Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020117006 - SYSTÈME DE RECONNAISSANCE FACIALE BASÉE SUR L'AI

Document

명세서

발명의 명칭

기술분야

1  

배경기술

2   3   4   5   6   7   8   9   10  

발명의 상세한 설명

기술적 과제

11   12   13   14   15   16   17   18   19   20   21   22  

과제 해결 수단

23  

발명의 효과

24   25   26   27   28   29   30   31   32   33   34   35   36  

도면의 간단한 설명

37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  

발명의 실시를 위한 형태

68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436  

청구범위

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25  

도면

1   2   3a   3b   3c   4a   4b   4c   4d   5   6   7   8   9   10   11   12   13   14   15   16   17a   17b   18   19a   19b   20   21   22   23   24   25   26a   26b   26c   26d   27   28a   28b  

명세서

발명의 명칭 : AI 기반의 안면인식시스템

기술분야

[1]
본 발명은 얼굴인식기술에 관한 것이다.

배경기술

[2]
얼굴인식(Face Recognition) 기술이란 생체인식(Biometrics) 분야 중의 하나로써 사람마다 얼굴에 담겨있는 고유한 특징 정보를 이용하여 기계가 자동으로 사람을 식별하고 인증하는 기술을 의미하는 것으로서, 비밀번호 등에 의한 기존의 인증방식에 비해 보안성이 뛰어나 최근 다양한 분야에서 널리 이용되고 있다.
[3]
일반적인 안면인식시스템은 출입게이트 등에 설치된 디바이스에서 촬영된 얼굴이미지를 서버로 전송하고, 서버가 얼굴인식 및 얼굴인식에 따른 사용자 인증을 수행하고 인증결과를 디바이스로 전송함으로써 출입게이트의 개방여부를 결정한다.
[4]
상술한 바와 같은 일반적인 안면인식시스템의 경우, 얼굴인식기능은 물론 얼굴인식 결과에 따른 인증기능까지 모두 서버에서 구현되기 때문에, 출입하는 사용자의 인원이 많은 곳에 안면인식시스템을 적용하고자 하는 경우 고성능 및 고가의 서버가 요구되어 안면인식시스템의 구축비용이 증가하게 된다는 문제점이 있다.
[5]
또한, 일반적인 안면인식시스템의 경우 얼굴인식기능이 서버에 집중되어 있기 때문에 서버 또는 네트워크에 장애가 발생하게 되면 얼굴인식 서비스 제공 자체가 불가능해진다는 문제점이 있다.
[6]
또한, 일반적인 안면인식시스템의 경우 디바이스에서 촬영된 얼굴이미지가 네트워크를 통해 서버로 전송되어야 하기 때문에 해킹등을 통해 얼굴이미지가 외부로 유출될 수 있어 개인정보 보안에 취약하다는 문제점이 있다.
[7]
또한, 일반적인 안면인식시스템의 경우 동일인임에도 불구하고 다른 환경에서 얼굴이 촬영되거나 다른 조도에서 얼굴이 촬영되는 경우 동일인임을 구별해 내지 못한다는 문제점이 있다.
[8]
또한, 일반적인 안면인식시스템은 시스템에 등록된 사용자의 얼굴이 포함된 사진으로 인증을 수행하는 경우, 이를 식별할 수 없어 부정한 사용자에 대해 승인할 수 있다는 문제점이 있다.
[9]
또한, 일반적인 안면인식시스템은 사용자에 대해 인증을 수행할 때, 디바이스에서 촬영된 사용자의 이미지를 미리 등록된 사용자의 기준이미지와 비교하는데, 해당 이미지 간에 유사도를 산출하고, 유사도를 미리 설정된 기준임계치와 비교하여 해당 사용자를 승인 또는 거절시킨다. 이때, 일반적인 안면인식시스템은 기준임계치를 임의의 값으로 설정하기 때문에 해당 사용자를 등록사용자이나 미등록사용자로 판단하여 거절시키게 되거나, 미등록사용자이나 등록사용자로 판단하여 승인시킬 수 있다는 문제점이 있다.
[10]
또한, 일반적인 안면인식시스템은 미리 등록된 기준 이미지가 등록을 위해 촬영된 것이기 때문에, 인증을 수행하는 디바이스가 위치하는 장소, 해당 디바이스의 카메라 정보, 시간의 변화 등에 따라 등록사용자일지라도, 디바이스에서 촬영된 사용자 이미지와 다른 것으로 판단될 수 있다는 문제가 있다.

발명의 상세한 설명

기술적 과제

[11]
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 안면인식서버에서 생성된 얼굴인식모델을 각 에지 디바이스에 배포함으로써 얼굴인식 및 인증처리를 에지 디바이스에 수행할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 그 기술적 과제로 한다.
[12]
또한, 본 발명은 사용자 단말기에 설치된 얼굴등록 에이전트를 이용하여 사용자의 얼굴을 촬영한 사용자이미지를 등록할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 다른 기술적 과제로 한다.
[13]
또한, 본 발명은 얼굴이미지의 랜드마크 좌표를 이용하여 기준 랜드마크를 기준으로 얼굴이미지를 정렬할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 다른 기술적 과제로 한다.
[14]
또한, 본 발명은 장소나 조명에 종속되지 않고 정확한 얼굴인식이 가능한 AI 기반의 안면인식시스템을 제공하는 것을 다른 기술적 과제로 한다.
[15]
또한, 본 발명은 입력되는 얼굴이미지에서 얼굴의 특징을 인식 가능하게 하는 특징벡터를 추출할 수 있는 특징벡터추출 알고리즘을 적용하여 얼굴인식 정확도를 높일 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 다른 기술적 과제로 한다.
[16]
또한, 본 발명은 얼굴인식시 발생되는 오차가 감소될 수 있도록 얼굴인식모델을 트레이닝시킴으로써 장소나 조명에 종속되지 않고 정확하게 얼굴을 인식할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 또 다른 기술적 과제로 한다.
[17]
또한, 본 발명은 안면인식서버에서 안면인식서버에서 각 사용자의 얼굴이미지로부터 획득된 복수개의 특징벡터들과 각 사용자의 키(Key)값으로 구성된 어레이파일을 암호화하여 에지 디바이스로 배포할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 또 다른 기술적 과제로 한다.
[18]
또한, 본 발명은 사용자의 얼굴이미지 및 개인정보의 저장 없이 얼굴인식 및 인증처리를 수행할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 다른 기술적 과제로 한다.
[19]
또한, 본 발명은 신규 사용자의의 얼굴 이미지에 대응되는 어레이 파일을 용이하게 업데이트할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 또 다른 기술적 과제로 한다.
[20]
또한, 본 발명은 2차원의 얼굴이미지로 사람을 촬영한 실물이미지인지 여부를 판단할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 그 기술적 특징으로 한다.
[21]
또한, 본 발명은 미등록사용자를 등록사용자로 잘못 승인한 인증결과를 기초로 기준임계치를 변경할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 그 기술적 과제로 한다.
[22]
또한, 본 발명은 안면인식을 수행하기 위해 미리 등록된 기준 이미지를 시공간 환경 변화에 따라 변경할 수 있는 AI 기반의 안면인식시스템을 제공하는 것을 그 기술적 과제로 한다.

과제 해결 수단

[23]
상술한 목적을 달성하기 위해서 본 발명의 일 측면에 따른 AI 기반의 안면인식시스템은, 등록요청된 사용자의 입력 이미지를 얼굴인식모델에 입력함으로써 얼굴이미지를 추출하고, 상기 추출된 얼굴이미지로부터 복수개의 특징벡터를 생성하는 얼굴인식부 및 각 사용자 별로 상기 복수개의 특징벡터와 사용자의 식별정보로 구성된 어레이를 생성하고, 생성된 어레이들을 머지하여 어레이 파일을 생성하는 어레이 파일 생성부를 포함하는 안면인식서버를 포함하고, 상기 얼굴인식모델은, 상기 입력 이미지로부터 상기 얼굴이미지를 추출하는 얼굴이미지 추출부; 및 상기 얼굴이미지가 사람을 촬영한 실물이미지인 경우, 상기 얼굴이미지에 포함된 얼굴로부터 특징벡터를 추출하는 특징벡터 추출부를 포함하는 것을 특징으로 한다.

발명의 효과

[24]
본 발명에 따르면, 안면인식서버에서 생성된 얼굴인식모델을 각 에지 디바이스에 배포됨으로써 얼굴인식 및 인증처리가 에지 디바이스에 수행되기 때문에 출입하는 사용자의 인원이 많은 곳에 안면인식시스템이 적용되더라도 고성능 및 고가의 서버가 요구되지 않아 안면인식시스템의 구축비용을 감소시킬 수 있다는 효과가 있다.
[25]
또한, 본 발명에 따르면 각 에지 디바이스에 배포됨으로써 얼굴인식 및 인증처리가 에지 디바이스에 수행되기 때문에 서버 또는 네트워크에 장애가 발생하더라도 얼굴인식 서비스를 지속적으로 제공할 수 있어 서비스 제공 신뢰도를 향상시킬 수 있고, 디바이스에서 촬영된 얼굴이미지가 서버로 전송되지 않기 때문에 얼굴이미지가 외부로 유출될 가능성이 사전에 차단되어 개인정보 보안을 향상시킬 수 있다는 효과가 있다.
[26]
또한, 본 발명은 사용자 단말기에 설치된 얼굴등록 에이전트를 이용하여 사용자의 얼굴을 촬영한 사용자이미지를 등록할 수 있기 때문에, 간편하게 사용자이미지를 등록할 수 있다는 효과가 있다.
[27]
또한, 본 발명은 얼굴이미지의 랜드마크 좌표를 이용하여 기준 랜드마크 좌표를 기준으로 얼굴이미지를 정렬할 수 있기 때문에 얼굴이미지의 각도의 제약없이 얼굴이미지의 일관성을 부여할 수 있어 정확한 얼굴인식을 할 수 있다는 효과가 있다.
[28]
또한, 본 발명은 안면인식서버에서 각 사용자의 얼굴이미지로부터 획득된 복수개의 특징벡터들과 각 사용자의 키(Key)값으로 구성된 어레이파일을 암호화하여 에지 디바이스로 배포함으로써 보안을 강화할 수 있을 뿐만 아니라, 개인정보를 보호할 수 있다는 효과가 있다.
[29]
또한, 본 발명에 따르면, 심층신경망 기반으로 특징벡터 추출장치를 구현함으로써 얼굴의 특징을 나타내는 특징벡터를 정확하게 추출할 수 있어 장소나 조명에 종속되지 않고 정확한 얼굴인식이 가능해진다는 효과가 있다.
[30]
또한, 본 발명에 따르면 입력되는 얼굴이미지에서 얼굴의 특징을 인식 가능하게 하는 특징벡터를 추출할 수 있는 특징추출 알고리즘을 적용하여 256개 이상의 특징벡터를 추출할 수 있어 얼굴인식 정확도를 높일 수 있다는 효과가 있다.
[31]
또한, 본 발명에 따르면 특징벡터 추출장치를 구성하는 심층신경망의 트레이닝을 서로 다른 클래스에 속하는 얼굴이미지들의 분류시 발생되는 오차를 감소시킬 수 있어 얼굴인식 정확도를 극대화시킬 수 있다는 효과가 있다.
[32]
또한, 본 발명에 따르면 에지 디바이스에는 얼굴인식을 위한 얼굴인식모델 및 어레이 파일만 저장될 뿐 사용자의 얼굴이미지나 개인정보가 저장되지 않기 때문에 에지 디바이스가 해킹되더라도 사용자의 개인정보가 유출될 염려가 없어 보안이 강화된다는 효과가 있다.
[33]
또한, 본 발명은 신규 사용자의 추가시 하드웨어 변경이나 얼굴인식모델의 변경 없이 해당 신규 사용자의 얼굴 이미지에 대응되는 어레이 파일만을 에지 디바이스에 업데이트하면 되므로 신규 사용자의 추가가 용이해진다는 효과가 있다.
[34]
또한, 본 발명에 따르면, 2차원의 얼굴이미지로 실물이미지인지 여부를 판단할 수 있기 때문에, 시스템에 등록된 사용자의 얼굴이 포함된 사진으로 인증을 수행하는 것을 방지할 수 있어 보안 신뢰도가 향상된다는 효과가 있다.
[35]
또한, 본 발명에 따르면, 미등록사용자를 등록사용자로 잘못 승인한 인증결과를 기초로 기준임계치를 변경할 수 있기 때문에, 최적화된 기준임계치로 설정할 수 있을 뿐만 아니라, 보안신뢰도 또한 향상된다는 효과가 있다.
[36]
또한, 본 발명에 따르면, 안면인식을 수행하기 위해 미리 등록된 기준 이미지를 시공간 환경 변화에 따라 변경할 수 있기 때문에, 시간의 변화에 따른 사용자의 노화나, 장소의 특성에 따른 사용자의 촬영이미지의 해상도 등에 제한없이 사용자에 대한 인증을 수행할 수 있어 인증 정확도가 향상된다는 효과가 있다.

도면의 간단한 설명

[37]
도 1은 본 발명의 일 실시예에 따른 AI 기반의 안면인식시스템의 구성을 개략적으로 보여주는 블록도이다.
[38]
도 2는 본 발명의 일 실시예에 따른 안면인식서버의 구성을 개략적으로 보여주는 블록도이다.
[39]
도 3a는 사용자 이미지를 다운샘플링하여 해상도가 다른 복수개의 사용자 이미지를 획득하는 방법을 예시적으로 보여주는 도면이다.
[40]
도 3b는 얼굴이미지에서 랜드마크 좌표를 예시적으로 보여주는 도면이다.
[41]
도 4a 내지 도 4d는 얼굴인식모델을 구성하는 얼굴이미지 추출부의 구성을 보여주는 블록도이다.
[42]
도 5는 본 발명의 일 실시예에 따른 실물이미지 판단부의 구성을 보여주는 도면이다.
[43]
도 6은 본 발명에 따른 실물 특징벡터 추출부(310)의 구성을 보여주는 도면이다.
[44]
도 7은 본 발명의 일 실시예에 따른 RGB 특징벡터 추출부가 제1 내지 제4 신경망 네트워크를 이용하여 제1 내지 제4 서브 RGB 특징벡터를 추출하고, 이로부터 RGB 특징벡터를 생성하는 것을 보여주는 도면이다.
[45]
도 8은 본 발명의 일 실시예에 따른 깊이 특징벡터 추출부 및 반사 특징벡터 추출부가 깊이 특징벡터 및 반사 특징벡터를 추출하는 것을 보여주는 도면이다.
[46]
도 9는 본 발명의 일 실시예에 따른 특징벡터 융합부의 구성을 보여주는 도면이다.
[47]
도 10은 실물이미지와 페이크이미지의 일예를 나타내는 도면이다.
[48]
도 11은 실물이미지로부터 추출된 제1 깊이 이미지 및 페이크 이미지로부터 추출된 제2 깊이 이미지의 일 예를 나타내는 도면이다.
[49]
도 12는 실물이미지로부터 추출된 제1 반사 이미지 및 페이크 이미지로부터 추출된 제2 반사 이미지의 일예를 나타내는 도면이다.
[50]
도 13은 본 발명에 따른 특징벡터 추출부의 구성을 개략적으로 보여주는 블록도이다.
[51]
도 14는 얼굴이미지 처리부에 포함된 제1 유닛의 구성을 보여주는 블록도이다.
[52]
도 15는 얼굴이미지 처리부에 포함된 제2 유닛의 구성을 보여주는 블록도이다.
[53]
도 16은 본 발명의 일 실시예에 따른 에지 디바이스 관리부(210)의 구성을 보여주는 도면이다.
[54]
도 17a는 제1 장소에서 촬영된 타겟사용자의 촬영이미지를 나타내는 도면이다.
[55]
도 17b는 제2 장소에서 촬영된 타겟사용자의 촬영이미지를 나타내는 도면이다.
[56]
도 18은 하루 단위 시간구간(T1)과 주, 월, 분기, 또는 연 단위 시간구간(T2)에 따라 최적 기준이미지를 변경하는 것을 나타내는 도면이다.
[57]
도 19a는 기준이미지 변경부가 장소 별로 기준이미지를 최적 기준이미지로 변경하는 일예를 보여주는 도면이다.
[58]
도 19b는 기준이미지 변경부가 장소 및 출입시간 별로 기준이미지를 최적 기준이미지로 변경하는 일예를 보여주는 도면이다.
[59]
도 20은 일반적인 얼굴인식모델이 동일인을 인식하지 못하는 예를 보여주는 도면이다.
[60]
도 21은 학습이미지들간의 거리에 따라 학습이미지를 벡터공간에 배치할 때 중첩되는 영역이 발생되는 예를 보여주는 도면이다.
[61]
도 22는 학습이미지를 2차원 각도 평면 상에 배치한 예를 보여주는 도면이다.
[62]
도 23은 2차원 각도 평면 상에서 학습 이미지들간에 마진각도가 부여되어 학습 이미지들이 이격되는 것을 예시적으로 보여주는 도면이다.
[63]
도 24는 오차감소부에 의해 오차감소가 수행되었을 때 서로 다른 환경에서 촬영된 동일인 이미지가 정확하게 분류되는 예를 보여주는 도면이다.
[64]
도 25는 본 발명의 제1 실시예에 따른 에지 디바이스의 구성을 개략적으로 보여주는 블록도이다
[65]
도 26은 인증부가 타겟 사용자를 인증하는 방법을 예시적으로 보여주는 도면이다.
[66]
도 27은 본 발명의 제2 실시예에 따른 에지 디바이스의 구성을 개략적으로 보여주는 블록도이다.
[67]
도 28a 및 도 28b는 제2 촬영부에 의해 생성되는 뎁스 이미지의 일 예를 보여주는 도면이다.

