まれる。
[0025]
化学物質に関連する情報を得る検出ユニット(センサー)は、質量分析型のセンサーであってもよく、流体に含まれる化学物質に関連した情報としてM/Z(質量対電荷)が得られる。
[0026]
イオン移動度などを利用した分析型のセンサーは、特定の成分(化学物質)に敏感なセンサーと比較すると汎用性が高く、分析可能な範囲内では、ほとんどすべての成分の有無および強度(濃度)を同じ程度の精度で検出できる。センサーにより検出された化学成分(化学物質)の情報には、化学物質(化合物、分子および元素の少なくともいずれかを含む)の強度変化(濃度変化、存在率変化およびその他のセンサーにより感知される変化・変量(intensity variations)を含む)が含まれる。化学物質に関連した情報を取得する検出センサーには、IEEE1451に準拠したケミカルセンサー、水晶センサー(QCM、Quartz Crystal Microbalance)、電気化学的なセンサー、SAW(Surface Acoustic Wave)デバイス、光センサー、ガスクロマトグラフィー、液クロマトグラフィー、MOS(Metal Oxide Semiconductor)センサーを含めた多種多様なセンサーを適用できる。
[0027]
ロボット犬1は、大きく分けて頭部2、首部3、胴部4、足部5、臀部6、および尻尾7を有する。ロボット犬1は、頭部2、首部3、胴部4、臀部6を通り尻尾7に至るようにデータおよび電力を配信する内部バス9を備えており、ロボット犬1に内蔵されている種々の機能(機能ユニット)同士が通信できるようにしている。また、胴部4にバッテリ8が収納されており、ロボット犬1は自立して自由に移動できる。さらに、ロボット犬1は、種々の外部通信ユニットを備えており、ロボット犬同士、ホスト装置、さらに、コンピュータネットワークによりアクセス可能な種々のハードウェア資源と通信できるようになっている。
[0028]
なお、以下では各種の機能を備えたユニットをロボット犬1に収納していることを説明しているが、収納場所は必ずしも以下の説明に限定されるものではない。これらの機能(機能ユニット)は、典型的には、1または複数のCPUおよびメモリを含むプログラマブルなハードウェア資源とソフトウェアとにより実現される。プログラマブルなハードウェア資源は、専用のASICなどのチップを含んでいてよく、回路を再構成可能なチップを含んでいてもよい。
[0029]
このロボット犬1は、複数のサンプリングポイントにおける流体に含まれる化学物質を検出する検出ユニット100を有する。本例では検出ユニット100はIMSセンサーを含み、以降ではIMSユニットと称することがある。ロボット犬1は、さらに、それぞれのサンプリングポイントにおいて検出された化学物質の変化および検出された化学物質の濃度変化の少なくともいずれかにより、イベントの発生およびロボット犬1に対するイベントの発生方向を判断するイベント監視ユニット30とを有する。具体的には、ロボット犬1の頭部2の正面10の鼻11の左右の孔12Lおよび12Rがサンプリング孔となっており、鼻11の後方に検出ユニット100が収納されている。検出ユニット100は、化学物質そのものの情報を出力してもよいが、化学物質の存在により変化(変動)する情報、すなわち化学物質関連情報を出力してもよい。
[0030]
IMSユニット100は、化学物質関連情報として、上述したように、スペクトルおよび/またはスペクトル・シグネチャ(これらを含めてIMSデータと称する)を得ることができる。イベント監視ユニット30は、化学物質関連情報の変化によりイベントの発生を判断する。
[0031]
IMSユニット100は、サンプリングポイントである左右の孔12Lおよび12Rにそれぞれ取り付けられた複数のIMSセンサーを含んでもよい。図4には、左右の孔12Lおよび12Rに共通のIMSセンサー110を含む検出ユニット100の一例を示している。すなわち、この検出ユニット100は、複数のサンプリングポイント12Rおよび12Lに共通のIMSセンサー110と、複数のサンプリングポイント12Rおよび12LからIMSセンサー110に対し流体(本例では空気(外気))19を時分割で供給する供給ユニット120と、外気19をサンプル保存カプセル159に封入して保存できるサンプル保存ユニット150とを含む。
[0032]
IMSセンサー110は、吸引された外気19に含まれる化学物質を放射線、光、電場などを用いてイオン化するイオン化ユニット111と、イオン化された化学物質の移動量を制御する電界制御フィルター112と、イオン化された化学物質の移動量から外気19に含まれる化学物質に関連する情報としてIMSデータ115を出力するユニット113とを含む。
[0033]
