Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020115827 - DISPOSITIF DE DÉTECTION D'ANOMALIE ET PROCÉDÉ DE DÉTECTION D'ANOMALIE

Document

明 細 書

発明の名称 異常検知装置及び異常検知方法

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

発明が解決しようとする課題

0005   0006  

課題を解決するための手段

0007  

発明の効果

0008  

図面の簡単な説明

0009  

発明を実施するための形態

0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117  

産業上の利用可能性

0118  

符号の説明

0119  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18  

明 細 書

発明の名称 : 異常検知装置及び異常検知方法

技術分野

[0001]
 この発明は、設備が異常であるか否かを判定する異常検知装置及び異常検知方法に関するものである。

背景技術

[0002]
 設備の異常を検知する従来の異常検知方法は、複数の時刻における設備の状態を時系列で示す異常検知用の時系列データと、設備が正常であるときに収集された正常時の時系列データとを比較する。
 従来の異常検知方法は、異常検知用の時系列データの中から、正常時の時系列データと挙動が異なる部分の時系列データ(以下、「部分列データ」と称する)を検出することで、設備の異常を検知する。
 しかし、部分列データは、設備に異常が発生している可能性のある時間帯の時系列データであるが、設備に異常が発生しているとは限らず、設備が正常であることもある。
[0003]
 以下の特許文献1には、設備が正常であるときに、設備に異常が発生している旨を示す誤判定の発生を回避するために、従来の異常検知方法と、イベント情報を解析する方法とを組み合わせて、設備の異常を検知する異常検知システムが開示されている。
 イベント情報としては、作業者による設備の運転操作に関するイベントを示す情報、又は、設備の部品交換に関するイベントを示す情報等がある。
 特許文献1に開示されている異常検知システムは、部分列データを検出しても、検出した部分列データが、イベント情報が示すイベントと同期していれば、設備に異常が発生していないと判定する。

先行技術文献

特許文献

[0004]
特許文献1 : 特開2013-218725号公報

発明の概要

発明が解決しようとする課題

[0005]
 特許文献1に開示されている異常検知システムは、事前にイベント情報を用意する必要がある。
 特許文献1に開示されている異常検知システムは、事前にイベント情報を用意することができなければ、設備が正常であるときに、部分列データを検出してしまうと、誤って、設備に異常が発生しているという判定を行ってしまう課題があった。
[0006]
 この発明は上記のような課題を解決するためになされたもので、事前にイベント情報を用意することなく、設備に異常が発生している旨を示す誤判定の発生を回避することができる異常検知装置及び異常検知方法を得ることを目的とする。

課題を解決するための手段

[0007]
 この発明に係る異常検知装置は、複数の時刻における異常検知対象の設備の状態を時系列で示す異常検知用の時系列データから、複数の時刻のそれぞれにおける設備の異常度を異常検知用の外れスコアとして算出する外れスコア算出部と、外れスコア算出部により算出された複数の時刻のそれぞれにおける異常検知用の外れスコアに基づいて、異常検知用の時系列データの中から、設備に異常が発生している可能性のある時間帯の異常検知用の時系列データを異常検知用の外れデータとして抽出する外れデータ抽出部と、外れデータ抽出部により抽出された異常検知用の外れデータの変化を示す波形が、設備が正常であるときの波形であると認められる波形条件と、異常検知用の外れデータの波形とを照合し、波形条件と異常検知用の外れデータの波形との照合結果に基づいて、設備が異常であるか否かを判定する異常判定部とを備えるものである。

発明の効果

[0008]
 この発明によれば、異常判定部が、外れデータ抽出部により抽出された異常検知用の外れデータの変化を示す波形が、設備が正常であるときの波形であると認められる波形条件と、異常検知用の外れデータの波形とを照合し、波形条件と異常検知用の外れデータの波形との照合結果に基づいて、設備が異常であるか否かを判定するように、異常検知装置を構成した。したがって、この発明に係る異常検知装置は、事前にイベント情報を用意することなく、設備に異常が発生している旨を示す誤判定の発生を回避することができる。

図面の簡単な説明

[0009]
[図1] 実施の形態1に係る異常検知装置を示す構成図である。
[図2] 実施の形態1に係る異常検知装置のハードウェアを示すハードウェア構成図である。
[図3] 異常検知装置がソフトウェア又はファームウェア等で実現される場合のコンピュータのハードウェア構成図である。
[図4] 異常検知装置の学習時の処理手順を示すフローチャートである。
[図5] 異常検知装置の異常検知時の処理手順である異常検知方法を示すフローチャートである。
[図6] 図6Aは、学習用の時系列データD G,n,tの一例を示す説明図、図6Bは、学習用の外れスコアS G,n,t及び閾値S thの一例を示す説明図である。
[図7] 図7Aは、波形の種別が「上ピーク型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図、図7Bは、波形の種別が「下ピーク型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図、図7Cは、波形の種別が「上下ピーク型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図、図7Dは、波形の種別が「過渡上昇型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図、図7Eは、波形の種別が「過渡下降型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図、図7Fは、波形の種別が「振動型」である場合の学習用の外れデータOD G,n,ts-teの波形の一例を示す説明図である。
[図8] 学習用の外れデータOD G,n,ts-teにおける特徴量C G,nの一例を示す説明図である。
[図9] 図9Aは、波形の種別が「上ピーク型」のN(N=12)個の学習用の外れデータOD G,n,ts-teを示す説明図、図9Bは、N個の学習用の外れデータOD G,n,ts-teの平均値P mean[t]、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を示す説明図である。
[図10] 図10Aは、異常判定処理部11によって、設備が正常であると判定される場合の異常検知用の外れデータOD U,ts’-te’の波形を示す説明図、図10Bは、異常判定処理部11によって、設備が異常であると判定される場合の異常検知用の外れデータOD U,ts’-te’の波形を示す説明図である。
[図11] 波形条件生成処理部14によって生成されるヒストグラムの一例を示す説明図である。
[図12] 実施の形態3に係る異常検知装置を示す構成図である。
[図13] 実施の形態3に係る異常検知装置のハードウェアを示すハードウェア構成図である。
[図14] 波形条件生成処理部14により生成された1つ以上の波形条件Wpの一覧を表示している一覧確認画面を示す説明図である。
[図15] 波形条件Wpの生成元の学習用の外れデータOD G,n,ts-teの一覧を表示している一覧確認画面を示す説明図である。
[図16] 実施の形態4に係る異常検知装置を示す構成図である。
[図17] 実施の形態4に係る異常検知装置のハードウェアを示すハードウェア構成図である。
[図18] 異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’及び異常検知用の時系列データD U,tを表示しているデータ表示画面の一例を示す説明図である。

