Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020196438 - DISPOSITIF DE GESTION DE BATTERIE, DISPOSITIF DE STOCKAGE D'ÉNERGIE, PROCÉDÉ DE GESTION DE BATTERIE ET PROGRAMME INFORMATIQUE

Document

明 細 書

発明の名称 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム

技術分野

0001  

背景技術

0002  

先行技術文献

特許文献

0003  

発明の概要

発明が解決しようとする課題

0004   0005  

課題を解決するための手段

0006   0007   0008   0009  

発明の効果

0010  

図面の簡単な説明

0011  

発明を実施するための形態

0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070  

符号の説明

0071  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11  

図面

1   2   3   4   5   6   7   8  

明 細 書

発明の名称 : 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム

技術分野

[0001]
 本発明は、電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラムに関する。

背景技術

[0002]
 リチウムイオン電池等の蓄電装置には、過充電・過放電等を防止するための電池管理装置(BMU:Battery Management Unit)が設けられている。電池管理装置は、蓄電装置に含まれる蓄電素子に流れる電流を計測する電流計測部を有している。電流計測部は、蓄電素子に接続されたシャント抵抗器に流れる電流を計測する。電池管理装置は、蓄電素子の電圧、電流及び温度を計測し、異常を検出した場合に蓄電素子に流れる電流を遮断することにより、蓄電素子が異常な状態になることを防止している。電池管理装置は、蓄電素子の充放電電流を計測し、電流値を積算することにより、蓄電素子のSOC(State Of Charge)を推定できる。特許文献1は、電池管理装置の例を開示している。

先行技術文献

特許文献

[0003]
特許文献1 : 特開2018-31778号公報

発明の概要

発明が解決しようとする課題

[0004]
 蓄電装置では、シャント抵抗器が回路と非接続になるか、又は電流を計測するためにシャント抵抗器に接続される信号線が断線する等の故障により、電流計測が正常にできなくなることがある。電流計測が正常にできない場合、電池管理装置は蓄電素子を適切に管理することができない。そこで、これらの故障の有無を容易に判定するための技術が必要となる。
[0005]
 本発明は、電流計測が正常にできなくなる原因となる故障の有無を容易に判定できる電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラムを提供することを目的とする。

課題を解決するための手段

[0006]
 本発明の一局面に係る電池管理装置は、シャント抵抗器が接続された蓄電素子を管理する。電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを備える。
[0007]
 本発明の他の局面に係る蓄電装置は、蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備える。前記電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する。
[0008]
 本発明の他の局面に係る電池管理方法は、シャント抵抗器が接続された蓄電素子を管理する。電池管理方法は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する。
[0009]
 本発明の他の局面に係るコンピュータプログラムは、蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いて、コンピュータに、前記蓄電素子を管理するための処理を実行させる。コンピュータプログラムは、前記コンピュータに、前記開閉スイッチを開閉させるステップと、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップとを含む処理を実行させる。

発明の効果

[0010]
 上記構成により、電池管理装置は、蓄電装置について、電流計測が正常にできなくなる原因となる故障の有無を容易に判定できる。

図面の簡単な説明

[0011]
[図1] 蓄電装置の配置例を示す概念図である。
[図2] 蓄電装置の外観の例を示す模式的斜視図である。
[図3] 蓄電装置の構成例を示す模式的な分解斜視図である。
[図4] 実施形態1に係る蓄電装置の電気的構成例を示すブロック図である。
[図5] 電池管理装置が行う故障の有無を判定する処理の一例の手順を示すフローチャートである。
[図6] 電流計測部で計測される電流値の変化を模式的に示すグラフである。
[図7] 電池管理装置が行う故障の有無を判定する処理の他の例の手順を示すフローチャートである。
[図8] 実施形態2に係る蓄電装置の電気的構成例を示すブロック図である。