供給ユニット120は、サンプリングポイントである左右の孔12Lおよび12Rから外気19を吸い込み排出口129から排出するための吸引ファン(吸引ポンプ)128と、それぞれの孔12Lおよび12RからIMSセンサー110に外気19を時分割で導くための管路130Lおよび130Rとを含む。左右の管路130Lおよび130Rは共通の構成であり、それぞれ吸引チェンバー121と、可動コネクター122と、IMSセンサー110に外気19を供給する供給管123と、供給管123をバイパスするバイパス管124と、IMSセンサー110から排気するための排気管125とを含む。可動コネクター122は、サンプリングポイントである鼻の孔12Lおよび12Rを±15度(これに限定されないが)程度左右上下に向きを変えられるようにするためのものである。したがって、首部3を動かさなくてもサンプリングポイント12Lおよび12Rの向きを変えることができる。
[0034]
左右の孔12Lおよび12Rにはシャットオフダンパー126が設けられており検出ユニット100を外気19に対して遮断できるようになっている。供給管123、バイパス管124および排気管125には、それぞれを分離できるようにダンパー127a〜127dが設けられている。検出ユニット100は、さらに、これらのダンパー126、127a〜127d、IMSセンサー110を制御する制御ユニット135を含む。
[0035]
たとえば、左側の孔12Lから外気19を吸い込んで分析する場合は右側の管路130Rのダンパー127a〜127dを閉じ、左側の管路130Lのダンパー127a〜127dを開いてラインをパージする。次に、右側の管路130Rのダンパー127a〜127dを閉じ、IMSセンサー110により左側の孔12Lから吸い込まれた外気19に含まれている化学物質を検出する。IMSデータ115は、イベント監視ユニット30および探索対象検出ユニット40に供給される。
[0036]
イベント監視ユニット30および探索対象検出ユニット40において、イベントおよび探索対象が検出されなければ、上記と同様に右側の孔12Rから外気19を吸い込んで分析する。
[0037]
一方、イベント監視ユニット30でイベントが検出され、イベント要因推定ユニット50においてイベント要因が推測できない場合は、外気19に含まれている化学物質は未確認またはIMSセンサー110において分析経験のない化学物質である可能性がある。したがって、制御ユニット135は、右側の孔12Rの分析に移行する前に、バイパス管124とサンプル保存ユニット150とを遮断していたダンパー155を開き、バイパス管124に蓄積されていた外気19をサンプル保存ユニット150によりサンプル保存カプセル159に封入する。そして、カプセル搬出ルート162を通してストッカ160に貯める。ストッカ160にストックされたサンプル保存カプセル159に封入された外気19を、後に、同型のIMSセンサー110と、高精度の適当なタイプの質量分析器などを用いて解析し化学物質のデータベースに追加することにより、サンプリングした時点ではロボット搭載のIMSセンサー110では解析できなかった化学物質を、後に解析可能にすることができる。
[0038]
物質検出ユニット100において得られた左右のサンプリングポイント12Lおよび12RにおけるIMSデータ115はイベント監視ユニット30に送信される。イベント監視ユニット30は、それぞれのサンプリングポイント12Lおよび12Rでサンプリングされた外気19のIMSデータ115の変化によりイベントの発生を判断する。化学物質関連情報であるIMSデータ115の変化は、サンプリングポイント12Lおよび12Rにおける外気19に含まれる化学物質の変化および/または化学物質の濃度変化の少なくともいずれかを示唆する。イベント監視ユニット30は、前回のサンプリングの際のIMSデータ115と、今回のサンプリングの際のIMSデータ115とを比較し、その差分が、イベント監視ユニット30に予め設定されているしきい値を超えるとイベントが発生したと判断する。
[0039]
この場合のイベントは、外気19に新たな化学物質が放出されたり、外気19に大量の化学物質が放出されたりすることであり、様々なものが含まれる。イベントとしては、たとえば、匂いのあるものを置いたり、匂いが付随するものが現れたり、匂いが付随する事件を挙げることができる。匂い(臭い)は、人間が匂いとして感じられるものに限定されず、IMSセンサー110により検出可能な濃度の化学物質が外気19に含まれるものであればよい。匂いが付随するものには、汚染物質、爆薬、麻薬などの危険物、人間などの生物も含まれる。また、匂いが付随する事件には、発砲事件、火災なども含まれる。
[0040]
