Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020111222 - BATTERIE SECONDAIRE

Document

明 細 書

発明の名称 二次電池

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

0005   0006   0007   0008   0009   0010   0011  

図面の簡単な説明

0012  

発明を実施するための形態

0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179   0180   0181   0182   0183   0184   0185   0186   0187   0188   0189   0190   0191   0192   0193   0194   0195   0196   0197   0198   0199   0200   0201   0202   0203   0204   0205   0206   0207   0208   0209   0210   0211   0212   0213   0214   0215   0216   0217   0218   0219   0220   0221   0222   0223   0224   0225   0226   0227   0228   0229   0230   0231   0232   0233   0234   0235   0236   0237   0238   0239   0240   0241   0242   0243   0244   0245   0246   0247   0248   0249   0250   0251   0252   0253   0254   0255   0256   0257   0258   0259   0260   0261   0262   0263   0264   0265   0266   0267   0268   0269   0270   0271   0272   0273   0274   0275   0276   0277   0278   0279   0280   0281   0282   0283   0284   0285   0286   0287   0288   0289   0290   0291   0292   0293   0294   0295   0296   0297   0298   0299   0300   0301   0302   0303   0304   0305   0306   0307   0308   0309   0310   0311   0312   0313   0314   0315   0316   0317   0318   0319   0320   0321   0322   0323   0324   0325   0326   0327   0328   0329   0330   0331   0332   0333   0334   0335   0336   0337   0338   0339   0340   0341   0342   0343   0344   0345   0346   0347   0348   0349   0350   0351   0352   0353   0354   0355   0356  

実施例

0357   0358   0359   0360   0361   0362   0363   0364   0365   0366   0367   0368   0369   0370   0371   0372   0373   0374   0375   0376   0377   0378   0379   0380   0381   0382   0383   0384   0385   0386   0387   0388   0389   0390   0391   0392   0393   0394   0395   0396   0397   0398   0399   0400   0401   0402   0403   0404   0405   0406   0407   0408   0409   0410   0411   0412   0413   0414   0415   0416   0417   0418   0419   0420   0421   0422   0423   0424   0425   0426   0427   0428   0429   0430   0431   0432   0433   0434   0435   0436   0437   0438   0439   0440   0441   0442   0443   0444   0445   0446   0447   0448   0449   0450   0451   0452   0453   0454   0455   0456   0457   0458   0459   0460   0461   0462   0463   0464   0465   0466   0467   0468   0469   0470   0471   0472   0473   0474   0475   0476   0477   0478   0479   0480   0481   0482   0483   0484   0485   0486   0487   0488   0489   0490   0491   0492   0493   0494   0495   0496   0497   0498   0499   0500   0501   0502   0503   0504   0505   0506   0507   0508   0509   0510   0511   0512   0513   0514   0515   0516   0517   0518   0519   0520   0521   0522   0523   0524   0525   0526   0527   0528   0529   0530   0531   0532   0533   0534   0535   0536   0537   0538   0539   0540   0541   0542   0543   0544   0545   0546   0547   0548   0549   0550   0551  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20  

図面

1   2   3   4   5   6   7   8   9   10   11   12  

明 細 書

発明の名称 : 二次電池

技術分野

[0001]
 本技術は、二次電池に関する。

背景技術

[0002]
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源として、二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液を備えている。
[0003]
 電池特性を向上させるために、二次電池の構成に関しては様々な検討がなされている。具体的には、高エネルギー密度化(高容量化)を図るために、充電電圧(金属リチウム基準の正極電位)が約4.4V以上となるように設定されている(例えば、特許文献1~4参照。)。

先行技術文献

特許文献

[0004]
特許文献1 : 国際公開第2007/139130号パンフレット
特許文献2 : 国際公開第2011/145301号パンフレット
特許文献3 : 特開2007-200821号公報
特許文献4 : 特開2009-218112号公報

発明の概要

[0005]
 二次電池が搭載される電子機器は、益々、高性能化および多機能化している。このため、電子機器の使用頻度は増加していると共に、電子機器の使用環境は拡大している。よって、二次電池の電池特性に関しては、未だ改善の余地がある。
[0006]
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能な二次電池を提供することにある。
[0007]
 本技術の一実施形態の二次電池は、下記の式(1)で表されると共に層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物を含む正極と、黒鉛を含む負極と、電解液とを備えたものである。4.38V以上の閉回路電圧において24時間に渡って定電圧充電された状態を満充電状態として、その満充電状態において測定される負極の閉回路電位(リチウム金属基準)が19mV以上86mV以下である。満充電状態から閉回路電圧が3.00Vに到達するまで定電流放電されたのちに3.00Vの閉回路電圧において24時間に渡って定電圧放電された際に得られる放電容量を最大放電容量として、その最大放電容量の1%に相当する容量分だけ満充電状態から放電された際に、下記の式(2)で表される負極の電位変動量が1mV以上である。
[0008]
 Li x Co 1-y y 2-z z  ・・・(1)
(Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)、タングステン(W)およびホウ素(B)のうちの少なくとも1種である。Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)および硫黄(S)のうちの少なくとも1種である。x、yおよびzは、0.8<x<1.2、0≦y<0.15および0≦z<0.05を満たす。)
[0009]
 負極の電位変動量(mV)=第2負極電位(mV)-第1負極電位(mV) ・・・(2)
(第1負極電位は、満充電状態において測定される負極の開回路電位(リチウム金属基準)である。第2負極電位は、最大放電容量の1%に相当する容量分だけ満充電状態から放電された状態において測定される負極の開回路電位(リチウム金属基準)である。)
[0010]
 本技術の一実施形態の二次電池によれば、正極がリチウムコバルト複合酸化物を含み、負極が黒鉛を含み、満充電状態において測定される負極の開回路電位が19mV以上86mV以下であり、最大放電容量の1%に相当する容量分だけ満充電状態から放電された際における負極の電位変動量が1mV以上である。よって、優れた電池特性を得ることができる。
[0011]
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。

図面の簡単な説明

[0012]
[図1] 本技術の一実施形態の二次電池の構成を表す斜視図である。
[図2] 図1に示した巻回電極体の構成を模式的に表す平面図である。
[図3] 図1に示した巻回電極体の構成を拡大して表す断面図である。
[図4] 比較例の二次電池に関する容量電位曲線(充電電圧Ec=4.30V)である。
[図5] 比較例の二次電池に関する他の容量電位曲線(充電電圧Ec=4.45V)である。
[図6] 本技術の一実施形態の二次電池に関する容量電位曲線(充電電圧Ec=4.38V)である。
[図7] 本技術の一実施形態の二次電池に関する他の容量電位曲線(充電電圧Ec=4.45V)である。
[図8] 突刺強度の測定方法を説明するための斜視図である。
[図9] 図8に示した測定工程に続く測定工程を説明するための断面図である。
[図10] 図9に示した測定工程に続く測定工程を説明するための断面図である。
[図11] 変形例1の二次電池の構成を表す断面図である。
[図12] 変形例2の二次電池の構成を表す断面図である。