発明を実施するための形態

[0010]
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
[0011]
実施の形態1.
 図1は、実施の形態1に係る異常検知装置を示す構成図である。図2は、実施の形態1に係る異常検知装置のハードウェアを示すハードウェア構成図である。
 図1及び図2において、学習用データ入力部1は、例えば、図2に示す入力インタフェース回路21によって実現される。
 学習用データ入力部1は、異常検知対象の設備が正常であるときの複数の時刻tにおける当該設備の状態を時系列で示すN個の学習用の時系列データD G,n,t(n=1,2,・・・,N)の入力を受け付ける。Nは、1以上の整数である。
 学習用の時系列データD G,n,tは、それぞれの時刻tにおけるセンサの観測値を含むものであり、センサの観測値は、設備の状態を示している。
 学習用データ入力部1は、入力を受け付けた学習用の時系列データD G,n,tを外れスコア算出部3及び外れデータ抽出処理部7のそれぞれに出力する。
[0012]
 異常検知対象の設備としては、発電プラント、化学プラント、又は、上下水道プラント等の設備が考えられる。また、異常検知対象の設備としては、オフィスビル又は工場における空調設備、電気設備、照明設備又は給排水設備等が考えられ、また、工場の生産ラインを構成するコンベア等の設備、自動車に搭載される設備又は鉄道車両に搭載される設備が考えられる。さらに、異常検知対象の設備としては、経済に関する情報システムの設備、又は、経営に関する情報システムの設備も考えられる。
[0013]
 異常検知用データ入力部2は、例えば、図2に示す入力インタフェース回路22によって実現される。
 異常検知用データ入力部2は、複数の時刻tにおける異常検知対象の設備の状態を時系列で示す異常検知用の時系列データD U,tの入力を受け付ける。
 異常検知用の時系列データD U,tは、それぞれの時刻tにおけるセンサの観測値を含むものであり、センサの観測値は、設備の状態を示している。
 異常検知用データ入力部2は、異常検知用の時系列データD U,tを外れスコア算出部3及び外れデータ抽出処理部7のそれぞれに出力する。
[0014]
 外れスコア算出部3は、例えば、図2に示す外れスコア算出回路23によって実現される。
 外れスコア算出部3は、学習用データ入力部1から出力されたN個の学習用の時系列データD G,n,tのそれぞれから、それぞれの時刻tにおける設備の異常度を学習用の外れスコアS G,n,tとして算出する。外れスコア算出部3は、算出したそれぞれの時刻tにおける学習用の外れスコアS G,n,tを外れデータ抽出部4に出力する。
 外れスコア算出部3は、異常検知用データ入力部2から出力された異常検知用の時系列データD U,tから、それぞれの時刻tにおける設備の異常度を異常検知用の外れスコアS U,tとして算出する。外れスコア算出部3は、算出したそれぞれの時刻tにおける異常検知用の外れスコアS U,tを外れデータ抽出部4に出力する。
[0015]
 外れデータ抽出部4は、閾値算出部5、閾値記憶部6及び外れデータ抽出処理部7を備えている。
 外れデータ抽出部4は、外れスコア算出部3により算出された学習用の外れスコアS G,n,tに基づいて、学習用の時系列データD G,n,tの中から、設備に異常が発生している可能性のある時間帯の時系列データを学習用の外れデータOD G,nとして抽出する。外れデータ抽出部4は、抽出した学習用の外れデータOD G,nを異常判定部8及び波形条件生成部12のそれぞれに出力する。
 外れデータ抽出部4は、外れスコア算出部3により算出された異常検知用の外れスコアS U,tに基づいて、異常検知用の時系列データD U,tの中から、設備に異常が発生している可能性のある時間帯の異常検知用の時系列データを異常検知用の外れデータOD U,ts’-te’として抽出する。外れデータ抽出部4は、抽出した異常検知用の外れデータOD U,ts’-te’を異常判定部8に出力する。
[0016]
 閾値算出部5は、例えば、図2に示す閾値算出回路24によって実現される。
 閾値算出部5は、外れスコア算出部3により算出された学習用の外れスコアS G,n,tから閾値S thを算出し、閾値S thを閾値記憶部6に出力する。
 閾値記憶部6は、例えば、図2に示す閾値記憶回路25によって実現される。
 閾値記憶部6は、閾値算出部5から出力された閾値S thを記憶する。
[0017]
 外れデータ抽出処理部7は、例えば、図2に示す外れデータ抽出処理回路26によって実現される。
 外れデータ抽出処理部7は、外れスコア算出部3により算出されたそれぞれの時刻tにおける学習用の外れスコアS G,n,tと、閾値記憶部6により記憶されている閾値S thとを比較する。
 外れデータ抽出処理部7は、それぞれの時刻tにおける学習用の外れスコアS G,n,tと閾値S thとの比較結果に基づいて、学習用の時系列データD G,n,tの中から、学習用の外れデータOD G,n,ts-teを抽出する。外れデータ抽出処理部7は、抽出した学習用の外れデータOD G,n,ts-teを種別判別部9、波形条件選択部10、波形分類部13及び波形条件生成処理部14のそれぞれに出力する。
[0018]
 外れデータ抽出処理部7は、外れスコア算出部3により算出されたそれぞれの時刻tにおける異常検知用の外れスコアS U,tと、閾値記憶部6により記憶されている閾値S thとを比較する。
 外れデータ抽出処理部7は、それぞれの時刻tにおける異常検知用の外れスコアS U,tと閾値S thとの比較結果に基づいて、異常検知用の時系列データD U,tの中から、異常検知用の外れデータOD U,ts’-te’を抽出する。外れデータ抽出処理部7は、抽出した異常検知用の外れデータOD U,ts’-te’を種別判別部9、波形条件選択部10及び異常判定処理部11のそれぞれに出力する。
[0019]
 異常判定部8は、種別判別部9、波形条件選択部10及び異常判定処理部11を備えている。
 異常判定部8は、波形条件Wpと、外れデータ抽出部4により抽出された異常検知用の外れデータOD U,ts’-te’の波形とを照合する。波形条件Wpとは、外れデータ抽出部4により抽出された異常検知用の外れデータOD U,ts’-te’の変化を示す波形が、設備が正常であるときの波形であると認められる場合の条件である。
 異常判定部8は、波形条件Wpと異常検知用の外れデータOD U,ts’-te’の波形との照合結果に基づいて、設備が異常であるか否かを判定し、設備が異常であるか否かを示す判定結果を検知結果出力部16に出力する。
[0020]
 種別判別部9は、例えば、図2に示す種別判別回路27によって実現される。
 種別判別部9は、外れデータ抽出処理部7により抽出された学習用の外れデータOD G,n,ts-teの特徴量C G,nを算出し、特徴量C G,nから学習用の外れデータOD G,n,ts-teの波形の種別を判別する。種別判別部9は、判別した学習用の外れデータOD G,n,ts-teの波形の種別を波形分類部13に出力する。
 種別判別部9は、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の特徴量C を算出し、特徴量C から異常検知用の外れデータOD U,ts’-te’の波形の種別を判別する。種別判別部9は、判別した異常検知用の外れデータOD U,ts’-te’の波形の種別を波形条件選択部10に出力する。
[0021]
 波形条件選択部10は、例えば、図2に示す波形条件選択回路28によって実現される。
 波形条件選択部10は、波形条件記憶部15により記憶されている1つ以上の波形条件Wpの中から、種別判別部9により判別された種別に対応する波形条件Wpを選択し、選択した波形条件Wpを異常判定処理部11に出力する。
 異常判定処理部11は、例えば、図2に示す異常判定処理回路29によって実現される。
 異常判定処理部11は、波形条件選択部10により選択された波形条件Wpと、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の波形とを照合する。
 異常判定処理部11は、波形条件Wpと異常検知用の外れデータOD U,ts’-te’の波形との照合結果に基づいて、設備が異常であるか否かを判定し、設備が異常であるか否かを示す判定結果を検知結果出力部16に出力する。
[0022]
 波形条件生成部12は、波形分類部13、波形条件生成処理部14及び波形条件記憶部15を備えている。
 波形条件生成部12は、外れデータ抽出部4により抽出されたそれぞれの学習用の外れデータOD G,n,ts-teのうち、種別判別部9により波形が互いに同一の種別であると判別された1つ以上の学習用の外れデータOD G,n,ts-teの波形から、当該種別に対応する波形条件を生成する。波形条件生成部12は、生成した波形条件を記憶する。
[0023]
 波形分類部13は、例えば、図2に示す波形分類回路30によって実現される。
 波形分類部13は、外れデータ抽出部4により抽出されたそれぞれの学習用の外れデータOD G,n,ts-teのうち、種別判別部9により波形が互いに同一の種別であると判別された1つ以上の学習用の外れデータOD G,n,ts-teの間の類似度を算出する。
 波形分類部13は、算出した類似度に基づいて、種別判別部9により波形が同一の種別であると判別された1つ以上の学習用の外れデータOD G,n,ts-teをグループ分けする。
 波形分類部13は、1つ以上の学習用の外れデータOD G,n,ts-teのグループ分け結果を波形条件生成処理部14に出力する。
[0024]
 波形条件生成処理部14は、例えば、図2に示す波形条件生成処理回路31によって実現される。
 波形条件生成処理部14は、波形分類部13によりグループ分けされたグループの全てについて、波形分類部13により同一のグループに分類された1つ以上の学習用の外れデータOD G,n,ts-teの波形から、当該グループに対応する波形条件Wpを生成する。波形条件生成処理部14は、生成した波形条件Wpを波形条件記憶部15に出力する。
 波形条件記憶部15は、例えば、図2に示す波形条件記憶回路32によって実現される。
 波形条件記憶部15は、波形条件生成処理部14により生成された波形条件Wpを記憶する。
 検知結果出力部16は、例えば、図2に示す検知結果出力回路33によって実現される。
 検知結果出力部16は、異常判定処理部11から出力された判定結果を、例えば図示せぬディスプレイに表示させる。
[0025]
 図1では、異常検知装置の構成要素である学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、閾値記憶部6、外れデータ抽出処理部7、種別判別部9、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14、波形条件記憶部15及び検知結果出力部16のそれぞれが、図2に示すような専用のハードウェアで実現されるものを想定している。即ち、異常検知装置が、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、閾値記憶回路25、外れデータ抽出処理回路26、種別判別回路27、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31、波形条件記憶回路32及び検知結果出力回路33で実現されるものを想定している。
[0026]
 ここで、閾値記憶回路25及び波形条件記憶回路32のそれぞれは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。
 また、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、外れデータ抽出処理回路26、種別判別回路27、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31及び検知結果出力回路33のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
[0027]
 異常検知装置の構成要素は、専用のハードウェアで実現されるものに限るものではなく、異常検知装置がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図3は、異常検知装置がソフトウェア又はファームウェア等で実現される場合のコンピュータのハードウェア構成図である。
[0028]
 異常検知装置がソフトウェア又はファームウェア等で実現される場合、閾値記憶部6及び波形条件記憶部15がコンピュータのメモリ41上に構成される。学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、外れデータ抽出処理部7、種別判別部9、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14及び検知結果出力部16の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 図4は、異常検知装置の学習時の処理手順を示すフローチャートである。
 図5は、異常検知装置の異常検知時の処理手順である異常検知方法を示すフローチャートである。
[0029]
 また、図2では、異常検知装置の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図3では、異常検知装置がソフトウェア又はファームウェア等で実現される例を示している。しかし、これは一例に過ぎず、異常検知装置における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェア又はファームウェア等で実現されるものであってもよい。
[0030]
 次に、図1に示す異常検知装置の動作について説明する。
 最初に、異常検知装置における学習時の動作について説明する。
 まず、学習用データ入力部1は、異常検知対象の設備が正常であるときの複数の時刻tにおける当該設備の状態を時系列で示すN個の学習用の時系列データD G,n,t(n=1,2,・・・,N)の入力を受け付ける(図4のステップST1)。
 学習用データ入力部1は、入力を受け付けた学習用の時系列データD G,n,tを外れスコア算出部3及び外れデータ抽出部4のそれぞれに出力する。
 図6Aは、学習用の時系列データD G,n,tの一例を示す説明図である。図6Aにおいて、横軸は、時刻、縦軸は、学習用の時系列データD G,n,tに含まれているセンサの観測値である。
 図6Aでは、図面の簡単化のために、学習用の時系列データD G,n,tに含まれているセンサの観測値が連続値であるように表記しているが、センサの観測値は、離散値である。
[0031]
 外れスコア算出部3は、学習用データ入力部1からN個の学習用の時系列データD G,n,tを受けると、それぞれの学習用の時系列データD G,n,tから、それぞれの時刻tにおける設備の異常度を学習用の外れスコアS G,n,tとして算出する(図4のステップST2)。