さらに、イベント監視ユニット30は、ロボット犬1に対するイベントの発生方向を判断する。イベント監視ユニット30は、ステレオタイプの物質検出情報を取得することによりイベントの発生方向を判断できる。複数のサンプリングポイント12Lおよび12Rにおいて検出される化学物質の時間差および/または濃度差と複数のサンプリングポイント12Lおよび12Rの3次元的な位置関係によりイベントの発生方向を判断(推定)できる。このロボット犬1においては、鼻11の左右の孔12Lおよび12Rをサンプリングポイントにしているが、さらに離れた位置にサンプリングポイントを設けることも可能である。たとえば、耳13の孔をサンプリングポイントにしたり、鼻11に耳13の孔をサンプリングポイントとして加えることにより、上下方向のイベントの発生方向の判断精度が向上する。
[0041]
物質を検出するためのサンプリングポイントを設ける位置は頭部2に限定されず、他の場所、たとえば、胴部4に設けてもよく、臀部6に設けてもよい。また、ロボット犬1に設ける検出ユニット100は1つに限定されず、頭部2、胴部4および臀部6にそれぞれ設けてもよい。
[0042]
ロボット犬1は、さらに、足部5を動かすことによりロボット犬1を自在な方向に移動することができる移動ユニット500を含む。移動ユニット500により、ロボット犬1は、イベントの発生方向に旋回したり、イベントの発生方向に近づいたり、遠ざかったり、イベント発生地点から等距離を保つように移動することができる。ロボット犬1は、CPUおよびメモリなどのハードウェア資源を含む中央制御ユニット55を含み、イベント監視ユニット30から得られたイベント発生方向に向けてロボット犬1を移動させる。ロボット犬1をイベントが発生していると推測されるイベント発生方向に移動させることにより、外気19に含まれる化学物質の濃度は一般に高くなる。また、移動方向が誤っていれば化学物質の濃度が一般に低くなるので、イベント発生方向の推定が誤っていたことも判断できる。したがって、イベントの発生方向をさらに精度よく推測できる。また、イベントの発生元に近づくことにより、後述する画像取得ユニット61によりイベントの発生元の画像を取得したり、イベントの発生元を追跡したりすることができる。
[0043]
ロボット犬1は、物質検出ユニット100により得られたIMSデータ115により、イベントの発生要因を判断する要因推定ユニット50をさらに有する。要因推定ユニット50は、IMSデータ115に対応する種々のパターンを格納したデータベースを有し、パターンマッチングなどの解析技術を用いてIMSデータ115を解析し、IMSデータ115あるいはその変化の要因を推定することができる。また、要因推定ユニット50は、後述する幾つかの通信ユニットを介してIMSデータ115を外部のハードウェア資源、たとえば解析サーバーに送り、イベントの発生要因を得るものであってもよい。ロボット犬1は、イベントの発生元に近づくことが可能であり、より濃度の高い化学物質に対応するIMSデータ115を取得できる。したがって、イベントの発生要因の推定精度を向上させることができる。
[0044]
要因推定ユニット50は、さらに、通信ユニットおよびネットワーク経由で、要因データベースに含まれる優先順位テーブルやルールを動的に変更することが可能である。イベント監視ユニット30により検出されたイベントが1つの化学物質に関連する場合、その化学物質に付随して発生する危険のある化学反応で、反応エネルギーや熱量が非常に大きく危険になる要素に敏感になるようにデータベースを動的に変更できることが望ましい。また、ロボット犬1が監視対象としている地域や工場(監視地域)の空間データをデータベースに入力しておき、イベント監視ユニット30により検出されたイベントが徐々に進んだ場合の監視地域の被害を予測して警告や通知を出力できるようにすることが望ましい。
[0045]
酸素濃度やCO濃度、人間に対して有毒・有害な化学物質の要因データベース中の優先順位を、通信ユニットを介して外部から変更してもよい。例えば、無人化された工場の場合、基本的には、爆発物質やその他の構造物へのダメージ等が大きな問題になるケースがある。また、特定の化学物質を生成したり取り扱ったりしている場合は、ある化学物質の存在比率が大きくなると、化学反応後に生成される化学物質が問題となる場合がある。このような事態あるいは条件に対して、ロボット犬1の動作を動的に制御できる。
[0046]
さらに、ロボット犬1は、要因推定ユニット50と並列に動作する探索対象検出ユニット40を有する。探索対象検出ユニット40は、探索対象の化学物質を含む要因がIMSデータ115に変換(逆変換)された特定パターンを含むライブラリが格納されたローカルメモリ41と、特定パターンとIMSデータ115とを定常的にパターンマッチングなどの解析技術により照合する照合ユニット42と、特定パターンとIMSデータ115とが一致した場合、あるいはIMSデータ115に特定パターンが含まれるとアラームを出力するアラームユニット45とを含む。
[0047]