発明を実施するための形態

[0013]
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(第1実施形態)
  1-1.構成
  1-2.充放電原理および構成条件
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.二次電池(第2実施形態)
  2-1.構成
  2-2.充放電原理および構成条件
  2-3.動作
  2-4.製造方法
  2-5.作用および効果
 3.二次電池(第3実施形態)
  3-1.構成
  3-2.充放電原理および構成条件
  3-3.動作
  3-4.製造方法
  3-5.作用および効果
 4.二次電池(第4実施形態)
  4-1.構成
  4-2.充放電原理および構成条件
  4-3.動作
  4-4.製造方法
  4-5.作用および効果
 5.二次電池(第5実施形態)
  5-1.構成
  5-2.充放電原理および構成条件
  5-3.動作
  5-4.製造方法
  5-5.作用および効果
 6.二次電池(第6実施形態)
  6-1.構成
  6-2.充放電原理および構成条件
  6-3.動作
  6-4.製造方法
  6-5.作用および効果
 7.変形例
 8.二次電池の用途
[0014]
<1.二次電池(第1実施形態)>
 まず、本技術の第1実施形態の二次電池に関して説明する。
[0015]
 ここで説明する二次電池は、後述するように、リチウムイオンの吸蔵現象およびリチウムイオンの放出現象に基づいて電池容量が得られるリチウムイオン二次電池であり、正極13および負極14を備えている(図3参照)。
[0016]
 この二次電池では、充電途中において負極14の表面にリチウム金属が析出することを防止するために、負極14の単位面積当たりの電気化学容量が正極13の単位面積当たりの電気化学容量よりも大きくなっている。
[0017]
 ただし、後述する構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにするために、正極13に含まれている正極活物質の質量は、負極14に含まれている負極活物質の質量に対して十分に多くなっている。
[0018]
<1-1.構成>
 図1は、二次電池の斜視構成を表している。図2は、図1に示した巻回電極体10の平面構成を模式的に表していると共に、図3は、巻回電極体10の断面構成を拡大している。ただし、図1では、巻回電極体10および外装部材20が互いに離間された状態を示していると共に、図3では、巻回電極体10の一部だけを示している。
[0019]
 この二次電池では、例えば、図1に示したように、可撓性(または柔軟性)を有するフィルム状の外装部材20の内部に電池素子(巻回電極体10)が収納されており、その巻回電極体10に正極リード11および負極リード12が接続されている。すなわち、ここで説明する二次電池は、いわゆるラミネートフィルム型の二次電池である。
[0020]
[外装部材]
 外装部材20は、例えば、図1に示したように、矢印Rの方向に折り畳み可能な1枚のフィルムであり、その外装部材20には、例えば、巻回電極体10を収納するための窪み20Uが設けられている。これにより、外装部材20は、巻回電極体10を収納しているため、後述する正極13、負極14および電解液などを収納している。
[0021]
 この外装部材20は、例えば、高分子化合物を含むフィルム(高分子フィルム)でもよいし、薄い金属板(金属箔)でもよいし、高分子フィルムと金属箔とが互いに積層された積層体(ラミネートフィルム)でもよい。高分子フィルムは、単層でもよいし、多層でもよい。このように単層でも多層でもよいことは、金属箔に関しても同様である。ラミネートフィルムでは、例えば、高分子フィルムと金属箔とが交互に積層されていてもよい。高分子フィルムおよび金属箔のそれぞれの積層数は、任意に設定可能である。
[0022]
 中でも、ラミネートフィルムが好ましい。十分な封止性が得られると共に、十分な耐久性も得られるからである。具体的には、外装部材20は、例えば、内側から外側に向かって融着層、金属層および表面保護層がこの順に積層されたラミネートフィルムである。二次電池の製造工程では、例えば、融着層同士が巻回電極体10を介して互いに対向するように外装部材20が折り畳まれたのち、その融着層のうちの外周縁部同士が互いに融着されるため、その外装部材20が封止される。融着層は、例えば、ポリプロピレンなどを含む高分子フィルムである。金属層は、例えば、アルミニウムなどを含む金属箔である。表面保護層は、例えば、ナイロンなどを含む高分子フィルムである。
[0023]
 ただし、外装部材20は、例えば、2枚のラミネートフィルムでもよい。この場合には、例えば、2枚のラミネートフィルムが接着剤などを介して互いに貼り合わされている。
[0024]
 外装部材20と正極リード11との間には、例えば、その外装部材20の内部に外気が侵入することを防止するために、密着フィルム31が挿入されている。この密着フィルム31は、例えば、ポリプロピレンなどのポリオレフィン樹脂を含んでいる。
[0025]
 外装部材20と負極リード12との間には、例えば、上記した密着フィルム31と同様の役割を果たす密着フィルム32が挿入されている。密着フィルム32の形成材料は、例えば、密着フィルム31の形成材料と同様である。
[0026]
[巻回電極体]
 巻回電極体10は、例えば、図1~図3に示したように、正極13、負極14およびセパレータ15などを備えている。この巻回電極体10では、例えば、セパレータ15を介して正極13および負極14が互いに積層されたのち、その正極13、負極14およびセパレータ15が巻回されている。この巻回電極体10には、例えば、液状の電解質である電解液が含浸されているため、その電解液は、例えば、正極13、負極14およびセパレータ15のそれぞれに含浸されている。なお、巻回電極体10の表面は、保護テープ(図示せず)により保護されていてもよい。
[0027]
 なお、二次電池の製造工程では、例えば、後述するように、扁平な形状を有する治具を用いて、Y軸方向に延在する巻回軸Jを中心として正極13、負極14およびセパレータ15が巻回されている。これにより、巻回電極体10は、例えば、図1に示したように、上記した治具の形状が反映された扁平な形状となるように成型されている。よって、巻回電極体10は、例えば、図2に示したように、中央に位置する平坦な部分(平坦部10F)と、両端に位置する一対の湾曲した部分(湾曲部10R)とを含んでいる。すなわち、一対の湾曲部10Rは、平坦部10Fを介して互いに対向している。図2では、平坦部10Fと湾曲部10Rとを互いに識別しやすくするために、平坦部10Fと湾曲部10Rとの境界に破線を付していると共に、湾曲部10Rに網掛けを施している。
[0028]
(正極)
 正極13は、例えば、図3に示したように、正極集電体13Aと、その正極集電体13Aの上に形成された正極活物質層13Bとを備えている。この正極活物質層13Bは、例えば、正極集電体13Aの片面だけに形成されていてもよいし、正極集電体13Aの両面に形成されていてもよい。図3では、例えば、正極活物質層13Bが正極集電体13Aの両面に形成されている場合を示している。
[0029]
 正極集電体13Aは、例えば、アルミニウムなどの導電性材料を含んでいる。正極活物質層13Bは、正極活物質として、リチウムイオンを吸蔵可能であると共にリチウムイオンを放出可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層13Bは、さらに、正極結着剤および正極導電剤などの他の材料を含んでいてもよい。
[0030]
 正極材料は、リチウム化合物を含んでおり、そのリチウム化合物は、リチウムを構成元素として含む化合物の総称である。高いエネルギー密度が得られるからである。このリチウム化合物は、層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物(以下、「層状岩塩型リチウムコバルト複合酸化物」と呼称する。)を含んでいる。高いエネルギー密度が安定に得られるからである。この層状岩塩型リチウムコバルト複合酸化物は、リチウムおよびコバルトを構成元素として含む複合酸化物の総称である。このため、層状岩塩型リチウムコバルト複合酸化物は、さらに、1種類または2種類以上の他元素(リチウムおよびコバルト以外の元素)を含んでいてもよい。他元素の種類は、特に限定されないが、例えば、長周期型周期表のうちの2族~15族に属する元素などである。
[0031]
 具体的には、層状岩塩型リチウムコバルト複合酸化物は、下記の式(1)で表される化合物のうちのいずれか1種類または2種類以上を含んでいる。十分なエネルギー密度が安定に得られるからである。ただし、リチウムの組成は、充放電状態に応じて異なる。式(1)に示したxの値は、二次電池から正極13を取り出したのち、電位が3V(リチウム金属基準)に到達するまで正極13が放電された状態の値である。
[0032]
 Li x Co 1-y y 2-z z  ・・・(1)
(Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)、タングステン(W)およびホウ素(B)のうちの少なくとも1種である。Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)および硫黄(S)のうちの少なくとも1種である。x、yおよびzは、0.8<x<1.2、0≦y<0.15および0≦z<0.05を満たす。)
[0033]
 この層状岩塩型リチウムコバルト複合酸化物は、式(1)から明らかなように、コバルト系のリチウム複合酸化物である。ただし、層状岩塩型リチウムコバルト複合酸化物は、さらに、第1追加元素(M)のうちのいずれか1種類または2種類以上を含んでいてもよいし、第2追加元素(X)のうちのいずれか1種類または2種類以上を含んでいてもよい。第1追加元素(M)および第2追加元素(X)のそれぞれに関する詳細は、上記した通りである。
[0034]
 言い替えれば、yが取り得る値の範囲から明らかなように、層状岩塩型リチウムコバルト複合酸化物は、第1追加元素(M)を含んでいなくてもよい。同様に、zが取り得る値の範囲から明らかなように、層状岩塩型リチウムコバルト複合酸化物は、第2追加元素(X)を含んでいなくてもよい。
[0035]
 層状岩塩型リチウムコバルト複合酸化物の種類は、式(1)で表される化合物であれば、特に限定されない。具体的には、層状岩塩型リチウムコバルト複合酸化物は、例えば、LiCoO 2 、LiCo 0.98Al 0.022 、LiCo 0.98Mn 0.022 およびLiCo 0.98Mg 0.022 などである。
[0036]
 なお、正極材料は、例えば、上記したリチウム化合物(層状岩塩型リチウムコバルト複合酸化物)と共に、他のリチウム化合物のうちのいずれか1種類または2種類以上を含んでいてもよい。他のリチウム化合物は、例えば、他のリチウム複合酸化物およびリチウムリン酸化合物などである。
[0037]
 他のリチウム複合酸化物は、リチウムと1種類または2種類以上の他元素とを構成元素として含む複合酸化物の総称であり、例えば、層状岩塩型およびスピネル型などの結晶構造を有している。ただし、層状岩塩型リチウムコバルト複合酸化物に該当する化合物は、ここで説明する他のリチウム複合酸化物から除かれる。リチウムリン酸化合物は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物の総称であり、例えば、オリビン型などの結晶構造を有している。他元素に関する詳細は、上記した通りである。
[0038]
 層状岩塩型の結晶構造を有する他のリチウム複合酸化物は、例えば、LiNiO 2 などである。スピネル型の結晶構造を有する他のリチウム複合酸化物は、例えば、LiMn 2 4 などである。オリビン型の結晶構造を有するリチウムリン酸化合物は、例えば、LiFePO 4 、LiMnPO 4 およびLiMn 0.5 Fe 0.5 PO 4 などである。
[0039]
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴムなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。
[0040]
 正極導電剤は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および導電性高分子などでもよい。
[0041]
(負極)
 負極14は、例えば、図3に示したように、負極集電体14Aと、その負極集電体14Aの上に形成された負極活物質層14Bとを備えている。この負極活物質層14Bは、例えば、負極集電体14Aの片面だけに形成されていてもよいし、負極集電体14Aの両面に形成されていてもよい。図3では、例えば、負極活物質層14Bが負極集電体14Aの両面に形成されている場合を示している。
[0042]
 負極集電体14Aは、例えば、銅などの導電性材料を含んでいる。負極集電体14Aの表面は、電解法などを用いて粗面化されていることが好ましい。アンカー効果を利用して、負極集電体14Aに対する負極活物質層14Bの密着性が向上するからである。
[0043]
 負極活物質層14Bは、負極活物質として、リチウムイオンを吸蔵可能であると共にリチウムイオンを放出可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層14Bは、さらに、負極結着剤および負極導電剤などの他の材料を含んでいてもよい。
[0044]
 負極材料は、炭素材料を含んでおり、その炭素材料は、主に炭素を構成元素として含む材料の総称である。炭素材料ではリチウムイオンの吸蔵時およびリチウムイオンの放出時において結晶構造がほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層14Bの導電性が向上するからである。
[0045]
 具体的には、負極材料は、黒鉛を含んでいる。黒鉛の種類は、特に限定されないため、人造黒鉛でもよいし、天然黒鉛でもよいし、双方でもよい。
[0046]