발명의 실시를 위한 형태

[68]
본 명세서에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
[69]
단수의 표현은 문맥상 명백하게 다르게 정의하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다.
[70]
"포함하다" 또는 "가지다" 등의 용어는 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
[71]
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제 3항목 중에서 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미한다.
[72]
[73]
이하, 본 발명에 따른 AI 기반의 안면인식시스템의 구성을 도 1을 참조하여 보다 구체적으로 설명한다.
[74]
도 1은 본 발명의 일 실시예에 따른 AI 기반의 안면인식시스템의 구성을 개략적으로 보여주는 블록도이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 AI 기반의 안면인식시스템(1, 이하, '안면인식시스템'이라 함)은 안면인식서버(2) 및 복수개의 에지 디바이스(3)들을 포함한다.
[75]
안면인식서버(2)는 얼굴인식모델을 생성하고, 생성된 얼굴인식모델을 이용하여 사용자 단말기(4)로부터 입력되는 사용자의 얼굴정보로부터 추출된 특징벡터를 이용하여 타겟사용자의 인증을 위한 어레이 파일(Array File)을 생성한다. 안면인식서버(2)는 생성된 어레이 파일을 에지 디바이스(3)로 전송함으로써 에지 디바이스(3)가 타겟사용자를 인증할 수 있도록 한다.
[76]
이를 위해, 본 발명에 따른 안면인식서버(2)는 도 2에 도시된 바와 같이, 사용자 등록부(10), 입력 이미지 생성부(20), 얼굴인식부(30), 얼굴인식모델(40), 어레이 파일 생성부(45), 에지 디바이스 관리부(50), 출입권한정보 관리부(60), 인터페이스부(65) 및 얼굴인식모델 트레이닝부(70)를 포함한다.
[77]
사용자 등록부(10)는 등록을 희망하는 사용자의 사용자 단말기(4)로부터 하나 이상의 사용자 이미지를 수신한다. 사용자 등록부(10)는 사용자 이미지가 수신되면 해당 사용자가 사용자 이미지와 동일인인지 여부를 확인하고, 동일인인 것으로 판단되면 해당 사용자에게 부여되어 있는 출입권한정보를 획득하여 사용자 이미지와 함께 사용자 데이터베이스(12)에 등록한다. 이때, 사용자 이미지는 타겟 사용자의 촬영이미지와 비교되는 기준이미지를 의미한다.
[78]
일 실시예에 있어서, 사용자 등록부(10)는 사용자 단말기(4)로부터 해당 사용자의 식별정보를 사용자 이미지와 함께 수신할 수 있다. 예컨대, 사용자 등록부(10)는 사용자의 아이디, 성명, 전화번호, 또는 사용자의 직원번호 등과 같은 사용자의 식별정보를 해당 사용자 이미지와 함께 수신할 수 있다. 이러한 실시예에 따르는 경우 사용자 등록부(10)는 사용자의 식별정보 및 사용자의 출입권한정보를 해당 사용자 이미지와 함께 사용자 데이터베이스(12)에 등록할 수 있다.
[79]
한편, 사용자 등록부(10)는 사용자 단말기(4)로부터 복수개의 사용자 이미지를 입력 받는 경우 서로 다른 사용자 이미지가 입력 되도록 유도할 수 있다. 예컨대, 사용자 등록부(10)는 사용자가 사용자 단말기(4)를 통해 다른 환경에서 촬영된 사용자 이미지 또는 다른 조도에서 촬영된 사용자 이미지를 입력하도록 유도할 수 있다. 이와 같이, 사용자 등록부(10)가 한 명의 사용자로부터 서로 다른 환경 또는 서로 다른 조도에서 촬영된 복수개의 사용자 이미지를 수신함으로써 얼굴인식의 정확도를 향상시킬 수 있게 된다.
[80]
입력 이미지 생성부(20)는 사용자 등록부(10)에 의해 입력된 사용자 이미지로부터 얼굴인식에 이용될 입력 이미지를 생성한다. 구체적으로 입력 이미지 생성부(20)는 하나의 사용자 이미지를 미리 정해진 단계까지 다운샘플링하거나 업샘플링함으로써 하나의 사용자 이미지로부터 해상도가 서로 다른 복수개의 사용자 이미지들을 생성한다. 예컨대, 입력 이미지 생성부(20)는 도 3a에 도시된 바와 같이 하나의 사용자 이미지(21)를 다운샘플링함으로써 해상도가 서로 다른 복수개의 사용자 이미지(21a~21n)를 생성할 수 있다.
[81]
일 실시예에 있어서, 입력 이미지 생성부(20)는 사용자 이미지에 가우시안 피라미드(Gaussian Pyramid)를 적용함으로써 다운샘플링된 사용자 이미지를 생성하거나, 사용자 이미지에 라플라시안 피라미드(Laplacian Pyramid)를 적용함으로써 업샘플링된 사용자 이미지를 생성할 수 있다.
[82]
해상도가 서로 다른 복수개의 사용자 이미지가 생성되면, 입력 이미지 생성부(20)는 각각의 사용자 이미지에 대해, 도 3b에 도시된 바와 같이 사용자 이미지(21) 상에서 미리 정해진 픽셀크기의 윈도우(23)를 이동시켜가면서 획득되는 복수개의 이미지를 입력 이미지로 생성한다. 입력 이미지 생성부(20)는 생성된 복수개의 입력 이미지를 얼굴인식부(30)로 입력한다.
[83]
얼굴인식부(30)는 얼굴인식모델 트레이닝부(70)에 의해 트레이닝된 얼굴인식모델(40)에 입력 이미지 생성부(20)에 의해 생성된 복수개의 입력 이미지를 입력함으로써 얼굴영역이 포함된 얼굴이미지를 획득하고, 획득된 얼굴이미지가 사람을 촬영한 실물이미지인지 여부를 판단하고, 획득된 얼굴 이미지로부터 특징벡터를 추출한다.
[84]
일 실시예에 있어서 얼굴인식모델(40)은 입력 이미지로부터 얼굴이미지를 추출하는 얼굴이미지 추출부(75), 추출된 얼굴이미지로부터 실물이미지 여부를 판단하는 실물이미지 판단부(80) 및 얼굴이미지로부터 특징벡터를 추출하는 특징벡터 추출부(85)를 포함할 수 있다.
[85]
이하, 도 4 내지 도 15를 참조하여 얼굴인식부(30)가 얼굴인식모델(40)에 포함된 얼굴이미지 추출부(75), 실물이미지 판단부(80) 및 실물 특징벡터 추출부(85)를 이용하여 입력 이미지로부터 얼굴이미지와 특징벡터를 추출하는 내용에 대해 구체적으로 설명한다.
[86]
도 4a 내지 도 4d는 얼굴인식모델을 구성하는 얼굴이미지 추출부의 구성을 보여주는 블록도이다. 본 발명에 따른 얼굴이미지 추출부(75)는 컨벌루션 신경망(Convolutional Neural Network: CNN)을 기반으로 구성되어 입력 이미지로부터 얼굴영역이 포함된 얼굴이미지를 추출한다. 이러한 얼굴이미지 추출부(75)는 도 4a에 도시된 바와 같이, 제1 얼굴탐지부(90), 제2 얼굴탐지부(95), 제3 얼굴탐지부(100), 및 얼굴 이미지 정렬부(105)를 포함한다.
[87]
제1 얼굴탐지부(90)는 얼굴인식부(30)에 의해 입력되는 입력 이미지에 컨벌루션 연산을 적용함으로써 각 입력 이미지들의 피쳐를 추출하고, 추출된 피쳐를 기초로 해당 입력 이미지 상에서 얼굴영역을 1차적으로 추출한다.
[88]
이를 위해, 제1 얼굴탐지부(90)는 도 4b에 도시된 바와 같이 n개의 컨벌루션 연산부(110a~110c), 샘플링부(115), 제1 및 제2 차원감소부(120a, 120b), 및 제1 확률값 연산부(125)를 포함한다.
[89]
일 실시예에 있어서, 제1 얼굴탐지부(90)는 3개의 컨벌루션 연산부(110a~110c)를 포함할 수 있다. 도 4b에서는 설명의 편의를 위해 제1 얼굴탐지부(90)가 3개의 컨벌루션 연산부(110a~110c)를 포함하는 것으로 도시하였지만, 이는 하나의 예일 뿐 제1 얼굴탐지부(90)는 4개 이상의 컨벌루션 연산부를 포함하거나 1개 또는 2개의 컨벌루션 연산부를 포함할 수도 있을 것이다.
[90]
제1 내지 제3 컨벌루션 연산부(110a~110c) 각각은 입력되는 이미지에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제1 내지 제3 컨벌루션 연산부(110a~110c)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[91]
일 실시예에 있어서, 제1 내지 제3 컨벌루션 연산부(110a~110c)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 미리 정해진 크기만큼 감소된 값으로 출력하는 활성화함수일 수 있다. 여기서, 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[92]
샘플링부(115)는 제1 컨벌루션 연산부(110a)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 특징값을 추출한다. 일 실시예에 있어서, 샘플링부(115)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예에 따르는 경우 샘플링부(115)는 맥스 풀링(Max Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다. 샘플링부(115)는 차원이 감소된 피쳐맵을 제2 컨벌루션 연산부(110b)로 입력한다.
[93]
제1 차원감소부(120a)는 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵에 제1 차원감소 필터를 적용함으로써 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제1 차원감소 필터는 피쳐맵을 2차원으로 감소시킬 수 있는 필터로 설정될 수 있다.
[94]
제1 확률값 연산부(125)는 제1 차원감소부(120a)에 의해서 출력되는 2차원의 출력 데이터에 미리 정해진 분류함수를 적용함으로써 해당 입력 이미지에 얼굴영역이 포함되어 있는지 여부에 대한 제1 확률값을 계산한다. 일 실시예에 있어서, 제1 확률값 연산부(125)는 산출된 제1 확률값이 제1 문턱값 이상이면 입력 이미지에 얼굴영역이 포함되어 있는 것으로 판단할 수 있다.
[95]
제2 차원감소부(120b)는 제1 확률값 연산부(125)에 의해 산출된 제1 확률값이 제1 문턱값 이상인 경우 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵에 제2 차원감소 필터를 적용함으로써 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제2 차원감소 필터는 피쳐맵을 4차원으로 감소시킬 수 있는 필터로 설정될 수 있고, 제2 차원 감소부(120b)는 4차원으로 출력되는 4개의 값을 해당 입력 이미지 상에서의 얼굴영역 좌표로 결정한다. 이때, 얼굴영역의 좌표는 얼굴이 포함된 영역을 사각형 형태의 바운딩박스(Bounding Box)로 표시하였을 때 좌측 상단 꼭지점의 좌표와 우측 하단 꼭지점의 좌표로 정의되거나, 우측상단 꼭지점의 좌표와 좌측 하단 꼭지점의 좌표로 정의될 수 있다.
[96]
제2 얼굴탐지부(95)는 제1 얼굴탐지부(90)에 의해 얼굴영역이 포함된 것으로 판단된 입력 이미지들 및 해당 입력 이미지들 상에서의 얼굴영역의 좌표를 입력 받고, 해당 입력 이미지들 상에서 얼굴영역의 좌표에 해당하는 제1 서브 입력 이미지들에 컨벌루션 연산을 적용함으로써 제1 서브 입력 이미지들의 피쳐를 추출하고, 추출된 피쳐를 기초로 제1 서브 입력 이미지들 상에서 얼굴영역을 2차적으로 추출한다.
[97]
이를 위해, 도 4c에 도시된 바와 같이, 제2 얼굴탐지부(95)는 n개의 컨벌루션 연산부(130a~130c), 제2 내지 제3 샘플링부(135a, 135b), 제1 차원증가부(140), 제3 및 제4 차원감소부(145a, 145b), 및 제2 확률값 연산부(150)를 포함한다.
[98]
일 실시예에 있어서, 제2 얼굴탐지부(95)는 3개의 컨벌루션 연산부(130a~130c)를 포함할 수 있다. 도 4c에서는 설명의 편의를 위해 제2 얼굴탐지부(95)가 3개의 컨벌루션 연산부(130a~130c)를 포함하는 것으로 도시하였지만, 이는 하나의 예일 뿐 제2 얼굴탐지부(95)는 제1 얼굴탐지부(320)에 포함된 컨벌루션 연산부(110a~312c)의 개수 이상의 컨벌루션 연산부를 포함할 수 있다.
[99]
제4 내지 제6 컨벌루션 연산부(130a~312c) 각각은 입력되는 이미지에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 일 실시예에 있어서, 제4 내지 제6 컨벌루션 연산부(130a~312c)가 이용하는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 미리 정해진 크기만큼 감소된 값으로 출력하는 활성화함수일 수 있다.
[100]
제2 샘플링부(135a)는 제4 컨벌루션 연산부(130a)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 해당 피쳐맵에서 특징값을 추출하고, 제3 샘플링부(135b)는 제5 컨벌루션 연산부(130b)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 해당 피쳐맵에서 특징값을 추출한다. 일 실시예에 있어서, 제2 및 제3 샘플링부(135a, 135b)는 각각의 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예에 따르는 경우 제2 및 제3 샘플링부(135a, 135b)는 맥스풀링 레이어로 구현될 수 있고, 맥스풀링 레이어를 통해 각 피쳐맵의 차원이 감소된다.
[101]
제1 차원증가부(140)는 제6 컨벌루션 연산부(130c)에서 출력되는 피쳐맵이 미리 정해진 크기의 차원을 갖도록 복수개의 노드들을 이용하여 피쳐맵의 차원을 증가시킨다. 일 실시예에 있어서, 제1 차원증가부(140)는 제6 컨벌루션 연산부(130c)에서 출력되는 피쳐맵이 128*128의 크기를 갖거나 256*256의 크기를 갖도록 차원을 증가시킬 수 있다.
[102]
제1 차원 증가부(140)는 차원이 증가된 피쳐맵에 활성화함수를 적용함으로써 차원이 증가된 피쳐맵에 비선형적 특정을 반영한다. 일 실시예에 있어서, 제1 차원 증가부(140)는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 미리 정해진 크기만큼 감소된 값으로 출력하는 활성화함수를 적용하여 피쳐맵에 비선형적 특성을 반영할 수 있다.
[103]
제3 차원감소부(145a)는 제1 차원증가부(140)에서 출력되는 피쳐맵에 제3 차원감소 필터를 적용함으로써 제1 차원증가부(140)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제3 차원감소 필터는 피쳐맵을 2차원으로 감소시킬 수 있는 필터로 설정될 수 있다.
[104]
제2 확률값 연산부(329)는 제3 차원감소부(145a)에 의해서 출력되는 2차원의 출력 데이터에 미리 정해진 분류함수를 적용함으로써 해당 제1 서브 입력 이미지에 얼굴영역이 포함되어 있는지 여부에 대한 제2 확률값을 계산한다. 일 실시예에 있어서, 제2 확률값 연산부(150)는 산출된 제2 확률값이 제1 문턱값보다 큰 제2 문턱값 이상이면 해당 제1 서브 입력이미지에 얼굴영역이 포함된 것으로 판단할 수 있다.
[105]
제4 차원감소부(145b)는 제2 확률값 연산부(329)에 의해 산출된 제2 확률값이 제2 문턱값 이상인 경우 제1 차원증가부(140)에서 출력되는 피쳐맵에 제4 차원감소 필터를 적용함으로써 제1 차원증가부(140)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제4 차원감소 필터는 피쳐맵을 4차원으로 감소시킬 수 있는 필터로 설정될 수 있고, 제4 차원 감소부(145b)는 4차원으로 출력되는 4개의 값을 해당 제1 서브 입력 이미지 상에서의 얼굴영역 좌표로 결정한다. 이때, 얼굴영역의 좌표는 얼굴이 포함된 영역을 사각형 형태의 바운딩박스로 표시하였을 때 좌측 상단 꼭지점의 좌표와 우측 하단 꼭지점의 좌표로 정의되거나, 우측상단 꼭지점의 좌표와 좌측 하단 꼭지점의 좌표로 정의될 수 있다.
[106]
제3 얼굴탐지부(100)는 제2 얼굴탐지부(95)에 의해 얼굴영역이 포함된 것으로 판단된 제1 서브 입력 이미지들 및 해당 제1 서브 입력 이미지들 상에서의 얼굴영역의 좌표를 입력 받고, 해당 제1 서브 입력 이미지들 상에서 얼굴영역의 좌표에 해당하는 제2 서브 입력 이미지들에 컨벌루션 연산을 적용함으로써 제2 서브 입력 이미지들의 피쳐를 추출하고, 추출된 피쳐를 기초로 제2 서브 입력 이미지들 상에서 얼굴영역을 3차적으로 추출한다.
[107]
이를 위해, 제3 얼굴탐지부(100)는 도 4d에 도시된 바와 같이 n+1개의 컨벌루션 연산부(155a~155d), 제4 내지 제6 샘플링부(160a~160c), 제2 차원증가부(165), 제5 내지 제6 차원감소부(170a~170c), 및 제3 확률값 연산부(175)를 포함한다.
[108]
일 실시예에 있어서, 제3 얼굴탐지부(100)는 4개의 컨벌루션 연산부(155a~155d)를 포함할 수 있다. 도 4d에서는 설명의 편의를 위해 제3 얼굴탐지부(100)가 4개의 컨벌루션 연산부(155a~155d)를 포함하는 것으로 도시하였지만, 이는 하나의 예일 뿐 제3 얼굴탐지부(100)는 제2 얼굴탐지부(95)에 포함된 컨벌루션 연산부(130a~322c)의 개수 이상의 컨벌루션 연산부를 포함한다면 그 개수에는 제한이 없을 수 있다.
[109]
제7 내지 제10 컨벌루션 연산부(155a~155d) 각각은 입력되는 이미지에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 일 실시예에 있어서, 제7 내지 제10 컨벌루션 연산부(155a~155d)가 이용하는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 미리 정해진 크기만큼 감소된 값으로 출력하는 활성화함수일 수 있다.
[110]
제4 샘플링부(160a)는 제7 컨벌루션 연산부(155a)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 해당 피쳐맵에서 특징값을 추출하고, 제5 샘플링부(160b)는 제8 컨벌루션 연산부(155b)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 해당 피쳐맵에서 특징값을 추출하며, 제6 샘플링부(160c)는 제9 컨벌루션 연산부(155c)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 해당 피쳐맵에서 특징값을 추출한다. 일 실시예에 있어서, 제4 내지 제6 샘플링부(160a~160c)는 각각의 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예에 따르는 경우 제4 내지 제6 샘플링부(160a~160c)는 맥스풀링 레이어로 구현될 수 있고, 맥스풀링 레이어를 통해 각 피쳐맵의 차원이 감소된다.
[111]
제2 차원증가부(165)는 제10 컨벌루션 연산부(155d)에서 출력되는 피쳐맵이 미리 정해진 크기의 차원을 갖도록 복수개의 노드들을 이용하여 피쳐맵의 차원을 증가시킨다. 일 실시예에 있어서, 제2 차원증가부(165)는 제10 컨벌루션 연산부(155d)에서 출력되는 피쳐맵이 128*128의 크기를 갖거나 256*256의 크기를 갖도록 차원을 증가시킬 수 있다.
[112]
제2 차원 증가부(165)는 차원이 증가된 피쳐맵에 활성화함수를 적용함으로써 차원이 증가된 피쳐맵에 비선형적 특정을 반영한다. 일 실시예에 있어서, 제2 차원 증가부(165)는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 미리 정해진 크기만큼 감소된 값으로 출력하는 활성화함수를 적용하여 피쳐맵에 비선형적 특성을 반영할 수 있다.
[113]
제5 차원감소부(170a)는 제2 차원증가부(165)에서 출력되는 피쳐맵에 제5 차원감소 필터를 적용함으로써 제2 차원증가부(165)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제5 차원감소 필터는 피쳐맵을 2차원으로 감소시킬 수 있는 필터로 설정될 수 있다.
[114]
제3 확률값 연산부(175)는 제5 차원감소부(170a)에 의해서 출력되는 2차원의 출력 데이터에 미리 정해진 분류함수를 적용함으로써 해당 제2 서브 입력 이미지에 얼굴영역이 포함되어 있는지 여부에 대한 제3 확률값을 계산한다. 일 실시예에 있어서, 제3 확률값 연산부(175)는 산출된 제3 확률값이 제2 문턱값보다 큰 제3 문턱값 이상이면 해당 제2 서브 입력이미지에 얼굴영역이 포함된 것으로 판단한다.
[115]
제6 차원감소부(170b)는 제3 확률값 연산부(175)에 의해 산출된 제3 확률값이 제3 문턱값 이상인 경우 제2 차원증가부(165)에서 출력되는 피쳐맵에 제6 차원감소 필터를 적용함으로써 제2 차원증가부(165)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제6 차원감소 필터는 피쳐맵을 4차원으로 감소시킬 수 있는 필터로 설정될 수 있고, 제6 차원 감소부(170b)는 4차원으로 출력되는 4개의 값을 해당 제2 서브 입력 이미지 상에서의 얼굴영역 좌표로 결정한다. 이때, 얼굴영역의 좌표는 얼굴이 포함된 영역을 사각형 형태의 바운딩박스로 표시하였을 때 좌측 상단 꼭지점의 좌표와 우측 하단 꼭지점의 좌표로 정의되거나, 우측상단 꼭지점의 좌표와 좌측 하단 꼭지점의 좌표로 정의될 수 있다.
[116]
제6 차원감소부(170b)는 산출된 얼굴영역 좌표를 이용하여 얼굴영역이 포함된 것으로 판단된 제2 서브 입력 이미지 상에서 얼굴 이미지를 추출한다.
[117]
제7 차원감소부(170c)는 제3 확률값 연산부(175)에 의해 산출된 제3 확률값이 제3 문턱값 이상인 경우 제2 차원증가부(165)에서 출력되는 피쳐맵에 제7 차원감소 필터를 적용함으로써 제2 차원증가부(165)에서 출력되는 피쳐맵의 차원을 감소시킨다. 일 실시예에 있어서 제7 차원감소 필터는 피쳐맵을 10차원으로 감소시킬 수 있는 필터로 설정될 수 있고, 제7 차원 감소부(170c)는 10차원으로 출력되는 10개의 값을 해당 제2 서브 입력 이미지 상에서의 랜드마크 좌표로 결정한다. 이때, 랜드마크 좌표는 도 3c에 도시된 바와 같이 제2 서브 입력 이미지(171) 상에서의 2개의 눈의 좌표(172a, 172b), 코의 좌표(173), 2개의 입의 좌표(174a, 174b)를 의미하고, 2개의 입의 좌표(174a, 174b)는 입의 좌측 꼬리에 대한 좌표(174a) 및 입의 우측 꼬리에 대한 좌표(174b)를 의미한다.
[118]
이와 같이, 본 발명에 따르면 얼굴이미지 추출부(75)가 제1 내지 제3 얼굴탐지부(90~100)로 구현되고, 제1 얼굴탐지부(90)는 제2 얼굴탐지부(95)에 비해 얕은(Shallow) 뎁스의 네트워크로 구성되고, 제2 얼굴탐지부(95)는 제3 얼굴탐지부(100)에 비해 얕은 뎁스의 네트워크로 구성됨으로써 얼굴이미지 추출부(75)가 전체적으로 Shallow-to-Deep구조로 단계적인 형태로 형성되도록 한다. 이를 통해, 얼굴이미지 추출의 정확도를 향상시킴과 동시에 복잡도를 감소시킴으로써 얼굴인식 속도 측면에서 이득을 취할 수 있게 된다.
[119]
얼굴 이미지 정렬부(105)는 제3 얼굴탐지부(100)에서 출력된 랜드마크 좌표를 이용하여 얼굴이미지를 정렬한다. 구체적으로, 얼굴 이미지 정렬부(105)는 추출된 얼굴이미지에 대한 랜드마크 좌표를 이용하여 얼굴이미지에 대해 회전, 평행이동, 확대 및 축소 중 적어도 하나를 수행하여 얼굴이미지를 정렬한다.
[120]
본 발명에서 얼굴 이미지 정렬부(105)를 이용하여 얼굴이미지를 정렬하는 이유는 실물이미지 판단부(80) 및 특징벡터 추출부(85)에 입력으로 제공될 얼굴이미지에 일관성을 부여함으로써 얼굴인식 성능을 향상시키기 위함이다.
[121]
일 실시예에 있어서, 얼굴 이미지 정렬부(105)는 제3 얼굴탐지부(100)에 의해 추출된 얼굴이미지를 실물이미지 판단부(80) 및 특징벡터 추출부(85)에서 이용되는 얼굴이미지와 동일한 해상도로 리사이징(Resizing)하고, 특징벡터 추출부(85)에서 이용되는 해상도의 얼굴이미지에 대한 기준 랜드마크 좌표를 기준으로 제3 얼굴탐지부(100)에 의해 산출된 랜드마크 좌표를 이동시킴으로써 얼굴이미지를 회전, 평행이동, 확대 또는 축소시킬 수 있다.
[122]
실물이미지 판단부(80)는 얼굴이미지 추출부(75)로부터 추출된 얼굴이미지가 사람을 촬영한 실물이미지인지 여부를 판단한다. 구체적으로, 실물이미지 판단부(80)는 신경망 네트워크를 이용하여 타겟 사용자의 얼굴이미지로부터 얼굴이미지의 RGB를 표현하는 RGB 특징벡터, 얼굴이미지의 깊이를 표현하는 깊이 특징벡터, 얼굴이미지의 빛 반사를 표현하는 반사 특징벡터를 추출하고, 추출된 각 특징벡터로 얼굴이미지의 실물이미지 여부를 판단한다.
[123]
본 발명에 따른 실물이미지 판단부(80)가 얼굴이미지 추출부(75)에 의해 추출된 얼굴이미지로 실물이미지 여부를 판단하는 이유는, 주변환경에 대한 정보를 최소화함으로써 불필요한 정보로 인하여 발생하는 과적합(Overfitting) 및 일반화 성능 저하를 방지하기 위함이다.
[124]
이하, 도 5을 참조하여 실물이미지 판단부(80)에 대해 보다 구체적으로 설명한다.
[125]
도 5는 본 발명의 일 실시예에 따른 실물이미지 판단부(80)의 구성을 보여주는 도면이다.
[126]
본 발명에 따른 실물이미지 판단부(80)는 실물 특징벡터 추출부(200), 특징벡터 융합부(201), 및 판단부(202)를 포함한다.
[127]
실물 특징벡터 추출부(200)는 타겟 사용자의 얼굴이미지로부터 얼굴이미지의 실물이미지 여부를 판단하기 위해 신경망 네트워크를 이용하여 얼굴이미지의 깊이를 표현하는 깊이 특징벡터, 및 얼굴이미지의 빛 반사를 표현하는 반사 특징벡터 중 적어도 하나와 얼굴이미지의 RGB를 표현하는 RGB 특징벡터를 추출한다.
[128]
도 6은 본 발명에 따른 실물 특징벡터 추출부(200)의 구성을 보여주는 도면이다.
[129]
도 6에 도시된 바와 같이 실물 특징벡터 추출부(200)는 RGB 특징벡터 추출부(210), 깊이 특징벡터 추출부(215), 및 반사 특징벡터 추출부(220)를 포함한다.
[130]
RGB 특징벡터 추출부(210)는 RGB 신경망 네트워크를 이용하여 얼굴이미지로부터 RGB 특징벡터를 추출한다. 이때, RGB 신경망 네트워크는 사람을 촬영한 2차원 실물이미지와 사진을 촬영한 2차원 페이크 이미지로 학습된다.
[131]
이를 위해, RGB 특징벡터 추출부(210)는 제1 서브 RGB 특징벡터 추출부(225), 제2 서브 RGB 특징벡터 추출부(230), 제3 서브 RGB 특징벡터 추출부(235), 제4 서브 RGB 특징벡터 추출부(240), 및 RGB 특징벡터 생성부(245)를 포함한다. 여기서, RGB 특징벡터 추출부(210)가 4개의 서브 RGB 특징벡터 추출부(225-240)를 포함하는 것으로 설명하였으나, 이는 설명의 편의를 위한 것으로, RGB 특징벡터 추출부(210)는 3개 이하의 서브 RGB 특징벡터 추출부 또는 5개 이상의 서브 RGB 특징벡터 추출부를 포함할 수 있다.
[132]
제1 서브 RGB 특징벡터 추출부(225)는 제1 RGB 신경망 네트워크로 얼굴이미지의 피쳐맵을 생성하고, 피쳐맵을 기초로 얼굴이미지로부터 제1 서브 RGB 특징벡터를 추출한다. 제1 서브 RGB 특징벡터 추출부(225)는 추출된 제1 서브 RGB 특징벡터를 제2 서브 RGB 특징벡터 추출부(230)로 전달한다. 또한, 제1 서브 RGB 특징벡터 추출부(225)는 제1 서브 RGB 특징벡터를 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[133]
제2 서브 RGB 특징벡터 추출부(230)는 제2 서브 RGB 신경망 네트워크로 제1 서브 RGB 특징벡터 추출부(225)로부터 전달된 제1 서브 RGB 특징벡터의 피쳐맵을 생성하고, 피쳐맵을 기초로 제1 서브 RGB 특징벡터로부터 제2 서브 RGB 특징벡터를 추출한다. 제2 서브 RGB 특징벡터 추출부(230)는 추출된 제2 서브 RGB 특징벡터를 제3 서브 RGB 특징벡터 추출부(230)로 전달한다. 또한, 제2 서브 RGB 특징벡터 추출부(230)는 제2 서브 RGB 특징벡터를 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[134]
제3 서브 RGB 특징벡터 추출부(235)는 제3 서브 RGB 신경망 네트워크로 제2 서브 RGB 특징벡터 추출부(230)로부터 전달된 제2 RGB 서브 특징벡터의 피쳐맵을 생성하고, 피쳐맵을 기초로 제2 서브 RGB 특징벡터로부터 제3 서브 RGB 특징벡터를 추출한다. 제3 서브 RGB 특징벡터 추출부(235)는 추출된 제3 서브 RGB 특징벡터를 제4 서브 RGB 특징벡터 추출부(240)로 전달한다. 또한, 제3 서브 RGB 특징벡터 추출부(235)는 제3 서브 RGB 특징벡터를 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[135]
제4 서브 RGB 특징벡터 추출부(240)는 제4 서브 RGB 신경망 네트워크로 제3 서브 RGB 특징벡터 추출부(235)로부터 전달된 제3 서브 RGB 특징벡터의 피쳐맵을 생성하고, 피쳐맵을 기초로 제3 서브 RGB 특징벡터로부터 제4 서브 RGB 특징벡터를 추출한다. 제4 서브 RGB 특징벡터 추출부(240)는 추출된 제4 서브 RGB 특징벡터를 RGB 특징벡터 생성부(245)로 전달한다.
[136]
이와 같이 서브 RGB 특징벡터 추출부는 n개의 RGB 신경망 네트워크를 이용하여 n개의 서브 RGB 특징벡터를 추출한다. 서브 RGB 특징벡터 추출부는 RGB 신경망 네트워크 별로 얼굴이미지의 피쳐맵을 생성하고, 피쳐맵을 기초로 얼굴이미지로부터 n개의 서브 RGB 특징벡터를 추출한다.
[137]
본 발명에 따른 서브 RGB 특징벡터 추출부가 n개의 서브 RGB 특징벡터를 추출하는 이유는, 서로 다른 크기를 갖는 서브 RGB 특징벡터로 RGB 특징벡터, 깊이 특징벡터, 반사 특징벡터를 생성하는 것이 하나의 고정된 크기의 특징벡터로 생성하는 것보다 해당 특징벡터의 표현력 및 구분력(Discriminative Power)이 풍부해지기 때문이다.
[138]
RGB 특징벡터 생성부(245)는 제1 내지 제4 서브 RGB 특징벡터 추출부(240)에 의해 생성된 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 제3 서브 RGB 특징벡터, 및 제4 서브 RGB 특징벡터를 조합하여 RGB 특징벡터를 생성한다. 구체적으로, RGB 특징벡터 생성부(245)는 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 제3 서브 RGB 특징벡터, 및 제4 서브 RGB 특징벡터를 합산하여 RGB 특징벡터를 생성한다.