探索対象の代表的なものは、人間に脅威となる有毒物質、爆薬、兵器、取引が禁止されている麻薬などの薬物、追跡対象となる犯罪者、行方不明者などである。それら探索対象に特有の匂いをIMSセンサー110が感知したときに出力されるIMSデータ115をローカルメモリ41に格納しておくことにより、ロボット犬1は、それらの探索対象をより効率よく発見できる。
[0048]
ロボット犬1は、イベントの発生要因に関わる警告(ワーニング)を視覚および聴覚の少なくともいずれかにより認識する情報(アラーム情報)として出力するアラーム発生ユニット59をさらに有する。アラーム発生ユニット59は、要因推定ユニット50または探索対象検出ユニット40により検出されたイベントが何らかの脅威となるイベントであると推測される場合に音や光などにより警報を出力できる。
[0049]
ロボット犬1は、発生方向の画像、音、当該ロボットの場所、発生方向の方位、流体の移動方向、当該ロボットの周囲の環境データの少なくともいずれかを含むイベント付属情報を検出する情報取得ユニット60をさらに有する。ロボットは、イベントの発生方向が推測できるので、その方向の画像、音などを含むイベント付属情報を取得できる。
[0050]
このロボット犬1は、頭部2の左右の眼の位置に左右の画像を取得する画像取得ユニット61Lおよび61Rを有する。画像取得ユニット61Lおよび61Rは、可視光領域の立体画像だけでなく、赤外線領域の立体画像も得ることができ、暗視能力を備えている。また、画像取得ユニット61Lおよび61Rは、距離測定機能を含む他の機能を備えていてもよい。また、ロボット犬1は、頭部2の左右の耳13の位置に左右の音(ステレオ音)を取得するマイクロフォン62Lおよび62Rを有する。ロボット犬1は頭部2を首部3に設けたアクチュエータ15により胴部4に対して左右上下に動かすことができる。したがって、頭部2をイベント発生方向に向けることにより、イベント発生方向の画像および音を得ることができる。
[0051]
さらに、ロボット犬1は、GPSユニット63を含み、ロボット犬1の地球上の位置をイベント付属情報に含めることができる。また、ロボット犬1は、風向き、温度および湿度を含む環境測定ユニット64を含み、それらの情報をイベント付属情報に含めることができる。
[0052]
イベント付属情報は、要因推定ユニット50に供給される。要因推定ユニット50は、イベント発生方向の画像、音などを含むイベント付属情報を加味することによりイベントの発生要因をさらに精度よく推定できる。
[0053]
ロボット犬1は、イベントの発生を含むイベント情報を外部に伝送する複数種類の通信ユニット200、201、210をさらに有する。まず、ロボット犬1は、尻尾7がFM、AMの周波数帯を用いたRF通信ユニット200となっている。また、左右の耳13が、大量情報を送受信するためのMIMOタイプの通信ユニット201となっている。さらに、鼻11が指向性通信インターフェイス211となっており、鼻11の後ろ側に指向性通信ユニット210が収納されている。指向性通信インターフェイス211は、レーザー通信用の半導体レーザーと、可視光通信用のLEDと、受光ユニットと、超音波通信用の超音波発生装置と、マイクロフォンとを含む。首部3のアクチュエータ15を動かすことにより指向性通信インターフェイス211を所望の方向に向けて通信範囲を限定することができ、通信精度を向上しやすい。また交換する情報を秘匿しやすい。
[0054]
これらの通信ユニット200、201および210を介してイントラネットまたはインターネットといったコンピュータネットワークにアクセスすることも可能である。したがって、ロボット犬1は、コンピュータネットワーク上にオープンされている様々な資源を利用できる。たとえば、IMSデータ115を、コンピュータネットワークを介して要因判別サーバーに送り、外部の資源を用いてイベントの発生要因を得ることができる。通信ユニット200、201および210により発生要因の推定のために外部のリソースを利用できるので、発生要因の推測精度を向上できる。
[0055]
また、これらの通信ユニット200、201および210を使って、ロボット犬1は、他のロボット犬と情報交換し、協調(連携)してイベントの発生元を特定したり、イベントの発生元が脅威の場合は、その脅威に立ち向かうことができる。すなわち、中央制御ユニット55は、移動ユニット500を他のロボット犬1と連携した動きを行うように制御する。複数のロボット犬1とイベント発生方向の情報を共有することによりイベントの発生元を精度よく特定できる。また、イベントの発生元が移動する場合には、その移動を追跡したり、発生元を包囲したりすることができる。
[0056]
ロボット犬1は、所定の匂いの発生元となる化学物質を放出する匂い出力ユニット300をさらに有する。移動中に適当な目印となる場所に、ロボット犬1を識別できる匂いを付けることにより、同様の機能を備えたロボット犬1に自己を追跡させることができる。人間が認識できない程度の匂いや、自然界の匂いと殆ど判別できないような匂いを用いて、ロボット犬1の移動経路などを間接的に他のロボット犬1に伝達できる。