 負極材料が複数の粒子状の黒鉛(複数の黒鉛粒子)を含んでいる場合、その複数の黒鉛粒子の平均粒径(メジアン径D50)は、特に限定されないが、中でも、3.5μm~30μmであることが好ましく、5μm~20μmであることがより好ましい。リチウム金属の析出が抑制されると共に、副反応の発生も抑制されるからである。詳細には、メジアン径D50が3.5μmよりも小さいと、黒鉛粒子の表面積が増加することに起因して、その黒鉛粒子の表面において副反応が発生しやすくなるため、初回の充放電効率が低下する可能性がある。一方、メジアン径D50が30μmよりも大きいと、電解液の移動経路である黒鉛粒子間の隙間(空孔)の分布が不均一になるため、リチウム金属が析出する可能性がある。
[0047]
 ここで、複数の黒鉛粒子のうちの一部または全部は、いわゆる2次粒子を形成していることが好ましい。負極14(負極活物質層14B)の配向が抑制されるため、充放電時において負極活物質層14Bが膨張しにくくなるからである。複数の黒鉛粒子の重量に対して、2次粒子を形成している複数の黒鉛粒子の重量が占める割合は、特に限定されないが、中でも、20重量%~80重量%であることが好ましい。2次粒子を形成している黒鉛粒子の割合が相対的に多くなると、1次粒子の平均粒径が相対的に小さくなることに起因して粒子の総表面積が過剰に増加するため、電解液の分解反応が発生すると共に単位重量当たりの容量が小さくなる可能性があるからである。
[0048]
 X線回折法(XRD)を用いて黒鉛を分析した場合、(002)面に由来するピークの位置から求められる黒鉛結晶構造を有するグラフェン層の間隔、すなわち(002)面の面間隔Sは、0.3355nm~0.3370nmであることが好ましく、0.3356nm~0.3363nmであることがより好ましい。電池容量が担保されながら、電解液の分解反応が抑制されるからである。詳細には、面間隔Sが0.3370nmよりも大きいと、黒鉛の黒鉛化が不十分であることに起因して、電池容量が低下する可能性がある。一方、面間隔Sが0.3355nmよりも小さいと、黒鉛の黒鉛化が過剰であることに起因して、電解液に対する黒鉛の反応性が高くなるため、その電解液の分解反応が発生する可能性がある。
[0049]
 なお、負極材料は、例えば、上記した炭素材料(黒鉛)と共に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。他の材料は、例えば、他の炭素材料および金属系材料などである。エネルギー密度がより増加するからである。
[0050]
 他の炭素材料は、例えば、難黒鉛化炭素などである。高いエネルギー密度が安定に得られるからである。難黒鉛化性炭素の物性は、特に限定されないが、中でも、(002)面の面間隔は、0.37nm以上であることが好ましい。十分なエネルギー密度が得られるからである。
[0051]
 金属系材料は、リチウムと合金を形成可能である金属元素およびリチウムと合金を形成可能である半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。
[0052]
 ただし、ここで説明する単体は、あくまで一般的な単体を意味しているため、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。合金は、2種類以上の金属元素からなる材料だけでなく、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料でもよい。なお、合金は、1種類または2種類以上の非金属元素を含んでいてもよい。金属系材料の組織は、特に限定されないが、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
[0053]
 具体的には、金属元素および半金属元素は、例えば、マグネシウム、ホウ素、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、ビスマス、カドミウム、銀、亜鉛、ハフニウム、ジルコニウム、イットリウム、パラジウムおよび白金などである。
[0054]
 中でも、ケイ素を構成元素として含む材料(以下、「ケイ素含有材料」と呼称する。)が好ましい。リチウムイオンの吸蔵能力およびリチウムイオンの放出能力が優れているため、著しく高いエネルギー密度が得られるからである。
[0055]
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
[0056]
 具体的には、ケイ素含有材料は、例えば、SiB 4 、SiB 6 、Mg 2 Si、Ni 2 Si、TiSi 2 、MoSi 2 、CoSi 2 、NiSi 2 、CaSi 2 、CrSi 2 、Cu 5 Si、FeSi 2 、MnSi 2 、NbSi 2 、TaSi 2 、VSi 2 、WSi 2 、ZnSi 2 、SiC、Si 3 4 、Si 2 2 Oおよび下記の式(4)で表される酸化ケイ素などである。中でも、酸化ケイ素が好ましい。酸化ケイ素は、黒鉛比で比較的大きな単位重量当たり容量および単位体積当たり容量を有するからである。また、酸素を含んでいる酸化ケイ素では、リチオ化された後において酸素-ケイ素結合およびリチウム-酸素結合により構造が安定化されるため、粒子が割れにくくなるからである。酸化ケイ素の種類は、特に限定されないが、例えば、SiOなどである。
[0057]
 SiO v  ・・・(4)
(vは、0.5≦v≦1.5を満たす。)
[0058]
 負極結着剤に関する詳細は、例えば、正極結着剤に関する詳細と同様である。負極導電剤に関する詳細は、例えば、正極導電剤に関する詳細と同様である。ただし、負極結着剤は、例えば、水系(水溶性)の高分子化合物でもよい。この水溶性の高分子化合物は、例えば、カルボキシメチルセルロースおよびその金属塩などである。
[0059]
(セパレータ)
 セパレータ15は、正極13と負極14との間に介在しており、その正極13および負極14を互いに離間させている。このセパレータ15は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。
[0060]
(電解液)
 電解液は、例えば、溶媒および電解質塩を含んでいる。ただし、溶媒の種類は、1種類だけでもよいし、2種類以上でもよいと共に、電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。
[0061]
 溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
[0062]
 非水溶媒の種類は、特に限定されないが、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)化合物などである。容量特性、サイクル特性および保存特性などが担保されるからである。
[0063]
 環状炭酸エステルは、例えば、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチルおよび炭酸ジエチルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチルおよびプロピオン酸プロピルなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
[0064]
 また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物およびリン酸エステルなどでもよい。上記した容量特性などのうちのいずれか1種類または2種類以上がより向上するからである。
[0065]
 不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、環状でもよいし、鎖状でもよい。このハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンおよび炭酸フルオロメチルメチルなどである。スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ジニトリル化合物は、例えば、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルなどである。ジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートなどである。リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。
[0066]
 電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、さらに、リチウム塩以外の軽金属塩のうちのいずれか1種類または2種類以上を含んでいてもよい。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF 6 )、四フッ化ホウ酸リチウム(LiBF 4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO 2 F) 2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF 3 SO 2 2 )、フルオロリン酸リチウム(Li 2 PFO 3 )、ジフルオロリン酸リチウム(LiPF 2 2 )およびビス(オキサラト)ホウ酸リチウム(LiC 4 BO 8 )などである。容量特性、サイクル特性および保存特性などが担保されるからである。
[0067]
 電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg以上3.0mol/kg以下である。
[0068]
[正極リードおよび負極リード]
 正極リード11は、正極13に接続されていると共に、外装部材20の内部から外部に導出されている。この正極リード11は、例えば、アルミニウムなどの導電性材料を含んでおり、その正極リード11の形状は、例えば、薄板状および網目状などである。
[0069]
 負極リード12は、負極14に接続されていると共に、外装部材20の内部から外部に導出されている。負極リード12の導出方向は、例えば、正極リード11の導出方向と同様である。この負極リード12は、例えば、ニッケルなどの導電性材料を含んでおり、その負極リード12の形状は、例えば、正極リード11の形状と同様である。
[0070]
<1-2.充放電原理および構成条件>
 ここで、第1実施形態の二次電池の充放電原理および構成条件に関して説明する。図4および図5のそれぞれは、第1実施形態の二次電池に対する比較例の二次電池に関する容量電位曲線を表していると共に、図6および図7のそれぞれは、第1実施形態の二次電池に関する容量電位曲線を表している。
[0071]
 図4~図7のそれぞれにおいて、横軸は容量C(mAh)を示していると共に、縦軸は電位E(V)を示している。この電位Eは、リチウム金属を参照極として測定される開回路電位であり、すなわちリチウム金属基準の電位である。また、図4~図7のそれぞれでは、正極13の充放電曲線L1および負極14の充放電曲線L2を示している。なお、「充電」と示された破線の位置は、満充電状態を表していると共に、「放電」と示された破線の位置は、完全放電状態を表している。
[0072]
 充電電圧Ec(V)および放電電圧Ed(V)は、例えば、以下の通りである。図4では、充電電圧Ec=4.30Vおよび放電電圧Ed=3.00Vである。図5では、充電電圧Ec=4.45Vおよび放電電圧Ed=3.00Vである。図6では、充電電圧Ec=4.38Vおよび放電電圧Ed=3.00Vである。図7では、充電電圧Ec=4.45Vおよび放電電圧Ed=3.00Vである。充放電時において、二次電池は、電池電圧(閉回路電圧)が充電電圧Ecに到達するまで充電されたのち、その電池電圧が放電電圧Edに到達するまで放電される。
[0073]
 以下では、第1実施形態の二次電池の充放電原理および構成条件を説明するための前提事項に関して説明したのち、その充放電原理に関して説明すると共に、その充放電原理を実現するために必要な構成条件に関して説明する。
[0074]
[前提事項]
 二次電池のエネルギー密度を向上させるためには、充電電圧Ec(いわゆる充電終止電圧)を増大させることが考えられる。充電電圧Ecを増大させると、充電末期、ひいては充電終止時において正極13の電位Eが上昇するため、その電位Eの使用範囲、すなわち充電時の正極13において使用される電位域が引き上げられる。
[0075]
 一般的に、正極活物質として層状岩塩型リチウムコバルト複合酸化物を用いた場合には、相転移(O3/H1-3転移)に伴う電位一定領域P2が存在する。充電電圧Ecを増大させると、充電末期において正極13の電位Eも増大するため、上記した電位一定領域P2の領域内に正極13の電位Eが到達することになる。これにより、正極13の容量電位曲線L1は、図4~図7に示したように、電位変化領域P1および電位一定領域P2を有している。電位変化領域P1は、容量Cが変化すると電位Eも変化する領域である。電位一定領域P2は、容量電位曲線中において電位一定領域P1よりも左側に位置する領域であり、相転移に起因して容量Cが変化しても電位Eがほとんど変化しない領域である。
[0076]
 層状岩塩型リチウムコバルト複合酸化物を用いた二次電池では、正極13の電位Eが相転移に伴う電位一定領域P2の領域内に到達し、または正極13の電位Eが相転移に伴う電位一定領域P2を通過するように充放電されると、比較的に容量損失が発生しやすくなると共に、比較的にガスも発生しやすくなる。このような傾向は、高温環境中において二次電池が使用および保存された際に比較的強くなる。特に、充電電圧Ecが4.38V以上になると、正極13の電位Eが相転移に伴う電位一定領域P2に到達しやすくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しやすくなる。
[0077]
 一方、負極活物質として黒鉛を用いた場合において充電電圧Ecを増大させると、その黒鉛において、層間化合物ステージ1と層間化合物ステージ2との二相共存反応が進行する。これにより、負極14の容量電位曲線L2は、図4~図7に示したように、電位一定領域P3を有している。この電位一定領域P3は、二相共存反応に起因して容量Cが変化しても電位Eがほとんど変化しない領域である。電位一定領域P3における負極14の電位Eは、約90mV~100mVである。
[0078]