[139]
본 발명에 따른 RGB 특징벡터 생성부(245)가 제1 내지 제4 서브 RGB 특징벡터를 합산하여 RGB 특징벡터를 생성하는 이유는, 하나의 고정된 크기의 특징벡터로 얼굴이미지의 실물이미지 여부를 판단하는 것에 비해, 여러 크기의 특징벡터를 이용하여 얼굴이미지의 실물이미지 여부를 판단하는 것이 성능이 향상되기 때문이다.
[140]
이하, 본 발명에 따른 제1 내지 제4 서브 RGB 특징벡터 추출부(225, 230, 235, 240, 245) 및 RGB 특징벡터 생성부(245)가 제1 내지 제4 RGB 신경망 네트워크를 이용하여 제1 내지 제4 서브 RGB 특징벡터를 추출하고, 이로부터 RGB 특징벡터를 생성하는 것을 도 7을 참조하여 설명한다.
[141]
도 7은 본 발명의 일 실시예에 따른 RGB 특징벡터 추출부(210)가 제1 내지 제4 신경망 네트워크를 이용하여 제1 내지 제4 서브 RGB 특징벡터를 추출하고, 이로부터 RGB 특징벡터를 생성하는 것을 보여주는 도면이다.
[142]
본 발명에 따른 제1 서브 RGB 특징벡터 추출부(225)가 이용하는 제1 RGB 신경망 네트워크는 4개의 RGB 컨벌루션 연산부(250a 내지 250d)를 포함하고, 2개의 RGB 샘플링부(255a, 255b)를 포함할 수 있다.
[143]
제1 내지 제4 RGB 컨벌루션 연산부(250a 내지 250d) 각각은 입력되는 얼굴이미지에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제1 내지 제4 RGB 컨벌루션 연산부(250a 내지 250d)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[144]
일 실시예에 있어서, 제1 내지 제4 RGB 컨벌루션 연산부(250a 내지 250d)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제1 내지 제4 RGB 컨벌루션 연산부(250a 내지 250d)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[145]
일 실시예에 있어서, 제1 내지 제4 컨벌루션 연산부(250a 내지 250d)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[146]
제1 RGB 샘플링부(255a)는 제2 RGB 컨벌루션 연산부(250b)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 특징값을 추출한다. 일 실시예에 있어서, 제1 RGB 샘플링부(255a)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제1 RGB 샘플링부(255a)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다. 제1 RGB 샘플링부(255a)는 차원이 감소된 피쳐맵을 제3 RGB 컨벌루션 연산부(250c)로 입력한다.
[147]
제2 RGB 샘플링부(255b)는 제4 RGB 컨벌루션 연산부(250d)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 제1 서브 RGB 특징벡터(a-1)의 특징값을 추출한다. 이때 제1 서브 RGB 특징벡터(a-1)의 픽셀크기는 128*128일 수 있다. 일 실시예에 있어서, 제2 RGB 샘플링부(255b)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제2 RGB 샘플링부(255b)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[148]
제2 RGB 샘플링부(255b)는 추출된 제1 서브 RGB 특징벡터(a-1)의 피쳐맵을 제2 신경망 네트워크로 입력한다. 또한, 제2 RGB 샘플링부(255b)는 제1 서브 RGB 특징벡터(a-1)의 피쳐맵을 RGB 특징벡터 생성부(245)로 전달한다. 또한, 제2 RGB 샘플링부(255b)는 제1 서브 RGB 특징벡터(a-1)의 피쳐맵을 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[149]
일 실시예에 있어서, 제1 내지 제2 RGB 샘플링부(255a, 255b)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 각 RGB 컨벌루션 연산부(250b, 250d)로부터 출력되는 피쳐맵에 적용할 수 있다.
[150]
본 발명에 따른 제2 서브 RGB 특징벡터 추출부(230)가 이용하는 제2 RGB 신경망 네트워크는 3개의 RGB 컨벌루션 연산부(250e 내지 250g)를 포함하고, 1개의 RGB 샘플링부(255c)를 포함할 수 있다.
[151]
제5 내지 제7 RGB 컨벌루션 연산부(250e 내지 250g) 각각은 입력되는 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제5 내지 제7 RGB 컨벌루션 연산부(250e 내지 250g)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[152]
일 실시예에 있어서, 제5 내지 제7 RGB 컨벌루션 연산부(250e 내지 250g)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제5 내지 제7 RGB 컨벌루션 연산부(250a 내지 250d)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[153]
일 실시예에 있어서, 제5 내지 제7 컨벌루션 연산부(250e 내지 250g)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[154]
제3 RGB 샘플링부(255c)는 제7 RGB 컨벌루션 연산부(250g)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 제2 서브 RGB 특징벡터(a-2)의 특징값을 추출한다. 이때 제2 서브 RGB 특징벡터(a-2)의 픽셀크기는 64*64일 수 있다. 일 실시예에 있어서, 제3 RGB 샘플링부(255c)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제3 RGB 샘플링부(255c)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[155]
일 실시예에 있어서, 제3 RGB 샘플링부(255c)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 제7 RGB 컨벌루션 연산부(250g)로부터 출력되는 피쳐맵에 적용할 수 있다
[156]
제3 RGB 샘플링부(255c)는 추출된 제2 서브 RGB 특징벡터(a-2)의 피쳐맵을 제3 RGB 신경망 네트워크로 입력한다. 또한, 제3 RGB 샘플링부(255c)는 제2 서브 RGB 특징벡터(a-2)의 피쳐맵을 RGB 특징벡터 생성부(245)로 전달한다. 또한, 제3 RGB 샘플링부(255c)는 제2 서브 RGB 특징벡터(a-2)의 피쳐맵을 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[157]
본 발명에 따른 제3 서브 RGB 특징벡터 추출부(235)가 이용하는 제3 RGB 신경망 네트워크는 3개의 RGB 컨벌루션 연산부(250h 내지 250j)를 포함하고, 1개의 RGB 샘플링부(255d)를 포함할 수 있다.
[158]
제8 내지 제10 RGB 컨벌루션 연산부(250h 내지 250j) 각각은 입력되는 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제8 내지 제10 RGB 컨벌루션 연산부(250h 내지 250j)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[159]
일 실시예에 있어서, 제8 내지 제10 RGB 컨벌루션 연산부(250h 내지 250j)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제8 내지 제10 RGB 컨벌루션 연산부(250h 내지 250j)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[160]
일 실시예에 있어서, 제8 내지 제10 컨벌루션 연산부(250h 내지 250j)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[161]
제4 RGB 샘플링부(255d)는 제10 RGB 컨벌루션 연산부(250j)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 제3 서브 RGB 특징벡터(a-3)의 특징값을 추출한다. 이때 제3 서브 RGB 특징벡터(a-3)의 픽셀크기는 32*32일 수 있다. 일 실시예에 있어서, 제4 RGB 샘플링부(255d)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제4 RGB 샘플링부(255d)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[162]
일 실시예에 있어서, 제4 RGB 샘플링부(255d)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 제10 RGB 컨벌루션 연산부(250j)로부터 출력되는 피쳐맵에 적용할 수 있다
[163]
제4 RGB 샘플링부(255d)는 추출된 제3 서브 RGB 특징벡터(a-3)의 피쳐맵을 제4 RGB 신경망 네트워크로 입력한다. 또한, 제4 RGB 샘플링부(255d)는 제3 서브 RGB 특징벡터(a-3)의 피쳐맵을 RGB 특징벡터 생성부(245)로 전달한다. 또한, 제4 RGB 샘플링부(255d)는 제3 서브 RGB 특징벡터(a-3)의 피쳐맵을 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)로 전달한다.
[164]
본 발명에 따른 제4 서브 RGB 특징벡터 추출부(240)가 이용하는 제4 RGB 신경망 네트워크는 3개의 RGB 컨벌루션 연산부(250k 내지 250m)를 포함하고, 1개의 RGB 샘플링부(255e)를 포함할 수 있다.
[165]
제11 내지 제13 RGB 컨벌루션 연산부(250k 내지 250m) 각각은 입력되는 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제11 내지 제13 RGB 컨벌루션 연산부(250k 내지 250m)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[166]
일 실시예에 있어서, 제11 내지 제13 RGB 컨벌루션 연산부(250k 내지 250m)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제11 내지 제13 RGB 컨벌루션 연산부(250k 내지 250m)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 얼굴이미지에 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[167]
일 실시예에 있어서, 제11 내지 제13 컨벌루션 연산부(250k 내지 250m)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[168]
제5 RGB 샘플링부(255e)는 제13 RGB 컨벌루션 연산부(250m)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 제4 서브 RGB 특징벡터(a-4)의 특징값을 추출한다. 이때 제4 서브 RGB 특징벡터(a-4)의 픽셀크기는 16*16일 수 있다. 일 실시예에 있어서, 제5 RGB 샘플링부(255e)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제5 RGB 샘플링부(255e)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[169]
일 실시예에 있어서, 제5 RGB 샘플링부(255e)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 제13 RGB 컨벌루션 연산부(250j)로부터 출력되는 피쳐맵에 적용할 수 있다
[170]
제5 RGB 샘플링부(255e)는 추출된 제4 서브 RGB 특징벡터(a-4)의 피쳐맵을 RGB 특징벡터 생성부(245)로 입력한다.
[171]
RGB 특징벡터 생성부(245)는 제2 RGB 샘플링부(255b)로부터 입력되는 제1 서브 RGB 특징벡터(a-1)의 피쳐맵, 제3 RGB 샘플링부(255c)로부터 입력되는 제2 서브 RGB 특징벡터(a-2)의 피쳐맵, 제4 RGB 샘플링부(255d)로부터 입력되는 제3 서브 RGB 특징벡터(a-3)의 피쳐맵, 및 제5 RGB 샘플링부(255e)로부터 입력되는 제4 서브 RGB 특징벡터(a-4)의 피쳐맵을 크기 조정을 하고, 이를 합산하여 RGB 특징벡터(a)를 생성한다. 이때, 크기 조정을 위해 RGB 특징벡터 생성부(245)는 패딩(Padding)을 수행할 수 있다.
[172]
RGB 특징벡터 생성부(245)는 생성된 RGB 특징벡터(a)를 특징벡터 융합부(205)로 전달한다.
[173]
다시 도 6을 참조하면, 깊이 특징벡터 추출부(215)는 RGB 특징벡터 추출부(210)로부터 입력되는 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 및 제3 서브 RGB 특징벡터를 기초로 깊이 특징벡터(b)를 생성한다.
[174]
타인의 얼굴이 포함된 사진이 촬영된 페이크이미지에는 깊이값이 존재할 수 없다. 따라서, 본 발명은 깊이 특징벡터 추출부(215)에서 추출되는 깊이 특징벡터를 기초로 실물이미지 판단을 정확하게 할 수 있다.
[175]
깊이 특징벡터 추출부(215)는 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 및 제3 서브 RGB 특징벡터의 크기를 조정하고, 이를 합산하여 입력 특징벡터를 생성한다. 깊이 특징벡터 추출부(215)는 깊이 신경망 네트워크를 이용하여 생성된 입력 특징벡터의 피쳐맵을 생성하고 해당 피쳐맵을 기초로 깊이 특징벡터(b)를 추출한다. 이때, 깊이 특징벡터 추출부(215)는 크기를 조정하기 위해 패딩을 수행할 수 있다. 깊이 신경망 네트워크는 사람을 촬영한 실물이미지로부터 추출된 제1 깊이이미지와 사진을 촬영한 페이크이미지로부터 추출된 제2 깊이이미지로 학습된다.
[176]
이하, 본 발명에 따른 깊이 특징벡터 추출부(215)가 깊이 신경망 네트워크를 이용하여 깊이 특징벡터(b)를 추출하는 것에 대해 도 8을 참조하여 보다 구체적으로 설명한다.
[177]
도 8은 본 발명의 일 실시예에 따른 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)가 깊이 특징벡터 및 반사 특징벡터를 추출하는 것을 보여주는 도면이다.
[178]
도 8에 도시된 바와 같이 깊이 특징벡터 추출부(215)가 깊이 특징벡터를 추출하기 위해 이용하는 깊이 신경망 네트워크는 3개의 깊이 컨벌루션 연산부(260a 내지 260c) 및 1개의 깊이 샘플링부(265a)를 포함한다. 이때, 제4 깊이 컨벌루션 연산부(260d)는 학습을 위해 실물이미지 및 페이크이미지로부터 제1 깊이 이미지 및 제2 깊이이미지를 생성한다. 이에 따라 실물이미지 또는 페이크 이미지에 포함된 얼굴이미지에서 깊이 이미지가 분리될 수 있다. 이때, 깊이이미지는 명암으로 거리를 표현하는 이미지를 의미한다. 예컨대, 깊이이미지는 밝아질 수록 카메라로부터 가까운 거리를 의미하고, 어두워질수록 카메라로부터 먼 거리를 의미한다.
[179]
제1 내지 제3 깊이 컨벌루션 연산부(260a 내지 260c) 각각은 합산된 제1 내지 제3 서브 RGB 특징벡터(a-1, a-2, a-3)의 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제1 내지 제3 깊이 컨벌루션 연산부(260a 내지 260c)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[180]
제3 깊이 컨벌루션 연산부(260c)에서 출력되는 피쳐맵은 깊이 특징벡터(b)의 피쳐맵으로서 특징벡터 융합부(205)로 전달되게 되고, 또한 제4 깊이 컨벌루션 연산부(260d)로 전달될 수 있다. 이때 깊이 특징벡터(b)의 픽셀크기는 32*32일 수 있다. 제4 깊이 컨벌루션 연산부(260d)는 전달된 깊이 특징벡터(b)의 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 제4 깊이 컨벌루션 연산부(260d)는 실물이미지로부터 제1 깊이이미지를 출력하고, 페이크이미지로부터 제2 깊이이미지를 출력한다. 이는 깊이 신경망 네트워크의 학습에 이용되게 된다.
[181]
일 실시예에 있어서, 제1 내지 제3 깊이 컨벌루션 연산부(260a 내지 260c)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 제1 내지 제3 서브 RGB 특징벡터(a-1, a-2, a-3)의 피쳐맵에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제1 내지 제3 깊이 컨벌루션 연산부(260a 내지 260c)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[182]
일 실시예에 있어서, 제1 내지 제3 깊이 컨벌루션 연산부(260a 내지 260c)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[183]
제1 깊이 샘플링부(265a)는 제2 깊이 컨벌루션 연산부(260b)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 특징값을 추출한다. 일 실시예에 있어서, 제1 깊이 샘플링부(265a)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제1 깊이 샘플링부(265a)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[184]
일 실시예에 있어서, 제1 깊이 샘플링부(265a)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 제2 깊이 컨벌루션 연산부(260b)로부터 출력되는 피쳐맵에 적용할 수 있다
[185]
제1 깊이 샘플링부(265a)는 추출된 피쳐맵의 특징값을 제3 깊이 컨벌루션 연산부(260c)로 입력한다.
[186]
다시 도 6을 참조하면, 반사 특징벡터 추출부(220)는 RGB 특징벡터 추출부(210)로부터 입력되는 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 및 제3 서브 RGB 특징벡터를 기초로 반사 특징벡터(c)를 생성한다.
[187]
본 발명은 반사 특징벡터 추출부(220)로부터 반사 특징벡터를 추출하는 이유는, 카메라로 사람의 얼굴을 촬영하게 되면 빛 반사가 없지만 타인의 이미지를 촬영하게 되면 미세하지만 빛 반사가 발생하게 되기 때문이다.
[188]
이에 따라 본 발명은 반사 특징벡터를 기초로 얼굴이미지가 실물이미지인지 여부를 판단함으로써 얼굴인식의 정확도가 향상된다는 효과가 있다.
[189]
반사 특징벡터 추출부(220)는 제1 서브 RGB 특징벡터, 제2 서브 RGB 특징벡터, 및 제3 서브 RGB 특징벡터의 크기를 조정하고 이를 합산하여 입력 특징벡터를 생성한다. 반사 특징벡터 추출부(220)는 반사 신경망 네트워크로 합산된 입력 특징벡터의 피쳐맵을 생성하고 해당 피쳐맵을 기초로 반사 특징벡터(c)를 추출한다. 이때, 반사 특징벡터 추출부(220)는 크기를 조정하기 위해 패딩을 수행할 수 있다. 반사 신경망 네트워크는 사람을 촬영한 실물이미지로부터 추출된 제1 반사이미지와 사진을 촬영한 페이크이미지로부터 추출된 제2 반사이미지로 학습된다.
[190]
이하, 본 발명에 따른 반사 특징벡터 추출부(220)가 반사 신경망 네트워크를 이용하여 반사 특징벡터(c)를 추출하는 것에 대해 도 8을 참조하여 보다 구체적으로 설명한다.
[191]
도 8에 도시된 바와 같이 반사 특징벡터 추출부(220)가 반사 특징벡터를 추출하기 위해 이용하는 반사 신경망 네트워크는 3개의 반사 컨벌루션 연산부(270a 내지 270c) 및 1개의 반사 샘플링부(275a)를 포함한다. 이때, 제4 반사 컨벌루션 연산부(270d)는 학습을 위해 실물이미지 및 페이크이미로부터 제1 및 제2 반사 이미지를 생성한다. 이에 따라 실물이미지 및 페이크이미지로부터 반사 이미지가 분리될 수 있다.
[192]
제1 내지 제3 반사 컨벌루션 연산부(270a 내지 270c) 각각은 합산된 제1 내지 제3 서브 RGB 특징벡터(a-1, a-2, a-3)의 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 이때, 제1 내지 제3 반사 컨벌루션 연산부(270a 내지 270c)에 적용되는 컨벌루션 필터는 서로 상이한 필터일 수 있다.
[193]
제3 반사 컨벌루션 연산부(270c)에서 출력되는 피쳐맵은 반사 특징벡터(c)의 피쳐맵으로서 특징벡터 융합부(205)로 전달되게 되고, 또한 제4 반사 컨벌루션 연산부(270d)로 전달될 수 있다. 이때 반사 특징벡터(c)의 픽셀크기는 32*32일 수 있다. 제4 반사 컨벌루션 연산부(270d)는 전달된 반사 특징벡터(c)의 피쳐맵에 컨벌루션 필터를 적용하여 피쳐맵을 생성하고, 생성된 피쳐맵에 활성화함수를 적용함으로써 피쳐맵에 비선형적 특성을 반영한다. 제4 반사 컨벌루션 연산부(270d)는 실물이미지로부터 제1 깊이이미지를 출력하고, 페이크이미지로부터 제2 깊이이미지를 출력한다. 이는 반사 신경망 네트워크의 학습에 이용되게 된다.
[194]
일 실시예에 있어서, 제1 내지 제3 반사 컨벌루션 연산부(270a 내지 270c)는 3*3 픽셀 크기를 갖고 스트라이드(Stride)의 값이 1인 컨벌루션 필터를 제1 내지 제3 서브 RGB 특징벡터(a-1, a-2, a-3)의 피쳐맵에 적용하여 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제1 내지 제3 반사 컨벌루션 연산부(270a 내지 270c)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 컨벌루션 필터를 적용하기 때문에 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[195]
일 실시예에 있어서, 제1 내지 제3 반사 컨벌루션 연산부(270a 내지 270c)에서 이용되는 활성화함수는 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하는 활성화함수일 수 있다. 여기서 활성화함수란 복수의 입력정보에 가중치를 부여하여 결합해 완성된 결과값을 출력하는 함수를 의미한다.
[196]
제1 반사 샘플링부(275a)는 제2 반사 컨벌루션 연산부(270b)로부터 출력되는 피쳐맵에 샘플링 필터를 적용하여 피쳐맵으로부터 특징값을 추출한다. 일 실시예에 있어서, 제1 반사 샘플링부(275a)는 피쳐맵 상에서 샘플링 필터에 상응하는 영역에 포함된 픽셀값들 중 최대값을 피쳐맵의 특징값으로 추출할 수 있다. 이러한 실시예를 따를 때 제1 반사 샘플링부(275a)는 맥스 풀링(MAX Pooling) 레이어로 구현될 수 있고, 맥스 풀링 레이어를 통해 피쳐맵의 차원이 감소된다.
[197]
일 실시예에 있어서, 제1 반사 샘플링부(275a)는 2*2의 픽셀크기를 갖고 스트라이드의 값이 2인 샘플링 필터를 제2 반사 컨벌루션 연산부(270b)로부터 출력되는 피쳐맵에 적용할 수 있다
[198]
제1 반사 샘플링부(275a)는 추출된 피쳐맵의 특징값을 제3 반사 컨벌루션 연산부(270c)로 입력한다.
[199]
상술한 도 8에 도시된 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)가 제1 내지 제3 서브 RGB 특징벡터를 합산하여 입력 특징벡터를 생성하는 것으로 설명하였다. 하지만, 설명의 편의를 위한 것이며, RGB 특징벡터 추출부(210)가 n개의 서브 RGB 특징벡터를 추출하는 경우, 깊이 특징벡터 추출부(215) 및 반사 특징벡터 추출부(220)는 제1 서브 RGB 특징벡터부터 n-1 서브 RGB 특징벡터까지의 n-1개의 서브 RGB 특징벡터들을 서로 합산하여 입력 특징벡터를 생성할 수 있다.
[200]
이때, 깊이 특징벡터 추출부(215)와 반사 특징벡터 추출부(220)가 제1 부터 n-1의 서브 RGB 특징벡터를 합산하는 이유는, RGB 특징벡터 추출부(210)가 제1 부터 n의 서브 특징벡터를 합산하여 RGB 특징벡터를 생성하기 때문에, 추가로 n의 서브 특징벡터를 합산한다면, 오버피팅(Overfitting)될 수 있고, 또한 깊이 특징벡터 및 반사 특징벡터를 생성하기 위해 깊이 신경망 네트워크 또는 반사 신경망 네트워크를 추가로 통과해야하기 때문이다.
[201]
상술한 설명에서 RGB 컨벌루션 연산부, 깊이 컨벌루션 연산부, 및 반사 컨벌루션 연산부와 RGB 샘플링부, 깊이 샘플링부, 반사 샘플링부는 개수가 정해진 것으로 설명하였으나, 각 컨벌루션 연산부는 k개(k은 2이상의 정수) 이상일 수 있고, 각 샘플링부는 m개(m은 1이상의 정수) 이상일 수 있다.
[202]
다시 도 5을 참조하여 특징벡터 융합부(201)에 대해 설명한다.
[203]
특징벡터 융합부(201)는 깊이 특징벡터 및 반사 특징벡터 중 적어도 하나를 RGB 특징벡터와 융합하여 융합 특징벡터를 생성한다. 구체적으로, 특징벡터 융합부(201)는 깊이 특징벡터 추출부(215)로부터 추출된 깊이 특징벡터와 반사 특징벡터 추출부(420)로부터 추출된 반사 특징벡터 중 적어도 하나와 RGB 특징벡터 추출부(210)로부터 추출된 RGB 특징벡터(a)를 융합하여 융합 특징벡터를 생성한다.
[204]
본 발명에 따른 특징벡터 융합부(201)가 각 특징벡터를 융합하는 이유는, RGB 이미지의 특징, 반사이미지의 특징, 및 깊이 이미지의 특징을 적절하게 반영하여 풍부한 표현력을 가지는 특징벡터로 사진을 촬영한 페이크이미지를 판별할 수 있게 함으로써, 페이크이미지로 인증을 수행하는 것을 효과적으로 차단할 수 있게 하기 위함이다.
[205]
도 9는 본 발명의 일 실시예에 따른 특징벡터 융합부(201)의 구성을 보여주는 도면이다.
[206]
도 9에 도시된 바와 같이 특징벡터 융합부(201)는 제1 출력 특징벡터 생성부(280), 제2 출력 특징벡터 생성부(285), 및 융합 특징벡터 생성부(290)를 포함한다.
[207]
제1 출력 특징벡터 생성부(280)는 RGB 특징벡터(a)를 k개의 융합 컨벌루션 연산부를 통과시켜 제1 출력 특징벡터를 생성한다. 도 9에서는 2개의 융합 컨벌루션 연산부(295a, 295b)를 도시하였으나, 이는 하나의 예일 뿐 이에 한정되지 않는다. 이하에서는 융합 컨벌루션 연산부가 2개인 것으로 설명한다.
[208]
제1 출력 특징벡터 생성부(280)는 제1 융합 컨벌루션 연산부(295a) 및 제2 융합 컨벌루션 연산부(295b)를 포함한다.
[209]
제1 융합 컨벌루션 연산부(295a) 및 제2 융합 컨벌루션 연산부(295b)는 상술한 RGB, 깊이, 반사 컨벌루션 연산부와 동일한 기능을 수행함으로 구체적인 설명은 생략한다. 제1 및 제2 융합 컨벌루션 연산부(295a, 295b)를 통과한 제1 출력 특징벡터는 융합 특징벡터 생성부(290)로 전달되게 된다.
[210]
제2 출력 특징벡터 생성부(285)는 깊이 특징벡터(b)에서 반사 특징벡터(c)를 감산한 결과값을 k개의 융합 컨벌루션 연산부와 k번째의 컨벌루션 연산부의 출력단에 배치된 융합 샘플링부를 순차적으로 통과시켜 제2 출력 특징벡터를 생성한다. 도 7에서는 2개의 융합 컨벌루션 연산부(295c, 295d)를 도시하였으나, 이는 하나의 예일 뿐 이에 한정되지 않는다. 이하에서는 융합 컨벌루션 연산부가 2개인 것으로 설명한다.
[211]
제2 출력 특징벡터 생성부(285)는 제3 융합 컨벌루션 연산부(295c), 제4 융합 컨벌루션(295d), 및 제1 융합 샘플링부(300a)를 포함한다.
[212]
제3 융합 컨벌루션 연산부(295c) 및 제4 융합 컨벌루션 연산부(295d)는 상술한 RGB, 깊이, 반사 컨벌루션 연산부와 동일한 기능을 수행하고, 제1 융합 샘플링부(300a) 또한 상술한 RGB, 깊이, 반사 샘플링부와 동일한 기능을 수행하므로 구체적인 설명은 생략한다. 제3, 제4 융합 컨벌루션 연산부(295c, 295d) 및 제1 융합 샘플링부(300a)를 통과한 제2 출력 특징벡터는 융합 특징벡터 생성부(290)로 전달되게 된다. 이때, 제2 출력 특징벡터는 제1 융합 샘플링부(300a)를 통과하면서 32*32의 픽셀크기에서 16*16의 픽셀크기로 리사이징된다.
[213]
융합 특징벡터 생성부(290)는 제1 출력 특징벡터와 제2 출력 특징벡터를 합산하여 융합 특징벡터를 생성한다. 이때, 융합 특징벡터의 픽셀크기는 16*16일 수 있다. 융합 특징벡터 생성부(290)는 생성된 융합 특징벡터를 판단부(210)로 전달한다.
[214]
다시 도 5를 참조하여 판단부(210)에 대해 구체적으로 설명한다.
[215]
판단부(210)는 융합 특징벡터를 이용하여 얼굴이미지가 사람을 촬영한 실물이미지인지 여부를 판단한다. 구체적으로 판단부(210)는 미리 학습된 이진분류기에 융합 특징벡터를 입력하여 얼굴이미지가 실물이미지인지 여부를 판단한다.
[216]
이때, 이진분류기는 상술한 깊이 특징벡터 추출부(215)의 제4 깊이 컨벌루션 연산부(260e)에 의해 실물이미지로부터 추출된 제1 깊이 이미지 및 페이크이미지로부터 추출된 제2 깊이이미지와, 반사 특징벡터 추출부(220)의 제4 반사 컨벌루션 연산부(270e)에 의해 실물이미지로부터 추출된 제1 반사이미지 및 페이크이미지로부터 추출된 제2 반사이미지가 학습될 수 있다. 단순히, 2차원 실물이미지 또는 2차원 페이크이미지로 이진분류기를 학습시키는 경우, 카메라의 화질이나, 장소, 조명 등 외부 특정환경에 대해 과적합(Overfitting)되면서 다른 환경에서 나온 이미지들에 대해 판별이 어려운 문제가 있었다.
[217]
이에 따라 본 발명은 2차원 실물이미지 및 2차원 페이크 이미지뿐만 아니라, 해당 실물이미지 및 페이크이미지로부터 추출된 깊이이미지와 반사이미지를 이진분류기에 학습시킴으로써, 특정 환경에 대한 과적합을 방지할 수 있어 어느 환경에 촬영된 얼굴이미지라도 실물이미지 판단을 정확하게 할 수 있게 하였다.