 図6Bは、学習用の外れスコアS G,n,t及び閾値S thの一例を示す説明図である。図6Bにおいて、横軸は、時刻、縦軸は、学習用の外れスコアS G,n,tである。
 学習用の外れスコアS G,n,tの算出処理には、公知の技術が適用される。例えば、以下の非特許文献1には、外れスコアの算出処理が開示されている。非特許文献1に記載の“Matrix Profile”は、外れスコアに相当する。
[非特許文献1]
Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets.
[0032]
 図1に示す異常検知装置では、外れスコア算出部3が、非特許文献1に開示されている外れスコアの算出処理を用いて、学習用の外れスコアS G,n,tを算出する。
 しかし、これは一例に過ぎず、外れスコア算出部3は、例えば、学習用の時系列データD G,n,tに含まれているそれぞれの時刻tのセンサの観測値と、時刻tの予測値との残差を学習用の外れスコアS G,n,tとして算出するものであってもよい。
 外れスコア算出部3は、算出したそれぞれの時刻tにおける学習用の外れスコアS G,n,tを閾値算出部5及び外れデータ抽出処理部7のそれぞれに出力する。
[0033]
 閾値算出部5は、外れスコア算出部3により算出されたそれぞれの時刻tにおける学習用の外れスコアS G,n,tから、図6Bに示すような閾値S thを算出する(図4のステップST3)。
 閾値算出部5は、算出した閾値S thを閾値記憶部6に出力する。
 閾値記憶部6は、閾値算出部5から出力された閾値S thを記憶する。
[0034]
 以下、閾値算出部5による閾値S thの算出処理の一例を説明する。
 まず、閾値算出部5は、外れスコア算出部3によって、N個の学習用の時系列データD G,n,tのそれぞれから算出された全ての学習用の外れスコアS G,n,tの平均値S G,aveを算出する。
 また、閾値算出部5は、外れスコア算出部3によって、N個の学習用の時系列データD G,n,tのそれぞれから算出された全ての学習用の外れスコアS G,n,tの標準偏差σを算出する。
 次に、閾値算出部5は、以下の式(1)に示すように、平均値S G,aveと標準偏差σとから、閾値S thを算出する。
 S th=S G,ave+3σ                (1)
[0035]
 図1に示す異常検知装置では、閾値算出部5が、学習時に用いる閾値と、異常検知時に用いる閾値とが同じ閾値であるとして、閾値S thを算出している。
 しかし、これは一例に過ぎず、閾値算出部5が、学習時に用いる閾値S thと、異常検知時に用いる閾値S thとを別々に算出するようにしてもよい。
 学習時に用いる閾値S thとしては、外れデータ抽出処理部7において、多くの学習用の外れデータOD G,n,ts-teを抽出できるように、例えば、式(1)に示す閾値S thよりも小さな閾値として、(S G,ave+σ)~(S G,ave+2σ)の範囲の閾値を算出する。
 異常検知時に用いる閾値S thとしては、例えば、式(1)に示す閾値S thを算出する。
[0036]
 外れデータ抽出処理部7は、外れスコア算出部3により算出されたそれぞれの時刻tにおける学習用の外れスコアS G,n,tを取得し、閾値記憶部6により記憶されている閾値S thを取得する。
 外れデータ抽出処理部7は、それぞれの時刻tにおける学習用の外れスコアS G,n,tと、閾値S thとを比較する。
 外れデータ抽出処理部7は、学習用の外れスコアS G,n,tと閾値S thとの比較結果に基づいて、それぞれの時刻tにおける学習用の外れスコアS G,n,tの中で、閾値S th以上の学習用の外れスコアS G,n,tを特定することで、学習用の外れスコアS G,n,tが閾値S th以上の期間ts-teを検出する。
 外れデータ抽出処理部7は、学習用の時系列データD G,n,tの中から、検出した期間ts-teの時系列データD G,n,ts~D G,n,teを学習用の外れデータOD G,n,ts-teとして抽出する(図4のステップST4)。
 外れデータ抽出処理部7は、抽出した学習用の外れデータOD G,n,ts-teを種別判別部9、波形条件選択部10、波形分類部13及び波形条件生成処理部14のそれぞれに出力する。
[0037]
 種別判別部9は、外れデータ抽出処理部7から学習用の外れデータOD G,n,ts-teを受けると、学習用の外れデータOD G,n,ts-teの特徴量C G,nを算出し、特徴量C G,nから学習用の外れデータOD G,n,ts-teの波形の種別を判別する(図4のステップST5)。
 種別判別部9は、判別した学習用の外れデータOD G,n,ts-teの波形の種別を波形分類部13に出力する。
 以下、種別判別部9による波形の種別の判別処理を具体的に説明する。
[0038]
 ここでは、種別判別部9が、学習用の外れデータOD G,n,ts-teの波形を、例えば、上ピーク型の波形、下ピーク型の波形、上下ピーク型の波形、過渡上昇型の波形、過渡下降型の波形、又は、振動型の波形の6つにグループに分ける例を説明する。
 図7は、波形の種別が、「上ピーク型」、「下ピーク型」、「上下ピーク型」、「過渡上昇型」、「過渡下降型」又は「振動型」である場合の学習用の外れデータOD G,n,ts-teの波形を示す説明図である。
 図7において、始点は、学習用の外れデータOD G,n,ts-teの波形が始まっている点、終点は、学習用の外れデータOD G,n,ts-teの波形が終わっている点である。
[0039]
[上ピーク型]
 上ピーク型の波形は、図7Aに示すように、学習用の外れデータOD G,n,ts-teの値が急激に上昇してから急激に下降し、その後、学習用の外れデータOD G,n,ts-teの値が急激に上昇する前の値付近に戻る波形である。
[下ピーク型]
 下ピーク型の波形は、図7Bに示すように、学習用の外れデータOD G,n,ts-teの値が急激に下降してから急激に上昇し、その後、学習用の外れデータOD G,n,ts-teの値が急激に下降する前の値付近に戻る波形である。
[上下ピーク型]
 上下ピーク型の波形は、図7Cに示すように、学習用の外れデータOD G,n,ts-teの値が最小値まで急激に下降してから、最大値まで急激に上昇し、その後、学習用の外れデータOD G,n,ts-teの値が急激に下降する前の値付近に戻る波形である。
 また、上下ピーク型の波形は、学習用の外れデータOD G,n,ts-teの値が最大値まで急激に上昇してから、最小値まで急激に下降し、その後、学習用の外れデータOD G,n,ts-teの値が急激に上昇する前の値付近に戻る波形である。
[0040]
[過渡上昇型]
 過渡上昇型の波形は、図7Dに示すように、学習用の外れデータOD G,n,ts-teの値が最大値まで上昇し、その後、学習用の外れデータOD G,n,ts-teの値が最大値付近の値になる波形である。
[過渡下降型の波形]
 過渡下降型の波形は、図7Eに示すように、学習用の外れデータOD G,n,ts-teの値が最小値まで下降し、その後、学習用の外れデータOD G,n,ts-teの値が最小値付近の値になる波形である。
[振動型の波形]
 振動型の波形は、図7Fに示すように、学習用の外れデータOD G,n,ts-teの値が、上下に振動し続けて収束しない波形である。
[0041]
 図8は、学習用の外れデータOD G,n,ts-teにおける特徴量C G,nの一例を示す説明図である。
 まず、種別判別部9は、外れデータ抽出処理部7から出力された学習用の外れデータOD G,n,ts-teの平均値D G,n,aveを算出する。
 種別判別部9は、特徴量C G,nの1つとして、学習用の外れデータOD G,n,ts-teが平均値D G,n,aveと交差する回数である交差回数CNを計数する。
 図8に示す学習用の外れデータOD G,n,ts-teは、平均値D G,n,aveと5回交差している。
[0042]
 種別判別部9は、学習用の外れデータOD G,n,ts-teと平均値D G,n,aveとが交差している1つ以上の交差点のうち、学習用の外れデータOD G,n,ts-teの始点から数えて、1番目の交差点に着目する。
 種別判別部9は、1番目の交差点を境にして、学習用の外れデータOD G,n,ts-teが平均値D G,n,aveよりも低い値から、平均値D G,n,aveよりも高い値に変化していれば、“初回交差=正”を、特徴量C G,nの1つとする。
 種別判別部9は、1番目の交差点を境にして、学習用の外れデータOD G,n,ts-teが平均値D G,n,aveよりも高い値から、平均値D G,n,aveよりも低い値に変化していれば、“初回交差=負”を、特徴量C G,nの1つとする。
 図8に示す学習用の外れデータOD G,n,ts-teでは、初回交差が正である。
[0043]
 また、種別判別部9は、特徴量C G,nの1つとして、学習用の外れデータOD G,n,ts-teの始点と、学習用の外れデータOD G,n,ts-teの終点との差の絶対値Δ s-eを算出する。
 さらに、種別判別部9は、特徴量C G,nの1つとして、学習用の外れデータOD G,n,ts-teの中の最大値と、学習用の外れデータOD G,n,ts-teの中の最小値との差の絶対値Δ max-minを算出する。
[0044]
 種別判別部9は、交差回数CNが2回であり、かつ、“初回交差=正”であれば、波形の種別が「上ピーク型」であると判別する。
 また、種別判別部9は、交差回数CNが1回であり、かつ、“初回交差=正”であり、かつ、Δ s-e≦Δ max-min×αであれば、波形の種別が「上ピーク型」であると判別する。ただし、αは、任意の定数であり、0≦α≦1である。定数αは、種別判別部9の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
[0045]
 種別判別部9は、交差回数CNが2回であり、かつ、“初回交差=負”であれば、波形の種別が「下ピーク型」であると判別する。
 また、種別判別部9は、交差回数CNが1回であり、かつ、“初回交差=負”であり、かつ、Δ s-e≦Δ max-min×αであれば、波形の種別が「下ピーク型」であると判別する。
[0046]
 種別判別部9は、交差回数CNが3回であり、かつ、Δ s-e≦Δ max-min×βであれば、波形の種別が「上下ピーク型」であると判別する。ただし、βは、任意の定数であり、0≦β≦1である。定数βは、種別判別部9の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
[0047]
 種別判別部9は、交差回数CNが1回であり、かつ、“初回交差=正”であり、かつ、Δ s-e>Δ max-min×αであれば、波形の種別が「過渡上昇型」であると判別する。
 種別判別部9は、交差回数CNが1回であり、かつ、“初回交差=負”であり、かつ、Δ s-e>Δ max-min×αであれば、波形の種別が「過渡下降型」であると判別する。
[0048]
 種別判別部9は、交差回数CNが4回以上であれば、波形の種別が「振動型」であると判別する。
 また、種別判別部9は、交差回数CNが3回であり、かつ、Δ s-e>Δ max-min×αであれば、波形の種別が「振動型」であると判別する。
[0049]
 波形分類部13は、外れデータ抽出部4により抽出されたそれぞれの学習用の外れデータOD G,n,ts-teのうち、種別判別部9により波形が互いに同一の種別であると判別された1つ以上の学習用の外れデータOD G,n,ts-teをグループ分けする。
 次に、波形分類部13は、分けたグループの全てについて、当該グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teの間の類似度を算出する。
 1つ以上の学習用の外れデータOD G,n,ts-teの間の類似度として、1つ以上の学習用の外れデータOD G,n,ts-teの波形の間の距離を算出するものであってもよい。算出する距離としては、ユークリッド距離、1-相関係数、マンハッタン距離、又は、DTW(Dynamic Time Warping)距離等が考えられる。類似度は、距離が短い程、大きい。
 1つ以上の学習用の外れデータOD G,n,ts-teの波形の間の距離の算出処理自体は、公知の技術であるため詳細な説明を省略する。
[0050]
 波形分類部13は、算出した類似度に基づいて、同一のグループに分類した1つ以上の学習用の外れデータOD G,n,ts-teを更にグループ分けする(図4のステップST6)。
 具体的には、波形分類部13は、同一のグループに分類した1つ以上の学習用の外れデータOD G,n,ts-teのうち、算出した互いの類似度が大きい学習用の外れデータOD G,n,ts-te同士が同一のグループに属するように、学習用の外れデータOD G,n,ts-teのクラスタリングを行う。波形分類部13は、例えば、算出した類似度が閾値以上の学習用の外れデータOD G,n,ts-te同士が、互いの類似度が大きい学習用の外れデータOD G,n,ts-te同士であると判断する。
 クラスタリングの方式としては、k-means法を用いることができる。しかし、クラスタリングの方式は、k-means法に限るものではなく、スペクトラルクラスタリング又は階層型クラスタリング等を用いてもよい。
 算出した類似度と比較する閾値は、種別判別部9の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 波形分類部13は、1つ以上の学習用の外れデータOD G,n,ts-teのグループ分け結果を波形条件生成処理部14に出力する。
[0051]
 波形条件生成処理部14は、波形分類部13によりグループ分けされたグループの全てについて、当該グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teの波形から、当該グループに対応する波形条件Wpを生成する(図4のステップST7)。
 波形条件生成処理部14は、波形条件Wpとして、例えば、波形の正常範囲を示すバンドモデルを生成する。
 波形条件生成処理部14は、生成した波形条件Wpを波形条件記憶部15に出力する。
 波形条件記憶部15は、波形条件生成処理部14から出力された波形条件Wpを記憶する。
[0052]
 以下、波形条件生成処理部14によるバンドモデルの生成処理を具体的に説明する。
 ここでは、説明の便宜上、1つのグループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teが、P ,P ,・・・,P で表されるものとする。また、P の時刻tの値が、P [t]で表されるものとする。i=1,2,・・・,mである。時刻tは、期間ts-teにおけるいずれかの時刻であり、具体的には、時刻tは、時刻tsを1に置き換えた場合のいずれかの時刻である(t=1,2,…,(te-ts))。
 波形条件生成処理部14は、以下の式(2)に示すように、時刻tにおけるm個のP [t]の平均値P mean[t]を算出し、以下の式(3)に示すように、時刻tにおけるm個のP [t]の標準偏差P std[t]を算出する。