発明を実施するための形態

[0012]
 シャント抵抗器が接続された蓄電素子を管理する電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを備える。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。電離管理装置は、開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無を判定できる。
[0013]
 従来、電池管理装置は、シャント抵抗器に流れる電流を計測し、電流値に基づいて蓄電素子を管理するための処理を行っている。シャント抵抗器が電池管理装置と非接続になる等、シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障が発生した場合は、電池管理装置は、電流値に基づいた適切な処理ができない。本実施形態では、開閉スイッチが開閉したときの電流の変化は故障の有無に応じて明確に異なるので、電流の時間変化から故障の有無を判定することに比べて、電池管理装置は、短時間で故障の有無を判定できる。短時間で故障の有無を判定できるので、電池管理装置は、故障に起因する正しくない電流値に基づいた処理を短時間で停止し、正しくない電流値が計測されることの影響を小さくできる。
[0014]
 電池管理装置は、前記開閉スイッチを定期的に開閉させる第1開閉部を更に備えてもよい。定期的に信号線の接続不良の有無を判定することにより、電池管理装置3は、故障の発生を判定できる。
[0015]
 電池管理装置は、前記電流計測部が計測する電流の値が所定範囲に含まれる場合に、前記開閉スイッチを開閉させる第2開閉部を更に備えてもよい。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態では、電流値は、故障がない場合よりも高い値になる。このため、電流値が通常よりも高い値である所定範囲に含まれる場合は、故障が発生している可能性が高い。電池管理装置は、電流値が通常よりも高い値である所定範囲に含まれる場合に、判定を行う。電池管理装置は、故障が発生している可能性が高いときに判定を行うため、高い確度で故障の発生を判定できる。
[0016]
 前記基準電位源は、アースであってもよく、前記電流計測部は、前記一対の信号線の間の電圧を測定し、前記電圧に基づいて電流を計測し、前記シャント抵抗器よりも高抵抗の抵抗器を介して一対の前記接続線が前記一対の信号線に接続されており、前記判定部は、前記開閉スイッチが開いた状態で前記電流計測部が計測する電流に比べて、前記開閉スイッチが閉じた状態で前記電流計測部が計測する電流がゼロへ近づく場合に、前記故障が発生したと判定してもよい。故障が発生していない状態では、開閉スイッチが閉じた場合、信号線は、抵抗器を介して接続されたアースの影響をほとんど受けない。電流計測部が計測する電流値は、開閉スイッチが開いている場合と閉じた場合とでほぼ同一である。故障が発生した状態では、開閉スイッチが開いている場合、信号線はハイインピーダンス状態になり、電流計測部は高い電流値を計測する。開閉スイッチが閉じた場合、信号線はアースに接続され、電流計測部は、ほぼゼロの電流値を計測する。従って、電池管理装置は、開閉スイッチが開いているときの電流値に比べて、開閉スイッチが閉じているときの電流値がゼロへ近づくように変化した場合に、故障が発生したと判定できる。
[0017]
 電池管理装置は、前記シャント抵抗器に流れる過電流を検出する過電流検出部と、前記過電流が検出された場合に、前記シャント抵抗器に流れる電流を遮断するための処理を行う遮断処理部とを更に備えてもよく、前記判定部は、前記遮断処理部が前記処理を行う前に、前記故障の有無を判定してもよい。本実施形態では、開閉スイッチが開閉したときの電流の変化は故障の有無に応じて明確に異なるので、故障によるシャント抵抗器に流れる電流の過電流への変化を検出することに比べて、電池管理装置は、短時間で故障の有無を判定できる。このため、電池管理装置は、過電流の検出に応じて電流を遮断する前に、故障の有無を判定できる。電池管理装置は、電流が遮断される前に、故障に起因する正しくない電流値に基づいた処理を停止し、正しくない電流値が計測されることの影響を小さくできる。
[0018]
 蓄電装置は、蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備える。前記電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。電離管理装置は、開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無を判定できる。
[0019]
 前記蓄電素子は、リン酸鉄リチウムを電極に含んだリチウムイオン電池であってもよい。鉄系リチウムイオン電池では、SOCを得るためには、電流値に基づいたSOCの計算を行う必要がある。電池管理装置は、故障により正しくない電流値が計測される場合に、短時間で故障の発生を判定して、正しくない電流値を用いたSOCの計算を素早く停止できる。このため、電池管理装置は、電流値に基づいた蓄電素子のSOCの計算をより正確に実行できる。蓄電素子が鉄系リチウムイオン電池のセルであっても、正確なSOCが得られる。
[0020]
 前記蓄電素子は、移動体のエンジンを始動させるための電流を供給してもよい。エンジンを始動させるための蓄電装置は、大電流を供給可能である。電池管理装置で大電流を計測するためには、低抵抗のシャント抵抗器を用いる必要がある。低抵抗のシャント抵抗器は、大きく重いことがある。蓄電装置は移動体に設けられており、蓄電装置に含まれる重いシャント抵抗器に振動が加わった場合は、シャント抵抗器を固定している部分に加わる応力が大きくなり、シャント抵抗器が非接続になることがある。電池管理装置は、シャント抵抗器の非接続を判定できるので、シャント抵抗器が非接続になりうる蓄電装置について、適切に故障を診断できる。
[0021]
 前記移動体は四輪自動車であってもよい。四輪自動車のエンジンを始動させるためには、多くの電力が必要となり、蓄電装置は大電流を供給する必要がある。電池管理装置で大電流を計測するためにシャント抵抗器は大きく重いことがある。四輪自動車に設けられた電池管理装置に振動が加わった場合は、シャント抵抗器を固定している部分に加わる応力が大きくなり、シャント抵抗器が非接続になることがある。電池管理装置は、シャント抵抗器の非接続を判定することにより、適切に蓄電装置の故障を診断できる。