[218]
도 10은 실물이미지와 페이크이미지의 일예를 나타내는 도면이다. 본 발명에 따른 판단부(210)가 이용하는 이진분류기가 실물이미지와 페이크이미지를 학습하게 된다. 하지만, 상술한 바와 같이 실물이미지 및 페이크이미지만으로 학습하는 경우, 특정 환경에 대한 과적합이 발생할 수 있다.
[219]
이에 따라 본 발명은 도 11 및 도 12에 도시된 바와 같이 실물이미지와 페이크이미지가 깊이 신경망 네트워크 및 반사 신경망 네트워크를 통과하여 분리된 깊이 이미지와 반사 이미지에 대해 학습하게 된다.
[220]
이진 분류기는 도 11에 도시된 실물이미지로부터 추출된 제1 깊이 이미지를 학습하게 되고, 페이크 이미지로부터 추출된 제2 깊이 이미지를 학습하게 된다. 이때, 실물이미지로부터 추출된 제1 깊이 이미지는 기준이 되는 정답으로 학습되고, 페이크 이미지로부터 추출된 제2 깊이이미지는 RGB를 블랙으로 하여 학습된다. RGB는 (0,0,0)이 된다.
[221]
또한, 이진 분류기는 도 12에 도시된 바와 같이 실물이미지로부터 추출된 제1 반사 이미지를 학습하게 되고, 페이크 이미지로부터 추출된 제2 반사 이미지를 학습하게 된다. 이때, 실물이미지로부터 추출된 제1 반사 이미지는 RGB를 블랙으로 하여 학습된다. RGB는 (0,0,0)이 된다. 페이크이미지로부터 추출된 제2 반사 이미지는 기준이 되는 오답으로 학습된다.
[222]
다시 도 5를 참조하면, 판단부(202)는 이진분류기에서 출력되는 확률값이 미리 정해진 문턱값미만이면, 해당 얼굴이미지를 페이크 이미지로 판단한다. 또한, 판단부(202)는 이진분류기에서 출력되는 확률값이 미리 정해진 문턱값 이상이면 해당 얼굴이미지를 실물이미지로 판단한다.
[223]
이때, 판단부(202)는 복수개의 얼굴이미지 중에 적어도 하나의 얼굴이미지가 페이크 이미지로 판단되면, 복수개의 얼굴이미지를 제거하여 특징벡터 추출부(85)로 해당 얼굴이미지가 입력되지 않게 한다.
[224]
판단부(202)는 얼굴이미지가 페이크이미지로 판단되면, 실제 얼굴 촬영 요청메시지를 생성하여 디스플레이(미도시)로 전달한다.
[225]
또한, 판단부(202)는 복수개의 얼굴이미지 모두가 실물이미지로 판단되면 복수개의 얼굴이미지 중 가장 큰 얼굴을 포함하는 얼굴이미지를 특징벡터 추출부(85)로 전달한다.
[226]
다시 도 2를 참조하면, 특징벡터 추출부(85)는 실물이미지 판단부(80)로부터 실물이미지로 판단된 얼굴이미지가 입력되면, 해당 얼굴이미지에 포함된 얼굴로부터 특징벡터를 추출한다. 이하, 도 13을 참조하여 본 발명에 따른 특징벡터 추출부에 대해 보다 구체적으로 설명한다.
[227]
도 13은 본 발명에 따른 특징벡터 추출부의 구성을 개략적으로 보여주는 블록도이다. 도 13에 도시된 바와 같이, 본 발명의 일 실시예에 따른 특징벡터 추출부는 복수개의 얼굴이미지 처리부(305a~305n) 및 특징벡터 생성부(310)를 포함한다.
[228]
복수개의 얼굴이미지 처리부(305a~305n)는 입력 데이터를 영상 처리하여 출력 데이터를 생성한다. 이때, 복수개의 얼굴이미지 처리부(305a~305n) 중 1 번째 얼굴이미지 처리부(305a)에는 입력 이미지로써 실물이미지 판단부(238)로부터 출력되는 얼굴이미지가 입력되고, g+1번째 얼굴이미지 처리부(305g+1)에는 입력 이미지로써 g번재 얼굴이미지 처리부(305g)의 출력 데이터가 입력된다.
[229]
예컨대, 1번째 얼굴이미지 처리부(305a)는 얼굴이미지를 영상처리하여 출력 데이터를 생성하고, 생성된 출력 데이터를 2번쨰 얼굴이미지 처리부(305b)로 입력한다. 1번째 얼굴이미지 처리부(305b)는 1번째 얼굴이미지 처리부(305a)에서 출력되는 출력 데이터를 영상처리하여 새로운 출력 데이터를 생성하고, 생성된 새로운 출력 데이터를 3번쨰 얼굴이미지 처리부(305c)로 입력한다.
[230]
도 13에 도시된 복수개의 얼굴이미지 처리부(305a~305n)의 기능 및 세부구성은 동일하므로 이하에서는 복수개의 얼굴이미지 처리부(305a~305n)들 중 제1 얼굴이미지 처리부(305a)에 대해 예시적으로 설명한다. 이하에서는 설명의 편의를 위해 제1 얼굴이미지 처리부(305a)를 얼굴이미지 처리부(305)로 표기하기로 한다.
[231]
얼굴이미지 처리부(305)는 도 13에 도시된 바와 같이 입력 데이터(얼굴이미지 또는 이전 얼굴이미지 처리부의 출력 데이터임)에 대해 컨벌루션 연산을 수행하여 피쳐맵을 생성하는 제1 유닛(315), 제1 유닛(315)에 의해 생성된 피쳐맵에 가중치를 부여하는 제2 유닛(320), 및 연산부(325)으로 구성된다.
[232]
이하, 제1 유닛(315)의 구성을 도 14를 참조하여 보다 구체적으로 설명한다. 도 14는 얼굴이미지 처리부에 포함된 제1 유닛의 구성을 보여주는 블록도이다. 도 14에 도시된 바와 같인, 제1 유닛(315)은 정규화부(330), 제1 컨벌루션 연산부(335), 및 비선형화부(340)를 포함한다.
[233]
정규화부(330)는 실물이미지 판단부(238)로부터 입력되는 얼굴이미지들을 배치(Batch)단위로 정규화한다. 배치란 한번에 처리할 얼굴이미지들의 개수단위를 의미한다. 본 발명에 따른 정규화부가 배치단위로 정규화를 수행하는 이유는 배치 단위로 정규화를 수행하게 되면 각 얼굴 이미지에 대한 평균 및 분산이 배치 전체에 대한 평균 및 분산과 다를 수 있는데 이러한 특징이 일종의 노이즈로 작용하게 되어 전체적인 성능이 향상될 수 있기 때문이다.
[234]
또한, 배치 정규화를 통해 네트워크의 각 층마다 입력의 분포(Distribution)가 일관성 없이 바뀌는 내부 공분산 이동(Internal Covariance Shift) 현상에 의해 학습의 복잡성이 증가하고 그라디언트 소멸 또는 폭발(Gradient Vanishing or Exploding)이 일어나는 것을 방지할 수 있게 되기 때문이다.
[235]
제1 컨벌루션 연산부(335)는 정규화부(330)에 의해 정규화된 얼굴이미지에 대해 제1 컨벌루션 필터를 적용하여 제1 피쳐맵을 생성한다. 일 실시예에 있어서, 제1 컨벌루션 연산부(335)는 3*3 픽셀크기를 갖고 스트라이드(Stride)의 값이 1인 제1 컨벌루션 필터를 얼굴이미지에 적용하여 제1 피쳐맵을 생성할 수 있다. 이와 같이, 본 발명에 따른 제1 컨벌루션 연산부(335)는 3*3 픽셀크기를 갖고 스트라이드 값이 1인 제1 컨벌루션 필터를 얼굴이미지에 적용하기 때문에 제1 피쳐맵의 해상도를 높게 보존할 수 있게 된다.
[236]
비선형화부(340)는 제1 피쳐맵에 활성화함수를 적용함으로써 제1 피쳐맵에 비선형적 특성을 부여한다. 일 실시예에 있어서, 비선형화부(340)는 제1 피쳐맵의 픽셀값들 중 양의 픽셀값을 동일하게 출력하고 음의 픽셀값은 그 크기를 감소시켜 출력하는 활성화함수를 제1 피쳐맵에 적용함으로써 제1 피쳐맵에 비선형적 특성을 부여할 수 있다.
[237]
도 14에서는 비선형화부(340)가 제1 컨벌루션 연산부(335)에 의해 생성된 제1 피쳐맵에 비선형적 특성을 부여하는 것으로 설명하였다. 하지만, 변형된 실시예에 있어서 정규화부(330)는 제1 컨벌루션 연산부(335)에 의해 생성된 제1 피쳐맵들을 배치단위로 추가로 정규화할 수도 있다. 이러한 실시예에 따르는 경우 정규화부(330)는 정규화된 제1 피쳐맵을 비선형화부(340)로 제공하고, 비선형화부(340)는 정규화된 제1 피쳐맵에 활성화함수를 적용함으로써 정규화된 제1 피쳐맵에 비선형적 특성을 부여할 수 있다.
[238]
한편, 상술한 실시예에 있어서 제1 유닛(315)은 제1 컨벌루션 연산부(335)만을 포함하는 것으로 설명하였다. 하지만, 변형된 실시예에 있어서 제1 유닛(315)은 도 14에 도시된 바와 같이 제2 컨벌루션 연산부(345)를 더 포함할 수 있다.
[239]
구체적으로, 제2 컨벌루션 연산부(345)는 비선형화부(340)에 의해 비선형적 특성이 부여된 제1 피쳐맵에 제2 컨벌루션 필터를 적용하여 제2 피쳐맵을 생성한다. 일 실시예에 있어서, 제2 컨벌루션 필터는 제1 컨벌루션 필터와 다른 필터일 수 있다. 제2 컨벌루션 필터는 제1 컨벌루션 필터의 크기는 동일하지만 다른 스트라이드 값을 갖는 필터일 수 있다. 일 예로, 제2 컨벌루션 필터는 3*3 픽셀크기를 갖고 스트라이드(Stride)의 값이 2인 필터일 수 있다.
[240]
이러한 실시예에 따르는 경우 정규화부(330)는 제2 컨벌루션 연산부(345)에 의해 생성된 제2 피쳐맵들을 배치단위로 추가로 정규화할 수도 있을 것이다.
[241]
한편, 도 14에 도시하지는 않았지만 제1 유닛(315)은 사전정규화부를 더 포함할 수 있다. 사전정규화부는 얼굴이미지 추출부로부터 입력되는 얼굴이미지에 포함된 각 픽셀들의 픽셀값을 정규화할 수 있다. 일 예로, 사전정규화부는 얼굴이미지의 각 픽셀값에서 127.5를 감산한 후, 감산 결과값을 128로 제산함으로써 얼굴이미지를 정규화할 수 있다. 사전정규화부는 사전 정규화된 입력 얼굴이미지를 정규화부(330)로 제공할 수 있다.
[242]
다시 도 13을 참조하면, 제2 유닛(320)은 제1 유닛(315)에 의해 생성된 제2 피쳐맵에 가중치를 부여한다. 본 발명에서 제2 유닛(320)을 통해 제2 피쳐맵에 가중치를 부여하는 이유는 컨벌루션 연산의 경우 입력 이미지의 모든 채널을 컨벌루션 필터와 곱한 후 합산하는 과정에서 중요한 채널과 중요하지 않은 채널들이 모두 얽히게 되므로 데이터의 민감도(Sensitivity)가 저하되므로, 제2 피쳐맵에 각 채널 별로 그 중요도에 따라 가중치를 부여하기 위한 것이다.
[243]
이하, 제2 유닛(320)의 구성을 도 15를 참조하여 보다 구체적으로 설명한다. 도 15는 얼굴이미지 처리부에 포함된 제2 유닛의 구성을 보여주는 블록도이다. 도 15에 도시된 바와 같인, 제2 유닛(320)은 샘플링부(350), 가중치 반영부(355), 및 업스케일링부(360)를 포함한다.
[244]
먼저, 샘플링부(350)는 제1 유닛(315)으로부터 입력되는 제2 피쳐맵을 서브 샘플링하여 차원을 감소시킨다. 일 실시예에 있어서, 샘플링부(350)는 제2 피쳐맵에 글로벌 풀링(Global Pooling) 필터를 적용함으로써 제2 피쳐맵의 차원을 감소시킬 수 있다. 일 예로, 제2 피쳐맵의 차원이 H*W*C인 경우 샘플링부(350)는 제2 피쳐맵의 서브 샘플링을 통해 제2 피쳐맵의 차원을 1*1*C로 감소시킬 수 있다.
[245]
가중치 반영부(355)는 샘플링부(350)에 의해 차원이 감소된 제2 피쳐맵에 가중치를 부여한다. 이를 위해, 도 7에 도시된 바와 같이 가중치 반영부(355)는 차원 감소부(365), 제1 비선형화부(370), 차원 증가부(375), 및 제2 비선형화부(380)를 포함할 수 있다.
[246]
차원 감소부(365)는 서브 샘플링된 제2 피쳐맵을 하나의 레이어로 연결함으로써 서브 샘플링된 제2 피쳐맵의 차원을 감소시킨다. 일 예로, 샘플링부(350)로부터 출력되는 제2 피쳐맵의 차원이 1*1*C인 경우 차원 감소부(365)는 제2 피쳐맵의 차원을 1*1*C/r로 감소시킨다. 여기서, r은 감소율을 의미하는 것으로서, 추출하기 원하는 특징벡터의 개수에 따라 결정될 수 있다.
[247]
제1 비선형화부(370)는 차원 감소부(365)에 의해 차원이 감소된 제2 피쳐맵에 제1 활성화함수를 적용함으로써 차원이 감소된 제2 피쳐맵에 비선형적 특성을 부여한다. 일 실시예에 있어서, 제1 비선형화부(370)는 제2 피쳐맵의 픽셀값들 중 양의 픽셀값은 그대로 출력하고 음의 픽셀값은 0으로 출력하는 제1 활성화함수를 적용함으로써 차원이 감소된 제2 피쳐맵에 비선형적 특성을 부여할 수 있다.
[248]
차원 증가부(375)는 제1 비선형화부(370)에 의해 비선형적 특성이 부여된 제2 피쳐맵의 차원을 증가시킨다. 일 예로, 비선형적 특성이 부여된 제2 피쳐맵의 차원이 1*1*c/r인 경우 차원 증가부(375)는 제2 피쳐맵의 차원을 다시 1*1*C로 증가시킨다.
[249]
제2 비선형화부(380)는 차원 증가부(375)에 의해 차원이 증가된 제2 피쳐맵에 제2 활성화함수를 적용함으로써 차원이 증가된 제2 피쳐맵에 비선형적 특성을 다시 부여한다. 일 실시예에 있어서, 제2 활성화함수는 제1 활성화함수와 다른 함수일 수 있다. 예컨대, 제2 비선형화부(380)는 차원이 증가된 제2 피쳐맵의 픽셀값들 중 양의 픽셀값은 미리 정해진 값으로 수렴하도록 하고 음의 픽셀값은 0으로 출력하는 제2 활성화함수를 적용함으로써 차원이 증가된 제2 피쳐맵에 비선형적 특성을 부여할 수 있다.
[250]
이와 같이, 본 발명에 따른 가중치 반영부(355)는 차원감소부(365), 제1 비선형화부(370), 차원증가부(375), 및 제2 비선형화부)380)를 통해 제2 피쳐맵에 가중치를 부여하고, 차원감소부(365)와 차원증가부(375)를 통해 병목구간을 만들어 게이팅 메커니즘을 한정함으로써 모델 복잡도를 제한하고 일반화를 지원할 수 있게 된다.
[251]
업스케일링부(360)는 가중치 반영부(355)에 의해 가중치가 부여된 제2 피쳐맵을 제2 유닛(320)에 입력된 얼굴이미지와 동일한 차원으로 업스케일링한다. 일 실시예에 있어서, 제2 유닛(320)에 입력된 얼굴이미지의 차원이 H*W*C인 경우 업스케일링부(730)는 가중치가 부여된 제2 피쳐맵의 차원을 H*W*C로 업스케일링한다.
[252]
다시 도 13을 참조하면, 연산부(325)는 제2 유닛(320)을 통해 출력되는 업스케일링된 제2 피쳐맵을 제1 유닛(315)에 입력된 얼굴이미지와 합산한다. 본 발명에서 연산부(325)를 통해 제2 유닛(320)에서 출력된 업스케일링된 제2 피쳐맵을 제1 유닛(315)에 입력된 얼굴이미지와 합산하는 이유는 컨벌루션 신경망에서 깊이가 깊어지는 경우 특징이 흐려지는 문제(Vanish Problem)를 방지하기 위한 것이다.
[253]
특징벡터 생성부(310)는 복수개의 얼굴이미지 처리부(305a~305n)들 중 마지막 얼굴 이미지 처리부(305n)로부터 출력되는 피쳐맵을 하나의 레이어로 병합하여 차원을 감소시킴으로써 미리 정해진 개수의 특징벡터를 생성한다. 일 실시예에 있어서, 특징벡터 생성부(310)는 얼굴이미지 처리부(305n)로부터 출력되는 피쳐맵으로부터 128개 이상의 특징벡터를 출력할 수 있다. 예컨대, 특징벡터 생성부(310)는 얼굴 이미지 처리부(305n)로부터 출력되는 피쳐맵으로부터 512개의 특징벡터를 출력할 수 있다.
[254]
다시 도 2를 참조하면 어레이 파일 생성부(45)는 얼굴인식부(30)에 의해 생성된 특징벡터를 이용하여 각 사용자 별로 어레이(Array)를 생성하고, 생성된 어레이들을 하나의 파일로 머지하여 어레이 파일을 생성한다. 어레이 파일 생성부(45)는 생성된 어레이 파일을 어레이 파일 데이터베이스(미도시)에 저장할 수 있다. 이때, 어레이 파일은 기존 어레이 파일 및 신규 어레이 파일을 포함한다. 신규 어레이 파일은 에지 디바이스 관리부(50)에 의해 변경된 최적 기준이미지에 대한 어레이를 포함할 수 있다. 어레이 파일 생성부(45)는 생성된 어레이 파일을 어레이 파일 데이터베이스(미도시)에 저장할 수 있다.
[255]
일 실시예에 있어서, 어레이 파일 생성부(45)에 의해 생성되는 어레이는 각 사용자의 얼굴이미지로부터 획득된 복수개의 특징벡터들과 각 사용자의 키(Key)값으로 구성될 수 있다. 이때, 사용자의 키 값은 각 사용자의 식별정보 및 각 사용자의 출입권한정보를 포함한다. 각 사용자의 식별정보는 상술한 바와 같이 각 사용자의 아이디, 성명, 전화번호, 또는 직원번호 등으로 정의될 수 있고, 각 사용자의 출입권한정보는 각 사용자가 출입할 수 있는 각 층에 대한 정보를 포함할 수 있다.
[256]
일 실시예에 있어서, 어레이 파일 생성부(45)는 에지 디바이스(3)가 설치되어 있는 각 장소 별로 어레이 파일을 생성할 수 있다. 예컨대, 제1 어레이 파일은 제1 층에 대한 출입권한이 부여된 사용자들의 어레이들로 구성될 수 있고, 제2 어레이 파일은 제2 층에 대한 출입원한이 부여된 사용자들의 어레이들로 구성될 수 있다. 이를 위해, 어레이 파일 생성부(45)는 각 사용자의 어레이들 또한 각 사용자가 출입할 수 있는 지역 별로 구분하여 생성할 수 있다. 예컨대, 제1 사용자가 제1 층과 제3 층에 출입 가능한 권한을 가진 경우, 어레이 파일 생성부(45)는 제1 사용자에 대해 제1 층에 대한 출입권한정보가 포함된 제1 어레이와 제3 층에 대한 출입권한정보가 포함된 제2 어레이를 별도로 생성할 수 있다.
[257]
본 발명에 따른 어레이 파일 생성부(45)가 에지 디바이스(3)가 설치된 각 장소 별로 어레이 파일을 생성하는 이유는 사용자의 얼굴을 인증하는 에지 디바이스(3)가 각 장소 별로 설치되는 경우, 특정 장소에 설치된 에지 디바이스(3)로 해당 장소에 대한 출입권한정보가 포함된 어레이 파일만을 전송하면 되므로 어레이 파일의 전송 및 에지 디바이스(3)에서의 어레이 파일 관리가 용이해지기 때문이다.
[258]
상술한 실시예에 있어서는 어레이 파일 생성부(45)가 각 장소 별로 어레이 파일을 생성하는 것으로 기재하였지만, 변형된 실시예에 있어서 어레이 파일 생성부(45)는 에지 디바이스(3)가 설치된 모든 장소에 대한 권한정보가 포함된 하나의 어레이 파일을 생성하고, 생성된 어레이 파일을 모든 에지 디바이스(3)로 전송할 수도 있다.
[259]
본 발명에 따른 에지 디바이스 관리부(50)는 각 장소에 설치되어 있는 복수개의 에지 디바이스(3)들의 정보를 에지 디바이스 데이터베이스(55)에 등록한다. 일 실시예에 있어서, 에지 디바이스 관리부(50)는 각 에지 디바이스(3)의 식별정보를 각 에지 디바이스가 설치된 장소와 매핑시켜 에 저장할 수 있다. 여기서 에지 디바이스(3)의 식별정보는 제조사 및 시리얼 번호등을 포함할 수 있다.
[260]
한편, 에지 디바이스 관리부(50)는 인터페이스부(65)를 통해 미리 정해진 기간마다 에지 디바이스(3)로부터 복수개의 인증결과를 수신하고, 수신된 인증결과들을 에지 디바이스 데이터베이스(55)에 저장할 수 있다. 이때, 복수개의 인증결과는 에지 디바이스(3)가 타겟 사용자들에 대해 인증을 수행하여 획득된 것이다.
[261]
본 발명에 따른 에지 디바이스 관리부(50)는 복수개의 인증결과를 기초로 등록사용자에 대해 미리 등록된 기준이미지를 인증환경을 반영한 최적 기준이미지로 변경할 수 있다. 구체적으로 에지 디바이스 관리부(50)는 복수개의 인증결과를 기초로 시공간 환경 변화에 따른 최적 기준이미지를 결정하고, 각 사용자의 기준이미지를 최적 기준이미지로 변경할 수 있다.
[262]
또한, 본 발명에 따른 에지 디바이스 관리부(50)는 복수개의 인증결과를 수집하고, 수집된 인증결과들을 기초로 기준임계치를 변경할 수 있다. 이때 기준임계치는 에지 디바이스(3)가 타겟 사용자의 인증을 수행할 때, 타겟 사용자의 인증여부를 결정하는 기준값이다. 구체적으로, 에지 디바이스(3)는 타겟 사용자의 인증을 수행할 때, 타겟 사용자의 촬영이미지와 등록사용자의 기준이미지간의 유사도를 산출하게 된다. 이때, 에지 디바이스(3)는 타겟 사용자의 인증여부를 결정하기 위해 기준임계치와 유사도를 비교하게 된다.
[263]
이하, 도 16을 참조하여 본 발명에 따른 에지 디바이스 관리부(50)에 대해 보다 구체적으로 설명한다.
[264]
도 16은 일 실시예에 따른 에지 디바이스 관리부(50)의 구성을 보여주는 도면이다.
[265]
에지 디바이스 관리부(50)는 인증결과 수집부(400), 이미지 결정부(405), 기준 이미지 변경부(410)를 포함한다.
[266]
인증결과 수집부(400)는 각 에지 디바이스(3)로부터 복수개의 인증결과를 수집한다. 구체적으로 인증결과 수집부(400)는 인터페이스부(65)를 통해 각 에지 디바이스(3)로부터 미리 정해진 기간마다 복수개의 인증결과를 수집할 수 있다. 이때, 인증결과는 미등록사용자를 등록사용자로 잘못 승인한 제1 인증결과, 사용자를 등록사용자로 정상 승인한 제2 인증결과, 및 등록사용자를 미등록사용자로 잘못 승인한 제3 인증결과 등을 포함할 수 있다.
[267]
인증결과 수집부(400)는 수집된 복수개의 인증결과를 에지 디바이스 데이터베이스(55)에 저장한다.
[268]
이미지 결정부(405)는 복수개의 인증결과를 기초로 최적 기준이미지를 결정한다.
[269]
이미지 결정부(405)는 복수개의 인증결과로부터 사용자를 등록사용자로 정상 승인한 복수개의 제2 인증결과를 추출한다. 이에 따라 본원발명은 미리 정해진 잘못 승인된 인증결과를 제외시킴으로써, 제2 인증결과를 기초로 결정되는 최적 기준이미지의 신뢰성을 보장할 수 있다.
[270]
일 실시예에 있어서, 복수개의 인증결과는 타겟 사용자의 촬영이미지, 타겟 사용자의 촬영이미지와 등록사용자의 기준이미지간의 유사도, 에지 디바이스(3)의 디바이스 정보, 에지 디바이스가 설치된 장소정보, 출입시간 정보, 및 등록사용자 정보 등을 포함한다. 이때, 타겟 사용자의 촬영이미지는 에지 디바이스(3)에 의해 촬영된 이미지를 의미한다. 타겟 사용자의 촬영이미지와 등록사용자의 기준이미지간의 유사도는 에지 디바이스(3)가 타겟사용자의 승인 시 산출된 유사도를 의미한다. 에지 디바이스(3)의 디바이스 정보는 해당 승인 출입데이터가 발생된 에지 디바이스(3)의 정보 및 타겟사용자를 촬영하는 카메라 정보를 의미한다.
[271]
이미지 결정부(405)는 제2 인증결과를 이용하여 인증환경을 반영한 최적 기준이미지를 선택한다. 이때, 인증환경은, 장소정보, 출입시간 정보, 디바이스 정보 중 적어도 하나에 따라 결정되는 환경을 의미한다.
[272]
본 발명에 따른 이미지 결정부(405)가 인증환경을 반영한 최적 기준이미지를 선택하는 이유는, 인증환경에 따라 도 17a에 도시된 바와 같이 제1 장소에서 촬영된 타겟사용자의 촬영이미지와, 도 17b에 도시된 바와 같이 제2 장소에서 촬영된 타겟사용자의 촬영이미지가 인증을 수행할 때마다 달라지기 때문에, 에지 디바이스(3)가 타겟사용자에 대해 신속하게 인증을 할 수 없을 뿐만 아니라, 등록사용자이지만 미등록사용자로 인증할 수 있기 때문이다.
[273]
도 17a 및 17b에 도시된 바와 같이 동일한 타겟 사용자에 대해 동일한 장소에서도 서로 다른 촬영이미지가 생성되고, 도 17a에서의 타겟사용자의 촬영이미지와 도 17b에서의 타겟사용자의 촬영이미지간에서도 화질의 차이가 발생한다. 또한, 도 17a 및 17b에 도시된 바와 같이 서로 다른 시간대에 촬영된 촬영이미지의 밝기도 차이가 난다.
[274]
이에 따라 본원발명은 인증환경을 반영한 최적 기준이미지를 선택함으로써, 인증을 신속하게 할 수 있을 뿐만 아니라, 등록사용자를 미등록사용자로 판단하는 오류를 감소시킬 수 있다는 효과가 있다.
[275]
이미지 결정부(405)는 제2 인증결과들을 사용자 별로 분류한다. 구체적으로 이미지 결정부(405)는 사용자를 등록사용자로 정상승인한 제2 인증결과들을 해당 제2 인증결과에 포함된 사용자 별로 분류한다.
[276]
예를 들어 설명한다. 복수개의 제2 인증결과는 제2-a 인증결과, 제2-b 인증결과, 제2-c 인증결과, 제2-d 인증결과가 존재하고, 제1 및 제2 사용자가 존재하면, 이미지 결정부(405)는 제1 및 제2 사용자로 인해 발생된 제2 인증결과들을 각 사용자 별로 분류한다.
[277]
제1 사용자에 대해 제2-a 인증결과, 제2-b 인증결과가 존재하고, 제2 사용자에 대해 제2-c 인증결과, 제2-d 인증결과가 존재하면, 이미지 결정부(405)는 복수개의 제2 인증결과를 제1 사용자에 대한 제2-a 인증결과, 제2-b 인증결과로 분류하고, 제2 사용자에 대한 제2-c 인증결과, 제2-d 인증결과로 분류한다.
[278]
일 실시예에 있어서, 이미지 결정부(405)는 각 사용자 별로 분류된 제2 인증결과를 해당 제2 인증결과가 발생한 출입시간 별로 분류할 수 있다. 이때 출입시간은 하루 단위 시간구간과 주, 월, 분기, 또는 연 단위 시간구간으로 각각 분류될 수도 있다.
[279]
예를 들어 설명한다.
[280]
제1 사용자에 대한 제2-a 인증결과, 제2-b, 제2-c 인증결과로 분류되고, 제2 사용자에 대한 제2-d 인증결과, 제2-e 인증결과, 제2-f 인증결과로 분류되고, 제2-a, 제2-b, 제2-f 인증결과는 오전시간 대에 발생하고, 제2-c, 제2-d, 제2-e 인증결과는 오후시간 대에 발생한 것으로 가정한다.
[281]
이러한 경우, 이미지 결정부(405)는 제1 사용자의 제2 인증결과는 오전시간대에 발생한 제2-a, 제2-b 인증결과로 분류하고, 오후시간대에 발생한 제2-c 인증결과로 분류할 수 있다. 이미지 결정부(405)는 제2 사용자의 제2 인증결과는 오전시간대에 발생한 제2-f 인증결과로 분류하고, 오후시간대에 발생한 제2-d, 제2-e 인증결과로 분류할 수 있다.
[282]
일 실시예에 있어서, 이미지 결정부(405)는 각 사용자 별로 분류된 제2 인증결과를 해당 제2 인증결과가 발생한 장소 별로 분류할 수 있다.
[283]
일 실시예에 있어서, 이미지 결정부(405)는 장소 별로 분류된 제2 인증결과를 해당 제2 인증결과가 발생한 에지 디바이스(3)별로 분류할 수 있다. 이러한 실시예를 따르는 경우, 에지 디바이스(3)는 각 장소 별로 복수개가 존재할 수 있다.
[284]
일 실시예에 있어서, 이미지 결정부(405)는 장소 별로 분류된 제2 인증결과를 제2 인증결과가 발생한 출입시간 별로 분류할 수 있다. 또한, 에지 디바이스(3) 별로 분류된 제2 인증결과를 제2 인증결과가 발생한 출입시간 별로 분류할 수 있다.
[285]
한편, 이미지 결정부(405)는 분류된 제2 인증결과에 포함된 유사도 중 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 사용자의 최적 기준이미지로 결정할 수 있다.
[286]
일 실시예에 있어서, 이미지 결정부(405)는 각 사용자 별로 분류된 제2 인증결과가 해당 제2 인증결과가 발생한 출입시간 별로 분류된 경우, 각 출입시간 별로 분류된 제2 인증결과 중에서 유사도가 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 출입시간의 최적 기준이미지로 각각 결정할 수 있다.
[287]
예컨대, 제1 사용자에 대해 오전시간대에 제2-a, 제2-b 인증결과로 분류되고 오후시간대에 제2-c, 제2-d 인증결과로 분류된 경우, 이미지 결정부는 오전시간대에 제2 인증결과(제2-a, 제2-b 인증결과) 중 유사도가 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 출입시간의 최적 기준이미지로 결정하고, 오후시간대에 제2 인증결과(제2-c, 제2-b 인증결과) 중 유사도가 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 출입시간의 최적 기준이미지로 결정한다.
[288]
일 실시예에 있어서, 이미지 결정부(405)는 각 사용자 별로 분류된 제2 인증결과가 해당 제2 인증결과가 발생한 장소 별로 분류된 경우, 각 장소 별로 분류된 제2 인증결과 중에서 유사도가 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 장소의 최적 기준이미지로 각각 결정할 수 있다.
[289]
일 실시예에 있어서, 이미지 결정부(405)는 각 장소 별로 분류된 제2 인증결과가 해당 제2 인증결과가 발생한 에지 디바이스(3) 별로 분류된 경우, 각 에지 디바이스(3) 별로 분류된 제2 인증결과 중에서 유사도가 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 에지 디바이스(3)의 최적 기준이미지로 각각 결정할 수 있다.
[290]
이와 같이 본원발명은 복수개의 에지 디바이스(3)가 동일한 장소에 위치하더라도 각 에지 디바이스 별로 카메라의 위치, 카메라의 성능 등이 다를 수 있으므로, 이에 따라 최적 기준이미지를 결정할 수 있다. 이때, 카메라의 성능은 화소, 화각, 민감도 등을 포함할 수 있다.
[291]
또한, 이미지 결정부(405)는 장소 별로 분류된 제2 인증결과를 제2 인증결과가 발생한 출입시간 별로 분류한 경우 또는 에지 디바이스(3) 별로 분류된 제2 인증결과를 제2 인증결과가 발생한 출입시간 별로 분류한 경우에도, 각 분류된 기준에 따라 각각의 최적 기준이미지를 결정할 수 있다. 그 반대의 경우에도 이미지 결정부(405)는 분류된 기준에 따라 각각의 최적 기준이미지를 결정할 수 있다.
[292]
기준이미지 변경부(410)는 미리 등록된 사용자들의 기준이미지를 이미지 결정부(405)에 의해 선택된 최적 기준이미지로 변경한다. 구체적으로 기준이미지 변경부(410)는 사용자들의 기준이미지를 해당 사용자 별로 결정된 최적 기준이미지로 각각 변경한다.
[293]
일 실시예에 있어서, 기준이미지 변경부(410)는 기준이미지를 이미지 결정부(405)에 의해 출입시간 별로 결정된 최적 기준이미지로 각각 변경할 수 있다.
[294]
또한, 기준이미지 변경부(410)는 기준이미지를 이미지 결정부(405)에 의해 장소 별로 결정된 최적 기준이미지로 각각 변경할 수 있다. 또한, 기준이미지 변경부(410)는 기준이미지를 이미지 결정부(405)에 의해 에지 디바이스(3) 별로 결정된 최적 기준이미지로 각각 변경할 수 있다.
[295]
예컨대, 이미지 결정부(405)에 의해 A 장소에서 제1 사용자의 제1 촬영이미지가 최적 기준이미지로 선택되고, B 장소에서 제1 사용자의 제2 촬영이미지가 최적 기준이미지로 선택되며, C 장소에서 제1 사용자의 제3 촬영이미지가 최적 기준이미지로 선택되면, 기준이미지 변경부(410)는 A 장소에서의 기준이미지를 제1 촬영이미지로 변경하고, B 장소에서의 기준이미지를 제2 촬영이미지로 변경하며, C 장소에서의 기준이미지를 제3 촬영이미지로 변경한다.
[296]
일 실시예에 있어서, 기준이미지 변경부(410)는 출입시간 별로 최적 기준이미지를 변경하는 경우, 도 18에 도시된 바와 같이 하루 단위 시간구간(T1)과 주, 월, 분기, 또는 연 단위 시간구간(T2)에 따라 최적 기준이미지를 변경할 수 있다. 기준이미지 변경부(410)는 행에는 하루단위 시간구간(T1)에 따른 최적 기준이미지를 등록하고, 열에는 주, 월, 분기, 또는 연 단위 시간구간(T2)에 따른 최적 기준이미지를 등록한다. 이는 하나의 예일뿐, 하루단위 시간구간(T1)과 주, 월, 분기, 또는 연 단위 시간구간(T2)의 행과 열은 반대로 될 수 있다.