[0057]
さらに、ロボット犬1は、要因推定ユニット50により特定された要因がロボット犬1で対処可能な脅威の場合は、その脅威を排除する対策ユニット600を含む。対策ユニット600の一例は消火器であり、イベントの要因が火災で初期消火が可能であれば、ロボット犬1が対処する。対策ユニット600の他の例は、イベントの要因が危険な化学反応のときに化学反応を打ち消すような別の化学反応を誘発させるような誘導体を射出するユニットである。対策ユニット600は、窒素ガスあるいは不活性ガスにより危険な化学物質の濃度を下げたり、酸素濃度を下げたりするユニットであってもよい。また、対策ユニット600は、酸素ボンベ、医薬品、食料などを含む緊急救命ユニットであってもよい。
[0058]
図5に、ロボット犬1の典型的な制御をフローチャートにより示している。この制御は、プログラム(プログラム製品)として、記録媒体に記録したり、コンピュータネットワークを介して提供することが可能である。
[0059]
ステップ701において複数のサンプリングポイントにおいて検出ユニット100によりサンプリングする。ステップ702において、イベント監視ユニット30がIMSデータ115に含まれる流体中(空気中)の化学物質の変化および化学物質の濃度変化の少なくともいずれかにより、イベントの発生を判断する。さらに、ステップ703において、イベントの発生が認められると、イベント監視ユニット30は、当該ロボット犬1に対するイベントの発生方向を判断する。
[0060]
ステップ704において、中央制御ユニット55がイベントに対応するためにロボット犬1の移動が必要であると判断すると、ステップ705において、移動ユニット500によりロボット犬1をイベント発生方向に移動させる。
[0061]
このような処理と前後して、あるいは並行して、ステップ706において、情報取得ユニット60は、発生方向の画像、音、当該ロボットの場所、発生方向の方位、流体の移動方向、ロボット犬1の周囲の環境データの少なくともいずれかを含むイベント付属情報を取得する。
[0062]
さらに、ステップ707において、中央制御ユニット55は、外部のサーバーなどの資源のサポートが必要であると判断すれば、ステップ708において、通信ユニット200などを介してイベント情報とともにイベント付属情報を外部へ伝送する。
[0063]
ステップ709において、要因推定ユニット50は、IMSデータ115に含まれる化学物質の変化および化学物質の濃度変化の少なくともいずれかにより、イベントの発生要因を判断する。要因推定ユニット50は、外部のサーバーなどからイベント発生要因を取得してもよい。
[0064]
ステップ710において、中央制御ユニット55が、判明あるいは推定された発生要因が警告(ワーニング)の対象であれば、ステップ711においてアラーム発生ユニット59を用いて警報を出力する。これにより、ロボット犬1の周囲に脅威があることを知らせる。通信ユニット200などを用いて、脅威の存在を外部に伝達することも可能である。
[0065]
また、ステップ712において、中央制御ユニット55が他のロボット犬などとの連携が必要と判断すると、ステップ713において、通信ユニット200などを介して他のロボット犬と共同作業を行う。中央制御ユニット55は、移動ユニット500を他のロボット犬1などと連携するように制御する。匂い出力ユニット300から所定の匂いの発生元となる化学物質を放出して、他のロボット犬1に情報を間接的に伝達してもよい。
[0066]
さらに、ステップ714において、中央制御ユニット55が、判明あるいは推定された発生要因に対して対策(初期対応)が可能であると判断すると、対策ユニット600を用いて発生要因に対して適当な対策を行う。ステップ715において、中央制御ユニット55は、移動ユニット500を対策に適した位置にロボット犬1が移動するように制御する。
[0067]
このように嗅覚ロボット犬1は、左右独立した鼻腔を持ち、嗅覚対象空間の雰囲気を独立した速度制御を行い吸引してこれを分析する事が出来る。通常IMS(センサー)は、最低1つを実装しており、2つ独立して実装している場合もある。1つの実装の場合は、時分割で分析を実行する事になる。嗅覚ロボット犬は、自分の記憶(データ)にある化学物質の系を最初に探る自己記憶探索モード、近くにいる他の嗅覚ロボット犬とコミュニケーションし、連携して探索を行うグループ記憶探索モード、リモートで化学物質にアクセスして探索を行うグローバル探索モード、記憶にない化学物質情報を類推する推定モード、推定範囲に無い新しい化学物質情報を記憶し蓄積する学習モード、複数の嗅覚ロボット犬同士で行う並列探索モード、移動するターゲットを追跡したり、位置特定をするトレース探索モード等を備えている。