[0053]
 波形条件生成処理部14は、平均値P mean[t]、標準偏差P std[t]及び定数λ(1≦λ)を用いて、以下の式(4)に示すように、バンドモデルが示す正常範囲の上限値B upper[t]を算出する。定数λは、波形条件生成処理部14の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 B upper[t]=P mean[t]+P std[t]×λ  (4)
 波形条件生成処理部14は、平均値P mean[t]、標準偏差P std[t]及び定数λ(1≦λ)を用いて、以下の式(5)に示すように、バンドモデルが示す正常範囲の下限値B lower[t]を算出する。
 B lower[t]=P mean[t]-P std[t]×λ  (5)
[0054]
 ここでは、波形条件生成処理部14が、平均値P mean[t]及び標準偏差P std[t]を用いて、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を算出している。しかし、これは一例に過ぎず、波形条件生成処理部14が、時刻tにおけるm個のP [t]の中の最大値P max[t]及び最小値P min[t]を用いて、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を算出するようにしてもよい。
[0055]
 波形条件生成処理部14は、以下の式(6)に示すように、時刻tにおけるm個のP [t]の中の最大値P max[t]を求め、以下の式(7)に示すように、時刻tにおけるm個のP [t]の中の最小値P min[t]を求める。
 P max[t]=max(P [t],P [t],・・・,P [t])
                          (6)
 P min[t]=min(P [t],P [t],・・・,P [t])
                          (7)
[0056]
 波形条件生成処理部14は、最大値P max[t]、最小値P min[t]及び定数δ(1≦δ≦m)を用いて、以下の式(8)に示すように、バンドモデルが示す正常範囲の上限値B upper[t]を算出する。