[297]
이는 사용자의 촬영이미지가 하루 중에도 외부 태양광의 변화에 따라 다르게 촬영될 수 있고, 또한, 계절에 따른 기후변화, 각 사용자들의 노화, 체중 변화, 안경착용 유무 등에 따라 다르게 촬영될 수 있기 때문이다.
[298]
도 19a는 기준이미지 변경부(410)가 장소 별로 기준이미지를 최적 기준이미지로 변경하는 일예를 보여주는 도면이다. 도 19b는 기준이미지 변경부(410)가 장소 및 출입시간 별로 기준이미지를 최적 기준이미지로 변경하는 일예를 보여주는 도면이다.
[299]
도 19a에 도시된 바와 같이 미리 등록된 기준이미지(425)가 존재하고, 각 장소 별로 최적기준이미지(430)를 등록하게 된다. A 장소(435)에는 제1 촬영이미지와 제2 촬영이미지를 등록하고, B 장소(440)에는 제3 촬영이미지와 제4 촬영이미지를 등록하며, C 장소(445)에는 제5 촬영이미지와 제6 촬영이미지를 등록한다.
[300]
또한, 도 19b에 도시된 바와 같이 기준이미지 변경부(410)는 각 장소와 출입시간에 따라 최적 기준이미지(430)를 등록할 수 있다. 기준이미지 변경부(410)는 A 장소(435)에 대해 제1 출입시간에는 제1 촬영이미지(450a)를 등록하고, A 장소(435)에 대해 제2 출입시간에는 제2 촬영이미지(455a)를 등록한다. 또한, 기준이미지 변경부(410)는 B 장소(440)에 대해 제1 출입시간에는 제3 촬영이미지(450b)를 등록하고, B 장소(440)에 대해 제4 촬영이미지(455b)를 등록한다. 또한, 기준이미지 변경부(410)는 C 장소(445)에 대해 제1 출입시간에는 제5 촬영이미지(450c)를 등록하고, C 장소(445)에 대해 제2 출입시간에는 제6 촬영이미지(455c)를 등록한다.
[301]
기준이미지 변경부(410)는 최적 기준이미지를 사용자 데이터베이스(12)에 저장하고, 입력 이미지 생성부(20), 얼굴인식부(30), 및 어레이 파일 생성부(45)를 통해 해당 등록사용자의 최적 기준이미지에 대한 신규 어레이 파일이 생성되게 한다. 생성된 신규 어레이 파일은 인터페이스부(65)를 통해 각 에지 디바이스(3)로 배포되게 된다.
[302]
한편, 에지 디바이스 관리부(50)는 최적임계치 산출부(415) 및 기준임계치 변경부(420)를 더 포함할 수 있다.
[303]
최적임계치 산출부(415)는 최적임계치를 산출한다. 구체적으로 최적임계치 산출부(415)는 인증결과들을 기초로 최적임계치를 산출한다.
[304]
최적임계치 산출부(415)는 에지 디바이스 데이터베이스(55)에 저장된 복수개의 인증결과를 중 복수개의 제1 인증결과를 추출한다. 이때, 제1 인증결과는 미등록사용자를 등록사용자로 잘못 승인하여 발생한 인증결과를 의미한다.
[305]
일 실시예에 있어서, 인증결과는 사용자의 얼굴이미지와 해당 사용자의 기준 얼굴이미지간의 유사도, 에지 디바이스가 설치된 장소정보, 출입시간 정보, 및 사용자 정보 중 적어도 하나를 포함할 수 있다.
[306]
여기서 최적임계치 산출부(415)는 에지 디바이스 데이터베이스(55)에 저장된 복수개의 인증결과에서 제1 인증결과들을 추출한다고 설명하였으나, 이는 하나의 실시예일뿐, 최적임계치 산출부(415)는 인증결과 수집부(400)로부터 복수개의 인증결과를 전달받아 제1 인증결과들을 추출할 수도 있다.
[307]
최적임계치 산출부(415)는 제1 인증결과들에 포함된 유사도들 중 최대값을 기초로 제1 최적임계치를 산출한다. 구체적으로 최적임계치 산출부(415)는 미등록사용자를 등록사용자로 잘못 승인한 제1 인증결과에 포함된 유사도들 중 최대값을 기초로 제1 최적임계치를 산출한다.
[308]
최적임계치 산출부(415)는 제1 인증결과에 포함된 유사도들 중 최대값을 제1 최적임계치로 산출한다. 일 실시예에 있어서, 최적임계치 산출부(415)는 제1 인증결과에 포함된 유사도들 중 최대값에 마진값을 합산한 결과값을 제1 최적임계치로 산출할 수 있다.
[309]
일 실시예에 있어서, 최적임계치 산출부(415)는 등록된 각 사용자 별로 오인식률을 산출하고, 오인식률에 비례하는 마진값을 산출할 수 있다. 이때, 오인식률은 미등록사용자를 등록사용자로 잘못 승인한 비율을 의미한다. 따라서, 해당 등록사용자의 마진값이 오인식률에 비례하게 산출될 수 있다.
[310]
이러한 실시예를 따르는 경우, 각 사용자 별로 오인식률에 따라 서로 다른 마진값이 합산된 제1 최적임계치가 산출될 수 있다.
[311]
예컨대, 사용자 a가 오인식률이 50%이고, 사용자 b가 오인식률이 30%이면, 최적임계치 산출부(415)는 사용자 a에 대한 마진값을 0.07로 산출할 수 있고, 사용자 b에 대한 마진값을 0.05로 산출할 수 있다.
[312]
일 실시예에 있어서, 최적임계치 산출부(415)는 등록사용자로 정상 승인된 제2 인증결과에 대응되는 제1 타입 사용자에 대해 최적임계치를 산출하지 않을 수 있다. 이때, 제1 타입 사용자는 등록사용자로 정상 승인된 제2 인증결과를 갖는 사용자를 의미한다.
[313]
일 실시예에 있어서, 최적임계치 산출부(415)는 제1 인증결과들을 제1 인증결과에 대응되는 제2 타입 사용자별로 분류하고, 제2 타입 사용자 별로 제1 최적임계치를 다른 값으로 산출할 수 있다. 이때, 제2 타입 사용자는 미등록사용자가 등록사용자로 잘못 승인되었을 때, 제1 인증결과를 갖는 사용자로서, 해당 미등록사용자의 얼굴이미지와 비교대상이 된 기준 얼굴이미지를 등록한 사용자를 의미한다.
[314]
예컨대, 사용자는 사용자 a, 사용자 b, 및 사용자 c가 존재하고, 제1 인증결과는 제1-a 인증결과, 제1-b 인증결과, 제1-c 인증결과, 제1-d 인증결과, 제1-e 인증결과, 및 제1-f 인증결과가 존재한다. 이때, 최적임계치 산출부(415)는 사용자 a에 대한 제1 인증결과를 분류하고, 사용자 b에 대한 제1 인증결과를 분류하고 사용자 c에 대한 제1 인증결과를 분류한다.
[315]
사용자 a에 대한 제1 인증결과는 제1-a 인증결과, 제1-b 인증결과, 제1-c 인증결과가 존재하고, 사용자 b에 대한 제1 인증결과는 제1-d 인증결과, 제1-e 인증결과, 제1-f 인증결과가 존재하는 경우, 최적임계치 산출부(415)는 사용자 a에 대한 제1 인증결과들을 제1-a 인증결과, 제1-b 인증결과, 제1-c 인증결과로 분류하고, 사용자 b에 대한 제1 인증결과들을 제1-d 인증결과, 제1-e 인증결과, 제1-f 인증결과로 분류한다.
[316]
최적임계치 산출부(415)는 사용자 a에 대한 제1 최적임계치를 제1-a 인증결과, 제1-b 인증결과, 제1-c 인증결과에 따라 산출하고, 사용자 b에 대한 제1 최적임계치를 제1-d 인증결과, 제1-e 인증결과, 제1-f 인증결과에 따라 산출하게 된다. 또한, 사용자 c에 대한 제1 인증결과가 존재하지 않으므로, 최적임계치 산출부(415)는 사용자 c에 대한 제1 최적임계치를 산출하지 않는다.
[317]
일 실시예에 있어서, 최적임계치 산출부(415)는 인증결과들 중 등록사용자를 미등록사용자로 잘못 승인한 제3 인증결과들에 포함된 유사도들 중 최소값을 기초로 제2 최적임계치를 추가로 산출할 수 있다. 이때, 제3 타입 사용자는 제3 인증결과를 갖는 등록사용자로서, 인증을 시도하였으나 미등록사용자로 잘못 승인된 사용자를 의미한다.
[318]
이에 따라 해당 사용자의 기준임계치가 제2 최적임계치로 낮아질 수 있어 오인식률이 낮아질 뿐만 아니라, 인증속도 또한 향상될 수 있다.
[319]
이러한 실시예를 따르는 경우, 최적임계치 산출부(415)는 제3 인증결과들을 제3 인증결과에 대응되는 제3 타입 사용자별로 분류하고, 제3 타입 사용자 별로 제2 최적임계치를 다른 값으로 산출 할 수도 있다.
[320]
일 실시예에 있어서, 최적임계치 산출부(415)는 제1 인증결과들을 제1 인증결과를 송신한 에지 디바이스(3)별로 분류하고, 에지 디바이스(3) 별로 제1 최적 임계치를 다른 값으로 산출할 수 있다. 이때, 최적임계치 산출부(415)는 제3 인증결과들에 대해서도 에지 디바이스(3) 별로 제2 최적 임계치를 다른 값으로 산출할 수도 있다.
[321]
일 실시예에 있어서, 최적임계치 산출부(415)는 제1 인증결과가 발생된 출입시간 별로 분류하고, 각 시간별로 제1 최적임계치를 다른 값으로 산출할 수 있다. 이때, 최적임계치 산출부(415)는 제3 인증결과들에 대해서도 각 시간 별로 제2 최적임계치를 다른 값으로 산출할 수 있다.
[322]
기준임계치 변경부(420)는 미리 정해진 기준임계치를 최적임계치 산출부(415)에 의해 산출된 최적임계치로 변경한다.
[323]
이와 같이 본 발명은 인증결과를 기초로 산출된 최적임계치로 기준임계치를 변경함으로써, 보안성능이 향상된다는 효과가 있다.
[324]
일 실시예에 있어서, 기준임계치 변경부(420)는 인증결과들 중 등록사용자로 정상 승인된 제2 인증결과에 대응되는 제1 타입 사용자에 대해 기준임계치를 유지하고, 제1 인증결과에 대응되는 제2 타입 사용자에 대해 기준임계치를 제1 최적임계치로 변경할 수 있다.
[325]
이러한 실시예를 따르는 경우, 미등록사용자를 등록사용자로 잘못 승인한 제1 인증결과가 존재하는 제2 타입 사용자에 대해서만 기준임계치가 최적임계치로 변경된다.
[326]
기준임계치 변경부(420)는 등록사용자를 미등록사용자로 잘못 승인한 제3 인증결과에 대응되는 제3 타입 사용자에 대해 기준임계치를 최적임계치 산출부(415)에 의해 산출된 제2 최적 임계치로 변경할 수 있다. 이때, 제3 타입 사용자는 등록사용자로서, 인증을 시도하였으나 미등록사용자로 잘못 승인된 사용자를 의미한다.
[327]
기준임계치 변경부(420)는 각 제2 타입 사용자의 기준임계치를 제2 타입 사용자 별로 서로 다른 값으로 산출된 제1 최적임계치로 각각 변경할 수 있고, 각 제3 타입 사용자의 기준임계치를 제3 타입 사용자 별로 서로 다른 값으로 산출된 제2 최적임계치로 각각 변경할 수 있다.
[328]
또한, 기준임계치 변경부(420)는 각 에지 디바이스의 기준임계치를 제2 타입 사용자들의 에지 디바이스 별로 산출된 제1 최적 임계치들로 변경할 수 있고, 제3 타입사용자들의 에지 디바이스 별로 산출된 제2 최적 임계치들로 변경할 수 있다.
[329]
또한, 기준임계치 변경부(420)는 각 출입시간의 기준임계치를 제2 타입 사용자들의 출입시간 별로 산출된 제1 최적 임계치들로 변경할 수 있고, 제3 타입 사용자들의 출입시간 별로 산출된 제2 최적임계치들로 변경할 수 있다.
[330]
기준임계치를 제1 최적임계치로 변경하는 경우, 기준임계치는 기존보다 상승될 수 밖에 없다. 왜냐하면 제1 최적임계치는 해당 미등록사용자의 승인 시 산출된 것이기 때문이다. 이에 따라 기준임계치 변경부(420)가 일괄적으로 기준임계치를 제1 최적임계치로 변경하는 경우 에지 디바이스(3)의 인증속도가 느려지게 된다.
[331]
하지만, 상술한 실시예와 같이, 본 발명에 따른 기준임계치 변경부(420)가 각 사용자. 에지 디바이스(3), 출입시간 별로 기준임계치를 변경함으로써 기준임계치가 변경될 필요할 때에만 변경하기 때문에, 에지 디바이스(3)의 인증속도가 향상될 수 있다.
[332]
예컨대, 에지 디바이스(3)가 a 등록사용자에 대해 인증을 수행할 때 기준임계치를 0.6로 하여 인증을 수행하고, b 등록사용자에 대해 인증을 수행할때에는 기준임계치를 0.5로하여 인증을 수행하며, c 등록사용자에 대해 인증을 수행할때에는 기준임계치를 0.4로 하여 인증을 수행하게 된다.
[333]
이러한 경우, 기준임계치 변경부(420)가 a 내지 c 등록사용자 모두에 대해 기준임계치를 0.6으로 설정하면 에지 디바이스(3)의 인증속도가 낮아지지만, a 내지 c 등록사용자 별로 서로 다르게 기준임계치를 설정함으로써 에지 디바이스(3)의 인증속도가 향상될 수 있다.
[334]
다만, 상술한 실시예는 정보단위로 서로 다르게 기준임계치를 설정함으로써 관리의 어려움이 발생할 수 있다. 따라서 변형된 실시예에 있어서, 기준임계치 변경부(420)는 제1 최적임계치로 기준임계치를 일괄적으로 변경한 후 에지 디바이스(3)의 인증속도가 미리 정해진 속도보다 낮으면, 각 사용자, 에지디바이스, 또는 출입시간 별로 결정된 제1 최적임계치로 기준임계치를 변경할 수 있다.
[335]
구체적으로 기준임계치 변경부(420)는 기준임계치를 제1 최적임계치로 일괄적으로 변경한다. 그리고 기준임계치 변경부(420)는 제1 최적임계치로 변경된 기준임계치로 인증을 수행하는 에지 디바이스(3)의 인증속도가 미리 정해진 속도보다 낮은지 판단한다. 기준 임계치 변경부(420)는 에지 디바이스(3)의 인증속도가 미리 정해진 속도보다 높으면 변경된 기준임계치를 유지한다. 하지만, 에지 디바이스(3)의 인증속도가 미리 정해진 속도보다 낮으면, 기준임계치 변경부(420)는 각 사용자, 에지 디바이스(3), 출입시간 중 적어도 하나에 따라 기준임계치를 제1 최적임계치로 변경한다.
[336]
일예로, 기준 임계치 변경부(420)는 제1 최적 임계치로 변경 시 사용자에 대한 인증을 수행하는 에지 디바이스(3)의 인증속도를 산출하고, 산출된 인증속도가 미리 정해진 기준속도보다 낮으면 인증결과들 중 등록사용자로 정상 승인된 제2 인증결과에 대응되는 제1 타입 사용자에 대해 기준임계치를 유지하고, 제1 인증결과에 대응되는 제2 타입 사용자에 대해 기준임계치를 제1 최적임계치로 변경할 수 있다.
[337]
이를 예로써 설명한다.
[338]
미리 정해진 기준임계치가 0.2이고, a 내지 e 등록사용자가 존재하며, 제1 최적임계치는 0.6으로 산출되고, a 등록사용자에 대한 제1 최적임계치는 0.6이고, b 등록사용자에 대한 제1 최적임계치는 0.5이며, c 등록사용자에 대한 제1 최적임계치는 0.4 인 경우, 기준임계치 변경부(420)는 a 내지 e 등록사용자에 대해 기준임계치(0.2)를 0.6으로 변경한다. 그리고, 에지 디바이스(3)의 인증속도가 미리 정해진 속도보다 낮으면, 기준임계치 변경부(420)는 a 등록사용자에 대한 기준임계치를 0.6으로 변경하고, b 등록사용자에 대한 기준임계치를 0.5로 변경하며, c 등록사용자에 대한 기준임계치를 0.4로 변경하고, d 등록사용자 및 e 등록사용자에 대한 기준임계치는 0.2로 유지한다.
[339]
이와 같이 본원발명은 에지 디바이스(3)의 인증속도에 따라 기준임계치를 일괄적으로 변경하거나 사용자, 에지 디바이스(3), 출입시간별로 변경함으로써, 보안성능을 향상시킬 수 있을 뿐만 아니라, 에지 디바이스(3)의 인증속도 또한 향상시킬 수 있다는 효과가 있다.
[340]
한편, 기준임계치 변경부(420)는 변경된 기준임계치를 각 에지 디바이스(3)로 배포한다. 구체적으로 기준임계치 변경부(420)는 인터페이스부(65)를 통해 변경된 기준임계치를 각 에지 디바이스(3)로 배포할 수 있다. 이에 따라 각 에지 디바이스(3)는 변경된 기준임계치로 인증을 수행하게 된다.
[341]
출입권한정보 관리부(60)는 각 사용자 별로 부여되어 있는 출입권한정보를 변경하거나 새로운 출입권한정보를 추가한다. 일 실시예에 있어서, 출입권한정보 관리부(60)는 각 사용자 별로 출입권한정보를 별개로 부여하거나 각 사용자가 속한 조직 단위로 출입권한정보를 부여할 수 있다.
[342]
한편 본 발명에 따른 안면인식서버(2)는 스케줄러(63)를 더 포함할 수 있다. 스케줄러(63)는 미리 정해진 기간이 도래하거나 미리 정해진 이벤트가 발생할 때마다 일괄적으로 신규 사용자를 등록하는 기능을 수행한다. 예컨대, 상술한 실시예에 있어서는 사용자 등록부(10)가 사용자로부터 등록요청이 발생하는 경우 신규 사용자의 등록절차를 수행하는 것으로 설명하였지만, 안면인식서버(2)가 스케줄러(63)를 포함하는 경우 미리 정해진 시간 단위로 또는 미리 정해진 이벤트가 발생하면 스케줄러(63)가 사용자 등록부(10), 입력 이미지 생성부(20), 및 얼굴인식부(30)의 동작을 개시시킴으로써 신규 사용자 등록절차가 자동으로 수행되도록 할 수 있다. 또한, 스케줄러(63)는 에지 디바이스 관리부(50)에 의해 기준이미지가 최적 기준이미지로 변경되면, 입력 이미지 생성부(20), 및 얼굴인식부(30)의 동작을 개시시킨다.
[343]
인터페이스부(65)는 에지 디바이스 관리부(50)로부터 변경된 기준임계치 및 어레이 파일 생성부(45)에 의해 생성된 어레이 파일을 미리 정해진 방식으로 암호화하여 각 에지 디바이스(3)로 전송한다. 일 실시예에 있어서, 인터페이스부(65)는 공개키 기반의 암호화 알고리즘을 이용하여 어레이 파일을 암호화하여 각 에지 디바이스(3)로 전송할 수 있다.
[344]
한편, 인터페이스부(65)는 암호화된 기준임계치 및 어레이 파일을 에지 디바이스(3)와 약속된 프로토콜에 따라 에지 디바이스(3)로 전송할 수 있다.
[345]
또한, 인터페이스부(65)는 각 에지 디바이스(3)로부터 미리 정해진 기간 마다 인증결과를 수신하여 에지 디바이스(3)로 제공할 수 수 있다.
[346]
얼굴인식모델 트레이닝부(70)는 컨벌루션 신경망을 기초로 얼굴인식모델(40)을 생성하고, 생성된 얼굴인식모델(40)을 트레이닝시킨다. 구체적으로, 얼굴인식모델 트레이닝부(70)는 얼굴인식모델(40)을 구성하는 컨벌루션 신경망을 지속적으로 트레이닝킴으로써 최적의 얼굴인식모델을 생성한다.
[347]
이를 위해, 얼굴인식모델 트레이닝부(70)는 얼굴이미지 추출부(75)를 트레이닝시키는 얼굴이미지 추출 트레이닝부(500), 특징벡터 추출부(85)를 트레이닝시키는 특징벡터 추출 트레이닝부(505), 실물이미지 판단부(80)를 트레이닝시키는 실물이미지 판단 트레이닝부(510) 및 특징벡터 추출부(85)의 오차를 감소시키는 오차감소부(515)를 포함한다.
[348]
얼굴이미지 추출 트레이닝부(500)는 얼굴이미지 추출부(75)를 구성하는 제1 내지 제3 얼굴탐지부(90~100)를 학습 이미지를 이용하여 트레이닝시킨다. 구체적으로, 얼굴이미지 추출 트레이닝부(70)는 도 4b에 도시된 바와 같은 구조를 갖는 제1 얼굴탐지부(90)에 미리 정해진 크기를 갖는 복수개의 학습 이미지를 입력하여 학습 이미지에서 얼굴영역이 포함될 제1 확률값 및 얼굴영역 좌표를 산출하고, 산출된 제1 확률값 및 얼굴영역 좌표를 역전파(Back Propagation) 알고리즘에 따라 제1 얼굴탐지부(90)에 피드백함으로써 제1 얼굴탐지부(90)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신한다.
[349]
도 4b에서는 제1 얼굴탐지부(90)가 해당 이미지가 얼굴영역을 포함할 제1 확률값과 해당 이미지 상에서 얼굴영역 좌표만을 산출하는 것으로 설명하였기 때문에 얼굴이미지 추출 트레이닝부(500)는 산출된 제1 확률값 및 얼굴영역 좌표를 역전파 알고리즘을 이용하여 제1 얼굴탐지부(90)에 피드백하여 제1 얼굴탐지부(90)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신하는 것으로 설명하였다.
[350]
하지만, 다른 실시예에 있어서 얼굴이미지 추출 트레이닝부(500)는 랜드마크 좌표 추출의 정확도를 향상시키기 위해 제1 얼굴탐지부(90)의 트레이닝시 제1 얼굴탐지부(90)로부터 랜드마크 좌표를 추가로 산출하고, 산출된 랜드마크 좌표를 제1 확률값 및 얼굴영역 좌표와 함께 역전파 알고리즘을 통해 제1 얼굴탐지부(90)에 피드백함으로써 제1 얼굴탐지부(90)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신할 수도 있을 것이다.
[351]
이러한 실시예에 따르는 경우 제1 얼굴탐지부(90)는 랜드마크 좌표를 획득하기 위해 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵에 차원감소 필터를 적용함으로써 제3 컨벌루션 연산부(110c)에서 출력되는 피쳐맵의 차원을 10차원으로 감소시키는 차원 감소부(미도시)를 추가로 포함할 수 있다. 이때, 10차원으로 출력되는 10개의 값이 랜드마크인 2개의 눈의 좌표, 코의 좌표, 좌측 입 꼬리의 좌표, 및 우측 입 꼬리의 좌표로 결정된다.
[352]
또한, 얼굴이미지 추출 트레이닝부(500)는 도 4c에 도시된 바와 같은 구조를 갖는 제2 얼굴탐지부(95)에 미리 정해진 크기를 갖는 복수개의 학습 이미지를 입력하여 학습 이미지에서 얼굴영역이 포함될 제2 확률값 및 얼굴영역 좌표를 산출하고, 산출된 제2 확률값 및 얼굴영역 좌표를 역전파 알고리즘을 이용하여 제2 얼굴탐지부(95)에 피드백함으로써 제2 얼굴탐지부(95)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신한다. 이때, 제2 얼굴탐지부(95)에 입력되는 학습 이미지는 제1 얼굴탐지부(90)에 의해 얼굴영역이 포함된 것으로 결정된 학습이미지로 선정될 수 있다.
[353]
도 4c에서는 제2 얼굴탐지부(95)가 해당 이미지가 얼굴영역을 포함하는 확률과 해당 이미지 상에서 얼굴영역 좌표만을 산출하는 것으로 설명하였기 때문에 얼굴이미지 추출 트레이닝부(500)는 산출된 제2 확률값 및 얼굴영역 좌표를 역전파 알고리즘을 이용하여 제2 얼굴탐지부(95)에 피드백하여 제2 얼굴탐지부(95)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신하는 것으로 설명하였다.
[354]
하지만, 다른 실시예에 있어서 얼굴이미지 추출 트레이닝부(500)는 랜드마크 좌표 추출의 정확도를 향상시키기 위해 제2 얼굴탐지부(95)의 트레이닝시에도 제2 얼굴탐지부(95)로부터 랜드마크 좌표를 추가로 산출하고, 산출된 랜드마크 좌표를 제2 확률값 및 얼굴영역 좌표와 함께 역전파 알고리즘을 통해 제2 얼굴탐지부(95)에 피드백함으로써 제2 얼굴탐지부(95)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신할 수도 있을 것이다.
[355]
이러한 실시예에 따르는 경우 제2 얼굴탐지부(95)는 랜드마크 좌표를 획득하기 위해 제1 차원증가부(140)에서 출력되는 피쳐맵에 차원감소 필터를 적용함으로써 제1 차원증가부(140)에서 출력되는 피쳐맵의 차원을 10차원으로 감소시키는 차원 감소부(미도시)를 추가로 포함할 수 있다. 이때, 10차원으로 출력되는 10개의 값이 랜드마크인 2개의 눈의 좌표, 코의 좌표, 좌측 입 꼬리의 좌표, 및 우측 입 꼬리의 좌표로 결정된다.
[356]
또한, 얼굴이미지 추출 트레이닝부(500)는 도 4d에 도시된 바와 같은 구조를 갖는 제3 얼굴탐지부(100)에 미리 정해진 크기를 갖는 복수개의 학습 이미지를 입력하여 학습 이미지에 얼굴영역이 포함될 제3 확률값, 얼굴영역 좌표, 및 랜드마크의 좌표를 산출하고, 산출된 제3 확률값, 얼굴영역 좌표, 및 랜드마크의 좌표를 역전파 알고리즘을 이용하여 제3 얼굴탐지부(100)에 피드백함으로써 제3 얼굴탐지부(100)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신한다. 이때, 제3 얼굴탐지부(100)에 입력되는 학습 이미지는 제2 얼굴탐지부(95)에 의해 얼굴영역이 포함된 것으로 결정된 학습이미지로 선정될 수 있다.
[357]
특징벡터 추출 트레이닝부(505)는 도 13 내지 도 15에 도시된 바와 같은 구성을 갖는 특징벡터 추출부(85)를 학습 이미지를 이용하여 트레이닝시킨다. 구체적으로, 특징벡터 추출 트레이닝부(505)는 도 13 내지 도 15에 도시된 바와 같은 구조를 갖는 특징벡터 추출부(85)에 복수개의 학습 이미지를 미리 정해진 배치단위로 입력함으로써 각 학습이미지로부터 특징벡터를 추출한다.
[358]
특징벡터 추출 트레이닝부(505)는 추출된 특징벡터들을 미리 정해진 분류함수에 적용함으로써 해당 학습 이미지가 특정 클래스에 포함될 확률값을 예측하고, 예측된 확률값(이하, '예측값'이라 함)과 실제값간의 오차를 연산하여 그 결과를 역전파 알고리즘을 이용하여 특징벡터 추출부(85)에 피드백함으로써 특징벡터 추출부(85)에 적용된 컨벌루션 필터들의 필터계수 및 가중치를 갱신한다.
[359]
일 실시예에 있어서, 특징벡터 추출 트레이닝부(505)는 실물이미지 판단부(80)의 실물 특징벡터 추출부(200)를 학습이미지를 이용하여 트레이닝 시킬 수 있다. 이하에서는 특징벡터 추출 트레이닝부(505)가 특징벡터 추출부(85)를 트레이닝시키는 것과 실물 특징벡터 추출부(200)를 트레이닝 시키는 것이 동일하므로, 실물 특징벡터 추출부(200)를 트레이닝 시키는 것에 대한 구체적인 설명은 생략한다.
[360]
실물이미지 판단 트레이닝부(510)는 실물이미지 판단부(80)를 트레이닝 시킨다. 구체적으로 실물이미지 판단 트레이닝부(510)는 RGB 신경망 네트워크, 깊이 신경망 네트워크, 반사 신경망 네트워크, 및 실물이미지 판단부(80)의 판단부(210)가 이용하는 이진분류기를 학습시킨다.
[361]
실물이미지 판단 트레이닝부(510)는 이진분류기에 실물이미지 및 페이크 이미지를 학습시키고, 추가로, 깊이 신경망 네트워크를 통과하여 실물이미지로부터 분리된 제1 깊이이미지와 페이크이미지로부터 분리된 제2 깊이이미지, 반사 신경망 네트워크를 통과하여 실물이미지로부터 분리된 제1 반사이미지와 페이크이미지로부터 분리된 제2 반사이미지를 학습시킨다. 이때, 페이크 이미지로부터 추출된 제2 깊이이미지는 RGB를 (0,0,0)으로 하여 학습시키고, 실물이미지로부터 추출된 제1 반사이미지는 RGB를 (0,0,0)으로 하여 학습시킨다.
[362]
한편, 본 발명에 따른 얼굴인식모델 트레이닝부(70)는 오차감소부(515)를 통해 특징벡터 추출시 발생되는 오차를 더욱 감소시킴으로써 특징벡터 추출부(85)의 성능을 더욱 향상시킬 수 있다. 실물이미지 판단부(80)의 실물 특징벡터 추출부(200)도 특징벡터 추출부(85)와 동일하게 오차감소부(515)를 통해 성능을 향상시킬 수 있다. 따라서, 오차감소부(515)가 특징벡터 추출부(85)의 오차를 감소시키는 내용으로 설명하고, 오차감소부(515)가 실물 특징벡터 추출부(200)의 오차를 감소시키는 내용은 생략하도록 한다.
[363]
구체적으로, 오차감소부(515)는 특징벡터 추출 트레이닝부(505)가 특징벡터 추출부(85)를 트레이닝시키는 과정에서 특징벡터 추출부(85)를 통해 추출된 특징벡터들에 기초한 예측값과 실제값간의 오차를 감소시킨다. 구체적으로, 오차감소부(515)는 특징벡터 추출부(85)가 학습 이미지로부터 추출한 특징벡터들을 기초로 예측값과 실제값간의 오차를 계산하고, 오차가 감소될 수 있도록 각 학습 이미지를 2차원 각도 평면상에 배치하고 배치결과에 따른 확률값을 이용하여 특징벡터 추출 트레이닝부(505)가 특징벡터 추출부(85)를 트레이닝시킬 수 있도록 한다.
[364]
본 발명에 따른 얼굴인식모델 트레이닝부(70)가 오차감소부(515)를 통해 오차감소가 되도록 특징벡터 추출부(279)를 학습시키는 이유는 도 20에 도시된 바와 같이 일반적인 얼굴인식모델의 경우 동일인임에도 불구하고 얼굴이 촬영된 조명이나 환경이 변화하는 경우 동일인임을 구분해 내지 못하는 것과 같은 오차가 발생하기 때문에, 이러한 오차감소부(515)를 통해 얼굴인식의 오차가 감소될 수 있는 특징벡터가 추출되도록 특징벡터 추출부(85)를 트레이닝 시키기 위한 것이다.
[365]
본 발명의 일 실시예에 따른 오차감소부(515)는 도 2에 도시된 바와 같이 얼굴이미지 배치부(520) 및 확률산출부(525)를 포함한다.
[366]
얼굴이미지 배치부(520)는 학습 이미지에 대해 특징벡터 추출부(85)가 추출한 복수개의 특징벡터들을 기초로 각 학습 이미지들을 2차원 각도 평면 상에 배치한다. 구체적으로, 얼굴이미지 배치부(520)는 서로 다른 클래스에 포함되는 학습 이미지들간의 코사인 유사도를 산출하고, 코사인 유사도에 따라 각 학습 이미지들 간의 이격각도인 기준각도를 산출함으로써 학습 이미지들을 2차원 각도 평면상에 배치하게 된다.
[367]
본 발명에서 얼굴이미지 배치부(520)가 각 학습 이미지들의 특징벡터를 기초로 산출되는 각 학습 이미지들 간의 거리에 따라 학습 이미지를 벡터공간에 배치하게 되면 도 21에 도시된 바와 같이 각 학습 이미지들 간에 중첩되는 영역(900)이 발생할 수 밖에 없어, 학습시 동일인과 타인을 명확하게 구분하기가 어렵다는 한계가 있다.
[368]
따라서, 본 발명에서는 얼굴이미지 배치부(520)가 서로 다른 클래스에 포함되는 학습 이미지들 사이의 각도를 코사인 유사도를 통해 산출하고, 산출된 각도를 기초로 각 학습 이미지를 2차원 각도 평면상에 배치하는 것이다.
[369]
확률 산출부(525)는, 2차원 각도 평면 상에서 얼굴이미지 배치부(520)에 의해 산출된 기준각도에 가산될 마진각도를 가변시키고, 가변되는 마진각도 별로 각 학습 이미지들이 해당 클래스에 포함될 확률을 산출한다.
[370]
구체적으로, 확률 산출부(525)는 도 22에 도시된 바와 같이 각 학습 이미지 간의 기준각도(θ 12)에 가산되는 마진각도(P1, P2)를 가변시키면서 서로 중첩되는 특성을 갖는 학습 이미지들이 2차원 각도 평면 상에서 이격되도록 한다. 일 실시예에 있어서, 마진각도(P1, P2)는 0보다 크고 90도 보다 작은 범위 내에서 학습률(Learning Rate)에 따라 결정될 수 있다.
[371]
예컨대, 학습률이 증가하면 마진각도도 그에 따라 증가하고 학습률이 감소하면 마진각도도 그에 따라 감소하도록 설정될 수 있다. 이때, 확률 산출부(525)는 마진각도를 미리 정해진 기준 단위만큼 가변시킬 수 있다.
[372]
확률산출부(525)에 의해 마진각도가 기준각도에 가산되면 도 23에 도시된 바와 같이, 벡터공간 내에서 서로 중첩되는 특징을 가졌던 학습 이미지들이 서로 이격되도록 배치된다는 것을 알 수 있다.
[373]
확률산출부(525)는 기준각도에 가산되는 마진각도 별로 각 학습 이미지들이 해당 클래스에 포함될 확률을 산출하고, 산출된 확률값을 특징벡터 추출 트레이닝부(505)로 제공함으로써 특징벡터 추출 트레이닝부(505)가 확률산출부(525)에 의해 산출된 확률값을 기초로 특징벡터 추출부(85)를 학습시킬 수 있도록 한다. 즉, 특징벡터 추출 트레이닝부(505)는 확률산출부(288)에 의해 산출된 확률값을 기초로 특징벡터 추출부(85)에 적용된 컨벌루션 필터들의 계수 및 가중치 중 적어도 하나를 갱신함으로써 특징벡터 추출부(85)를 학습시키게 된다.
[374]
일 실시예에 있어서, 확률 산출부(525)는 아래의 수학식 1을 이용하여 각 마진각도별로 각 학습 이미지들이 해당 클래스에 포함될 확률을 산출할 수 있다.
[375]
[수식1]