 なお、充電電圧Ecをさらに増大させると、負極14の電位Eが電位一定領域P3を越えるため、その電位Eが急激に変化する。この電位Eが電位一定領域P3を越えた状態に至る充電電圧Ecの増大に起因して、負極14の容量電位曲線L2は、図4~図7に示したように、電位変化領域P4を有している。図4~図7において、電位変化領域P4は、容量電位曲線中において電位一定領域P3よりも低電位側に位置する領域であり、容量Cが変化すると電位Eが急激に変化(低下)する領域である。電位変化領域P4における負極14の電位Eは、約90mV未満である。
[0079]
[充放電原理]
 正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に、負極14が負極活物質(黒鉛)を含んでいる第1実施形態の二次電池では、上記した前提事項を踏まえた上で、以下で説明するように充放電が行われる。以下では、比較例の二次電池の充放電原理(図4および図5)と比較しながら、第1実施形態の二次電池の充放電原理(図6および図7)に関して説明する。
[0080]
 比較例の二次電池では、負極14においてリチウム金属が析出することに起因して電池容量が減少することを防止するために、図4に示したように、充電終止時(充電電圧Ec=4.30V)における負極14の電位Eは、電位一定領域P3において充電が完了するように設定されている。
[0081]
 しかしながら、比較例の二次電池では、充電電圧Ecを4.38V以上、より具体的には4.45Vまで増大させると、充電終止時において負極14の電位Eが高くなることに起因して、図5に示したように、正極13の電位Eが4.50V以上まで到達してしまう。これにより、充電終止時(充電電圧Ec=4.45V)における正極13の電位Eは、相転移に伴う電位一定領域P2に到達し、または相転移に伴う電位一定領域P2を通過してしまう。
[0082]
 よって、比較例の二次電池では、充電電圧Ecを4.38V以上まで増大させると、正極13の電位Eが相転移に伴う電位一定領域P2に到達しやすくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しやすくなる。これにより、比較的に容量損失が発生しやすくなると共に、比較的にガスも発生しやすくなるため、電池特性が低下しやすくなる。このように電池特性が低下しやすくなる傾向は、上記したように、高温環境中において二次電池が使用および保存された際に比較的強くなる。
[0083]
 しかも、比較例の二次電池では、電池容量が活物質比(正極活物質の量と負極活物質の量との比)および充電電圧Ecなどの影響を受けやすくなるため、活物質比(目付量)のばらつきおよび充電装置による充電電圧Ecの設定誤差などに起因して電池容量が変動しやすくなる。これにより、正極13の容量Cが変動すると、正極13の電位Eが相転移に伴う電位一定領域P2に到達し、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しやすくなるため、電池容量が変動しやすくなると共に、その電池容量の減少に起因して、二次電池を電源として稼働する機器および装置などの稼働可能時間が短くなる。また、電池容量が変動すると、負極14においてリチウム金属が発生しやすくなる。
[0084]
 これに対して、第1実施形態の二次電池では、正極13(層状岩塩型リチウムコバルト複合酸化物)において正極13の電位Eが相転移に伴う電位一定領域P2に到達し、または正極13の電位Eが相転移に伴う電位一定領域P2を通過すること抑制しながら、負極14においてリチウム金属が析出することも抑制するために、負極14の電位Eが設定されている。具体的には、図6に示したように、充電終止時(充電電圧Ec=4.38V)における負極14の電位Eは、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように設定されている。また、図7に示したように、充電終止時(充電電圧Ec=4.45V)における負極14の電位Eも同様に、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように設定されている。
[0085]
 この場合には、充電終止時における負極14の電位Eが低下するため、その充電終止時における正極13の電位Eも低下する。具体的には、第1実施形態の二次電池では、充電終止時における負極14の電位Eが低くなることに起因して、充電電圧Ecを4.38V以上、より具体的には4.45Vまで増大させても、図6および図7に示したように、正極13の電位Eが4.50V以上まで到達しない。これにより、充電終止時(充電電圧Ec=4.38Vまたは4.45V)における正極13の電位Eは、相転移に伴う電位一定領域P2に到達せず、または相転移に伴う電位一定領域P2を通過しないように設定される。
[0086]
 また、充電時には、図6および図7から明らかなように、4.38V以上の充電電圧Ecまで二次電池が充電されると、電位変化領域P4において負極14の電位Eが急激に減少するため、充電反応が完了する。これにより、上記したように、充電末期において正極13の電位Eが制御されるため、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなる。しかも、電位変化領域P4において負極14の電位Eが急激に減少すると、充電反応が直ちに終了するため、その負極14においてリチウム金属が析出するまで充電反応が進行しにくくなる。
[0087]
 よって、第1実施形態の二次電池では、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなるため、比較的に容量損失が発生しにくくなると共に、比較的にガスも発生しにくくなる。また、充電電圧Ecを4.38V以上まで増大させても、負極14においてリチウム金属が析出しにくくなるため、電池容量も減少しにくくなる。
[0088]
 しかも、第1実施形態の二次電池では、電池容量が活物質比および充電電圧Ecなどの影響を受けにくくなるため、その電池容量が変動しにくくなると共に、二次電池を電源として稼働する機器および装置などの稼働可能時間も担保される。また、電池容量が変動しても、負極14においてリチウム金属が発生しにくくなる。
[0089]
[構成条件]
 第1実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する2つの構成条件が満たされている。
[0090]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0091]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0092]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(2)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(2)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0093]
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(2)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0094]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0095]
 なお、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合には、さらに、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(3)で表される正極13の電位Eの変動量(正極電位変動量Ew)は、2mV以上であることが好ましい。充電末期において、正極13の電位Eが相転移に伴う電位一定領域P2により到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2をより通過しにくくなるからである。
[0096]
 正極電位変動量Ew(mV)=第1正極電位(mV)-第2正極電位(mV) ・・・(3)
(第1正極電位は、満充電状態の二次電池において測定される正極13の開回路電位(リチウム金属基準)である。第2正極電位は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される正極13の開回路電位(リチウム金属基準)である。)
[0097]
 すなわち、上記したように、相転移に伴う電位一定領域P2に到達せず、または相転移に伴う電位一定領域P2を通過しないように正極13の電位Eが設定されている第1実施形態の二次電池では、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その正極13の電位Eが十分に減少する。これにより、放電後における正極13の電位E(E2)は、放電前(満充電状態)における正極13の電位E(E1)と比較して十分に減少する。このため、電位E1,E2の差異である正極電位変動量Ewは、上記したように、2mV以上になる。
[0098]
 これに対して、上記したように、相転移に伴う電位一定領域P2に到達し、または相転移に伴う電位一定領域P2を通過するように正極13の電位Eが設定されている比較例の二次電池では、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図4および図5から明らかなように、正極13の電位Eがほとんど変化しない。これにより、放電後における正極13の電位E(E2)は、放電前(満充電状態)における正極13の電位E(E1)とほぼ同じになる。このため、電位E1,E2の差異である正極電位変動量Ewは、2mV未満になる。
[0099]
<1-3.動作>
 第1実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0100]
<1-4.製造方法>
 第1実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製したのち、その正極13および負極14を用いて二次電池を組み立てる。
[0101]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0102]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、黒鉛を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0103]
 なお、正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した構成条件(負極電位Ef、負極電位変動量Evおよび正極電位変動量Ew)が満たされるようにする。
[0104]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0105]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。最後に、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成される。よって、外装部材20の内部に巻回電極体10が収納されるため、二次電池が完成する。
[0106]
<1-5.作用および効果>
 第1実施形態の二次電池によれば、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に、負極14が負極活物質(黒鉛)を含んでいる場合において、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている。この場合には、上記したように、2つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなると共に、負極14においてリチウム金属が析出しにくくなる。よって、容量損失が発生しにくくなると共にガスが発生しにくくなるだけでなく、電池容量も減少しにくくなるため、優れた電池特性を得ることができる。
[0107]
 特に、正極電位変動量Ewに関する構成条件も満たされていれば、充電末期の正極13(層状岩塩型リチウムコバルト複合酸化物)において、正極13の電位Eが相転移に伴う電位一定領域P2により到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2をより通過しにくくなるため、より高い効果を得ることができる。
[0108]
 また、複数の黒鉛粒子のメジアン径D50が3.5μm~30μmであれば、リチウム金属の析出が抑制されると共に副反応の発生も抑制されるため、より高い効果を得ることができる。
[0109]
 また、黒鉛の(002)面の面間隔Sが0.3355nm~0.3370nmであれば、電池容量が担保されながら電解液の分解反応が抑制されるため、より高い効果を得ることができる。
[0110]
<2.二次電池(第2実施形態)>
 次に、本技術の第2実施形態の二次電池に関して説明する。第2実施形態の二次電池は、以下で説明する点を除いて、既に説明した第1実施形態の二次電池の構成とほぼ同様の構成を有している。
[0111]
<2-1.構成>
 第2実施形態の二次電池における正極結着剤は、フッ化ビニリデンを重合単位とする単独重合体および共重合体(以下、「フッ化ビニリデン系高分子化合物」と呼称する。)のうちのいずれか1種類または2種類以上を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。また、後述するように、電解液に対して正極結着剤が膨潤しやすくなるからである。
[0112]
 フッ化ビニリデンを重合単位とする単独重合体は、ポリフッ化ビニリデンである。フッ化ビニリデンを重合単位とする共重合体の種類は、特に限定されないが、例えば、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、およびフッ化ビニリデンとテトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体などである。電解液に対して正極結着剤が十分に膨潤しやすくなるからである。
[0113]
 共重合体がテトラフルオロエチレンを重合単位として含んでいる場合、そのテトラフルオロエチレンの共重合量は、特に限定されないが、例えば、0.1重量%~20重量%である。また、共重合体がヘキサフルオロプロピレンを重合単位として含んでいる場合、そのヘキサフルオロプロピレンの共重合量は、特に限定されないが、例えば、0.2重量%~5重量%である。電解液に対して正極結着剤がより膨潤しやすくなるからである。