[0022]
 シャント抵抗器が接続された蓄電素子を管理する電池管理方法では、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無の判定が可能である。
[0023]
 蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いるコンピュータに、前記蓄電素子を管理するための処理を実行させるコンピュータプログラムは、前記コンピュータに、前記開閉スイッチを開閉させるステップと、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップとを含む処理を実行させる。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無の判定が可能である。
[0024]
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
<実施形態1>
 図1は、蓄電装置1の配置例を示す概念図である。蓄電装置1は、移動体100内に設けられている。蓄電装置1は、移動体100が備えるエンジン10に接続されている。移動体100は四輪自動車である。蓄電装置1は、エンジン10を始動させるための電流を供給する。
[0025]
 図2は、蓄電装置1の外観の例を示す模式的斜視図である。蓄電装置1は直方体状のケース21とケース21の開口部を閉塞する蓋部22を有する。図3は、蓄電装置1の構成例を示す模式的な分解斜視図である。ケース21には、複数の蓄電素子271を含んでなる電池部27が収容される。蓄電素子271は、例えば、鉄系リチウムイオン電池のセルである。鉄系リチウムイオン電池は、電極にリン酸鉄リチウムを含んでいる。蓄電素子271は、鉄系リチウムイオン電池以外のリチウムイオン電池のセルであってもよく、リチウムイオン電池以外の電池のセルであってもよい。
[0026]
 ケース21内には、仕切り板211が設けられている。夫々の仕切り板211の間に、蓄電素子271が挿入されている。蓋部22と蓄電素子271との間には、中蓋26が配置されている。中蓋26には、複数の金属製のバスバー261が載置されている。蓄電素子271の端子が設けられている端子面に中蓋26が配置され、隣り合う蓄電素子271の隣り合う端子がバスバー261により接続され、蓄電素子271が直列に接続されている。
[0027]
 蓋部22上には、収容部23が設けられており、収容部23をカバー24が覆っている。収容部23は箱状をなし、一長側面の中央部に、外側に角型に突出した突出部231を有する。蓋部22における突出部231の両側には、鉛合金等の金属製で、極性が異なる一対の外部端子221,221が設けられている。外部端子221,221は、蓄電装置1の外部と接続するための端子である。収容部23内には、制御基板25及びシャント抵抗器28が収容されている。制御基板25は、蓄電素子271を管理する電池管理装置を含んでいる。収容部23に制御基板25及びシャント抵抗器28を収容し、カバー24により収容部23を覆うことにより、電池部27と制御基板25及びシャント抵抗器28とが接続される。
[0028]
 図4は、実施形態1に係る蓄電装置1の電気的構成例を示すブロック図である。制御基板25には、電池管理装置3及び電流遮断部4が含まれている。電池管理装置3は、電池管理方法を実行する。一対の外部端子221,221の間には、直列に、電流遮断部4、電池部27及びシャント抵抗器28が接続されている。電池部27は複数の蓄電素子271を含む。蓄電素子271の数は四個に限らない。夫々の蓄電素子271が放電することにより、外部端子221,221から電力が出力される。また、外部端子221,221の間に外部から電圧が印加されることにより、複数の蓄電素子271は充電される。シャント抵抗器28には、蓄電素子271が充放電を行うときの電流が流れる。電流遮断部4は、必要に応じて電流を遮断し、蓄電素子271の充放電を停止させる。電流遮断部4は、例えば、リレーを含んで構成されている。
[0029]
 電池管理装置3は、制御部31を備えている。制御部31は、プロセッサ及びメモリを用いて構成されている。例えば、制御部31はCPU(Central Processing Unit )を用いて構成されている。制御部31は、電池管理装置3の各部分を制御する。制御部31には、不揮発性のメモリ32が接続されている。メモリ32はコンピュータプログラム321を記憶している。制御部31は、コンピュータプログラム321に従って必要な処理を実行するコンピュータである。制御部31は、電流遮断部4に接続されており、電流遮断部4の動作を制御する。
[0030]
 電池管理装置3は、電圧計測部33を備えている。電圧計測部33は、電池部27に接続されており、夫々の蓄電素子271の電圧を計測する。電圧計測部33は、制御部31に接続されており、計測した夫々の蓄電素子271の電圧の値を制御部31へ入力する。制御部31は、電圧値に基づいて、夫々の蓄電素子271の状態を判定する。例えば、制御部31は、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。
[0031]
 電池管理装置3は、電流計測部34を備えている。電流計測部34は、シャント抵抗器28の両端に接続されている。電流計測部34は、シャント抵抗器28の両端に接続される一対の信号線341,341を通じてシャント抵抗器28に接続されている。電流計測部34は、差動AD(Analog-to-digital )変換部342及び343を有している。差動AD変換部342及び343は、一対の信号線341,341が接続されており、一対の信号線341,341の間の電圧をデジタル信号へ変換する。これにより、電流計測部34は、シャント抵抗器28の両端の電圧の値を取得する。
[0032]
 電流計測部34は、シャント抵抗器28の両端の電圧に基づいて、シャント抵抗器28に流れる電流の値を計算する。例えば、電流計測部34は、シャント抵抗器28の抵抗値を予め記憶しており、電圧値を抵抗値で除することにより、電流値を計算する。このようにして、電圧計測部33は、シャント抵抗器28に流れる電流の値を計測する。電流計測部34は、差動AD変換部342及び343の夫々が変換した電圧のデジタル信号を用いて、夫々に電流値を計算する。即ち、電流計測部34は、複数の電流値を計算する。電圧計測部33は、制御部31に接続されており、計測した電流値を制御部31へ入力する。