[376]
수학식 1에서 x는 기준각도를 나타내고 p는 상기 마진각도를 나타내며, n은 클래스의 개수를 나타낸다.
[377]
일 실시예에 있어서, 확률 산출부(525)는 확률 산출부(525)에 의해 산출된 확률값을 기초로 특징벡터 추출 트레이닝부(505)에 의해 트레이닝된 특징벡터 추출부(85)에 미리 정해진 테스트 얼굴이미지를 적용했을 때 예측값과 실제값간의 오차가 기준치 이하가 될 때까지 마진각도를 계속하여 가변시킬 수 있다.
[378]
즉, 확률 산출부(525)는 트레이닝된 특징벡터 추출부(85)에 미리 정해진 테스트 얼굴이미지를 적용했을 때 산출되는 예측값과 실제값간의 오차가 기준치 이하가 되는 시점의 마진각도를 최종 마진각도로 결정한다. 이때, 예측값과 실제값간의 오차는 크로스 엔트로피(Cross Entropy) 함수를 이용하여 산출할 수 있다.
[379]
상술한 바와 같은 오차감소부(515)를 통해 오차감소가 수행되면 도 24에 도시된 바와 같이, 서로 다른 환경이나 다른 조명에서 촬영된 경우라 하더라도 동일인을 정확하게 분류해 낼 수 있게 된다.
[380]
상술한 실시예에 있어서, 얼굴인식모델 트레이닝부(70)를 구성하는 얼굴이미지 추출 트레이닝부(500), 특징벡터 추출 트레이닝부(505), 실물이미지 판단 트레이닝부(510) 및 오차감소부(515)는 알고리즘 형태의 소프트웨어로 구현되어 안면인식서버(2)에 탑재될 수 있다.
[381]
다시 도 1을 참조하면, 에지 디바이스(3)는 특정 장소 마다 배치되어 안면인식서버(2)에 의해 배포되는 얼굴인식모델(40)을 이용하여 해당 장소로의 출입을 희망하는 타겟사용자의 얼굴을 인식하고, 인식결과를 기초로 타겟사용자의 출입을 인증하는 기능을 수행한다.
[382]
본 발명에서, 안면인식서버(2)가 타겟 사용자의 얼굴인식 및 인증을 수행하지 않고 에지 디바이스(3)가 타겟 사용자의 얼굴인식 및 인증을 수행하도록 한 이유는 타겟 사용자의 얼굴인식 및 인증을 안면인식서버(2)에서 수행하는 경우 안면인식서버(2) 또는 네트워크에서 장애가 발생되면 얼굴인식 및 인증이 수행될 수 없을 뿐만 아니라 사용자의 수가 증가함에 따라 고가의 안면인식서버(2)의 증설이 요구되기 때문이다.
[383]
이에 따라 본 발명은 에지 컴퓨팅(Edge Computing) 방식을 적용하여 에지 디바이스(3)에서 타겟 사용자의 얼굴인식 및 인증을 수행하도록 함으로써 안면인식서버(2) 또는 네트워크에 장애가 발생하더라도 정상적으로 얼굴인식 서비스를 제공할 수 있어 서비스 제공 신뢰도를 향상시킬 수 있고, 사용자의 수가 증가하더라도 고가의 안면인식서버(2)를 증설할 필요가 없어 안면인식시스템(1) 구축비용을 절감할 수 있게 된다.
[384]
이하, 본 발명에 따른 에지 디바이스(3)의 구성을 도 13을 참조하여 보다 구체적으로 설명한다.
[385]
도 25는 본 발명의 제1 실시예에 따른 에지 디바이스의 구성을 개략적으로 보여주는 블록도이다. 도 25에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 에지 디바이스(3)는 제1 촬영부(1210), 입력 이미지 생성부(1250), 얼굴인식부(1300), 인증부(1310), 얼굴인식모델(1320), 어레이 파일 업데이트부(1330), 메모리(1340), 및 인터페이스부(1350)를 포함한다.
[386]
제1 촬영부(1210)는 인증대상이 되는 타겟 사용자가 접근하면, 타겟 사용자를 촬영하여 촬영 이미지를 생성한다. 제1 촬영부(1210)는 생성된 촬영이미지를 입력 이미지 생성부(1250)로 전송한다.
[387]
입력 이미지 생성부(1250)는 제1 촬영부(1210)로부터 전송된 타겟 사용자의 촬영이미지로부터 얼굴인식에 이용될 입력 이미지를 생성한다. 구체적으로 입력 이미지 생성부(1250)는 하나의 타겟 사용자의 촬영이미지를 미리 정해진 단계까지 다운샘플링하거나 업샘플링함으로써 하나의 타겟 사용자의 촬영이미지로부터 해상도가 서로 다른 복수개의 타겟 사용자의 이미지들을 생성한다.
[388]
예컨대, 입력 이미지 생성부(1250)는 타겟 사용자의 이미지에 가우시안 피라미드를 적용함으로써 다운 샘플링된 타겟 사용자 이미지를 생성하거나, 타겟 사용자 이미지에 라플라시안 피라미드를 적용함으로써 업샘플링된 타겟 사용자 이미지를 생성할 수 있다.
[389]
해상도가 서로 다른 복수개의 타겟 사용자 이미지가 생성되면, 입력 이미지 생성부(1250)는 각각의 타겟 사용자 이미지에 대해, 타겟 사용자 이미지 상에서 미리 정해진 픽셀크기의 윈도우를 이동시켜가면서 획득되는 복수개의 이미지를 입력 이미지로 생성한다. 입력 이미지 생성부(1250)는 생성된 입력 이미지를 얼굴인식부(1300)로 입력한다.
[390]
얼굴인식부(1300)는 입력 이미지 생성부(1250)로부터 타겟 사용자의 입력 이미지가 수신되면 수신된 타겟 사용자의 입력 이미지를 안면인식서버(2)로부터 배포된 얼굴인식모델(1320)에 입력하여 타겟 얼굴이미지를 추출하고, 추출된 타겟 얼굴이미지로부터 사람을 촬영한 실물이미지 여부를 판단한 후, 실물이미지로 판단되면, 해당 얼굴이미지에 대해 타겟 특징벡터를 추출한다. 특히, 안면인식서버(2)로부터 배포되는 얼굴인식모델(1320)은 상술한 오차감소부(515)를 통한 학습에 의해 오차가 감소된 것일 수 있다.
[391]
또한, 얼굴인식모델(1320)은 미리 정해진 주기마다 업데이트될 수 있다. 일 예로, 에지 디바이스(3)는 안면인식서버(2)에 의해 얼굴인식모델(1320)이 업데이트될 때마다 안면인식서버(2)로부터 새로운 얼굴인식모델(1320)을 배포받음으로써 기 배포된 얼굴인식모델(1320)을 새로운 얼굴인식모델(1320)로 업데이트할 수 있다.
[392]
타겟 얼굴이미지 추출 및 타겟 특징벡터 추출에 이용되는 얼굴인식모델(1320)은 도 4 내지 도 8에 도시된 얼굴인식모델(40)과 동일하므로 이에 대한 구체적인 설명은 생략한다.
[393]
또한, 얼굴인식부(1300)가 얼굴인식모델(1320)을 이용하여 타겟 사용자의 입력 이미지로부터 타겟 얼굴이미지 추출, 실물이미지 판단 및 타겟 특징벡터를 추출하는 방법은 안면인식서버(2)에 포함된 얼굴인식부(30)가 얼굴인식모델(40)을 이용하여 얼굴이미지 및 특징벡터를 추출하는 것과 동일하므로 이에 대한 구체적인 설명은 생략한다.
[394]
인증부(1310)는 얼굴인식부(1300)에 의해 획득된 타겟 특징벡터와 안면인식서버(2)로부터 수신된 어레이 파일에 포함된 특징벡터들을 비교하여 유사도를 산출하고, 산출된 유사도를 기준임계치와 비교하여 타겟 사용자가 해당 장소에 출입이 가능한 등록사용자인지 여부를 인증한다. 이때, 인증부(1310)는 업데이트부(1330)에 의해 변경된 최적 기준이미지를 포함하는 어레이 파일로 타겟사용자를 인증할 수 있다. 인증부(1310)는 미리 정해진 주기에 따라 안면인식서버(2)로부터 최적임계치로 변경된 기준임계치를 수신하고, 이를 유사도와 비교하여 타겟 사용자를 인증할 수 있다.
[395]
이하, 인증부(1310)가 타겟 사용자를 인증하는 방법에 대해 구체적으로 설명한다.
[396]
먼저, 인증부(1310)는 어레이 파일에 포함된 각 어레이 마다 해당 어레이에 포함된 특징벡터에서 타겟 특징벡터를 동일 인덱스 별로 감산하여 제곱한 제1 결과값을 산출한다. 인증부(1310)는 인덱스 별로 산출된 제1 결과값을 합산하여 제2 결과값을 산출하고, 미리 정해진 기준값에서 제2 결과값을 감산한 제3 결과값을 유사도로 산출한다.
[397]
인증부(1310)는 어레이 파일에 포함된 어레이들 중 유사도가 가장 큰 어레이에 매핑되어 있는 사용자가 타겟사용자와 가장 유사한 사용자인 것으로 결정한다. 이때, 인증부(1310)는 유사도가 기준임계치 이상인 경우 타겟사용자가 정당한 권한을 가진 사용자로 인증하게 되고, 이에 따라 타겟 사용자가 해당 장소의 출입이 허가될 수 있다.
[398]
일 실시예에 있어서, 기준임계치는 에지 디바이스(3)가 설치되는 장소의 보안레벨에 따라 차등 설정될 수 있다. 예컨대, 에지 디바이스(3)가 높은 보안 레벨이 적용되는 지역에 설치되는 경우 기준임계치는 높게 설정될 수 있고 에지 디바이스(3)가 낮은 보안 레벨이 적용되는 지역에 설치되는 경우 기준임계치는 낮게 설정될 수 있다.
[399]
이하, 인증부(1310)가 얼굴인식부(1300)에 의해 획득된 타겟 특징벡터와 어레이 파일에 포함된 특징벡터들을 비교하여 타겟 사용자가 해당 층에 출입이 가능한 정당한 사용자인지 여부를 인증하는 방법을 예를 들어 설명하기로 한다.
[400]
도 26은 인증부가 타겟 사용자를 인증하는 방법을 예시적으로 보여주는 도면이다. 도 26에 도시된 바와 같이, 어레이 파일은 각 사용자의 특징벡터들을 포함하는 어레이가 각 로우 별로 배치되어 있다. 예컨대, 1번째 로우에는 제1 사용자에 대한 특징벡터들이 순차적으로 배치되어 있고, 2번째 로우에는 제2 사용자에 대한 특징벡터들이 순차적으로 배치되어 있다. 이때, 각 사용자의 특징벡터들은 인덱스 순서에 따라 하나의 로우에 배치되어 있다.
[401]
도 26a에 도시된 바와 같이 인증부(1310)는 어레이 파일(1410)의 각 어레이의 특징벡터들과 타겟 특징벡터들 간의 차이값을 인덱스 별로 산출하고, 도 26b에 도시된 바와 같이 산출된 차이값들을 제곱하여 제1 결과값을 산출하며, 도 26c에 도시된 바와 같이 각 어레이 별로 제1 결과값들을 모두 합산하여 제2 결과값을 산출한다.
[402]
이후, 도 26d에 도시된 바와 같이, 인증부(1310)는 미리 정해진 기준값(예컨대, 1)에서 제2 결과값을 감산함으로써 제3 결과값인 유사도를 산출하고, 산출된 유사도들 중 제일 큰 값인 0.310528에 해당하는 어레이에 매핑되어 있는 사용자를 타겟 사용자와 가장 유사한 사용자로 결정한다. 또한, 인증부(1310)는 가장 큰 값으로 결정된 유사도가 기준임계치보다 큰 값이므로 타겟 사용자를 해당 어레이에 매핑되어 있는 사용자로 최종 인증한다.
[403]
인증부(1310)가 타겟 사용자를 인증하는 방식을 수학식으로 표현하면 아래의 수학식2와 같이 표현할 수 있다.
[404]
[수식2]