[0068]
また、嗅覚ロボット犬1は、自分の持つ個別情報を必要とする相手の嗅覚ロボット犬に送信する事が出来るので、ネットワークのオーバー・ヘッドを少なくして、並列探索が可能となる。人間に対しては、送信された匂い・香りストリーミング情報を元に、擬似的に化学物質を微量ではあるが合成する事も出来るので、探索しているターゲットに対するシェアが可能となる。
[0069]
嗅覚ロボット犬1は、火災現場やその他、放射線や爆発物の危険な現場でも恐怖や危険性に対する感情的な反応が無いので、目的を達成する事に対して障害が少ない。嗅覚ロボット同士は、無線通信とは別に可視光通信機能も持つので、不必要な相手に対するコミュニケーションの漏えいが殆ど無く、見える範囲の相手だけと高速に通信出来る特徴がある。嗅覚ロボットのグループ全体を制御するコントローラ側では、必要な嗅覚ロボット同士をグループ化したり分離したりして、可視光の波長制御を行う事で、傍受され難い動的なチーム編成が可能となる。特に、嗅覚ロボットがGPSを受信出来ないような場所でも、可視光通信を使う事で極めて正確な数10mm単位での位置測定が可能となる。
[0070]
従来、麻薬や爆発物、犯人の遺留品を犬に嗅がせて判定する方式が取られる事が多かったが、何度も同じ強い匂いを嗅がせていると犬の嗅覚能力に低下が発生した。また、金属酸化被膜型センサーの場合でも、特定の化学物質に限定的に反応するものと、広範囲な探索空間を実現する事はコスト的にも物理的にも課題が多かった。センサーネットワークは、ある程度の範囲で、嗅覚ロボット犬1の化学物質特定処理については機能するものの、目的に応じたモードは搭載していない。また、嗅覚ロボット犬1が機動力があり移動可能なことに対して、ネットワークを設定しておかないと目的が達成出来ないという問題もあった。特に、未知数である新しい化学物質の追加・類推機能、学習機能は持たなかった。
[0071]
この嗅覚ロボット犬1は、嗅覚処理を行う検出ユニット100と、これらを制御する制御ユニット55を有し、さらに、種々の外部刺激に対して即反応する反射反応ユニット、推定や推論、学習を行う知能機能を搭載することも可能である。
[0072]
化学物質の特定は、2つの独立した鼻腔12Rおよび12Lの角度調整機能と吸引速度、また、内部に搭載された湿度調整機能を含む検出ユニット100、データ処理ユニット55などにより実現される。この嗅覚ロボット犬1で特徴的なのは、非常に危険性の高い爆発物質や毒物、毒ガス、有害物質に対しての処理が優先的に行われる構造となっており、緊急時には、全ての分析を停止して、優先処理を実行するように反応させることができる。
[0073]
さらに、ロボット犬1は専用の危険予知ユニットとなる要因推定ユニット50と、さらに、独立して機能する探索対象検出ユニット40とを搭載し、これにより脅威となる条件を常時モニタリングする機能を含んでいる。探索対象検出ユニット40のローカルメモリ41には、自分の探索目標となる化学物質のデータベースをローディングしておき、該当しない化学物質に遭遇した場合には、独自で、あるいはイベント要因推定ユニット50を介してリモートでグローバル・データを参照してもよい。
[0074]
さらに、ロボット犬1は、サンプル保存ユニット150により、グローバル・データに登録が無い場合は、新しい化学物質として登録できるようしている。すなわち、要因が判断できない場合、物質検出ユニット100から外気19をそのまま排気せずに、サンプル保存ユニット150に切り替えて外気をカプセルに保存する。これは、既存の分析装置での分析結果と後で照合して登録する事で、データベース品質を向上させる為である。膨大なデータベースを適切な品質で構築するには、この自動化システムが非常に重要となる。IMS型のデータベースを効率よく充実させるために、既存の質量分析装置などの分析結果とIMSを使った分析結果との比較と差分情報を一致させる或いは吸収して補正するルールを構築できる。統計データが蓄積されるので、IMSデータベース構築を自動化できる。
[0075]
嗅覚ロボット犬1は、通信ユニット200などを介し、外部のコントローラからの指示で複数のモードを切り替えることができる。要因推定ユニット50は、検索対象(分析対象)となる化学物質やその系統の物質の情報をローカルメモリの探索データベースに格納できる。したがって、短時間でイベントの発生要因を探索することができる(自己記憶探索モード)。探索データベースの一例は、複数のキーから探索が可能なRD構造を採用したものであり、類似の化学物質や化学変化が発生し易い中間反応物や副生成物等が探索空間上短距離になる構成を採用することが望ましい。
[0076]