 式(8)において、P max[t-δ/2:t+δ/2]は、時刻(t-δ/2)~時刻(t+δ/2)に含まれるそれぞれの時刻tの最大値P max[t]である。
 波形条件生成処理部14は、最大値P max[t]、最小値P min[t]及び定数δ(1≦δ≦m)を用いて、以下の式(9)に示すように、バンドモデルが示す正常範囲の下限値B lower[t]を算出する。


 式(9)において、P min[t-δ/2:t+δ/2]は、時刻(t-δ/2)~時刻(t+δ/2)に含まれるそれぞれの時刻tの最小値P min[t]である。
[0057]
 図9は、波形の種別が「上ピーク型」に係るバンドモデルの生成例を示す説明図である。
 図9Aは、波形の種別が「上ピーク型」のN(N=12)個の学習用の外れデータOD G,n,ts-teを示している。
 図9Aにおいて、横軸は、時刻tであり、縦軸は、時刻tにおける学習用の外れデータOD G,n,ts-teの値P [t]である。
 実線部分は、学習用の外れデータOD G,n,ts-teであり、破線部分は、学習用の外れデータOD G,n,ts-teの前後の学習用の時系列データD G,n,tである。
 図9Bは、N個の学習用の外れデータOD G,n,ts-teの平均値P mean[t]、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を示している。
 図9Bにおいて、横軸は、時刻tであり、縦軸は、時刻tの平均値P mean[t]、時刻tの上限値B upper[t]及び時刻tの下限値B lower[t]である。
 図9の例では、波形条件生成処理部14が、12個の学習用の外れデータOD G,n,ts-teから、波形の種別が「上ピーク型」に係るバンドモデルを生成している。
[0058]
 次に、異常検知装置における異常検知時の動作について説明する。
 まず、異常検知用データ入力部2は、複数の時刻tにおける異常検知対象の設備の状態を時系列で示す異常検知用の時系列データD U,tの入力を受け付ける(図5のステップST11)。
 異常検知用データ入力部2は、入力を受け付けた異常検知用の時系列データD U,tを外れスコア算出部3及び外れデータ抽出処理部7のそれぞれに出力する。
[0059]
 外れスコア算出部3は、異常検知用データ入力部2から出力された異常検知用の時系列データD U,tを受けると、異常検知用の時系列データD U,tから、それぞれの時刻tにおける異常検知用の外れスコアS U,tを算出する(図5のステップST12)。
 異常検知用の外れスコアS U,tの算出処理は、学習用の外れスコアS G,n,tの算出処理と同様である。
 外れスコア算出部3は、算出したそれぞれの時刻tにおける異常検知用の外れスコアS U,tを外れデータ抽出処理部7に出力する。
[0060]
 外れデータ抽出処理部7は、外れスコア算出部3により算出されたそれぞれの時刻tにおける異常検知用の外れスコアS U,tを取得し、閾値記憶部6により記憶されている閾値S thを取得する。
 外れデータ抽出処理部7は、それぞれの時刻tにおける異常検知用の外れスコアS U,tと、閾値S thとを比較する。
 外れデータ抽出処理部7は、異常検知用の外れスコアS U,tと閾値S thとの比較結果に基づいて、それぞれの時刻tにおける異常検知用の外れスコアS U,tの中で、閾値S th以上の異常検知用の外れスコアS U,tを特定することで、異常検知用の外れスコアS U,tが閾値S th以上の期間ts’-te’を検出する。
 外れデータ抽出処理部7は、異常検知用の時系列データD U,tの中から、検出した期間ts’-te’の異常検知用の時系列データD U,ts’~ D U,te’を異常検知用の外れデータOD U,ts’-te’として抽出する(図5のステップST13)。
 外れデータ抽出処理部7は、抽出した異常検知用の外れデータOD U,ts’-te’を種別判別部9、波形条件選択部10及び異常判定処理部11のそれぞれに出力する。
 図1に示す異常検知装置では、説明の簡単化のため、外れデータ抽出処理部7が、異常検知用の時系列データD U,tの中から、1つの異常検知用の外れデータOD U,ts’-te’を抽出するものとして、以下の説明を行う。
[0061]
 種別判別部9は、外れデータ抽出処理部7から異常検知用の外れデータOD U,ts’-te’を受けると、異常検知用の外れデータOD U,ts’-te’の特徴量C を算出する。
 異常検知用の外れデータOD U,ts’-te’における特徴量C の算出処理は、学習用の外れデータOD G,n,ts-teにおける特徴量C G,nの算出処理と同様である。
 種別判別部9は、異常検知用の外れデータOD U,ts’-te’の特徴量C から、異常検知用の外れデータOD U,ts’-te’の波形の種別を判別する(図5のステップST14)。
 異常検知用の外れデータOD U,ts’-te’における波形の種別の判別処理は、学習用の外れデータOD G,n,ts-teにおける波形の種別の判別処理と同様である。
 種別判別部9は、判別した波形の種別を波形条件選択部10に出力する。
[0062]
 波形条件選択部10は、外れデータ抽出処理部7から出力された異常検知用の外れデータOD U,ts’-te’と、外れデータ抽出処理部7から出力されたN個の学習用の外れデータOD G,n,ts-teとの間の類似度をそれぞれ算出する。
 異常検知用の外れデータOD U,ts’-te’と学習用の外れデータOD G,n,ts-teとの間の類似度として、異常検知用の外れデータOD U,ts’-te’の波形と学習用の外れデータOD G,n,ts-teの波形との距離を算出するものであってもよい。算出する距離としては、ユークリッド距離、1-相関係数、マンハッタン距離、又は、DTW距離等が考えられる。距離の算出処理自体は、公知の技術であるため詳細な説明を省略する。
 波形条件選択部10は、N個の学習用の外れデータOD G,n,ts-teの中で、異常検知用の外れデータOD U,ts’-te’との類似度が最も高い学習用の外れデータOD G,n,ts-teを検索する。異常検知用の外れデータOD U,ts’-te’との類似度が最も高い学習用の外れデータOD G,n,ts-teの波形の種別は、異常検知用の外れデータOD U,ts’-te’の波形の種別と同じである。
 波形条件選択部10は、波形条件記憶部15により記憶されている1つ以上のグループに対応する波形条件Wpの中から、検索した学習用の外れデータOD G,n,ts-teが含まれているグループに対応する波形条件Wpを選択する(図5のステップST15)。
 波形条件選択部10は、選択した波形条件Wpを異常判定処理部11に出力する。
[0063]
 異常判定処理部11は、波形条件選択部10により選択された波形条件Wpと、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の波形とを照合する。
 異常判定処理部11は、波形条件Wpと異常検知用の外れデータOD U,ts’-te’の波形との照合結果に基づいて、設備が異常であるか否かを判定する(図5のステップST16)。
 異常判定処理部11は、設備が異常であるか否かを示す判定結果を検知結果出力部16に出力する。
 検知結果出力部16は、異常判定処理部11から出力された判定結果を、例えば図示せぬディスプレイに表示させる(図5のステップST17)。
[0064]
 以下、異常判定処理部11による設備の異常判定処理を具体的に説明する。
 図10Aは、異常判定処理部11によって、設備が正常であると判定される場合の異常検知用の外れデータOD U,ts’-te’の波形を示す説明図である。
 図10Bは、異常判定処理部11によって、設備が異常であると判定される場合の異常検知用の外れデータOD U,ts’-te’の波形を示す説明図である。
 図10A及び図10Bにおいて、横軸は、時刻tである。縦軸は、時刻tにおける異常検知用の外れデータOD U,ts’-te’の値、時刻tにおけるバンドパスが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を示している。
[0065]
 異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’の波形が、期間ts’-te’の全てに亘って、バンドパスの下限値B lower[t]以上であり、かつ、バンドパスの上限値B upper[t]以下であれば、正常範囲に含まれているため、設備が正常であると判定する。
 図10Aに示す異常検知用の外れデータOD U,ts’-te’の波形は、期間ts’-te’の全てに亘って、下限値B lower[t]以上であり、かつ、上限値B upper[t]以下であるため、異常判定処理部11によって、設備が正常であると判定される。
 異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’の波形が、期間ts’-te’におけるいずれかの時刻tで、下限値B lower[t]よりも小さい場合、又は、いずれかの時刻tで、上限値B upper[t]よりも大きい場合、正常範囲を逸脱しているため、設備が異常であると判定する。
 図10Bに示す異常検知用の外れデータOD U,ts’-te’の波形は、3回、上限値B upper[t]よりも大きくなっているため、異常判定処理部11によって、設備が異常であると判定される。
[0066]
 ここでは、異常検知用の外れデータOD U,ts’-te’の波形が、期間ts’-te’の全てに亘って、下限値B lower[t]以上であり、かつ、上限値B upper[t]以下であれば、異常判定処理部11が、設備が正常であると判定している。しかし、これは一例に過ぎず、異常検知用の外れデータOD U,ts’-te’の波形が、バンドモデルが示す正常範囲を逸脱していても、許容範囲の逸脱であれば、異常判定処理部11が、設備が正常であると判定するようにしてもよい。
[0067]
 具体的には、以下の通りである。
 異常判定処理部11は、初期値が0の変数Kを用意する。
 異常判定処理部11は、期間ts’-te’内のそれぞれ時刻tにおいて、異常検知用の外れデータOD U,ts’-te’の値が、上限値B upper[t]よりも大きければ、変数Kに“1”を加算する。したがって、異常検知用の外れデータOD U,ts’-te’の値が、上限値B upper[t]よりも大きい時刻tとして、例えば、3つの時刻があれば、異常判定処理部11が、変数Kに“3”を加算する。
 また、異常判定処理部11は、期間ts’-te’内のそれぞれ時刻tにおいて、異常検知用の外れデータOD U,ts’-te’の値が、下限値B lower[t]よりも小さければ、変数Kに“1”を加算する。したがって、異常検知用の外れデータOD U,ts’-te’の値が、下限値B lower[t]よりも小さい時刻tとして、例えば、2つの時刻があれば、異常判定処理部11が、変数Kに“2”を加算する。
 異常判定処理部11は、以下の式(10)に示すように、期間ts’-te’に係数ζ(0≦ζ<1)を乗算した値が、変数K以上であれば、設備が正常であると判定する。
 K≦|ts’-te’|×ζ          (10)
 異常判定処理部11は、期間ts’-te’に係数ζを乗算した値が、変数Kよりも小さければ、設備が異常であると判定する。
 なお、係数ζは、異常判定処理部11の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。ζ=0の場合、許容範囲が零になる。
[0068]
 ここでは、異常検知用の外れデータOD U,ts’-te’の波形が、バンドモデルが示す正常範囲を逸脱していても、許容範囲の逸脱であれば、設備が正常であると判定する例として、異常判定処理部11が、式(10)が成立するとき、設備が正常であると判定する例を示している。
 しかし、これは一例に過ぎず、以下の具体例も考えられる。
 異常検知用の外れデータOD U,ts’-te’の波形が、バンドモデルが示す正常範囲を逸脱している回数が少なくても、それぞれの逸脱の幅が大きい場合がある。
 一方、異常検知用の外れデータOD U,ts’-te’の波形が、バンドモデルが示す正常範囲を逸脱している回数が多くても、それぞれの逸脱の幅が小さい場合がある。
 例えば、逸脱の幅がバンドモデルの幅と同程度であるときの逸脱の回数が1回の場合よりも、逸脱の幅がバンドモデルの幅の1%程度であるときの逸脱の回数が2~3回の場合の方が、設備が正常である可能性が高いと考えられる。
[0069]
 異常判定処理部11は、初期値が0の変数Gを用意する。
 異常判定処理部11は、期間ts’-te’内のそれぞれ時刻tにおいて、異常検知用の外れデータOD U,ts’-te’の値から上限値B upper[t]を減算し、減算した値が正の値であれば、変数Gに減算した値を加算する。
 また、異常判定処理部11は、期間ts’-te’内のそれぞれ時刻tにおいて、下限値B lower[t]から異常検知用の外れデータOD U,ts’-te’の値を減算し、減算した値が正の値であれば、変数Gに減算した値を加算する。
 異常判定処理部11は、変数Gが閾値Gth以下であれば、設備が正常であると判定し、変数Gが閾値Gthよりも大きければ、設備が異常であると判定する。
[0070]
 閾値Gthは、異常判定処理部11の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
 閾値Gthとしては、以下の式(11)又は式(12)に示すような閾値Gthを用いることができる。
 Gth=(max(B upper[t])-min(B lower[t]))×θ
                          (11)
 式(11)において、max(B upper[t])は、期間ts’-te’内の上限値B upper[t]の中の最大値、min(B lower[t])は、期間ts’-te’内の下限値B lower[t]の中の最小値、θは、0以上の係数である。係数θは、異常判定処理部11の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。