[0033]
 制御部31は、電流値に基づいて、蓄電素子271の状態を判定する。例えば、制御部31は、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。更に、制御部31は、電流値を積算する。制御部31は、電流の積算値に基づいて蓄電素子271のSOCを計算してもよい。制御部31は、電流値、電流の積算値、又はSOCをメモリ32に記憶させてもよい。電池管理装置3は、電流値又はSOC等の蓄電素子271の状態を表す情報を外部へ出力する出力部を備えていてもよい。
[0034]
 電流計測部34は、計測した複数の電流値を制御部31へ入力してもよい。制御部31は、複数の電流値を比較し、電流計測部34の状態を判定する。例えば、複数の電流値の差が所定値を超過した場合に、制御部31は、電流計測部34が異常であると判定する。代替的に、電流計測部34が複数の電流値を比較し、電流計測部34の状態を自己診断してもよい。
[0035]
 電池管理装置3は、温度計測部36を備えている。温度計測部36は、電池部27内の温度を計測する。例えば、温度計測部36は、熱電対又はサーミスタを用いて温度を計測する。温度計測部36は、制御部31に接続されており、計測した温度の値を制御部31へ入力する。制御部31は、温度値に基づいて、蓄電素子271の状態を判定し、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。
[0036]
 電池管理装置3は、電位差検出部35を備えている。電位差検出部35は、差動増幅回路351を有している。差動増幅回路351の入力端には、シャント抵抗器28の両端に接続される一対の入力信号線354,354が接続されている。差動増幅回路351の基準電圧は、電圧源355及び増幅部353を用いて接地電位から上昇された電位である。差動増幅回路351の出力端には、コンパレータ352が接続されている。コンパレータ352は、制御部31に接続されている。
[0037]
 差動増幅回路351は、一対の入力信号線354,354の電位の差、即ち、シャント抵抗器28の両端の電位の差を増幅して出力する。コンパレータ352は、差動増幅回路351から出力された電位差の値と所定の閾値とを比較する。このようにして、電位差検出部35はシャント抵抗器28の両端の電位差を検出する。コンパレータ352は、電位差の値が閾値を超過している場合に、制御部31へ電流の遮断指示を入力する。制御部31は、コンパレータ352から電流の遮断指示が入力された場合、電流遮断部4に、電流を遮断させる。コンパレータ352からの電流の遮断指示に応じた処理は、割り込み処理として実行される。なお、コンパレータ352は、電位差の値が閾値以上である場合に制御部31へ電流の遮断指示を入力してもよい。
[0038]
 シャント抵抗器28の両端の電位差が大きい場合は、シャント抵抗器28の両端の間に過電流が流れている。例えば、蓄電装置1の外部からの短絡により、過電流が発生する。即ち、電位差検出部35は、過電流の発生を検出し、電流を遮断させる。電位差検出部35は、過電流検出部に対応する。過電流が検出された場合に制御部31が電流遮断部4に電流を遮断させる処理は、遮断処理部に対応する。
[0039]
 本実施形態では、電流計測部34に含まれる一の差動AD変換部343に接続される一対の信号線341,341には、一対の接続線347,347が接続されている。夫々の接続線347は、抵抗器344及び開閉スイッチ345を介して信号線341とアース346とを接続する。アース346は基準電位源に対応する。開閉スイッチ345が閉じた状態では、差動AD変換部343は、抵抗器344を介してアース346に接続される。開閉スイッチ345が開いた状態では、差動AD変換部343は、アース346に接続されない。開閉スイッチ345は、開いた状態が常態となっている。電流計測部34は、開閉スイッチ345を開閉することができる。抵抗器344は、抵抗器344による電圧降下がシャント抵抗器28による電圧降下に比べて無視できるほど小さくなるように、シャント抵抗器28よりも高抵抗である。
[0040]
 蓄電装置1が正常な状態では、一対の信号線341,341は、シャント抵抗器28を介して互いに接続されている。蓄電装置1では、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生することがある。例えば、外部端子221,221の間の回路とシャント抵抗器28とが非接続になった場合は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる。例えば、一対の信号線341,341の少なくとも一方が断線した場合、又はシャント抵抗器28が破断した場合でも、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になった状態では、電流計測部34は、シャント抵抗器28に流れる電流を正常に計測できない。このため、電池管理装置3は、蓄電素子271を適切に管理できない。例えば、電池管理装置3は、蓄電素子271のSOCを正しく計算することができない。
[0041]
 電池管理装置3は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定する処理を行う。図5は、電池管理装置3が行う故障の有無を判定する処理の一例の手順を示すフローチャートである。以下、ステップをSと略す。開閉スイッチ345が開いた状態で、電流計測部34は、電流を計測する(S11)。S11では、差動AD変換部343は、開閉スイッチ345が開いた状態で一対の信号線341,341の間の電圧をデジタル信号へ変換する。電流計測部34は、差動AD変換部343が変換した電圧のデジタル信号を用いて、電流値を計算する。電流計測部34は、電流値を制御部31へ入力する。
[0042]
 電流計測部34は、次に、開閉スイッチ345を閉じた状態にする(S12)。開閉スイッチ345が閉じた状態で、電流計測部34は、電流を計測する(S13)。S13では、差動AD変換部343は、開閉スイッチ345が閉じた状態で一対の信号線341,341の間の電圧をデジタル信号へ変換する。電流計測部34は、差動AD変換部343が変換した電圧のデジタル信号を用いて、電流値を計算する。電流計測部34は、電流値を制御部31へ入力する。制御部31は、開閉スイッチ345が開いた状態で電流計測部34が計測した電流値と、開閉スイッチ345が閉じた状態で電流計測部34が計測した電流値とを比較し、開閉スイッチ345の開閉に応じて電流値が変化したか否かを判定する(S14)。