[0114]
 なお、正極結着剤は、さらに、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。他の材料は、例えば、合成ゴムおよび高分子化合物などである。ただし、上記したフッ化ビニリデン系高分子化合物は、ここで説明する高分子化合物から除かれる。合成ゴムは、例えば、スチレンブタジエン系ゴムなどである。高分子化合物は、例えば、ポリイミドなどである。
[0115]
 第2実施形態の二次電池における溶媒は、環状炭酸エステルと、鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの一方または双方とを含んでいる。すなわち、溶媒は、環状炭酸エステルおよび鎖状炭酸エステルを含んでいてもよいし、環状炭酸エステルおよび鎖状カルボン酸エステルを含んでいてもよいし、環状炭酸エステル、鎖状炭酸エステルおよび鎖状カルボン酸エステルを含んでいてもよい。この鎖状カルボン酸エステルは、鎖状でもよいし、1または2以上の側鎖を有する分岐状でもよい。
[0116]
 環状炭酸エステルの種類は、特に限定されないが、例えば、炭酸エチレンおよび炭酸プロピレンなどのうちのいずれか1種類または2種類以上である。鎖状炭酸エステルの種類は、特に限定されないが、例えば、炭酸ジメチルおよび炭酸ジエチルなどのうちのいずれか1種類または2種類以上である。鎖状カルボン酸エステルの種類は、特に限定されないが、例えば、酢酸エステル、プロピオン酸エステルおよび酪酸エステルなどのうちのいずれか1種類または2種類以上である。具体的には、鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、2-メチルプロピオン酸エチル、2-メチルプロピオン酸メチルおよび2,2-ジメチルプロピオン酸などである。中でも、プロピオン酸メチル、プロピオン酸エチルおよびプロピオン酸プロピルなどが好ましい。
[0117]
 溶媒が上記した組成を有しているのは、リチウムイオンのイオン伝導性が担保されながら、正極13の柔軟性が向上するため、高エネルギー密度化が実現されながら、充放電時において正極13(正極活物質層13B)の割れが抑制されるからである。
[0118]
 詳細には、環状炭酸エステルは、高い極性を有しているため、正極結着剤を膨潤させやすい性質を有している。これにより、正極結着剤の膨潤に起因して正極活物質層13Bの柔軟性が向上するため、充放電時において正極活物質層13Bが割れにくくなる。しかも、鎖状炭酸エステルおよび鎖状カルボン酸エステルのそれぞれは、低い極性を有しているため、後述するように、正極活物質層13Bの面積密度および体積密度のそれぞれを高くしても、充放電時においてリチウムイオンが移動しやすくなる。これにより、充放電反応が円滑かつ安定に進行しながら、高いエネルギー密度が実現される。
[0119]
 なお、溶媒は、上記した環状炭酸エステル、鎖状炭酸エステルおよび鎖状カルボン酸エステルと共に、他の溶媒のうちのいずれか1種類または2種類以上を含んでいてもよい。
[0120]
 他の溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上であり、その非水溶媒を含む電解液は、いわゆる非水電解液である。非水溶媒の種類は、特に限定されないが、例えば、ラクトンおよびニトリル(モノニトリル)化合物などである。電池容量、サイクル特性および保存特性などが担保されるからである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
[0121]
 また、他の溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)およびジイソシアネート化合物、リン酸エステルなどでもよい。上記した容量特性などのうちのいずれか1種類または2種類以上がより向上するからである。
[0122]
 不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、環状でもよいし、鎖状でもよい。このハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンおよび炭酸フルオロメチルメチルなどである。スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ジニトリル化合物は、例えば、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルなどである。ジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートなどである。リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。
[0123]
 電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、さらに、リチウム塩以外の軽金属塩のうちのいずれか1種類または2種類以上を含んでいてもよい。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF 6 )、四フッ化ホウ酸リチウム(LiBF 4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO 2 F) 2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF 3 SO 2 2 )、フルオロリン酸リチウム(Li 2 PFO 3 )、ジフルオロリン酸リチウム(LiPF 2 2 )およびビス(オキサラト)ホウ酸リチウム(LiC 4 BO 8 )などである。容量特性、サイクル特性および保存特性などが担保されるからである。
[0124]
<2-2.充放電原理および構成条件>
 ここで、第2実施形態の二次電池の充放電原理および構成条件に関して説明する。
[0125]
[前提事項および充放電原理]
 第2実施形態の二次電池に関する前提事項および充放電原理は、既に説明した第1実施形態の二次電池に関する前提事項および充放電原理と同様である。
[0126]
[構成条件]
 第2実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する7つの構成条件が満たされている。
[0127]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0128]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0129]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(5)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(5)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0130]
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(5)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0131]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0132]
 なお、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるか否かは、正極活物質の質量と負極活物質の質量との比に応じて決定される。具体的には、2つの構成条件が満たされる場合には、その2つの構成条件が満たされない場合と比較して、正極活物質の質量が相対的に多くなる。これにより、前者の場合には、後者の場合と比較して、正極活物質層13Bの厚さ(目付量)が相対的に増加する。
[0133]
 第3に、正極活物質層13Bの面積密度は、36mg/cm 2 以上である。第4に、正極活物質層13Bの体積密度は、3.9g/cm 3 以上である。第5に、電解液中における電解質塩の含有量は、溶媒に対して0.7mol/kg~1.5mol/kgである。エネルギー密度が増加するからである。
[0134]
 ただし、ここで説明する体積密度は、電解液を除いた正極活物質層13Bの嵩密度である。詳細には、完成後の二次電池では、上記したように、巻回電極体10に電解液が含浸されているため、正極13(正極活物質層13B)に電解液が含浸されている。そこで、体積密度を測定する場合には、正極活物質層13Bに含浸されている電解液の重量まで加味されないようにするために、その正極活物質層13Bを十分に除去(揮発)させてから嵩密度を測定する。
[0135]
 第6に、正極活物質層13Bの重量に対して正極結着剤の重量の占める割合(含有割合)は、0.8重量%~2.5重量%である。この含有割合は、含有割合=(正極結着剤の重量/正極活物質層の重量)×100という計算式に基づいて算出される。正極活物質層13B中における正極結着剤の含有量が適正化されるため、上記したように、その正極結着剤が電解液(溶媒である環状炭酸エステル)に対して膨潤しやすくなるからである。これにより、正極活物質層13Bの柔軟性が向上するため、充放電時において正極活物質層13Bが割れにくくなる。特に、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合において、充電電圧Ecを4.38V以上まで増大させても、正極活物質層13Bが十分に割れにくくなる。
[0136]
 第7に、鎖状炭酸エステルの重量と鎖状カルボン酸エステルの重量との総和に対する環状炭酸エステルの重量の比(溶媒比)は、0.2~1である。この溶媒比は、溶媒比=環状炭酸エステルの重量/(鎖状炭酸エステルの重量+鎖状カルボン酸エステルの重量)という計算式に基づいて算出される。
[0137]
 上記したように、充電終止時において負極14の電位Eが低下すると、その負極14の理論容量に対して実際に使用する容量範囲が十分に大きくなる。このため、エネルギー密度を高くすると、充電終止時において、二次電池の膨張に起因して正極活物質層13Bが割れやすくなると共に、負極14においてリチウム金属が析出しやすくなる傾向にある。特に、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合には、上記したように、正極活物質層13Bの厚さが相対的に増加しているため、その正極活物質層13Bがより割れやすくなる。このように正極活物質層13Bが割れる傾向は、巻回電極体10の形成工程において正極13の折り曲げに起因して大きな内部応力(歪み)が発生しやすい湾曲部10Rにおいて強くになる。正極活物質層13Bが割れると、充放電反応が安定に進行しにくくなると共に、充放電時において電解液が分解しやすくなるため、電池特性が低下する。
[0138]
 しかしながら、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされていても、溶媒比に関して上記した構成条件が満たされていると、環状炭酸エステルと鎖状炭酸エステルおよび鎖状カルボン酸エステルとの混合比が適正化される。これにより、正極結着剤が電解液(溶媒である環状炭酸エステル)に対して膨潤しやすくなると共に、リチウムイオンが移動しやすくなる。よって、充電電圧Ecを4.38V以上まで増大させても、正極13の柔軟性が向上するため、正極活物質層13Bが割れにくくなると共に、リチウムイオンの移動性が担保されるため、負極14においてリチウム金属が析出しにくくなる。
[0139]
[構成条件の確認方法]
 完成後の二次電池を用いて、上記した7つの構成条件が満たされているか否かを調べる場合には、その二次電池を解体することにより、正極活物質層13B、正極結着剤および電解液を回収する。回収された正極活物質層13Bを用いることにより、面積密度および体積密度を測定することができる。回収された正極活物質層13Bおよび正極結着剤を用いることにより、含有割合を算出することができる。回収された電解液を分析することにより、溶媒比および電解質塩の含有量を調べることができる。
[0140]
 なお、正極活物質層13Bが割れているか否かを確認する場合には、平坦部10Fから回収された正極活物質層13Bを調べることが好ましい。充放電時において発生した割れの有無を正確に再現性よく調べることができるからである。
[0141]
 詳細には、巻回電極体10の形成時において正極13が折り曲げられやすい湾曲部10Rでは、その折り曲げに起因して大きな内部応力(歪み)が発生しやすいため、正極活物質層13Bの状態が形成時の状態から変動しやすくなる。これにより、湾曲部10Rから回収された正極活物質層13Bを用いると、その正極活物質層13Bが割れていた場合には、巻回電極体10の形成時に発生した割れであるか、充放電時において発生した割れであるか否かを区別することが困難である。
[0142]
 これに対して、巻回電極体10の形成時において正極13などが折り曲げられにくい平坦部10Fでは、上記した大きな内部応力が発生しにくいため、正極活物質層13Bの状態が形成時の状態のままで維持されやすくなる。これにより、平坦部10Fから回収された正極活物質層13Bを用いると、その正極活物質層13Bが割れていた場合には、巻回電極体10の形成時に発生した割れであるか、充放電時において発生した割れであるか否かを区別することができる。
[0143]
<2-3.動作>
 第2実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0144]
<2-4.製造方法>
 第2実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製したのち、その正極13および負極14を用いて二次電池を組み立てる。
[0145]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、フッ化ビニリデン系高分子化合物を含む正極結着剤と、必要に応じて正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0146]
 正極13を作製する場合には、正極結着剤の添加量などを調整することにより、上記した構成条件(含有割合)が満たされるようにすると共に、圧縮成型時の条件などを調整することにより、上記した構成条件(面積密度および体積密度)が満たされるようにする。