 式(12)において、hは、期間ts’-te’内の時刻tの数である。
[0071]
 図1に示す異常検知装置では、外れデータ抽出処理部7が、異常検知用の時系列データD U,tの中から、1つの異常検知用の外れデータOD U,ts’-te’を抽出している。
 しかし、これは一例に過ぎず、外れデータ抽出処理部7が、異常検知用の時系列データD U,tの中から、検出期間ts’-te’が互いに異なる2つ以上の異常検知用の外れデータOD U,ts’-te’を抽出することがある。
 外れデータ抽出処理部7により2つ以上の異常検知用の外れデータOD U,ts’-te’が抽出された場合、それぞれの外れデータOD U,ts’-te’について、種別判別部9、波形条件選択部10及び異常判定処理部11が、先に説明した処理を行う。
[0072]
 以上の実施の形態1は、異常判定部8が、外れデータ抽出部4により抽出された異常検知用の外れデータの変化を示す波形が、設備が正常であるときの波形であると認められる波形条件と、異常検知用の外れデータの波形とを照合し、波形条件と異常検知用の外れデータの波形との照合結果に基づいて、設備が異常であるか否かを判定するように、異常検知装置を構成した。したがって、異常検知装置は、事前にイベント情報を用意することなく、設備に異常が発生している旨を示す誤判定の発生を回避することができる。
 イベントには、事前に予測が可能なイベントのほかに、予測が困難なイベントがあるため、事前にイベント情報を用意することができないことがある。
 一方、図1に示す異常検知装置では、イベント情報を用意する代わりに、波形条件wpを事前に用意する必要がある。波形条件wpは、設備が正常であるときの学習用の時系列データD G,n,tから生成することが可能であるため、波形条件wpを事前に用意することは容易である。
[0073]
 図1に示す異常検知装置では、波形分類部13が、グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teの間の類似度を算出している。
 しかし、1つ以上の学習用の外れデータOD G,n,ts-teの波形の長さが同一の長さであるとは限らず、異なる長さであることがある。
 波形分類部13は、例えば、2つの学習用の外れデータOD G,n,ts-teの波形の長さが異なる場合、最初に、長さが短い方の波形の先頭を、長さが長い方の波形の先頭に揃えて、長さが短い方の波形と、長さが長い方の波形との間の距離を算出する。
 波形分類部13は、長さが短い方の波形の末尾が、長さが長い方の波形の末尾と揃うまで、長さが短い方の波形を、長さが長い方の波形に対して、平行にスライドさせながら、長さが短い方の波形と、長さが長い方の波形との間の距離を繰り返し算出する。
 波形分類部13は、算出した全ての距離の中で、最小の距離を選択し、選択した距離に対応する類似度を、波形の長さが長い方の学習用の外れデータOD G,n,ts-teと、波形の長さが短い方の学習用の外れデータOD G,n,ts-teとの間の類似度に決定する。距離に対応する類似度として、例えば、距離の逆数の整数倍を類似度とするものが考えられる。
[0074]
 波形分類部13は、類似度が閾値以上の学習用の外れデータOD G,n,ts-te同士を同一のグループに含める際、波形の長さが最長の学習用の外れデータOD G,n,ts-teに対して、波形の長さが短い学習用の外れデータOD G,n,ts-teの類似度が最大になるスライドの位置を特定する。
 波形分類部13は、波形の長さが最長の学習用の外れデータOD G,n,ts-teに対して、特定したスライドの位置に、波形の長さが短い学習用の外れデータOD G,n,ts-teを配置する。
 特定したスライドの位置に、波形の長さが短い学習用の外れデータOD G,n,ts-teを配置することで、波形の長さが短い学習用の外れデータOD G,n,ts-teの先頭が、波形の長さが最長の学習用の外れデータOD G,n,ts-teの先頭よりも末尾側に位置することがある。
 波形分類部13は、波形の長さが短い学習用の外れデータOD G,n,ts-teよりも前の時刻の学習用の時系列データD G,n,tを、波形の長さが短い学習用の外れデータOD G,n,ts-teの先頭側に付加することで、波形の長さが短い学習用の外れデータOD G,n,ts-teの先頭を波形の長さが最長の学習用の外れデータOD G,n,ts-teの先頭と揃える。
 また、特定したスライドの位置に、波形の長さが短い学習用の外れデータOD G,n,ts-teを配置することで、波形の長さが短い学習用の外れデータOD G,n,ts-teの末尾が、波形の長さが最長の学習用の外れデータOD G,n,ts-teの末尾よりも先頭側に位置することがある。
 波形分類部13は、波形の長さが短い学習用の外れデータOD G,n,ts-teよりも後の時刻の学習用の時系列データD G,n,tを、波形の長さが短い学習用の外れデータOD G,n,ts-teの末尾側に付加することで、波形の長さが短い学習用の外れデータOD G,n,ts-teの末尾を波形の長さが最長の学習用の外れデータOD G,n,ts-teの末尾と揃える。
 波形分類部13は、波形の長さが揃った同一の学習用の外れデータOD G,n,ts-te同士を同一のグループに含める。
[0075]
 図1に示す異常検知装置では、波形分類部13が、類似度が閾値以上の学習用の外れデータOD G,n,ts-te同士を同一のグループに含めている。
 センサの観測値が、外気温又は海水温である場合、あるいは、センサの観測値が、他の設備からの外的要因等の影響を受ける場合がある。これらの場合、学習用の外れデータOD G,n,ts-teの長期的なトレンドの中に、イベントに関連する波形が出現するため、それぞれの学習用の外れデータOD G,n,ts-teの波形又は変化の幅のそれぞれが似ていても、観測値の値域が異なる場合がある。
 それぞれの学習用の外れデータOD G,n,ts-teに含まれている観測値の値域が異なる場合、波形分類部13が、それぞれの学習用の外れデータOD G,n,ts-teが類似していないとして、それぞれの学習用の外れデータOD G,n,ts-teを異なるグループに分けてしまうことがある。
 そこで、波形分類部13は、種別判別部9により波形が互いに同一の種別であると判別された1つ以上の学習用の外れデータOD G,n,ts-teのそれぞれについて、波形の平均値Mを算出する。
 波形分類部13は、1つ以上の学習用の外れデータOD G,n,ts-teのそれぞれについて、それぞれの時刻tの値から、それぞれの波形の平均値Mを減算する。
 波形分類部13が、1つ以上の学習用の外れデータOD G,n,ts-teのそれぞれについて、それぞれの時刻tの値から、それぞれの波形の平均値Mを減算することで、1つ以上の学習用の外れデータOD G,n,ts-teに含まれている観測値の値域を揃えることができる。
[0076]
 また、波形分類部13は、1つ以上の学習用の外れデータOD G,n,ts-teの変化の幅も、外的要因の影響を受ける場合、1つ以上の学習用の外れデータOD G,n,ts-teにおけるそれぞれの時刻tの値を、それぞれの学習用の外れデータOD G,n,ts-teの標準偏差で除算するようにしてもよい。
 1つ以上の学習用の外れデータOD G,n,ts-teにおけるそれぞれの時刻tの値を、標準偏差で除算することで、外的要因の影響を軽減することができる。
[0077]
 また、1つ以上の学習用の外れデータOD G,n,ts-teが、時間方向に揺らぎを生じる場合もある。例えば、温度データに出現するイベント波形では、夏季は、温度上昇のスピードが速く、下降のスピードが遅い。逆に、冬季は、温度上昇のスピードが遅く、下降のスピードが早い。
 1つ以上の学習用の外れデータOD G,n,ts-teが、時間方向に揺らぎを生じる場合、波形分類部13は、動的時間伸縮法を用いて、1つ以上の学習用の外れデータOD G,n,ts-teの間のDTW距離を算出する。
 波形分類部13は、DTW距離の計算で得られる伸縮パスに従って1つ以上の学習用の外れデータOD G,n,ts-teの波形をそれぞれ伸縮させることで、学習用の外れデータOD G,n,ts-teの時間方向の揺らぎを解消することができる。伸縮パスは、1つ以上の学習用の外れデータOD G,n,ts-teの間の距離が最小になるときの、1つ以上の学習用の外れデータOD G,n,ts-teの対応する時間を示すものである。伸縮パスに従って学習用の外れデータOD G,n,ts-teの波形を伸縮させる処理自体は、公知の技術であるため詳細な説明を省略する。
[0078]
 図1に示す異常検知装置では、波形条件生成処理部14が、グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teにおけるそれぞれの時刻tの平均値P mean[t]を用いて、バンドモデルの上限値B upper[t]等を算出している。
 しかし、これは一例に過ぎず、波形条件生成処理部14は、時刻tの平均値P mean[t]を用いる代わりに、グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teのうち、代表の学習用の外れデータOD G,n,ts-teに含まれている時刻tの観測値を用いるようにしてもよい。
 代表の学習用の外れデータOD G,n,ts-teとしては、グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teの平均の外れデータと最も類似度が大きい学習用の外れデータOD G,n,ts-teを用いることができる。
[0079]
 図1に示す異常検知装置では、波形条件生成処理部14が、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を算出している。
 波形条件生成処理部14は、バンドモデルが示す正常範囲の幅から、正常範囲のマージンを算出し、マージンを正常範囲に加えることで、正常範囲を拡張するようにしてもよい。
 具体的には、以下の通りである。
[0080]
 波形条件生成処理部14は、以下の式(13)に示すように、バンドモデルが示す正常範囲の幅から、正常範囲のマージンrを算出する。
 r=(max(B upper[t])-min(B lower[t]))×η
                           (13)
 式(13)において、max(B upper[t])は、期間ts-te内の上限値B upper[t]の中の最大値、min(B lower[t])は、期間ts-te内の下限値B lower[t]の中の最小値、ηは、0以上の係数である。ηは、波形条件生成処理部14の内部メモリに格納されているものであってもよいし、外部から与えられるものであってもよい。
[0081]
 波形条件生成処理部14は、以下の式(14)に示すように、マージンrを上限値B upper[t]に加算し、以下の式(15)に示すように、下限値B lower[t]からマージンrを減算することで、正常範囲を拡張する。
 B upper[t]←B upper[t]+r        (14)
 B lower[t]←B lower[t]-r        (15)
[0082]
 ここでは、波形条件生成処理部14が、式(13)に従って正常範囲のマージンrを算出している。しかし、これは一例に過ぎず、波形条件生成処理部14が、以下の式(16)に従って正常範囲のマージンrを算出するようにしてもよい。