[0043]
 シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生していない状態では、開閉スイッチ345が開いている場合、シャント抵抗器28の両端間の電圧が差動AD変換部343へ入力される。開閉スイッチ345が閉じた場合、シャント抵抗器28に比べて抵抗器344は高抵抗であるので、信号線341は、抵抗器344を介して接続されたアース346の影響をほとんど受けない。差動AD変換部343へは、開閉スイッチ345が開いている場合とほぼ同等の電圧が入力される。この状態では、電流計測部34が計測する電流値は、開閉スイッチ345が開いている場合と閉じた場合とでほぼ同一である。
[0044]
 故障が発生した状態では、開閉スイッチ345が開いている場合、一対の信号線341,341は互いに非接続でハイインピーダンス状態になる。差動AD変換部343へは、高い電圧が入力され、電流計測部34は高い電流値を計測する。開閉スイッチ345が閉じた場合、信号線341は、接続線347を通じてアース346に接続される。一対の信号線341,341の間の電圧はほぼゼロになり、差動AD変換部343へは、ほぼゼロの電圧が入力される。電流計測部34は、ほぼゼロの電流値を計測する。この状態では、電流計測部34が計測する電流値は、開閉スイッチ345が開いている場合と閉じた場合とで大きく変化する。
[0045]
 図6は、電流計測部34で計測される電流値の変化を模式的に示すグラフである。図中の横軸は時間を示し、縦軸は電流値を示す。図中には、開閉スイッチ345を開いた状態から閉じた時点を矢印で示している。故障が発生していない状態での電流値を破線で示し、故障が発生した状態での電流値を実線で示す。故障が発生していない状態では、開閉スイッチ345が閉じる前後で、電流値は同一であるか、又は電流値の変化は小さい。故障が発生した状態では、開閉スイッチ345が開いているときには電流値は高く、開閉スイッチ345が閉じているときには電流値はゼロに近くなる。開閉スイッチ345が閉じる前後で、電流値は大きく変化する。具体的には、開閉スイッチ345が開いているときの電流値に比べて、開閉スイッチ345が閉じているときの電流値は、ゼロへ近づくように変化する。このように、故障が発生しているか否かに応じて、開閉スイッチ345が開閉したときの電流の変化は異なる。従って、電池管理装置3は、開閉スイッチ345が開閉したときの電流の変化の違いに応じて、故障が発生しているか否かを判定することができる。
[0046]
 S14では、制御部31は、開閉スイッチ345が開いた状態での電流値と開閉スイッチ345が閉じた状態での電流値との差の絶対値が所定の閾値を超過した場合に、電流値が変化したと判定する。代替的に、制御部31は、電流値の差の絶対値が閾値以上である場合に電流値が変化したと判定してもよい。代替的に、制御部31は、電流値の差の絶対値が閾値を超過するか又は閾値以上であり、電流値の変化がゼロに近づく変化である場合に、電流値が変化したと判定してもよい。代替的に、制御部31は、電流値の変化がゼロに近づく変化であり、開閉スイッチ345が閉じた状態での電流の絶対値が所定の上限値以下である場合に、電流値が変化したと判定してもよい。
[0047]
 電流値が変化した場合(S14:YES)、制御部31は、故障が発生したと判定する(S15)。S14及びS15の処理は、判定部に対応する。S15が終了した後、又は電流値の変化が無い場合(S14:NO)、電流計測部34は、開閉スイッチ345を開いた状態にし(S16)、電池管理装置3は、故障の有無を判定する処理を終了する。
[0048]
 制御部31は、電流値の変化が無い場合に故障が発生していないと判定してもよい。制御部31は、故障が発生したと判定した場合に、電流遮断部4に電流を遮断させてもよく、電流値に基づいて蓄電素子271を管理する処理を停止してもよい。例えば、制御部31は、電流値に基づいて蓄電素子271のSOCを計算する処理を停止する。例えば、制御部31は、故障のために正しくない値となった電流値若しくはSOCの記録の停止又は記録の削除を行う。電池管理装置3が出力部を備える形態では、制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させてもよい。例えば、移動体100は表示部を備え、電池管理装置3は故障の発生を示す情報を出力部から移動体100は表示部へ出力し、表示部は故障の発生を表す画像を表示してもよい。また、例えば、電池管理装置3は、スマートフォン等、蓄電装置1の外部又は移動体100の外部の機器へ、出力部から、又は出力部に接続された移動体100内の通信部を通じて、故障の発生を示す情報を出力してもよい。
[0049]
 電池管理装置3は、S11~S16の処理を定期的に実行する。このとき、電流計測部34は、第1開閉部に対応する。例えば、電池管理装置3は、一分に一度、S11~S16の処理を実行する。定期的に故障の有無を判定することにより、電池管理装置3は、確実に故障の発生を判定できる。S14及びS15の処理は、コンピュータプログラム321に従って制御部31が実行する。S11~S13及びS16の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。
[0050]
 図7は、電池管理装置3が行う故障の有無を判定する処理の他の例の手順を示すフローチャートである。開閉スイッチ345が開いた状態で、電流計測部34は、電流を計測する(S21)。電流計測部34は、電流値を制御部31へ入力する。制御部31は、電流値が通常よりも高い値である所定範囲に含まれるか否かを判定する(S22)。例えば、所定の下限値以上の値を所定範囲に含まれる値とする。例えば、制御部31は、電流値が50A以上である場合に電流値が所定範囲に含まれると判定する。電流値が所定範囲に含まれない場合(S22:NO)、制御部31は、故障の有無を判定する処理を終了する。
[0051]