[405]
수학식 2에서 Z는 제3 결과값인 유사도를 나타내고, R은 미리 정해진 기준값을 나타내며, Xi는 n개의 특징벡터들 중 i번째 인덱스에 해당하는 특징벡터를 나타내고 Yi는 n개의 특징벡터들 중 i번째 인덱스에 해당하는 타겟 특징벡터를 나타낸다.
[406]
인증부(1310)는 미리 정해진 주기에 따라 안면인식서버(2)로부터 변경된 기준임계치를 수신하여 갱신하고, 갱신된 기준임계치를 이용하여 타겟 사용자를 인증한다.
[407]
얼굴인식모델(1320)은 안면인식서버(2)에 의해 생성되어 배포된 것으로서, 얼굴인식모델(1320)은 안면인식서버(2)에 의해 얼굴인식모델(40)이 트레이닝되어 갱신될 때마다 갱신된 얼굴인식모델(40)로 대체된다. 이때, 얼굴인식모델(1320)은 인터페이스부(1350)를 통해 안면인식서버(2)로부터 수신될 수 있다.
[408]
업데이트부(1330)는 인터페이스부(1350)를 통해 안면인식서버(2)로부터 어레이 파일 또는 기준임계치가 수신되면 이를 제1 메모리(1342)에 업로드하여 인증부(1310)가 이를 이용하여 타겟 사용자를 인증할 수 있도록 한다. 특히, 본 발명에 따른 업데이트부(1330)는 어레이 파일 또는 기준임계치를 동적으로 로딩할 수 있다.
[409]
구체적으로, 업데이트부(1330)는 제1 메모리(1342)에 기존 어레이 파일이 로딩되어 있을 때, 안면인식서버(2)로부터 신규 어레이 파일이 수신되는 경우 신규 어레이 파일을 제2 메모리(1344)에 로딩하고, 제2 메모리(1344)에 신규 레이 파일의 로딩이 완료되면 제1 메모리(1342)에 로딩되어 있는 기존 어레이 파일을 제2 메모리(1344)에 로딩되어 있는 신규 어레이 파일로 대체한다. 기준임계치도 이와 동일하다.
[410]
본 발명에 따른 업데이트부(1330)가 상술한 바와 같이 어레이 파일을 동적 로딩하는 이유는 인증부(1310)가 타겟 사용자에 대한 인증처리를 수행함과 동시에 어레이 파일 업데이트부(1330)가 신규 어레이 파일을 업데이트할 수 있도록 함으로써 에지 디바이스(3)가 새롭게 업데이트된 어레이 파일을 기초로 실시간으로 얼굴인식이 수행될 수 있도록 하기 위함이다.
[411]
업데이트부(1330)는 미리 정해진 업데이트 주기마다 최적 기준이미지로부터 추출된 특징벡터들을 포함하는 복수개의 어레이로 구성된 신규 어레이 파일을 안면인식서버(2)로부터 수신하고, 기존 어레이 파일을 신규 어레이 파일로 변경한다.
[412]
일 실시예에 있어서, 업데이트부(1330)는 미리 정해진 시간동안 획득된 제2 인증결과들을 기초로 사용자 별로 인식시도 대비 승인회수의 비율을 산출하고, 산출된 비율이 미리 정해진 기준치 이상이면 업데이트 주기를 감소시키고 기준치 이하이면 업데이트 주기를 증가시킨다.
[413]
또한 업데이트부(1330)는 인식시도 대비 승인회수의 변화율에 따라 업데이트 주기를 가변시킬수 있다. 업데이트 부(1330)는 변화율이 미리 정해진 기준치 이상으로 증가하면 업데이트 주기를 감소시키고, 변화율이 미리 정해진 기준치 이하로 감소하면 업데이트 주기를 증가시킬 수 있다.
[414]
제1 메모리(1342)에는 인증부(1310)에 의해 이용되는 기존 어레이 파일이 로딩되고, 제2 메모리(1344)에는 새롭게 수신된 신규 어레이 파일이 로딩된다. 제2 메모리(1344)에 신규 어레이 파일의 로딩이 완료되면 업데이트부(1330)에 의해 제1 메모리(1342)에 기록된 기존 어레이 파일이 신규 어레이 파일로 대체되게 된다. 기준임계치도 이와 동일하다.
[415]
인터페이스부(1350)는 에지 디바이스(3)와 안면인식서버(2)간의 데이터 송수신을 매개한다. 구체적으로, 인터페이스부(1350)는 안면인식서버(2)로부터 얼굴인식모델(1320)을 수신하고, 안면인식서버(2)로부터 최적 기준이미지를 포함하는 어레이 파일 또는 기준 임계치를 수신하여 업데이트부(1330)를 통해 제1 메모리(1342) 또는 제2 메모리(1344)에 로딩한다. 또한, 인터페이스부(1350)는 인증부(1330)에 의한 인증결과를 안면인식서버(2)로 주기적으로 전송한다.
[416]
일 실시예에 있어서, 어레이 파일, 기준임계치 및 얼굴인식모델(1320)은 인터페이스부(1350)를 통해 미리 정해진 주기마다 업데이트될 수 있다.
[417]
상술한 바와 같이, 본 발명에 따르면 에지 디바이스(3)에는 얼굴인식을 위한 얼굴인식모델(1320), 어레이 파일, 기준임계치만 저장될 뿐 사용자의 얼굴이미지나 개인정보가 저장되지 않기 때문에 에지 디바이스(3)가 해킹되더라도 사용자의 개인정보가 유출될 염려가 없어 보안이 강화된다.
[418]
상술한 실시예에서 얼굴인식모델(1320)에 포함된 실물이미지 판단부로 타겟사용자의 촬영이미지가 사람을 촬영한 실물이미지인지 등록사용자의 사진을 촬영한 페이크이미지인지를 판단하였다. 상술한 실시예와 달리, 본 발명은 추가로 IR 카메라인 제2 촬영부(1510)로 실물이미지인지 여부를 판단할 수 있다.
[419]
도 27은 본 발명의 제2 실시예에 따른 에지 디바이스의 구성을 보여주는 블록도이다. 도 27에 도시된 제2 실시예에 따른 에지 디바이스는 도 25에 도시된 제1 실시예에 따른 에지 디바이스에 비해 제2 촬영부(1510) 및 진위판단부(1520)를 더 포함한다는 점에서 제1 실시예에 따른 에지 디바이스와 구별된다. 이하에서는, 설명의 편의를 위해 제1 실시예에 따른 에지 디바이스와 동일한 기능을 하는 구성에 대한 설명은 생략하고, 새롭게 추가된 제2 촬영부(1510) 및 진위판단부(1520)와 새롭게 추가된 구성으로 인해 그 기능이 변경된 제1 촬영부(1210)에 대해서만 기재하기로 한다.
[420]
제1 촬영부(1210)는 촬영대상을 촬영하여 촬영이미지를 생성한다. 제1 촬영부(1210)는 생성된 촬영이미지를 진위판단부(1520)로 전송한다.
[421]
제2 촬영부(1510)는 촬영대상을 촬영하여 뎁스(Depth) 이미지를 생성한다. 제2 촬영부(1510)는 제1 촬영부(1210)에 의해 촬영대상이 촬영되는 시점과 동일한 시점 또는 제1 촬영부(1210)에 촬영대상이 촬영되는 시점으로부터 소정시간 이전 또는 소정시간 이후에 촬영대상을 촬영할 수 있다.
[422]
일 실시예에 있어서, 제2 촬영부(1510)는 촬영대상을 촬영하여 뎁스 이미지를 생성할 수 있는 IR 카메라로 구현될 수 있다.
[423]
이와 같이 제2 실시예에 따른 에지 디바이스(120)가 제2 촬영부(1510)를 통해 촬영대상를 촬영하여 뎁스 이미지를 생성하는 이유는, 제2 촬영부(1510)에 의해 촬영대상의 실제 얼굴이 촬영되는 경우와 촬영대상의 얼굴이 포함된 사진이 촬영된 경우 서로 다른 형태의 뎁스 이미지가 생성되기 때문이다.
[424]
예컨대, 제2 촬영부(1510)에 의해 촬영대상의 얼굴이 포함된 사진이 촬영된 경우 도 28a에 도시된 바와 같은 형태의 뎁스 이미지가 생성됨에 반해, 제2 촬영부(1510)에 의해 촬영대상의 실제 얼굴이 촬영된 경우 도 28b에 도시된 바와 같은 형태의 제2 뎁스 이미지가 생성된다.
[425]
제2 촬영부(1510)는 생성된 뎁스 이미지를 진위판단부(1520)로 전송한다.
[426]
진위판단부(1520)는 제2 촬영부(1510)로부터 전송된 뎁스 이미지를 이용하여 제2 촬영부(1510)에 의해 촬영된 촬영대상이 사진인지 또는 실제 촬영대상의 얼굴인지 여부를 판단한다.
[427]
구체적으로, 진위판단부(1520)는 제2 촬영부(1510)로부터 수신한 뎁스 이미지로부터 뎁스 데이터를 추출하고, 이진 분류(Binary Classification)를 통해 뎁스 이미지가 촬영대상의 실제 얼굴인지 여부를 판단한다. 일 실시예에 있어서, 진위판단부(1520)는 딥 러닝(Deep Learning) 알고리즘 기반의 트레이닝을 통해 실제 얼굴과 사진에 대한 분류 정확도가 향상되도록 할 수 있다.
[428]
진위판단부(1520)는 제2 촬영부(1510)에 의해 촬영된 촬영대상이 실제 얼굴인 것으로 판단되면 제1 촬영부(1210)로부터 수신된 촬영 이미지를 입력 이미지 생성부(1250)로 전송한다. 한편, 진위판단부(1520)는 제2 촬영부(1510)에 의해 촬영된 촬영대상이 실제 얼굴이 아닌 것으로 판단되면 제1 촬영부(1210)로부터 수신된 촬영 이미지를 입력 이미지 생성부(1250)로 전송하지 않고, 인증처리가 실패하였음을 문자 형태 또는 음성 형태의 알람 메시지를 이용하여 출력하거나, 비정상적 접근 시도가 있었음을 시스템 운영자에게 통지할 수 있다.
[429]
이와 같이 본 발명은 진위판단부(1520)가 1차적으로 실물이미지 여부를 판단하고, 2차적으로 얼굴인식모델(1320)의 실물이미지 판단부가 2차적으로 실물이미지 여부를 판단하여 촬영된 촬영대상이 실제 얼굴인지 사진인지 여부를 정확하게 판별할 수 있다. 이에 따라 본 발명은 사진이 촬영된 경우 인증처리가 수행되지 않도록 함으로써 정당한 권원없는 사용자가 타인의 사진을 이용하여 인증을 받고자 수행하는 시도를 원천적으로 차단할 수 있고, 이를 통해 보안을 향상시킬 수 있게 된다.
[430]
다시 도 1을 참조하면, 사용자 단말기(4)는 사용자를 신규 등록하기 위한 사용자 이미지를 사용자의 식별정보와 함께 안면인식서버(2)로 전송한다. 일 실시예에 있어서, 사용자 단말기(4)에는 안면인식서버(2)와 연동할 수 있는 얼굴등록 에이전트(미도시)가 탑재되어 있고, 사용자는 사용자 단말기(4) 상에서 얼굴등록 에이전트를 실행시킴으로써 사용자의 얼굴을 촬영한 이미지나 기 촬영된 이미지를 사용자 식별정보와 함께 안면인식서버(2)로 전송할 수 있다.
[431]
일 실시예에 있어서, 사용자 단말기(4)는 각 사용자 별로 복수개의 사용자 이미지를 등록하도록 요청할 수 있다. 이때, 각 사용자 별로 등록요청되는 복수개의 이미지는 서로 다른 환경에서 촬영된 사진이거나 서로 다른 조명하에서 촬영된 사진일 수 있다.
[432]
사용자 단말기(4)는 안면인식서버(2)로 사용자 이미지를 전송하여 사용자 등록을 요청할 수 있는 것이라면 그 종류에 제한 없이 어떤 것이든 이용 가능하다. 예컨대, 사용자 단말기(4)는 스마트폰, 노트북, 데스크탑 또는 테플릿 PC등으로 구현될 수 있다.
[433]
본 발명이 속하는 기술분야의 당업자는 상술한 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
[434]
예컨대, 도 2에 도시된 안면인식서버의 구성 및 도 25 및 27에 도시된 에지 디바이스의 구성은 프로그램 형태로 구현될 수도 있을 것이다. 본 발명에 따른 안면인식서버의 구성 및 에지 디바이스의 구성이 프로그램으로 구현되는 경우, 도 2 및 도 25 및 27에 도시된 각 구성들이 코드로 구현되고, 특정 기능을 구현하기 위한 코드들이 하나의 프로그램으로 구현되거나, 복수개의 프로그램을 분할되어 구현될 수도 있을 것이다.
[435]
그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[436]