また、新しい未登録の化学物質は、この探索キーの変更により容易にデータベースへの追加が可能となる。嗅覚ロボット犬1は、自己記憶探索モードとは別に、外部からの探索協力(依頼)があった場合に、自己記憶探索処理を中断せずに、独立して外部探索へ協力するモードも備えている。これは、完全に独立した探索が実行可能な二重系構造を持っていることを意味している。これにより、嗅覚ロボット犬同士は協力して並列処理の探索を実現する。また、基本的な探索アルゴリズムは共通化しているが、探索時間を短縮する為に、複数の嗅覚ロボット犬が、1つのターゲットに対して違う推定をする探索も可能なように、探索キーを変更して探索データベースのRD構造へのアクセスを行うモードを備えていてもよい。これにより、より早くヒットすれば、他の探索を中止して新しい探索を開始できる。このため、複数のロボット犬1を用いた並列探索をさらに高速化できる。また、物理的にある大きさの探索空間を、複数の嗅覚ロボット犬1で論理分割する事で、探索時間を短縮することも可能である。
[0077]
新しい化学物質を検出した場合は、嗅覚ロボット犬1は、ネットワークを経由して、グローバルメモリに対して仮登録を行う。これは、後で、成分分析が実行されて物質の特定がされた場合に、正式登録とする方式である。化学物質のシグネチャが登録され、ある推定アルゴリズムにより、物質の推定が実行される。この推定は、統計処理と実際の物質特定結果により、アルゴリズムの修正と推定根拠(ルール)が修正されて確度が向上する方式を採用している。これを、化学物質の推定と学習と呼び、人間が化学物質の特定に関する時間を短縮するのに貢献する。つまり、半自動化アルゴリズムから、自動化アルゴリズムへと進化させるのに貢献している。推定確度と学習効率を上げるポイントは、探索対象のシグネチャ情報だけでは無く、その場にある他の情報、例えば、湿度や温度、そこに存在している他のシグネチャとの相関性も含めた類推と実際の分析結果とのギャップを埋めるファクターを見つけ出すことが非常に重要になる。
[0078]
なお、以上では、自立して移動可能なロボット、すなわち、プログラマブルな機械装置の例としてロボット犬を説明した。ロボットは、動物のように自分自身で移動するタイプのものであってもよく、ネットワーク接続を前提とした、距離の移動を伴わない、たとえば、旋回したり、上下にのみ動くようなロボットであってもよい。イベントの発生方向を推定して向きを変えるなどの形で、イベントの発生方向の画像、音などを取得することができる。したがって、ロボットを用いて、化学物質の情報だけでなく、画像、音などの他の情報も総合的に考慮してイベントの要因を判断することができる。
[0079]
また、ロボット犬は地上を移動できるロボットの一例であるが、鳥型ロボットや、空中を浮遊あるいは飛行可能なロボットであってもよい。さらに、海上あるいは海中を移動するロボットであってもよい。また、上記では気体中の化学物質を検出する機能を含むロボットを例に説明したが、水中あるいは海中に含まれる化学物質を検出する機能を含むロボットであってもよい。

Claims

[1]
複数のサンプリングポイントを有するロボットであって、
前記複数のサンプリングポイントにおける流体に含まれる化学物質に関連する化学物質関連情報を取得する検出ユニットを有し、前記検出ユニットは、 前記化学物質関連情報として不特定の化学物質の濃度変化を含む スペクトルデータを出力するセンサーを含み、さらに、
他のロボットと情報を交換する通信ユニットと、
探索対象の化学物質を記憶する手段と、
サンプリングポイント毎の スペクトルデータに含まれる化学成分の時間的な変化および検出された化学物質毎の時間的な濃度変化により、イベントの発生および当該ロボットに対する前記イベントの発生方向を判断するイベント監視ユニット と、
不特定の化学物質の濃度変化を含むスペクトルデータに基づき、前記記憶する手段に記憶された自己の化学物質を探索する第1の機能と、
前記第1の機能と並行して、不特定の化学物質の濃度変化を含むスペクトルデータに基づき、前記通信ユニットを介して他のロボットと連携して探索を行う第2の機能とを有するロボット。
[2]
請求項1において、
当該ロボットを前記イベントの発生方向に動かす移動ユニットをさらに有する、ロボッ
ト。
[3]
請求項1または2において、
前記サンプリングポイント毎の化学物質関連情報から推定される化学物質の種類またはイベントの種類を含む、前記イベントの発生要因を判断する要因推定ユニットをさらに有する、ロボット。
[4]
請求項3において、
前記イベントの発生方向の画像、音、当該ロボットの場所、前記イベントの発生方向の方位、流体の移動方向、当該ロボットの周囲の環境データの少なくともいずれかを含むイベント付属情報を取得する情報取得ユニットをさらに有し、
前記要因推定ユニットは、前記サンプリングポイント毎の化学物質関連情報および前記イベント付属情報により前記イベントの発生要因を判断する、ロボット。
[5]
請求項3において、