 式(16)において、pは、期間ts-te内の時刻tの数である。
[0083]
実施の形態2.
 図1に示す異常検知装置では、波形条件生成処理部14が、波形条件Wpとして、波形の正常範囲を示すバンドモデルを生成している。
 実施の形態2では、波形条件生成処理部14が、波形条件Wpとして、設備が正常であるときに学習用の外れデータOD G,n,ts-teが発生している時間帯を示すヒストグラムを生成する異常検知装置について説明する。
 実施の形態2の異常検知装置の構成は、実施の形態1の異常検知装置の構成と同様であり、実施の形態2の異常検知装置の構成図は、図1である。
[0084]
 波形条件生成処理部14は、波形分類部13によりグループ分けされたグループ毎に、波形条件Wpとして、当該グループに含まれている1つ以上の学習用の外れデータOD G,n,ts-teが発生している時間帯を示すヒストグラムを生成する。
 学習用の外れデータOD G,n,ts-teは、学習用の外れスコアS G,n,tが閾値S th以上の期間ts-teを示す期間情報を含んでいる。期間情報は、学習用の外れスコアS G,n,tが閾値S th以上になる始まり時刻を示す情報から、学習用の外れスコアS G,n,tが閾値S th以下になる終わりの時刻を示す情報を含んでいる。
 また、始まり時刻を示す情報及び終わりの時刻を示す情報は、いわゆる時刻を示す情報だけでなく、日にちを示す情報及び曜日を示す情報を含んでいる。
 ヒストグラムの生成処理自体は、公知の技術であるため詳細な説明を省略するが、学習用の外れデータOD G,n,ts-teに含まれている期間情報が示す期間ts-teに基づいて、ヒストグラムを生成することが可能である。
[0085]
 図11は、波形条件生成処理部14によって生成されるヒストグラムの一例を示す説明図である。
 図11において、横軸は、時刻、日にち又は曜日を示しており、縦軸は、学習用の外れデータOD G,n,ts-teが発生している度数を示している。
 図11は、学習用の外れデータOD G,n,ts-teが1時台に発生し、学習用の外れデータOD G,n,ts-teが10~12日に発生し、学習用の外れデータOD G,n,ts-teが火曜日に発生している例を示している。
[0086]
 波形条件選択部10は、実施の形態1と同様に、種別判別部9から出力された異常検知用の外れデータOD U,ts’-te’と、N個の学習用の外れデータOD G,n,ts-teとの間の類似度をそれぞれ算出する。
 波形条件選択部10は、実施の形態1と同様に、N個の学習用の外れデータOD G,n,ts-teの中で、異常検知用の外れデータOD U,ts’-te’との類似度が最も高い学習用の外れデータOD G,n,ts-teを検索する。
 波形条件選択部10は、実施の形態1と同様に、波形条件記憶部15により記憶されている1つ以上のグループに対応する波形条件Wpの中から、検索した学習用の外れデータOD G,n,ts-teが含まれているグループに対応する波形条件Wpを選択する。
 波形条件選択部10により選択された波形条件Wpは、波形条件生成処理部14によって生成されたヒストグラムである。
 波形条件選択部10は、選択した波形条件Wpを異常判定処理部11に出力する。
[0087]
 異常判定処理部11は、外れデータ抽出処理部7から出力された異常検知用の外れデータOD U,ts’-te’に含まれている期間情報を参照して、異常検知用の外れデータOD U,ts’-te’が発生している時間帯である期間ts’-te’を認識する。
 異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’が発生している期間ts’-te’と、波形条件選択部10から出力された波形条件Wpであるヒストグラムが示す発生時間帯とを照合する。
 異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’が発生している期間ts’-te’が、ヒストグラムが示す発生時間帯に含まれていれば、設備が正常であると判定する。
 図11の例では、異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’が発生している時間帯が、1時台であり、かつ、10~12日のいずれかの日であり、かつ、火曜日であれば、設備が正常であると判定する。
 異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’が発生している期間ts’-te’が、ヒストグラムが示す発生時間帯に含まれていなければ、設備が異常であると判定する。
 図11の例では、異常判定処理部11は、異常検知用の外れデータOD U,ts’-te’が発生している時間帯が、1時台ではない、あるいは、10~12日のいずれの日でもない、あるいは、火曜日でなければ、設備が異常であると判定する。
[0088]
 以上の実施の形態2は、異常判定部8が、外れデータ抽出部4により抽出された異常検知用の外れデータが発生している時間帯が、ヒストグラムが示す発生時間帯に含まれていれば、設備が正常であると判定し、異常検知用の外れデータが発生している時間帯が、ヒストグラムが示す発生時間帯に含まれていなければ、設備が異常であると判定するように、異常検知装置を構成した。したがって、異常検知装置は、事前にイベント情報を用意することなく、設備に異常が発生している旨を示す誤判定の発生を回避することができる。
[0089]
 実施の形態2の異常検知装置では、異常判定処理部11が、異常検知用の外れデータOD U,ts’-te’が発生している時間帯が、ヒストグラムが示す発生時間帯に含まれていれば、設備が正常であると判定している。
 実施の形態2の異常検知装置でも、実施の形態1の異常検知装置と同様に、異常判定処理部11が、異常検知用の外れデータOD U,ts’-te’の波形が、期間ts’-te’の全てに亘って、バンドパスの正常範囲内であるか否かを判定する。
 そして、異常判定処理部11が、異常検知用の外れデータOD U,ts’-te’が発生している時間帯が、ヒストグラムが示す発生時間帯に含まれており、かつ、異常検知用の外れデータOD U,ts’-te’の波形が、期間ts’-te’の全てに亘って、バンドパスの正常範囲に含まれていれば、設備が正常であると判定するようにしてもよい。
[0090]
実施の形態3.
 実施の形態3では、波形条件生成処理部14により生成された波形条件Wpを提示し、提示した波形条件Wpの中から、有効な波形条件Wpの選択を受け付ける選択受付部17を備える異常検知装置について説明する。
[0091]
 図12は、実施の形態3に係る異常検知装置を示す構成図である。
 図13は、実施の形態3に係る異常検知装置のハードウェアを示すハードウェア構成図である。
 図12及び図13において、図1及び図2と同一符号は同一又は相当部分を示すので説明を省略する。
 選択受付部17は、例えば、図13に示す選択受付回路34によって実現される。
 選択受付部17は、波形条件生成処理部14により生成された波形条件Wpを提示し、提示した波形条件Wpの中から、有効な波形条件Wpの選択を受け付ける。
 選択受付部17は、選択を受け付けた有効な波形条件Wpのみを波形条件生成処理部14により生成された波形条件Wpとして残し、選択を受け付けていない波形条件Wpを破棄する。
[0092]
 図12では、異常検知装置の構成要素である学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、閾値記憶部6、外れデータ抽出処理部7、種別判別部9、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14、波形条件記憶部15、検知結果出力部16及び選択受付部17のそれぞれが、図13に示すような専用のハードウェアで実現されるものを想定している。即ち、異常検知装置が、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、閾値記憶回路25、外れデータ抽出処理回路26、種別判別回路27、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31、波形条件記憶回路32、検知結果出力回路33及び選択受付回路34で実現されるものを想定している。
[0093]
 ここで、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、外れデータ抽出処理回路26、種別判別回路27、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31、検知結果出力回路33及び選択受付回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
[0094]
 異常検知装置の構成要素は、専用のハードウェアで実現されるものに限るものではなく、異常検知装置がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 異常検知装置がソフトウェア又はファームウェア等で実現される場合、閾値記憶部6及び波形条件記憶部15がコンピュータのメモリ41上に構成される。学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、外れデータ抽出処理部7、種別判別部9、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14、検知結果出力部16及び選択受付部17の処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
[0095]
 次に、図12に示す異常検知装置の動作について説明する。
 ただし、図12に示す異常検知装置の構成要素のうち、選択受付部17以外の構成要素は、図1に示す異常検知装置と同様であるため、ここでは、選択受付部17の動作のみを説明する。
[0096]
 選択受付部17は、図14に示すように、波形条件生成処理部14により生成された1つ以上の波形条件Wpを、例えば、図示せぬディスプレイに表示させる。
 図14は、波形条件生成処理部14により生成された1つ以上の波形条件Wpの一覧を表示している一覧確認画面を示す説明図である。
 ユーザは、一覧確認画面を確認することで、それぞれの波形条件Wpの妥当性を評価することができる。
 図14に示す一覧確認画面は、それぞれの波形条件Wpに対応するチェックボックスを備えている。それぞれの波形条件Wpに対応するチェックボックスのうち、ユーザが、妥当であると判断する波形条件Wpに対応するチェックボックスに、チェックを入れることで、有効な波形条件Wpを選択することができる。
 図14に示す一覧確認画面は、4つの波形条件Wpを表示している。図中、左から2~4番目の波形条件Wpは、チェックボックスにチェックが入れられている。
[0097]
 選択受付部17は、波形条件生成処理部14により生成された1つ以上の波形条件Wpのうち、ユーザによって、チェックボックスにチェックが入れられた波形条件Wpを、有効な波形条件Wpとして、選択を受け付ける。
 選択受付部17は、選択を受け付けた有効な波形条件Wpのみを波形条件生成処理部14により生成された波形条件Wpとして、波形条件記憶部15に記憶させる。
 選択受付部17は、選択を受け付けていない波形条件Wpを破棄して、選択を受け付けていない波形条件Wpを波形条件記憶部15に記憶させない。
[0098]
 選択受付部17は、一覧確認画面に表示されている波形条件Wpの生成元の学習用の外れデータOD G,n,ts-teを図示せぬディスプレイに表示させる機能を備えている。
 一覧確認画面に表示されている1つ以上の波形条件Wpのうち、ユーザが、いずれかの波形条件Wpをクリックすると、選択受付部17によって、当該波形条件Wpの生成元の1つ以上の学習用の外れデータOD G,n,ts-teが図示せぬディスプレイに表示される。
 図15は、波形条件Wpの生成元の学習用の外れデータOD G,n,ts-teの一覧を表示している一覧確認画面を示す説明図である。
 図15に示す一覧確認画面は、12個の学習用の外れデータOD G,n,ts-teを表示している。
 ユーザは、一覧確認画面を確認することで、12個の学習用の外れデータOD G,n,ts-teのうち、波形条件Wpを生成する上で、不要と思われる学習用の外れデータOD G,n,ts-teを判断することができる。
[0099]
 図15に示す一覧確認画面は、それぞれの学習用の外れデータOD G,n,ts-teに対応するチェックボックスを備えている。それぞれの学習用の外れデータOD G,n,ts-teに対応するチェックボックスのうち、ユーザが、不要と思われる学習用の外れデータOD G,n,ts-teに対応するチェックボックスに入れられているチェックを外すことで、不要と思われる学習用の外れデータOD G,n,ts-teを選択することができる。
 図15の例では、一番左側の列の上から2番目の学習用の外れデータOD G,n,ts-teは、チェックボックスに入れられているチェックが外されている。また、一番右側の列の上から4番目の学習用の外れデータOD G,n,ts-teは、チェックボックスに入れられているチェックが外されている。
 選択受付部17は、12個の学習用の外れデータOD G,n,ts-teのうち、チェックが外されていない学習用の外れデータOD G,n,ts-teの選択を受け付ける。
 波形条件生成処理部14は、選択受付部17により選択が受け付けられた学習用の外れデータOD G,n,ts-teから波形条件Wpを再生成する。
[0100]
 図15に示す一覧確認画面は、波形条件生成処理部14による波形条件Wpの生成方法の選択を受け付ける選択ボックスを備えている。
 生成方法選択ボックスでは、平均値P mean[t]及び標準偏差P std[t]を用いて、波形条件Wpであるバンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を算出する生成方法を選ぶことが可能である。
 また、生成方法選択ボックスでは、最大値P max[t]及び最小値P min[t]を用いて、バンドモデルが示す正常範囲の上限値B upper[t]及び下限値B lower[t]を算出する生成方法を選ぶことが可能である。
 したがって、ユーザは、生成方法選択ボックスを操作することで、波形条件Wpの生成方法を選択することが可能である。
 選択受付部17は、ユーザの生成方法選択ボックスの操作に伴う波形条件Wpの生成方法の選択を受け付ける。
 波形条件生成処理部14は、選択受付部17により選択が受け付けられた生成方法に基づいて、選択受付部17により選択が受け付けられた学習用の外れデータOD G,n,ts-teから波形条件Wpを生成する。
[0101]
 図15に示す一覧確認画面は、バンドモデルが示す正常範囲のマージンの選択を受け付けるマージン選択ボックスを備えている。
 したがって、ユーザは、マージン選択ボックスを操作することで、マージンを選択することが可能である。
 選択受付部17は、ユーザのマージン選択ボックスの操作に伴うマージンの選択を受け付ける。
 波形条件生成処理部14は、選択受付部17により選択が受け付けられたマージンを正常範囲に加えることで、正常範囲を拡張する。
[0102]
 図15に示す一覧確認画面は、「反映」ボタン、「保存」ボタン及び「追加」ボタンを備えている。
 ユーザが、「反映」ボタンをクリックすると、波形条件生成処理部14が、選択受付部17により選択が受け付けられた学習用の外れデータOD G,n,ts-teから波形条件Wpを再生成し、再生成した波形条件Wpを一覧確認画面に表示させるように動作する。
 ユーザが、「保存」ボタンをクリックすると、選択受付部17により再生成された波形条件Wpが、波形条件記憶部15に記憶されるように動作する。
[0103]
 ユーザが、「追加」ボタンをクリックすると、波形条件Wpを再生成する上で、図15に示す一覧確認画面に表示されている学習用の外れデータOD G,n,ts-teと異なるグループに含まれている学習用の外れデータOD G,n,ts-teを選択できるように動作する。そして、ユーザが、「追加」ボタンをクリックしたのち、ユーザが、図14に示す一覧確認画面において、先にクリックした波形条件Wpと異なる波形条件Wpをクリックする。ユーザが、異なる波形条件Wpをクリックすると、選択受付部17によって、クリックした波形条件Wpの生成元の1つ以上の学習用の外れデータOD G,n,ts-teが図15に示す一覧確認画面に表示される。
 図15に示す一覧確認画において、ユーザが、波形条件Wpを再生成する上で、追加する必要があると思われる学習用の外れデータOD G,n,ts-teのチェックボックスにチェックを入れることで、追加する必要があると思われる学習用の外れデータOD G,n,ts-teを選択できる。
[0104]
 以上の実施の形態3は、選択受付部17が、波形条件生成処理部14により生成された波形条件Wpを提示し、提示した波形条件Wpの中から、有効な波形条件Wpの選択を受け付け、選択を受け付けた有効な波形条件Wpのみを波形条件生成処理部14により生成された波形条件Wpとして残し、選択を受け付けていない波形条件Wpを破棄するように、異常検知装置を構成した。したがって、異常検知装置は、ユーザの判断が反映されている波形条件Wpを生成することができる。
[0105]
実施の形態4.
 実施の形態4では、波形条件生成部12が、異常判定部8によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’を学習用の外れデータOD G,n,ts-teとして用いる異常検知装置について説明する。
[0106]
 図16は、実施の形態4に係る異常検知装置を示す構成図である。
 図17は、実施の形態4に係る異常検知装置のハードウェアを示すハードウェア構成図である。
 図16及び図17において、図1及び図2と同一符号は同一又は相当部分を示すので説明を省略する。
 種別判別部18は、例えば、図17に示す種別判別回路35によって実現される。
 種別判別部18は、図1に示す種別判別部9と同様に、外れデータ抽出処理部7により抽出された学習用の外れデータOD G,n,ts-teの種別を判別する。
 種別判別部18は、図1に示す種別判別部9と同様に、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の波形の種別を判別する。
 種別判別部18は、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして、検知結果出力部19から取得する。
 種別判別部18は、取得した異常検知用の外れデータOD U,ts’-te’の特徴量を算出し、算出した特徴量から異常検知用の外れデータOD U,ts’-te’の波形の種別を判別する。種別判別部18は、判別した異常検知用の外れデータOD U,ts’-te’の波形の種別を波形分類部13に出力する。
[0107]
 検知結果出力部19は、例えば、図17に示す検知結果出力回路36によって実現される。
 検知結果出力部19は、図1に示す検知結果出力部16と同様に、異常判定処理部11から出力された判定結果を、例えば図示せぬディスプレイに表示させる。
 検知結果出力部19は、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’と、異常検知用の時系列データD U,tを、例えばディスプレイに表示させる。
 検知結果出力部19は、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’のうち、学習用の外れデータOD G,n,ts-teとして用いる異常検知用の外れデータOD U,ts’-te’の選択を受け付ける。
 検知結果出力部19は、選択を受け付けた異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして、種別判別部18、波形分類部13及び波形条件生成処理部14のそれぞれに出力する。
[0108]
 図16では、異常検知装置の構成要素である学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、閾値記憶部6、外れデータ抽出処理部7、種別判別部18、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14、波形条件記憶部15及び検知結果出力部19のそれぞれが、図17に示すような専用のハードウェアで実現されるものを想定している。即ち、異常検知装置が、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、閾値記憶回路25、外れデータ抽出処理回路26、種別判別回路35、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31、波形条件記憶回路32及び検知結果出力回路36で実現されるものを想定している。
[0109]
 ここで、入力インタフェース回路21、入力インタフェース回路22、外れスコア算出回路23、閾値算出回路24、外れデータ抽出処理回路26、種別判別回路35、波形条件選択回路28、異常判定処理回路29、波形分類回路30、波形条件生成処理回路31及び検知結果出力回路36のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
[0110]
 異常検知装置の構成要素は、専用のハードウェアで実現されるものに限るものではなく、異常検知装置がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 異常検知装置がソフトウェア又はファームウェア等で実現される場合、閾値記憶部6及び波形条件記憶部15がコンピュータのメモリ41上に構成される。学習用データ入力部1、異常検知用データ入力部2、外れスコア算出部3、閾値算出部5、外れデータ抽出処理部7、種別判別部18、波形条件選択部10、異常判定処理部11、波形分類部13、波形条件生成処理部14及び検知結果出力部19の処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ41に格納される。そして、図3に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
[0111]
 次に、図16に示す異常検知装置の動作について説明する。
 異常判定処理部11は、実施の形態1と同様に、波形条件選択部10により選択された波形条件Wpと、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の波形とを照合する。
 異常判定処理部11は、実施の形態1と同様に、波形条件Wpと異常検知用の外れデータOD U,ts’-te’の波形との照合結果に基づいて、設備が異常であるか否かを判定する。
 異常判定処理部11は、実施の形態1と同様に、設備が異常であるか否かを示す判定結果を検知結果出力部19に出力する。
 異常判定処理部11は、設備が異常であると判定した際に、波形条件Wpと照合した異常検知用の外れデータOD U,ts’-te’を検知結果出力部19に出力する。
[0112]
 検知結果出力部19は、異常判定処理部11から出力された判定結果を、例えば図示せぬディスプレイに表示させる。
 検知結果出力部19は、図18に示すように、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’と、異常検知用データ入力部2から出力された異常検知用の時系列データD U,tとを、例えばディスプレイに表示させる。
 図18は、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’及び異常検知用の時系列データD U,tを表示しているデータ表示画面の一例を示す説明図である。
 図18において、異常検知用の時系列データD U,tのうち、〇で囲まれている部分のデータは、異常判定処理部11によって、設備が異常であると判定された際に、波形条件Wpと照合された異常検知用の外れデータOD U,ts’-te’である。図18に示す画面には、外れデータOD U,ts’-te’の拡大図も、表示されている。
 拡大図において、実線部分は、異常検知用の外れデータOD U,ts’-te’であり、破線部分は、異常検知用の外れデータOD U,ts’-te’の前後の異常検知用の時系列データD U,tである。
 図18では、図面の簡単化のため、異常検知用の外れデータOD U,ts’-te’の拡大図の数が、〇で囲まれている部分のデータの数よりも少ない。
[0113]
 図18に示すデータ表示画面は、それぞれの異常検知用の外れデータOD U,ts’-te’に対応するチェックボックスを備えている。ユーザが、学習用の外れデータOD G,n,ts-teとして用いることを希望する異常検知用の外れデータOD U,ts’-te’に対応するチェックボックスに、チェックを入れることで、学習用の外れデータOD G,n,ts-teとして用いる異常検知用の外れデータOD U,ts’-te’を選択できる。
 図18の例では、上の段の左から4番目の異常検知用の外れデータOD U,ts’-te’は、チェックボックスにチェックが入れられている。
 検知結果出力部19は、ユーザによって、チェックボックスにチェックが入れられた異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして、選択を受け付ける。
 検知結果出力部19は、選択を受け付けた異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして、種別判別部18、波形分類部13及び波形条件生成処理部14のそれぞれに出力する。
[0114]
 種別判別部18は、図1に示す種別判別部9と同様に、外れデータ抽出処理部7により抽出された学習用の外れデータOD G,n,ts-teの種別を判別し、学習用の外れデータOD G,n,ts-teの種別を波形分類部13に出力する。
 種別判別部18は、図1に示す種別判別部9と同様に、外れデータ抽出処理部7により抽出された異常検知用の外れデータOD U,ts’-te’の波形の種別を判別し、異常検知用の外れデータOD U,ts’-te’の波形の種別を波形条件選択部10に出力する。
[0115]
 種別判別部18は、検知結果出力部19から出力された異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして取得する。
 種別判別部18は、取得した異常検知用の外れデータOD U,ts’-te’の特徴量を算出し、算出した特徴量から異常検知用の外れデータOD U,ts’-te’の波形の種別を判別する。
 異常検知用の外れデータOD U,ts’-te’の波形の種別の判別処理は、学習用の外れデータOD G,n,ts-teの波形の種別を判別処理と同様である。
 種別判別部18は、判別した異常検知用の外れデータOD U,ts’-te’の波形の種別を波形分類部13に出力する。
 波形分類部13及び波形条件生成処理部14の動作は、検知結果出力部19から出力された異常検知用の外れデータOD U,ts’-te’を、学習用の外れデータOD G,n,ts-teとして用いること以外は、実施の形態1と同様である。
[0116]
 以上の実施の形態4は、種別判別部18が、異常判定部8によって、設備が異常であると判定された際に、波形条件と照合された異常検知用の外れデータの特徴量を算出し、当該特徴量から波形条件と照合された異常検知用の外れデータの波形の種別を判別する。そして、波形条件生成部12が、外れデータ抽出部4により抽出されたそれぞれの学習用の外れデータ及び波形条件と照合された異常検知用の外れデータのうち、種別判別部18により波形が互いに同一の種別であると判別された1つ以上の外れデータの波形から、当該種別に対応する波形条件を生成するように、異常検知装置を構成した。したがって、異常検知装置は、実施の形態1の異常検知装置よりも、学習用の外れデータを増やして、種別に対応する波形条件の精度を高めることができる。
[0117]
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。