청구범위

[청구항 1]
등록요청된 사용자의 입력 이미지를 얼굴인식모델에 입력함으로써 얼굴이미지를 추출하고, 상기 추출된 얼굴이미지로부터 복수개의 특징벡터를 생성하는 얼굴인식부 및 각 사용자 별로 상기 복수개의 특징벡터와 사용자의 식별정보로 구성된 어레이를 생성하고, 생성된 어레이들을 머지하여 어레이 파일을 생성하는 어레이 파일 생성부를 포함하는 안면인식서버를 포함하고, 상기 얼굴인식모델은, 상기 입력 이미지로부터 상기 얼굴이미지를 추출하는 얼굴이미지 추출부; 및 상기 얼굴이미지가 사람을 촬영한 실물이미지인 경우, 상기 얼굴이미지에 포함된 얼굴로부터 특징벡터를 추출하는 특징벡터 추출부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 2]
제1항에 있어서, 상기 얼굴이미지 추출부는, 서로 다른 뎁스(Depth)의 신경망 네트워크를 갖는 2개 이상의 얼굴탐지부를 이용하여 입력 이미지들로부터 상기 얼굴이미지를 추출하고, 상기 2개 이상의 얼굴탐지부는 뎁스가 깊어지는 순서에 따라 순차적으로 배치되어 n번째 얼굴탐지부에 입력되는 입력 이미지의 개수가 n-1번째 얼굴탐지부에 입력되는 입력 이미지의 개수보다 감소되는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 3]
제1항에 있어서, 상기 얼굴이미지 추출부는, 제1 뎁스(Depth)를 갖는 제1 신경망 네트워크를 이용하여 복수개의 입력 이미지들의 피쳐맵을 생성하고, 상기 피쳐맵를 기초로 상기 복수개의 입력 이미지들 중 얼굴영역이 포함된 복수개의 제1 서브 입력 이미지들을 1차적으로 선별하는 제1 얼굴탐지부; 상기 제1 뎁스보다 깊은 제2 뎁스를 갖는 제2 신경망 네트워크를 이용하여 상기 복수개의 제1 서브 입력이미지의 피쳐맵을 생성하고, 상기 제2 신경망 네트워크를 통해 생성된 피쳐맵을 기초로 상기 복수개의 제1 서브 입력이미지들 중 얼굴영역이 포함된 복수개의 제2 서브 입력 이미지들을 2차적으로 선별하는 제2 얼굴탐지부; 및 상기 제2 뎁스보다 깊은 제3 뎁스를 갖는 제3 신경망 네트워크를 이용하여 상기 복수개의 제2 서브 입력 이미지의 피쳐맵을 생성하고, 상기 제3 신경망 네트워크를 통해 생성된 피쳐맵을 기초로 상기 복수개의 제2 서브 입력 이미지들 중 얼굴영역이 포함된 얼굴이미지를 선별하는 제3 얼굴탐지부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 4]
제1항에 있어서, 상기 안면인식서버는, 상기 얼굴이미지 추출부에 복수개의 학습이미지를 입력하여 상기 학습 이미지가 얼굴영역을 포함할 확률값, 얼굴영역의 좌표, 및 랜드마크 좌표를 산출하고, 산출된 확률값, 얼굴영역의 좌표, 및 랜드마크 좌표를 역전파(Back Propagation) 알고리즘에 따라 상기 얼굴이미지 추출부에 피드백하여 상기 얼굴이미지 추출부에 적용된 컨벌루션 필터들의 필터계수 및 가중치 중 적어도 하나를 갱신하는 얼굴인식모델 트레이닝부를 더 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 5]
제1항에 있어서, 상기 얼굴인식모델은, 상기 얼굴이미지로부터 사람을 촬영한 실물이미지인지 여부를 판단하기 위한 실물 특징벡터를 추출하여 상기 얼굴이미지의 실물이미지 여부를 판단하는 실물이미지 판단부를 더 포함하고, 상기 실물이미지 판단부는, 상기 얼굴이미지로부터 상기 얼굴이미지의 깊이를 표현하는 깊이 특징벡터 및 상기 얼굴이미지의 빛 반사를 표현하는 반사 특징벡터 중 적어도 하나와 상기 얼굴이미지의 RGB를 표현하는 RGB 특징벡터를 추출하는 실물 특징벡터 추출부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 6]
제5항에 있어서, 상기 실물 특징벡터 추출부는, 상기 RGB 특징벡터를 구성하는 n개의 서브 RGB 특징벡터 중 제1 서브 RGB 특징벡터부터 제n-1 서브 RGB 특징벡터까지의 n-1개의 서브 RGB 특징벡터들을 서로 합산하여 입력 특징벡터를 생성하고, 상기 실물이미지로부터 추출된 제1 깊이 이미지와 사진을 촬영한 페이크이미지로부터 추출된 제2 깊이이미지로 학습된 깊이 신경망 네트워크를 이용하여 생성된 피쳐맵을 기초로 상기 깊이 특징벡터를 추출하는 깊이 특징벡터 추출부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 7]
제5항에 있어서, 상기 실물 특징벡터 추출부는, 상기 RGB 특징벡터를 구성하는 n개의 서브 RGB 특징벡터 중 제1 서브 RGB 특징벡터부터 제n-1 서브 RGB 특징벡터까지의 n-1개의 서브 RGB 특징벡터들을 서로 합산하여 입력 특징벡터를 생성하고, 상기 실물이미지로부터 추출된 제1 반사이미지와 사진을 촬영한 페이크이미지로부터 추출된 제2 반사이미지로 학습된 반사 신경망 네트워크를 이용하여 생성된 피쳐맵을 기초로 상기 반사 특징벡터를 추출하는 반사 특징벡터 추출부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 8]
제5항에 있어서, 상기 실물 특징벡터 추출부는, 상기 실물이미지와 사진을 촬영한 페이크이미지로 학습된 n개의 RGB 신경망 네트워크를 각각 이용하여 상기 얼굴이미지의 피쳐맵을 생성하고, 상기 피쳐맵을 기초로 상기 얼굴이미지로부터 n개의 서브 RGB 특징벡터를 각각 추출하는 서브 RGB 특징벡터 추출부; 및 상기 n개의 서브 RGB 특징벡터들을 서로 합산하여 상기 RGB 특징벡터를 생성하는 RGB 특징벡터 생성부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 9]
제1항에 있어서, 상기 얼굴이미지로부터 추출된 깊이 특징벡터 및 반사 특징벡터 중 적어도 하나를 상기 얼굴이미지로부터 추출된 RGB 특징벡터와 융합하여 융합 특징벡터를 생성하고, 상기 융합 특징벡터를 이용하여 상기 얼굴이미지가 실물이미지인지 여부를 판단하는 실물이미지 판단부를 더 포함하고, 상기 실물이미지 판단부는, 상기 RGB 특징벡터를 k개의 컨벌루션 연산부를 통과시켜 제1 출력 특징벡터를 생성하는 제1 출력 특징벡터 생성부; 상기 깊이 특징벡터에서 상기 반사 특징벡터를 감산한 결과값을 상기 k개의 컨벌루션 연산부 및 k번째의 컨벌루션 연산부의 출력단에 배치된 샘플링부를 순차적으로 통과시켜 제2 출력 특징벡터를 생성하는 제2 출력 특징벡터 생성부; 및 상기 제1 출력 특징벡터와 상기 제2 출력 특징벡터를 융합하여 상기 융합 특징벡터를 생성하는 융합 특징벡터 생성부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 10]
제1항에 있어서, 상기 얼굴이미지로부터 생성된 융합 특징벡터를 이용하여 상기 얼굴이미지가 사람을 촬영한 실물이미지인지 여부를 판단하는 실물이미지 판단부를 더 포함하고, 상기 실물이미지 판단부는 미리 학습된 이진 분류기에 상기 융합 특징벡터를 입력하여 상기 얼굴이미지가 실물이미지 여부를 판단하고, 상기 이진분류기에서 출력되는 확률값이 미리 정해진 문턱값미만이면 상기 얼굴이미지를 사진을 촬영한 페이크이미지로 판단하는 판단부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 11]
제1항에 있어서, 상기 특징벡터 추출부는, 입력 데이터를 영상 처리하여 출력 데이터를 생성하는 복수개의 얼굴이미지 처리부; 및 상기 복수개의 얼굴이미지 처리부들 중 마지막 얼굴이미지 처리부에서 출력되는 출력 데이터를 하나의 레이어로 병합하여 미리 정해진 개수의 특징벡터를 생성하는 특징벡터 생성부를 포함하고, 상기 복수개의 얼굴 이미지 처리부들 중 1번째 얼굴이미지 처리부에는 상기 입력 이미지로써 얼굴이미지가 입력되고, n+1번째 얼굴이미지 처리부에는 상기 입력 이미지로써 n번재 얼굴이미지 처리부의 출력 데이터가 입력되는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 12]
제11항에 있어서, 상기 복수개의 얼굴이미지 처리부는, 상기 입력 데이터에 컨벌루션 필터를 적용하여 피쳐맵을 생성하는 제1 유닛; 상기 제1 유닛에 의해 생성된 피쳐맵에 가중치를 부여하는 제2 유닛; 및 상기 제2 유닛에 의해 가중치가 부여된 피쳐맵과 상기 제1 유닛으로 입력된 상기 입력 데이터를 합산하여 상기 출력 데이터를 생성하는 연산부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 13]
제11항에 있어서, 상기 얼굴이미지 처리부는, 상기 입력 데이터를 정규화하는 정규화부; 상기 정규화된 얼굴이미지에 제1 컨벌루션 필터를 적용하여 제1 피쳐맵을 생성하는 제1 컨벌루션 연산부; 및 상기 제1 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 그 크기를 감소시켜 출력하여 상기 제1 피쳐맵에 비선형적 특성을 부여하는 비선형화부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 14]
제13항에 있어서, 상기 얼굴이미지 처리부는, 상기 비선형적 특성이 부여된 제1 피쳐맵에 제2 컨벌루션 필터를 적용하여 제2 피쳐맵을 생성하는 제2 컨벌루션 연산부를 더 포함하고, 상기 제1 컨벌루션 필터와 상기 제2 컨벌루션 필터는 크기는 동일하고 서로 다른 스트라이드(Stride) 값을 갖는 필터인 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 15]
제11항에 있어서, 상기 얼굴이미지 처리부는, 상기 입력 데이터에 컨벌루션 필터를 적용하여 생성된 피쳐맵을 서브 샘플링하여 상기 피쳐맵의 차원을 감소시키는 샘플링부; 상기 서브 샘플링된 피쳐맵에 가중치를 반영하는 가중치 반영부; 및 상기 가중치가 반영된 피쳐맵을 상기 샘플링부로 입력된 피쳐맵과 동일한 차원으로 업스케일링하는 업스케일링부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 16]
제15항에 있어서, 상기 가중치 반영부는, 상기 서브 샘플링된 피쳐맵을 하나의 레이어로 연결하여 차원을 감소시키는 차원 감소부; 상기 차원이 감소된 피쳐맵의 픽셀값들 중 양의 값은 그대로 출력하고 음의 값은 0으로 출력하여 상기 차원이 감소된 피쳐맵에 비선형적 특성을 부여하는 제1 비선형화부; 상기 비선형적 특성이 부여된 피쳐맵의 차원을 증가시키는 차원 증가부; 및 상기 차원이 증가된 피쳐맵의 픽셀값들 중 양의 값은 미리 정해진 값으로 수렴시키고 음의 값은 0으로 출력하여 상기 차원이 증가된 피쳐맵에 비선형적 특성을 부여하는 제2 비선형화부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 17]
제1항에 있어서, 상기 안면인식서버는, 학습 이미지들을 이용하여 상기 얼굴인식모델을 트레이닝 시키는 얼굴인식모델 트레이닝부를 더 포함하고, 상기 얼굴인식모델 트레이닝부는, 상기 학습 이미지들을 상기 얼굴인식모델에 입력하여 획득된 복수개의 학습용 특징벡터를 기초로 상기 학습 이미지들을 2차원 각도 평면 상에 배치하는 얼굴이미지 배치부; 서로 다른 클래스에 포함된 학습 이미지들간의 기준각도에 가산될 마진각도를 가변시키고, 상기 가변되는 마진각도 별로 각 학습 이미지들이 상기 각 클래스에 포함될 확률을 산출하는 확률 산출부; 및 상기 산출된 확률을 이용하여 상기 얼굴인식모델을 학습시키는 특징벡터 추출 트레이닝부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 18]
제1항에 있어서, 인증대상이 되는 타겟사용자를 인증하는 에지 디바이스로부터 사용자의 촬영이미지와 해당 사용자의 기준이미지간의 유사도를 기준임계치와 비교하여 출입을 인증한 인증결과들을 수집하고 상기 인증결과들을 기초로 상기 기준이미지 또는 상기 기준임계치를 변경하는 에지 디바이스 관리부를 더 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 19]
제18항에 있어서, 에지 디바이스 관리부는, 상기 인증결과들 중 미등록 사용자를 등록사용자로 잘못 승인한 제1 인증결과들을 추출하고, 상기 제1 인증결과들에 포함된 유사도들 중 최대값을 최적임계치로 산출하며, 상기 기준임계치를 상기 최적임계치로 변경하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 20]
제18항에 있어서, 상기 인증결과들 중 등록사용자로 정상 승인된 제2 인증결과들을 추출하고, 상기 제2 인증결과들을 상기 등록사용자 별로 분류하며, 상기 분류된 제2 인증결과에 포함된 상기 유사도 중 최대값을 갖는 제2 인증결과에 대응되는 촬영이미지를 해당 등록사용자의 최적 기준이미지로 결정하고, 상기 기준이미지를 상기 최적 기준이미지로 변경하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 21]
제1항에 있어서, 상기 안면인식시스템은 상기 안면인식서버에 의해 배포되는 상기 얼굴인식모델 및 상기 안면인식서버로부터 수신된 어레이 파일을 이용하여 인증대상이 되는 타겟 사용자를 인증하는 에지 디바이스를 더 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 22]
제21항에 있어서, 상기 어레이 파일 생성부는 상기 에지 디바이스 별로 상기 어레이 파일을 생성하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 23]
제1항에 있어서, 상기 안면인식시스템은 인증대상이 되는 타겟 사용자를 인증하는 에지 디바이스를 더 포함하고, 상기 에지 디바이스는, 상기 안면인식서버로부터 상기 어레이 파일과 상기 얼굴인식모델을 수신하는 인터페이스부; 상기 수신된 얼굴인식모델을 이용하여 상기 타겟 사용자의 입력 이미지로부터 타겟 얼굴이미지를 추출하고, 추출된 상기 타겟 얼굴이미지로부터 타겟 특징벡터를 생성하는 얼굴인식부; 및 상기 타겟 특징벡터를 상기 어레이 파일과 비교하여 상기 타겟 사용자를 인증하는 인증부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 24]
제23항에 있어서, 상기 인증부는, 상기 어레이 파일에 포함된 각 어레이 마다 해당 어레이에 포함된 특징벡터에서 상기 타겟 특징벡터를 동일 인덱스 별로 감산하여 제곱한 제1 결과값을 산출하고, 상기 어레이 파일에 포함된 어레이들 중 미리 정해진 기준값에서 상기 제2 결과값을 감산한 제3 결과값을 유사도로 산출하며, 상기 유사도가 가장 큰 어레이에 매핑되어 있는 사용자가 상기 타겟사용자와 가장 유사한 사용자인 것으로 결정하고, 상기 유사도가 기준임계치 또는 최적임계치이상이면 상기 타겟사용자를 인증하는 것을 특징으로 하는 AI 기반의 안면인식시스템.
[청구항 25]
제1항에 있어서, 상기 안면인식서버로부터 어레이 파일을 수신하여 인증대상이 되는 타겟 사용자를 인증하는 에지 디바이스를 포함하고, 상기 에지 디바이스는, 상기 어레이 파일을 제1 메모리에 로딩하고, 상기 안면인식서버로부터 신규 어레이 파일이 수신되면 상기 신규 어레이 파일을 제2 메모리에 로딩하고, 상기 제2 메모리에 상기 신규 어레이 파일의 로딩이 완료되면 상기 제1 메모리에 로딩되어 있는 상기 어레이 파일을 상기 제2 메모리에 로딩되어 있는 신규 어레이 파일로 대체하는 업데이트부를 포함하는 것을 특징으로 하는 AI 기반의 안면인식시스템.

도면

[도1]

[도2]

[도3a]

[도3b]

[도3c]

[도4a]

[도4b]

[도4c]

[도4d]

[도5]

[도6]

[도7]

[도8]

[도9]

[도10]

[도11]

[도12]

[도13]

[도14]

[도15]

[도16]

[도17a]

[도17b]

[도18]

[도19a]

[도19b]

[도20]

[도21]

[도22]

[도23]

[도24]

[도25]

[도26a]

[도26b]

[도26c]

[도26d]

[도27]

[도28a]

[도28b]