 電流値が所定範囲に含まれている場合(S22:YES)、制御部31は、開閉スイッチ345を閉じることを電流計測部34に指示し、電流計測部34は、開閉スイッチ345を閉じた状態にする(S23)。開閉スイッチ345が閉じた状態で、電流計測部34は、電流を計測する(S24)。制御部31は、開閉スイッチ345の開閉に応じて電流値が変化したか否かを判定する(S25)。電流値が変化した場合(S25:YES)、制御部31は、故障が発生したと判定する(S26)。S25及びS26の処理は、判定部に対応する。S26が終了した後、又は電流値の変化が無い場合(S25:NO)、電流計測部34は、開閉スイッチ345を開いた状態にし(S27)、電池管理装置3は、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。
[0052]
 制御部31は、電流値の変化が無い場合に故障が発生していないと判定してもよい。電池管理装置3は、S21~S27の処理を定期的に実行する。例えば、電池管理装置3は、一分に一度、S21~S27の処理を実行する。S22、S25及びS26の処理は、コンピュータプログラム321に従って制御部31が実行する。S21、S23、S24及びS27の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。電池管理装置3がS21~S27の処理を実行するとき、電流計測部34は、第2開閉部に対応する。
[0053]
 前述したように、故障が発生した状態では、電流計測部34は高い電流値を計測する。S21~S27の処理では、電池管理装置3は、電流値が通常よりも高い値である所定範囲に含まれ、故障が発生している可能性が高い場合に、判定を行う。電池管理装置3は、故障が発生している可能性が高いときに判定を行うこととなり、高い確度で故障の発生を判定できる。
[0054]
 以上詳述した如く、本実施形態においては、電池管理装置3は、信号線341に開閉スイッチ345を介してアース346を接続している。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチ345が開閉したときの電流の変化が異なる。電池管理装置3は、開閉スイッチ345が開閉したときの電流の変化に基づいて、故障の有無を判定できる。開閉スイッチ345が開閉したときの電流の変化は故障の有無に応じて明確に異なるので、電流の時間変化から故障の有無を判定することに比べて、電池管理装置3は、短時間で故障の有無を判定できる。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生した場合は、シャント抵抗器28に流れる電流を電流計測部34により正しく計測することができない。即ち、電池管理装置3は、電流計測が正常に行われなくなる原因となる故障の有無を容易にかつ短時間で判定できる。例えば、電池管理装置3とシャント抵抗器28とが非接続になる故障が発生した場合でも、電池管理装置3は容易に故障の発生を判定できる。
[0055]
 電池管理装置3は、故障に起因する正しくない電流値に基づいた処理を短時間で停止し、正しくない電流値が計測されることの影響を小さくできる。電池管理装置3は、従来の電池管理装置に比べて、接続線347、抵抗器344及び開閉スイッチ345が追加されている。追加された部品は少なく、従来の電池管理装置に比べたコストの上昇は小さい。
[0056]
 電池管理装置3は、短時間で故障の有無を判定することにより、電位差検出部35を用いて過電流を検出して電流を遮断する処理を行う前に、故障の有無の判定を行う。
 開閉スイッチ345が開閉したときの電流の変化は故障の有無に応じて明確に異なるので、故障によるシャント抵抗器28に流れる電流の過電流への変化を検出することに比べて、電池管理装置3は、短時間で故障の有無を判定できる。このため、電池管理装置3は、過電流の検出に応じて電流を遮断する前に、故障に起因する正しくない電流値に基づいた処理を停止できる。例えば、電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算を停止する処理を、電流が遮断される前に行う。
[0057]
 電流値に基づいたSOCの計算は、電流値を積算して行うので、正確にSOCを計算するためには、正しくない電流値を用いないことが望ましい。電池管理装置3は、故障により正しくない電流値が計測される場合に、短時間で故障の発生を判定して、正しくない電流値を用いたSOCの計算を素早く停止できる。このため、電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算をより正確に実行できる。
[0058]
 一般的に、蓄電素子のSOCと開回路電圧との間には相関関係があり、開回路電圧からSOCを推定することができる。しかし、鉄系リチウムイオン電池では、SOCの多くの値に対応する開回路電圧がほぼ一定となっており、開回路電圧からSOCを推定することが困難である。このため、鉄系リチウムイオン電池では、SOCを得るためには、電流値に基づいたSOCの計算を行う必要がある。電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算を正確に実行できるので、蓄電素子271が鉄系リチウムイオン電池のセルであっても、正確なSOCが得られる。
[0059]
 本実施形態においては、蓄電装置1は、エンジン10を始動させるために移動体100に備えられている。蓄電装置1は、エンジン10を始動させるために、大電流を供給可能である。移動体100は四輪自動車であり、四輪自動車のエンジン10を始動させるためには大電流が必要である。電池管理装置3で大電流を計測するためには、低抵抗のシャント抵抗器28を用いる必要がある。低抵抗のシャント抵抗器28大きく重いことがある。移動体100の移動に伴って、蓄電装置1に振動が加わり、重いシャント抵抗器28に振動が加わった場合は、シャント抵抗器28を固定している部分に加わる応力が大きくなり、シャント抵抗器28が電池管理装置3と非接続になることがある。電池管理装置3は、シャント抵抗器28が非接続になった場合に、シャント抵抗器28の非接続を判定でき、蓄電装置1の故障を適切に診断できる。特に、四輪自動車に備えられる蓄電装置1について、電池管理装置3は、シャント抵抗器28の非接続を確実に判定し、適切に故障を診断できる。
[0060]
<実施形態2>
 図8は、実施形態2に係る蓄電装置1の電気的構成例を示すブロック図である。電流計測部34は、シャント抵抗器28の両端に接続される一対の信号線341,341を通じてシャント抵抗器28に接続されている。電流計測部34は、一対の信号線341,341の間の電圧をデジタル信号へ変換する差動AD変換部を含んでおり、シャント抵抗器28の両端の電圧の値を取得し、シャント抵抗器28に流れる電流の値を計算する。
[0061]