[0147]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、黒鉛を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0148]
 なお、正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにする。
[0149]
[電解液の調製]
 環状炭酸エステルと鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの一方または双方とを含む溶媒に電解質塩を加えたのち、その溶媒を撹拌する。この場合には、溶媒の混合比を調整することにより、上記した構成条件(溶媒比)が満たされるようにすると共に、電解質塩の添加量などを調整することにより、上記した構成条件(電解質塩の含有量)が満たされるようにする。
[0150]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0151]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。最後に、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成される。よって、外装部材20の内部に巻回電極体10が収納されるため、二次電池が完成する。
[0152]
<2-5.作用および効果>
 第2実施形態の二次電池によれば、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)および正極結着剤(フッ化ビニリデン系高分子化合物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、電解液が溶媒(環状炭酸エステルと共に鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの一方または双方)を含んでいる場合において、上記した7つの構成条件(負極電位Ef、負極電位変動量Ev、面積密度、体積密度、含有割合、溶媒比および含有量)が満たされている。この場合には、上記したように、7つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなると共に、負極14においてリチウム金属が析出しにくくなるだけでなく、正極活物質層13Bも割れにくくなる。よって、容量損失およびガスが発生しにくくなると共に電池容量が減少しにくくなることに加えて、エネルギー密度を高くしても充放電反応が安定に進行しやすくなると共に電解液が分解しにくくなるため、優れた電池特性を得ることができる。
[0153]
 特に、フッ化ビニリデン系高分子化合物がポリフッ化ビニリデンなどを含んでいれば、電解液に対して正極結着剤が十分に膨潤しやすくなるため、より高い効果を得ることができる。この場合には、共重合体においてテトラフルオロエチレンの共重合量が0.1重量%~20重量%であり、または共重合体においてヘキサフルオロプロピレンの共重合量が0.2重量%~5重量%であれば、電解液に対して正極結着剤がより膨潤しやすくなるため、さらに高い効果を得ることができる。
[0154]
 また、複数の黒鉛粒子のメジアン径D50が3.5μm~30μmであれば、リチウム金属の析出が抑制されると共に副反応の発生も抑制されるため、より高い効果を得ることができる。また、黒鉛の(002)面の面間隔Sが0.3355nm~0.3370nmであれば、電池容量が担保されながら電解液の分解反応が抑制されるため、より高い効果を得ることができる。
[0155]
<3.二次電池(第3実施形態)>
 次に、本技術の第3実施形態の二次電池に関して説明する。第3実施形態の二次電池は、以下で説明する点を除いて、既に説明した第1実施形態の二次電池の構成とほぼ同様の構成を有している。
[0156]
<3-1.構成>
 第3実施形態の二次電池における負極14は、例えば、図3に示したように、負極集電体14Aと、その負極集電体14Aの上に形成された負極活物質層14Bとを備えている。この負極活物質層14Bは、負極活物質として、リチウムイオンを吸蔵可能であると共にリチウムイオンを放出可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層14Bは、さらに、負極結着剤および負極導電剤などの他の材料を含んでいてもよい。
[0157]
 ここでは、負極活物質層14Bは、例えば、2種類の複数の粒子状の負極活物質(複数の第1負極活物質粒子および複数の第2負極活物質粒子)を含んでいる。第1負極活物質粒子は、負極材料として、炭素材料のうちのいずれか1種類または2種類以上を含んでいると共に、第2負極活物質粒子は、負極材料として、ケイ素を構成元素として含む材料(以下、「ケイ素含有材料」と呼称する。)のうちのいずれか1種類または2種類以上を含んでいる。
[0158]
 炭素材料は、主に炭素を構成元素として含む材料の総称である。炭素材料ではリチウムイオンの吸蔵時およびリチウムイオンの放出時において結晶構造がほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層14Bの導電性が向上するからである。
[0159]
 具体的には、炭素材料は、黒鉛を含んでいる。黒鉛の種類は、特に限定されないため、人造黒鉛でもよいし、天然黒鉛でもよいし、双方でもよい。
[0160]
 黒鉛を含んでいる複数の第1負極活物質粒子のうちの一部または全部は、いわゆる2次粒子を形成していることが好ましい。負極14(負極活物質層14B)の配向が抑制されるため、充放電時において負極活物質層14Bが膨張しにくくなるからである。複数の第1負極活物質粒子の総重量に対して、2次粒子を形成している複数の第1負極活物質粒子の重量が占める割合は、特に限定されないが、中でも、20重量%~80重量%であることが好ましい。2次粒子を形成している黒鉛粒子の割合が相対的に多くなると、1次粒子の平均粒径が相対的に小さくなることに起因して粒子の総表面積が過剰に増加するため、電解液の分解反応が発生すると共に単位重量当たりの容量が小さくなる可能性があるからである。
[0161]
 ケイ素含有材料は、ケイ素および酸素を構成元素として含む材料の総称である。著しく高いエネルギー密度が得られるからである。このケイ素含有材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。
[0162]
 ただし、ここで説明する単体は、あくまで一般的な単体を意味しているため、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。合金は、2種類以上の金属元素からなる材料だけでなく、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料でもよい。なお、合金は、1種類または2種類以上の非金属元素を含んでいてもよい。金属系材料の組織は、特に限定されないが、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
[0163]
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
[0164]
 具体的には、ケイ素含有材料は、例えば、SiB 4 、SiB 6 、Mg 2 Si、Ni 2 Si、TiSi 2 、MoSi 2 、CoSi 2 、NiSi 2 、CaSi 2 、CrSi 2 、Cu 5 Si、FeSi 2 、MnSi 2 、NbSi 2 、TaSi 2 、VSi 2 、WSi 2 、ZnSi 2 、SiC、Si 3 4 、Si 2 2 Oおよび下記の式(9)で表される酸化ケイ素などである。
[0165]
 SiO v  ・・・(9)
(vは、0.5≦v≦1.5を満たす。)
[0166]
 中でも、酸化ケイ素が好ましい。酸化ケイ素は、黒鉛比で比較的大きな単位重量当たり容量および単位体積当たり容量を有するからである。また、酸素を含んでいる酸化ケイ素では、リチオ化された後において酸素-ケイ素結合およびリチウム-酸素結合により構造が安定化されるため、粒子が割れにくくなるからである。酸化ケイ素の種類は、特に限定されないが、例えば、SiOなどである。
[0167]
 第2負極活物質粒子の表面のうちの一部または全部は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上により被覆されていてもよい。第2負極活物質粒子の電気抵抗が低下することに起因して、負極14の電気抵抗が低下するからである。炭素材料の種類は、特に限定されないが、例えば、非晶質炭素、黒鉛、グラフェン、カーボンナノチューブおよびカーボンナノファイバなどである。導電性材料の形成方法(第1負極活物質粒子の被覆方法)は、特に限定されないが、例えば、蒸着法、スパッタリング法および化学気相成長法(CVD)などのうちのいずれか1種類または2種類以上である。
[0168]
 なお、負極活物質は、例えば、上記した2種類の負極材料(炭素材料およびケイ素含有材料)と共に、他の負極材料のうちのいずれか1種類または2種類以上を含んでいてもよい。他の負極材料は、例えば、他の炭素材料および金属系材料などである。エネルギー密度がより増加するからである。
[0169]
 他の炭素材料は、例えば、難黒鉛化炭素などである。高いエネルギー密度が安定に得られるからである。難黒鉛化性炭素の物性は、特に限定されないが、中でも、(002)面の面間隔は、0.37nm以上であることが好ましい。十分なエネルギー密度が得られるからである。
[0170]
<3-2.充放電原理および構成条件>
 ここで、第3実施形態の二次電池の充放電原理および構成条件に関して説明する。
[0171]
[前提事項および充放電原理]
 第3実施形態の二次電池に関する前提事項および充放電原理は、既に説明した第1実施形態の二次電池に関する前提事項および充放電原理と同様である。
[0172]
[構成条件]
 第3実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する5つの構成条件が満たされている。
[0173]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0174]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0175]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(7)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(7)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0176]
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(7)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0177]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0178]
 なお、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるか否かは、正極活物質の質量と負極活物質の質量との比に応じて決定される。具体的には、2つの構成条件が満たされる場合には、その2つの構成条件が満たされない場合と比較して、正極活物質の質量が相対的に多くなる。これにより、前者の場合には、後者の場合と比較して、正極活物質層13Bの厚さ(目付量)が相対的に増加する。
[0179]
 第3に、黒鉛を含んでいる複数の第1負極活物質粒子のメジアン径D50(以下、「メジアン径D50A」と呼称する。)は、20μm以下であり、好ましくは5μm~20μmである。電解液の移動経路である第1負極活物質粒子間の隙間(空孔)が均一に分布しやすくなるため、リチウムイオンが移動しやすくなるからである。これにより、充電電圧Ecを増大させても、充電末期の負極14においてリチウム金属が析出しにくくなる。
[0180]
 第4に、負極活物質層14Bの体積密度は、1.5g/cm 3 以上であり、好ましくは1.5g/cm 3 ~1.8g/cm 3 である。エネルギー密度が増加するからである。なお、体積密度の上限値は、特に限定されないが、その体積密度が1.8g/cm 3 よりも大きくなると、負極14の内部において電解液が移動しにくくなる可能性がある。ただし、ここで説明する体積密度は、電解液を除いた負極活物質層14Bの嵩密度である。詳細には、完成後の二次電池では、上記したように、巻回電極体10に電解液が含浸されているため、負極14(負極活物質層14B)に電解液が含浸されている。そこで、体積密度を測定する場合には、に含浸されている電解液の重量まで加味されないようにするために、その負極活物質層14Bを十分に除去(揮発)させてから嵩密度を測定する。
[0181]
 第5に、X線回折法(XRD)を用いて負極活物質層14B(黒鉛を含んでいる複数の第1負極活物質粒子)を分析した際に、下記の式(8)で表される積分強度比は、500以下であり、好ましくは50~500である。
[0182]
 積分強度比=(110)積分強度/(002)積分強度 ・・・(8)
((002)積分強度は、黒鉛の(002)面に由来するピークの積分強度であり、第1積分強度である。(110)積分強度は、黒鉛の(110)面に由来するピークの積分強度であり、第2積分強度である。)
[0183]
 上記したように、充電終止時において負極14の電位Eが低下すると、その負極14の理論容量に対して実際に使用する容量範囲が十分に大きくなる。このため、エネルギー密度を高くすると、充電終止時の負極14においてリチウム金属が析出しやすくなる傾向にある。
[0184]