前記イベントの発生要因 および前記第1の機能または前記第2の機能の探索結果に関わる警告を視覚および聴覚の少なくともいずれかにより認識できる情報として出力するアラーム発生ユニットをさらに有する、ロボット。
[6]
請求項1において、
前記通信ユニットは、前記イベントの発生を含むイベント情報を外部に伝送する ロボット。
[7]
請求項6において、
前記イベント情報は化学物質関連情報を含み、前記通信ユニットを介して、前記サンプリングポイント毎の化学物質関連情報から推定される化学物質またはイベントの種類を含む、イベントの発生要因を取得し、前記イベントの発生要因に関わる警告を視覚および聴覚の少なくともいずれかにより認識できる情報として出力するアラーム発生ユニットをさらに有する、ロボット。
[8]
請求項6において、
当該ロボットを前記イベントの発生方向に移動させる移動ユニットと、
前記通信ユニットを介して他のロボットと前記イベントの発生方向を含む情報を交換し、前記他のロボットと連携してイベントの発生元の移動を追跡し、または前記発生元を包囲するように前記移動ユニットを制御する制御ユニットをさらに有する、ロボット。
[9]
請求項6において、
前記通信ユニットは可視光通信ユニットを含む、ロボット。
[10]
請求項1において、
当該ロボットを移動する移動ユニットと、
所定の匂いの発生元となる化学物質を放出する匂い出力ユニットとをさらに有する、ロボット。
[11]
請求項1 ないし10のいずれかにおいて、
前記検出ユニットは、前記複数のサンプリングポイントにそれぞれ対応した複数の検出センサーを含む、ロボット。
[12]
請求項1 ないし10のいずれかにおいて、
前記検出ユニットは共通の検出センサーと、前記複数のサンプリングポイントから前記流体を前記共通の検出センサーへ時分割で供給する供給ユニットとを含む、ロボット。
[13]
請求項1ないし12のいずれかにおいて、
前記複数のサンプリングポイントは、立体的に異なる位置に配置された少なくとも3つのサンプリングポイントを含む、ロボット。
[14]
ロボットを制御する方法であって、
前記ロボットは、 探索対象の化学物質を記憶するメモリと、CPUと、複数のサンプリングポイントと、前記複数のサンプリングポイントにおける流体に含まれる化学物質に関連する化学物質関連情報を取得する検出ユニットと 、他のロボットと情報を交換する通信ユニットとを含み、前記検出ユニットは、不特定の化学物質の濃度変化を含む スペクトルデータを出力するセンサーを含み、
当該方法は、サンプリングポイント毎の化学物質関連情報に含まれる化学成分の時間的な変化および検出された化学物質毎の時間的な濃度変化により、イベントの発生および前記ロボットに対する前記イベントの発生方向を判断すること と、
不特定の化学物質の濃度変化を含むスペクトルデータに基づき、前記メモリに記憶された自己の化学物質を探索する第1の探索ステップと、
前記第1の探索ステップと並行して、不特定の化学物質の濃度変化を含むスペクトルデータに基づき、前記通信ユニットを介して他のロボットと連携して探索を行う第2の探索ステップとを有する方法。
[15]
請求項14において、
前記サンプリングポイント毎の化学物質関連情報から推定される化学物質またはイベントの種類を含む、イベントの発生要因を判断することをさらに有する方法。
[16]
請求項15において、前記ロボットは、前記イベントの発生方向の画像、音、前記ロボットの場所、前記イベントの発生方向の方位、流体の移動方向、前記ロボットの周囲の環境データの少なくともいずれかを含むイベント付属情報を取得する情報取得ユニットをさらに含み、
前記イベントの発生要因を判断することは、前記サンプリングポイント毎の化学物質関連情報および前記イベント付属情報により前記イベントの発生要因を判断することを含む、方法。
[17]
請求項15において、 前記通信ユニットは、イベントの発生および前記サンプリングポイント毎の化学物質関連情報を含むイベント情報を外部に伝送 し、
前記イベントの発生要因を判断することは、前記通信ユニットを介して前記イベントの発生要因を取得することを含む、方法。
[18]
請求項15ないし17のいずれかにおいて、前記ロボットは、警告を視覚および聴覚の少なくともいずれかにより認識する情報として出力するアラーム発生ユニットをさらに含み、
前記イベントの発生要因 、前記第1の探索ステップの探索結果および前記第2の探索ステップの探索結果に関わる警告を前記アラーム発生ユニットから出力することをさらに有する、方法。
[19]
請求項14 ないし18のいずれかにおいて、前記ロボットは移動ユニットを含み、
前記移動ユニットにより前記イベント発生方向に移動することを含む、方法。

Drawings

[ Fig. 1]

[ Fig. 2]

[ Fig. 3]

[ Fig. 4]

[ Fig. 5]