 電流計測部34の外部において、一対の信号線341,341には、一対の接続線374,374が接続されている。夫々の接続線374は、抵抗器371及び開閉スイッチ372を介して信号線341とアース373とを接続する。アース373は基準電位源に対応する。開閉スイッチ372が閉じた状態では、電流計測部34は、抵抗器371を介してアース373に接続される。開閉スイッチ372が開いた状態では、電流計測部34は、アース373に接続されない。開閉スイッチ372は、制御部31によって開閉を制御される。開閉スイッチ372は、開いた状態が常態となっている。抵抗器371は、抵抗器371による電圧降下がシャント抵抗器28による電圧降下に比べて無視できるほど小さくなるように、シャント抵抗器28よりも高抵抗である。電池管理装置3のその他の部分の構成は、実施形態1と同様である。また、蓄電装置1及び移動体100の電池管理装置3以外の部分の構成は、実施形態1と同様である。
[0062]
 実施形態2においても、電池管理装置3は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定する処理を行う。電池管理装置3は、図5のフローチャートに示した処理と同様の処理により、故障の有無を判定する。開閉スイッチ372が開いた状態で、電流計測部34は、電流を計測する(S11)。制御部31は、次に、開閉スイッチ372を閉じた状態にする(S12)。開閉スイッチ372が閉じた状態で、電流計測部34は、電流を計測する(S13)。制御部31は、開閉スイッチ372が開いた状態で電流計測部34が計測した電流値と、開閉スイッチ372が閉じた状態で電流計測部34が計測した電流値とを比較し、開閉スイッチ372の開閉に応じて電流値が変化したか否かを判定する(S14)。
[0063]
 シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生していない状態では、開閉スイッチ372が閉じた場合、抵抗器371は高抵抗であるので、信号線341は、アース373の影響をほとんど受けない。電流計測部34が計測する電流値は、開閉スイッチ372が開いている場合と閉じた場合とでほぼ同一である。故障が発生した状態では、開閉スイッチ372が閉じた場合、信号線341は、接続線374を通じてアース373に接続され、電流計測部34は、ほぼゼロの電流値を計測する。電流計測部34が計測する電流値は、開閉スイッチ372が開いている場合と閉じた場合とで大きく変化する。
[0064]
 電流値が変化した場合(S14:YES)、制御部31は、故障が発生したと判定する(S15)。S15が終了した後、又は電流値の変化が無い場合(S14:NO)、制御部31は、開閉スイッチ372を開いた状態にし(S16)、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。電池管理装置3は、S11~S16の処理を定期的に実行する。S12、S14~S16の処理は、コンピュータプログラム321に従って制御部31が実行する。このとき、制御部31は、第1開閉部に対応する。S11及びS13の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。
[0065]
 代替的に、電池管理装置3は、図7のフローチャートに示した処理と同様の処理により、故障の有無を判定してもよい。開閉スイッチ372が開いた状態で、電流計測部34は、電流を計測する(S21)。制御部31は、電流値が通常よりも高い値である所定範囲に含まれるか否かを判定する(S22)。電流値が所定範囲に含まれない場合(S22:NO)、制御部31は、故障の有無を判定する処理を終了する。
[0066]
 電流値が所定範囲に含まれている場合(S22:YES)、制御部31は、開閉スイッチ372を閉じた状態にする(S23)。開閉スイッチ372が閉じた状態で、電流計測部34は、電流を計測する(S24)。制御部31は、開閉スイッチ372の開閉に応じて電流値が変化したか否かを判定する(S25)。電流値が変化した場合(S25:YES)、制御部31は、故障が発生したと判定する(S26)。S26が終了した後、又は電流値の変化が無い場合(S25:NO)、制御部31は、開閉スイッチ372を開いた状態にし(S27)、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。
[0067]
 電池管理装置3は、S21~S27の処理を定期的に実行する。S22、S23、S25~S27の処理は、コンピュータプログラム321に従って制御部31が実行する。S21及びS24の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。電池管理装置3がS21~S27の処理を実行するとき、制御部31は、第2開閉部に対応する。
[0068]
 本実施形態においても、電池管理装置3は、開閉スイッチ372が開閉したときの電流の変化に基づいて、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定できる。即ち、電池管理装置3は、電流計測が正常に行われなくなる原因となる故障の有無を容易にかつ短時間で判定できる。電池管理装置3は、従来の電池管理装置に比べて、接続線374、抵抗器371及び開閉スイッチ372が追加されている。追加された部品は少なく、従来の電池管理装置に比べたコストの上昇は小さい。
[0069]
 実施形態1及び2においては、基準電位源がアースである例を示した。代替的に、基準電位源はアース以外であってもよい。実施形態1及び2においては、電流遮断部4が電池管理装置3の外部に存在する形態を示した。代替的に、電池管理装置3は、電流遮断部4を内部に備えていてもよい。実施形態1及び2においては、シャント抵抗器28が電池管理装置3の外部に存在する形態を示した。代替的に、電池管理装置3は、シャント抵抗器28を内部に備えていてもよい。実施形態1及び2においては、移動体100が四輪自動車であり、蓄電装置1がエンジン10を始動させるために使用される例を示した。代替的に、蓄電装置1は、移動体100内の種々の機器を駆動させるための電力を供給する等、エンジン10の始動以外の用途に用いられてもよい。蓄電装置1は、四輪自動車以外の移動体に備えられてもよい。蓄電装置1は、移動体以外の用途に用いられてもよい。
[0070]
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。