 しかしながら、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされていても、積分強度比に関して上記した構成条件が満たされていると、第1負極活物質粒子(黒鉛)の配向性が低下する。具体的には、負極集電体14Aに負極活物質層14Bが形成される面(XY面)に沿った方向に黒鉛のグラフェン面が配向しにくくなる。よって、負極14の内部においてイオンの導電経路となる細孔の曲路率が低下すると共に、その負極14の内部において分極が抑制されるため、第1負極活物質粒子の表面においてリチウム金属が析出しにくくなる。なお、積分強度比の下限値は、特に限定されないが、その積分強度比が50よりも小さくなると、黒鉛のグラフェン面の配向性が低下しすぎるため、製造性に劣る上、炭素材料の形状によっては負極集電体14Aおよびセパレータ15がダメージを受ける可能性がある。
[0185]
 XRDを用いて積分強度比を求めるためには、例えば、株式会社リガク製のX線回線装置 RAD-IIC(光学系=集中法光学系,線源=Cu管球,X線波長=Cu-Kα,Cu-Kβ,管電圧=45kV,管電流=200mA)を用いて負極活物質層14B(黒鉛を含んでいる複数の第1負極活物質粒子)を分析する。(002)面に由来するピークを検出するためには、スキャン範囲2θ=24°~29°、ステップ=0.02°、係数時間=1秒、発散スリット=0.5°、散乱スリット=0.5°、受光スリット=0.3mmとする。(110)面に由来するピークを検出するためには、スキャン範囲2θ=75°~80°、ステップ=0.02°、係数時間=4秒、発散スリット=2°、散乱スリット=2°、受光スリット=0.3mmとする。分析データを処理する場合には、積分強度計算ソフト(Integral analysis for windows version 6.0 )を用いることにより、目的ピークだけが含まれるように分析データを切り出したのち、平滑化処理、BG除去処理および積分計算処理を行う。配向度を計算する場合には、配向度=(002)面のピーク面積/(110)面のピーク面積/16とする。
[0186]
 なお、上記したように、負極活物質層14Bが複数の第1負極活物質粒子(黒鉛)と共に複数の第2負極活物質粒子(ケイ素含有材料)を含んでいる場合には、さらに、下記の構成条件がさらに満たされていることが好ましい。
[0187]
 具体的には、複数の第1負極活物質粒子と複数の第2負極活物質粒子との混合比は、特に限定されないが、中でも、複数の第1負極活物質粒子の質量に対する複数の第2負極活物質粒子の質量の割合(含有割合)は、0.1質量%~5質量%であることが好ましい。複数の第2負極活物質粒子の添加量が適正化されるため、高いエネルギー密度が担保されながら、負極14においてリチウム金属が十分に析出しにくくなるからである。この含有割合は、含有割合=(複数の第2負極活物質粒子の質量/複数の第1負極活物質粒子の質量)×100という計算式に基づいて算出される。
[0188]
 なお、複数の第2負極活物質粒子のメジアン径D50(以下、「メジアン径D50B」と呼称する。)は、特に限定されないが、中でも、メジアン径D50Aよりも小さいことが好ましい。高いエネルギー密度が担保されながら、リチウムイオンの移動経路も確保されるからである。具体的には、メジアン径D50Bは、例えば、1μm~10μmである。リチウムイオンとの反応面積が十分に得られるからである。
[0189]
[構成条件の確認方法]
 完成後の二次電池を用いて、上記した5つの構成条件が満たされているか否かを調べる場合には、その二次電池を解体することにより、負極活物質層14Bを回収する。回収された負極活物質層14Bを用いることにより、メジアン径D50A,D50B、体積密度および積分強度比を調べることができる。
[0190]
 なお、上記したメジアン径D50Aなどを調べる場合には、平坦部10Fから回収された負極活物質層14Bを調べることが好ましい。メジアン径D50Aなどを正確に再現性よく調べることができるからである。
[0191]
 詳細には、巻回電極体10の形成時において負極14が折り曲げられやすい湾曲部10Rでは、その折り曲げに起因して大きな内部応力(歪み)が発生しやすいため、負極活物質層14Bの状態が形成時の状態から変動しやすくなる。これにより、湾曲部10Rから回収された負極活物質層14Bを用いると、メジアン径D50Aなどが本来の値から変化している可能性がある。
[0192]
 これに対して、巻回電極体10の形成時において負極14が折り曲げられにくい平坦部10Fでは、上記した大きな内部応力が発生しにくいため、負極活物質層14Bの状態が形成時の状態のままで維持されやすくなる。これにより、平坦部10Fから回収された負極活物質層14Bを用いると、メジアン径D50Aなどに関して本来の値を調べることができる。
[0193]
<3-3.動作>
 第3実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0194]
<3-4.製造方法>
 第3実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製したのち、その正極13および負極14を用いて二次電池を組み立てる。
[0195]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、フッ化ビニリデン系高分子化合物を含む正極結着剤と、必要に応じて正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0196]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、複数の第1負極活物質粒子(黒鉛)および複数の第2負極活物質粒子(ケイ素含有材料)を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0197]
 負極14を作製する場合には、複数の第1負極活物質粒子および複数の第2負極活物質粒子のそれぞれの種類などを調整することにより、上記した構成条件(メジアン径D50A,D50Bおよび積分強度比)が満たされるようにすると共に、圧縮成型時の条件などを調整することにより、上記した構成条件(体積密度)が満たされるようにする。
[0198]
 第2負極活物質粒子の表面に導電性材料(炭素材料)を形成する場合には、例えば、原料として炭素源を用いたCVDなどを利用して、第2負極活物質粒子の表面に導電性材料を堆積させる。
[0199]
 正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにする。
[0200]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0201]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。最後に、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成される。よって、外装部材20の内部に巻回電極体10が収納されるため、二次電池が完成する。
[0202]
<3-5.作用および効果>
 第3実施形態の二次電池によれば、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に、負極14(複数の第1負極活物質粒子)が黒鉛を含んでいる場合において、上記した5つの構成条件(負極電位Ef、負極電位変動量Ev、メジアン径D50A、体積密度および積分強度比)が満たされている。この場合には、上記したように、5つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2により到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2をより通過しにくくなると共に、負極14においてリチウム金属が析出しにくくなる。よって、容量損失が発生しにくくなると共に、ガスが発生しにくくなることに加えて、電池容量も減少しにくくなるため、優れた電池特性を得ることができる。
[0203]
 特に、黒鉛の(002)面の面間隔Sが0.3355nm~0.3370nmであれば、電池容量が担保されながら電解液の分解反応が抑制されるため、より高い効果を得ることができる。
[0204]
 また、負極14が複数の第1負極活物質粒子(黒鉛)と共に複数の第2負極活物質粒子(ケイ素含有材料)を含んでいれば、その負極14に含まれる負極活物質の単位質量当たりのリチウム吸蔵量が大きく増加するため、より高い効果を得ることができる。これに対して、例えば、複数の第2負極活物質粒子として、黒鉛よりもリチウムイオンの受け入れ性が高い難黒鉛化炭素を用いた場合には、負極14に含まれる負極活物質の単位質量当たりのリチウム吸蔵量が大きく増加しないため、黒鉛を用いた場合と比較して得られる効果は限定的である。
[0205]
 また、ケイ素含有材料が酸化ケイ素を含んでいれば、単位質量当たり容量などが担保されながら負極活物質が割れにくくなるため、さらに高い効果を得ることができる。また、含有割合が0.1質量%~5質量%であれば、高いエネルギー密度が担保されながらリチウム金属がより析出しにくくなるため、さらに高い効果を得ることができる。また、メジアン径D50Bがメジアン径D50Aよりも小さく、より具体的にはメジアン径D50Bが1μm~10μmであれば、高いエネルギー密度が担保されながらリチウムイオンとの反応面積も確保されるため、さらに高い効果を得ることができる。
[0206]
 また、第2負極活物質粒子の表面のうちの一部または全部が炭素材料により被覆されていれば、負極14の電気抵抗が低下するため、より高い効果を得ることができる。この場合には、炭素材料が非晶質炭素などであれば、負極14の電気抵抗が十分に低下するため、さらに高い効果を得ることができる。
[0207]
<4.二次電池(第4実施形態)>
 次に、本技術の第4実施形態の二次電池に関して説明する。第4実施形態の二次電池は、以下で説明する点を除いて、既に説明した第1実施形態の二次電池の構成とほぼ同様の構成を有している。
[0208]
<4-1.構成>
 第4実施形態の二次電池における正極13は、例えば、図3に示したように、正極集電体13Aと、その正極集電体13Aの上に形成された正極活物質層13Bとを備えている。この正極集電体13Aは、例えば、アルミニウムおよびアルミニウム合金などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。アルミニウム合金の詳細に関しては、後述する。
[0209]
<4-2.充放電原理および構成条件>
 ここで、第4実施形態の二次電池の充放電原理および構成条件に関して説明する。
[0210]
[前提事項および充放電原理]
 第4実施形態の二次電池に関する前提事項および充放電原理は、既に説明した第1実施形態の二次電池に関する前提事項および充放電原理と同様である。
[0211]
[構成条件]
 第4実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する3つの構成条件が満たされている。
[0212]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0213]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0214]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(11)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(11)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0215]
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(11)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0216]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0217]
 なお、2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるか否かは、正極活物質の質量と負極活物質の質量との比に応じて決定される。具体的には、2つの構成条件が満たされる場合には、その2つの構成条件が満たされない場合と比較して、正極活物質の質量が相対的に多くなる。これにより、前者の場合には、後者の場合と比較して、正極活物質層13Bの厚さ(目付量)が相対的に増加する。
[0218]
 第3に、巻回電極体10のうちの一対の湾曲部10Rにおいて、下記の式(12)で表される正極13の耐久度は、200以下である
[0219]
 耐久度=(正極活物質層13Bの面積密度(mg/cm 2 )×正極活物質層13Bの体積密度(g/cm 3 ))/正極13の突刺強度(N) ・・・(12)
[0220]
 上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合には、充電終止時において正極13の電位Eが上昇しすぎない反面、充電終止時において負極14の電位Eが著しく低下する。これにより、負極14の理論容量に対して実際に使用する容量範囲が十分に大きくなるため、充電末期において二次電池が膨張しやすくなる。
[0221]
 この場合には、上記したように、正極活物質層13Bの厚さが相対的に増加していると共に、負極14の理論容量に対する負極14の容量の使用範囲が一般的な二次電池よりも大きいと、二次電池の膨張に起因して正極活物質層13Bにおいてクラック(割れ)が発生しやすくなる。このクラックが発生する傾向は、特に、巻回電極体10の形成工程において正極13の折り曲げに起因して大きな内部応力(歪み)が発生しやすい湾曲部10Rにおいて顕著になる。正極活物質層13Bにおいてクラックが発生すると、充放電反応が安定に進行しにくくなると共に、充放電時において電解液が分解しやすくなるため、電池特性が低下する。
[0222]
 しかしながら、2つの構成条件が満たされている場合において、さらに、耐久度に関して上記した構成条件が満たされていると、湾曲部10Rにおいて正極13(正極活物質層13B)の物理的耐久性が担保されるため、充電末期において二次電池が膨張しても、正極活物質層13Bにおいてクラックが発生しにくくなる。この場合には、特に、充電電圧Ecを4.38V以上まで増大させても、クラックが十分に発生しにくくなる。
[0223]
 上記した構成条件(耐久度)が満たされるのは、耐久度が実質的に正極13の突刺強度に基づいて決定されると共に、その正極13の突刺強度が実質的に正極活物質層13Bよりも十分に固い正極集電体13Aの強度に基づいて決定されるところ、その正極集電体13Aが十分な強度(固さ)を有しているからである。