産業上の利用可能性

[0118]
 この発明は、設備が異常であるか否かを判定する異常検知装置及び異常検知方法に適している。

符号の説明

[0119]
 1 学習用データ入力部、2 異常検知用データ入力部、3 外れスコア算出部、4 外れデータ抽出部、5 閾値算出部、6 閾値記憶部、7 外れデータ抽出処理部、8 異常判定部、9 種別判別部、10 波形条件選択部、11 異常判定処理部、12 波形条件生成部、13 波形分類部、14 波形条件生成処理部、15 波形条件記憶部、16 検知結果出力部、17 選択受付部、18 種別判別部、19 検知結果出力部、21 入力インタフェース回路、22 入力インタフェース回路、23 外れスコア算出回路、24 閾値算出回路、25 閾値記憶回路、26 外れデータ抽出処理回路、27 種別判別回路、28 波形条件選択回路、29 異常判定処理回路、30 波形分類回路、31 波形条件生成処理回路、32 波形条件記憶回路、33 検知結果出力回路、34 選択受付回路、35 種別判別回路、36 検知結果出力回路、41 メモリ、42 プロセッサ。

請求の範囲

[請求項1]
 複数の時刻における異常検知対象の設備の状態を時系列で示す異常検知用の時系列データから、複数の時刻のそれぞれにおける前記設備の異常度を異常検知用の外れスコアとして算出する外れスコア算出部と、
 前記外れスコア算出部により算出された複数の時刻のそれぞれにおける異常検知用の外れスコアに基づいて、前記異常検知用の時系列データの中から、前記設備に異常が発生している可能性のある時間帯の異常検知用の時系列データを異常検知用の外れデータとして抽出する外れデータ抽出部と、
 前記外れデータ抽出部により抽出された異常検知用の外れデータの変化を示す波形が、前記設備が正常であるときの波形であると認められる波形条件と、前記異常検知用の外れデータの波形とを照合し、前記波形条件と前記異常検知用の外れデータの波形との照合結果に基づいて、前記設備が異常であるか否かを判定する異常判定部と
 を備えた異常検知装置。
[請求項2]
 前記異常判定部は、
 前記外れデータ抽出部により抽出された異常検知用の外れデータの特徴量を算出し、前記特徴量から前記異常検知用の外れデータの波形の種別を判別する種別判別部と、
 1つ以上の波形条件の中から、前記種別判別部により判別された種別に対応する波形条件を選択する波形条件選択部と、
 前記波形条件選択部により選択された波形条件と、前記異常検知用の外れデータの波形とを照合し、前記選択された波形条件と前記異常検知用の外れデータの波形との照合結果に基づいて、前記設備が異常であるか否かを判定する異常判定処理部とを備えていることを特徴とする請求項1記載の異常検知装置。
[請求項3]
 前記外れスコア算出部は、前記設備が正常であるときの複数の時刻における当該設備の状態を時系列で示す1つ以上の学習用の時系列データのそれぞれから、複数の時刻のそれぞれにおける前記設備の異常度を学習用の外れスコアとして算出し、
 前記外れデータ抽出部は、前記外れスコア算出部により算出された複数の時刻のそれぞれにおける学習用の外れスコアに基づいて、それぞれの学習用の時系列データの中から、前記設備に異常が発生している可能性のある時間帯の学習用の時系列データを学習用の外れデータとして抽出し、
 前記種別判別部は、前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータの特徴量を算出し、前記それぞれの学習用の外れデータの特徴量から、前記それぞれの学習用の外れデータの波形の種別を判別し、
 前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータのうち、前記種別判別部により波形が互いに同一の種別であると判別された1つ以上の学習用の外れデータの波形から、当該種別に対応する波形条件を生成する波形条件生成部を備えたことを特徴とする請求項2記載の異常検知装置。
[請求項4]
 前記波形条件生成部は、前記種別判別部により同一の種別であると判別された1つ以上の学習用の外れデータの波形の間の類似度に基づいて、前記同一の種別であると判別された1つ以上の学習用の外れデータをグループ分けし、分けたグループの全てについて、当該グループに含まれる1つ以上の学習用の外れデータの波形から、当該グループに対応する波形条件を生成し、
 前記波形条件選択部は、前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータの中で、前記外れデータ抽出部により抽出された異常検知用の外れデータとの類似度が最も高い学習用の外れデータを検索し、前記波形条件生成部により生成されたそれぞれのグループに対応する波形条件の中から、前記検索した学習用の外れデータが含まれているグループに対応する波形条件を選択することを特徴とする請求項3記載の異常検知装置。
[請求項5]
 前記外れデータ抽出部は、前記外れスコア算出部により算出された複数の時刻のそれぞれにおける異常検知用の外れスコアと閾値とを比較し、前記複数の時刻のそれぞれにおける異常検知用の外れスコアと前記閾値との比較結果に基づいて、前記異常検知用の時系列データの中から、前記設備に異常が発生している可能性のある時間帯の異常検知用の時系列データを異常検知用の外れデータとして抽出することを特徴とする請求項1記載の異常検知装置。
[請求項6]
 前記波形条件生成部は、前記波形条件として、波形の正常範囲を示すバンドモデルを生成し、
 前記異常判定処理部は、前記外れデータ抽出部により抽出された異常検知用の外れデータの波形が、前記バンドモデルが示す正常範囲に含まれていれば、前記設備が正常であると判定し、前記異常検知用の外れデータの波形が、前記バンドモデルが示す正常範囲を逸脱していれば、前記設備が異常であると判定することを特徴とする請求項3記載の異常検知装置。
[請求項7]
 前記異常判定処理部は、前記外れデータ抽出部により抽出された異常検知用の外れデータの波形が、前記バンドモデルが示す正常範囲を逸脱していても、許容範囲の逸脱であれば、前記設備が正常であると判定することを特徴とする請求項6記載の異常検知装置。
[請求項8]
 前記波形条件生成部は、前記波形条件として、前記設備が正常であるときに外れデータが発生している時間帯を示すヒストグラムを生成し、
 前記異常判定処理部は、前記外れデータ抽出部により抽出された異常検知用の外れデータが発生している時間帯が、前記ヒストグラムが示す発生時間帯に含まれていれば、前記設備が正常であると判定し、前記異常検知用の外れデータが発生している時間帯が、前記ヒストグラムが示す発生時間帯に含まれていなければ、前記設備が異常であると判定することを特徴とする請求項3記載の異常検知装置。
[請求項9]
 前記波形条件生成部は、前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータの波形の平均値と、前記それぞれの学習用の外れデータの標準偏差とを用いて、前記バンドモデルを生成することを特徴とする請求項6記載の異常検知装置。
[請求項10]
 前記波形条件生成部は、前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータの波形の中の最大値と、前記それぞれの学習用の外れデータの波形の中の最小値とを用いて、前記バンドモデルを生成することを特徴とする請求項6記載の異常検知装置。
[請求項11]
 前記波形条件生成部は、生成したバンドモデルが示す正常範囲の幅から、前記正常範囲のマージンを算出し、前記マージンを前記正常範囲に加えることで、前記正常範囲を拡張することを特徴とする請求項6記載の異常検知装置。
[請求項12]
 前記波形条件生成部は、前記種別判別部により同一の種別であると判別された1つ以上の学習用の外れデータの波形の長さが異なれば、長さが長い方の波形に対して、長さが短い方の波形の位置をずらしながら、波形の長さが長い方の学習用の外れデータと、波形の長さが短い方の学習用の外れデータとの類似度をそれぞれ算出し、それぞれ算出した類似度の中の最大値を、前記波形の長さが長い方の学習用の外れデータと、前記波形の長さが短い方の学習用の外れデータとの類似度に決定することを特徴とする請求項4記載の異常検知装置。
[請求項13]
 前記波形条件生成部は、前記種別判別部により波形が同一の種別であると判別されたそれぞれの学習用の外れデータの波形の平均値を算出して、前記それぞれの学習用の外れデータの波形から、前記それぞれの学習用の外れデータの波形の平均値を減算し、平均値を減算したそれぞれの学習用の外れデータの波形から、当該種別に対応する波形条件を生成することを特徴とする請求項3記載の異常検知装置。
[請求項14]
 前記波形条件生成部は、前記種別判別部により波形が同一の種別であると判別されたそれぞれの学習用の外れデータの波形の標準偏差を算出して、平均値を減算したそれぞれの学習用の外れデータの波形を、前記それぞれの標準偏差で除算し、標準偏差で除算したそれぞれの学習用の外れデータの波形から、当該種別に対応する波形条件を生成することを特徴とする請求項13記載の異常検知装置。
[請求項15]
 前記波形条件生成部は、
 生成した波形条件を提示して、提示した波形条件の中から、有効な波形条件の選択を受け付け、選択を受け付けた有効な波形条件のみを前記生成した波形条件として残し、選択を受け付けていない波形条件を破棄する選択受付部を備えたことを特徴とする請求項3記載の異常検知装置。
[請求項16]
 前記種別判別部は、前記異常判定処理部によって、前記設備が異常であると判定された際に波形条件と照合された異常検知用の外れデータの特徴量を算出し、当該特徴量から、前記波形条件と照合された異常検知用の外れデータの波形の種別を判別し、
 前記波形条件生成部は、前記外れデータ抽出部により抽出されたそれぞれの学習用の外れデータ及び前記波形条件と照合された異常検知用の外れデータのうち、前記種別判別部により波形が互いに同一の種別であると判別された1つ以上の外れデータの波形から、当該種別に対応する波形条件を生成することを特徴とする請求項3記載の異常検知装置。
[請求項17]
 外れスコア算出部が、複数の時刻における異常検知対象の設備の状態を時系列で示す異常検知用の時系列データから、複数の時刻のそれぞれにおける前記設備の異常度を異常検知用の外れスコアとして算出し、
 外れデータ抽出部が、前記外れスコア算出部により算出された複数の時刻のそれぞれにおける異常検知用の外れスコアに基づいて、前記異常検知用の時系列データの中から、前記設備に異常が発生している可能性のある時間帯の異常検知用の時系列データを異常検知用の外れデータとして抽出し、
 異常判定部が、前記外れデータ抽出部により抽出された異常検知用の外れデータの変化を示す波形が、前記設備が正常であるときの波形であると認められる波形条件と、前記異常検知用の外れデータの波形とを照合し、前記波形条件と前記異常検知用の外れデータの波形との照合結果に基づいて、前記設備が異常であるか否かを判定する
 異常検知方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]