符号の説明

[0071]
1 蓄電装置
10 エンジン
100 移動体
221 外部端子
25 制御基板
27 電池部
271 蓄電素子
28 シャント抵抗器
3 電池管理装置
31 制御部
32 メモリ
321 コンピュータプログラム
34 電流計測部
341 信号線
342、343 差動AD変換部
344、371 抵抗器
345、372 開閉スイッチ
346、373 アース
347、374 接続線
35 電位差検出部
4 電流遮断部

請求の範囲

[請求項1]
 シャント抵抗器が接続された蓄電素子を管理する電池管理装置であって、
 前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
 開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、
 前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部と
 を備える電池管理装置。
[請求項2]
 前記開閉スイッチを定期的に開閉させる第1開閉部を更に備える
 請求項1に記載の電池管理装置。
[請求項3]
 前記電流計測部が計測する電流の値が所定範囲に含まれる場合に、前記開閉スイッチを開閉させる第2開閉部を更に備える、
 請求項1に記載の電池管理装置。
[請求項4]
 前記基準電位源は、アースであり、
 前記電流計測部は、前記一対の信号線の間の電圧を測定し、前記電圧に基づいて電流を計測し、
 前記シャント抵抗器よりも高抵抗の抵抗器を介して一対の前記接続線が前記一対の信号線に接続されており、
 前記判定部は、前記開閉スイッチが開いた状態で前記電流計測部が計測する電流に比べて、前記開閉スイッチが閉じた状態で前記電流計測部が計測する電流がゼロへ近づく場合に、前記故障が発生したと判定する、
 請求項1乃至3のいずれか一つに記載の電池管理装置。
[請求項5]
 前記シャント抵抗器に流れる過電流を検出する過電流検出部と、
 前記過電流が検出された場合に、前記シャント抵抗器に流れる電流を遮断するための処理を行う遮断処理部とを更に備え、
 前記判定部は、前記遮断処理部が前記処理を行う前に、前記故障の有無を判定する、
 請求項1乃至4のいずれか一つに記載の電池管理装置。
[請求項6]
 蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備え、
 前記電池管理装置は、
 前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
 開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、
 前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する、
 蓄電装置。
[請求項7]
 前記蓄電素子は、リン酸鉄リチウムを電極に含んだリチウムイオン電池である、
 請求項6に記載の蓄電装置。
[請求項8]
 前記蓄電素子は、移動体のエンジンを始動させるための電流を供給する、
 請求項6又は7に記載の蓄電装置。
[請求項9]
 前記移動体は四輪自動車である、
 請求項8に記載の蓄電装置。
[請求項10]
 シャント抵抗器が接続された蓄電素子を管理する電池管理方法であって、
 前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
 開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、
 前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する、
 電池管理方法。
[請求項11]
 蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いて、コンピュータに、前記蓄電素子を管理するための処理を実行させるコンピュータプログラムであって、
 前記コンピュータに、
 前記開閉スイッチを開閉させるステップと、
 前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップと
 を含む処理を実行させるコンピュータプログラム。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]