[0224]
 正極活物質層13Bの面積密度は、特に限定されないが、例えば、20.0mg/cm 2 ~50.0mg/cm 2 である。正極活物質層13Bの体積密度は、特に限定されないが、例えば、3.5g/cm 3 ~4.3g/cm 3 である。正極13の突刺強度は、特に限定されないが、例えば、0.8N~1.2Nである。上記した構成条件(耐久度)が満たされやすくなると共に維持されやすくなるからである。なお、例えば、正極集電体13Aがアルミニウムおよびアルミニウム合金のうちの一方または双方を含んでいる場合には、その正極集電体13Aの厚さは、例えば、8μm~30μmである。正極集電体13Aがアルミニウムなどを含んでいる場合において、上記した構成条件(耐久度)が満たされやすくなるからである。
[0225]
 この耐久度は、正極13(正極活物質層13B)の物理的耐久性を表す指標であり、正極活物質層13Bの面積密度および体積密度と正極13の突刺強度とを測定したのち、上記した式(3)に基づいて算出される。
[0226]
 ここで、面積密度を算出する場合には、最初に、二次電池を解体することにより、巻回電極体10を回収する。続いて、巻回軸Jを中心として巻回されている正極13、負極14およびセパレータ15をほぐしたのち、湾曲部10Rに対応する領域において正極13を切断することにより、面積密度を算出するための試料(正極集電体13Aおよび正極活物質層13B)を採取する。この場合には、湾曲部10Rに対応する領域のうちの任意の位置において、所定の面積(cm 2 )を有する矩形状となるように正極13を切断する。続いて、試料の重量(g)を測定したのち、正極活物質層13Bから正極集電体13Aを剥離させることにより、その正極集電体13Aの重量(g)を測定する。続いて、試料の重量から正極集電体13Aの重量を引くことにより、正極活物質層13Bの重量(g)を算出する。最後に、上記した試料(正極活物質層13B)の面積と正極活物質層13Bの重量とに基づいて、面積密度を算出する。
[0227]
 体積密度を算出する場合には、例えば、正極活物質層13Bの面積の代わりに体積を測定したのち、その正極活物質層13Bの体積および重量に基づいて体積密度を算出することを除いて、面積密度を算出した場合と同様の手順を用いる。
[0228]
 突刺強度を求める場合には、例えば、以下で説明する突刺試験を行う。図8~図10は、突刺強度の測定方法を説明するために、試料S(正極13)などの斜視構成および断面構成を表している。
[0229]
 突刺試験では、最初に、上記した手順により、二次電池から試料S(正極集電体13Aおよび正極活物質層13Bを備えた正極13)を採取する。続いて、図8および図9に示したように、開口部131Kが設けられた基板131と、開口部132Kが設けられた基板132と、開口部133Kを有するゴム製のリング133と、尖った先端部134Tを有する略円筒状の突刺治具134とを準備する。開口部131K,132K,133Kのそれぞれの内径は、例えば、10mmである。リング133の外径は、例えば、13mmである。突刺治具134の外径は、例えば、2mmである。続いて、基板131の上に、試料S、リング133および基板132をこの順に重ねる。この場合には、開口部131K,132K,133Kのそれぞれの位置が互いに一致するように、基板131,132およびリング133を互いに位置合わせする。図8では、試料Sに網掛けを施している。
[0230]
 最後に、図8に示したように、先端部134Tが試料Sに対向すると共に試料Sの延在面(XY面)と交差する方向(Z軸方向)に延在するように突刺治具134を配置したのち、図9および図10に示したように、試料Sに向かって突刺治具134を移動させながら、その突刺治具134が受ける荷重(N)を測定する。この場合には、突刺治具134の移動速度を50mm/分として、先端部134Tが試料Sに接触したのちに試料Sを突き破るまで突刺治具134を移動させる。これにより、例えば、正極集電体13Aの両面に正極活物質層13Bが形成されている場合には、突刺治具134は、正極活物質層13B、正極集電体13Aおよび正極活物質層13Bをこの順に貫通することになる。この荷重の測定結果に基づいて、その荷重の最大値を突刺強度とする。
[0231]
 ただし、面積密度の値は、小数点第二位の値を四捨五入した値とする。体積密度の値は、小数点第二位の値を四捨五入した値とする。突刺強度の値は、小数点第二位の値を四捨五入した値とする。耐久度の値は、小数点第一位の値を四捨五入した値とする。
[0232]
 なお、耐久度に大きな影響を及ぼす突刺強度は、例えば、正極集電体13Aの組成および製造条件などに応じて調整可能である。
[0233]
 例えば、正極集電体13Aがアルミニウム合金を含んでいる場合には、その正極集電体13Aの組成は、アルミニウム合金の組成であり、より具体的には、アルミニウム合金の種類およびアルミニウム以外の成分の含有量などである。アルミニウム合金の種類は、特に限定されないが、例えば、アルミニウム鉄合金、アルミニウムケイ素合金およびアルミニウム銅合金などである。中でも、アルミニウムケイ素合金において突刺強度が高くなりやすい傾向があり、そのケイ素の含有量が多いほど突刺強度が高くなる。
[0234]
 例えば、正極集電体13Aを製造するために金属箔を加熱しながら圧延する場合には、その正極集電体13Aの製造条件は、加熱温度、加熱時の温度変化パターンおよび圧延方法などである。一般的に、上記した組成に応じて金属箔の突刺強度が高くなると、その金属箔を圧延しにくくなる傾向がある。
[0235]
<4-3.動作>
 第4実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0236]
<4-4.製造方法>
 第4実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製したのち、その正極13および負極14を用いて二次電池を組み立てる。
[0237]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0238]
 正極13を作製する場合には、正極集電体13Aの組成および製造条件などを調整することにより、上記した構成条件(耐久度)が満たされるようにする。
[0239]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、黒鉛を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0240]
 正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにする。
[0241]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0242]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。最後に、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成されると共に、外装部材20の内部に巻回電極体10が収納される。よって、二次電池が完成する。
[0243]
<4-5.作用および効果>
 第4実施形態の二次電池によれば、巻回電極体10が扁平形状を有しており、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んで場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび耐久度)が満たされている。この場合には、上記したように、3つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなると共に、負極14においてリチウム金属が析出しにくくなることに加えて、正極活物質層13Bにおいてクラックが発生しにくくなる。これにより、容量損失が発生しにくくなると共にガスが発生しにくくなるだけでなく、電池容量も減少しにくくなる。しかも、充放電反応が安定に進行しやすくなると共に、充放電時において電解液が分解しにくくなるため、容量損失およびガスがより発生しにくくなると共に、電池容量がより減少しにくくなる。よって、優れた電池特性を得ることができる。
[0244]
 特に、正極集電体13Aがアルミニウムなどを含んでいれば、その正極集電体13Aがアルミニウムなどを含んでいる場合において構成条件(耐久度)が満たされやすくなるため、より高い効果を得ることができる。
[0245]
 この場合には、正極活物質層13Bの面積密度が20.0mg/cm 2 ~50.0mg/cm 2 であり、正極活物質層13Bの体積密度が3.5g/cm 3 ~4.3g/cm 3 であれば、上記した構成条件(耐久度)がより満たされやすくなるため、さらに高い効果を得ることができる。
[0246]
<5.二次電池(第5実施形態)>
 次に、本技術の第5実施形態の二次電池に関して説明する。第5実施形態の二次電池は、以下で説明する点を除いて、既に説明した第1実施形態の二次電池の構成とほぼ同様の構成を有している。
[0247]
<5-1.構成>
 第5実施形態の二次電池におけるセパレータ15は、図3に示したように、正極13と負極14との間に配置されており、正極13(正極活物質層13B)および負極14(負極活物質層14B)のそれぞれに接着されている。
[0248]
 具体的には、セパレータ15は、例えば、基材層15Aと、その基材層15Aの両面に形成された2つの高分子化合物層15B(正極側高分子化合物層15BXおよび負極側高分子化合物層15BY)とを含んでいる。基材層15Aの上に正極側高分子化合物層15BXが形成されているのは、正極活物質層13Bに対するセパレータ15の接着性が向上するからである。また、基材層15Aの上に負極側高分子化合物層15BYが形成されているのは、負極活物質層14Bに対するセパレータ15の接着性が向上するからである。
[0249]
 基材層15Aは、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。
[0250]
 正極側高分子化合物層15BXは、基材層15Aと正極活物質層13Bとの間に配置された第2高分子化合物層であり、その正極活物質層13Bに接着されている。負極側高分子化合物層15BYは、基材層15Aと負極活物質層14Bとの間に配置された第1高分子化合物層であり、その負極活物質層14Bに接着されている。正極側高分子化合物層15BXおよび負極側高分子化合物層15BYのそれぞれは、例えば、高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。正極側高分子化合物層15BXに含まれている高分子化合物の種類と負極側高分子化合物層15BYに含まれている高分子化合物の種類とは、互いに同じでもよいし、互いに異なってもよい。
[0251]
 高分子化合物の種類は、特に限定されないが、中でも、上記したフッ素系高分子化合物が好ましい。セパレータ15(正極側高分子化合物層15BX)に対する正極活物質層13Bの接着性が向上すると共に、セパレータ15(負極側高分子化合物層15BY)に対する負極活物質層14Bの接着性が向上するからである。フッ素系高分子化合物に関する詳細は、上記した通りである。
[0252]
 特に、正極活物質層13Bが正極結着剤としてフッ素系高分子化合物を含んでいる場合において、正極側高分子化合物層15BXもフッ素系高分子化合物を含んでいると、セパレータ15(正極側高分子化合物層15BX)に対する正極活物質層13Bの接着性が著しく向上する。同様に、負極活物質層14Bが負極結着剤としてフッ素系高分子化合物を含んでいる場合において、負極側高分子化合物層15BYもフッ素系高分子化合物を含んでいると、セパレータ15(負極側高分子化合物層15BY)に対する負極活物質層14Bの接着性が著しく向上する。
[0253]
 なお、正極側高分子化合物層15BXおよび負極側高分子化合物層15BYのそれぞれは、複数の絶縁性粒子を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が吸熱すると共に、セパレータ15の破損(例えば、融解など)時において複数の絶縁性粒子が正極13および負極14を互いに電気的に分離させるため、安全性が向上するからである。複数の絶縁性粒子の種類は、特に限定されないが、例えば、複数の無機粒子などである。この無機粒子は、例えば、酸化アルミニウムおよび窒化アルミニウムなどのうちのいずれか1種類または2種類以上を含んでいる。
[0254]
<5-2.充放電原理および構成条件>
 ここで、第5実施形態の二次電池の充放電原理および構成条件に関して説明する。
[0255]
[前提事項および充放電原理]
 第5実施形態の二次電池に関する前提事項および充放電原理は、既に説明した第1実施形態の二次電池に関する前提事項および充放電原理と同様である。
[0256]
[構成条件]
 第5実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する3つの構成条件が満たされている。
[0257]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0258]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0259]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(14)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(14)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0260]
 負極電位変動量Ef(mV)=電位E2(mV)-電位E1(mV) ・・・(14)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0261]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0262]
 第3に、セパレータ15(負極側高分子化合物層15BY)に対する負極14(負極活物質層14B)の接着強度FAは、5mN/mm~100mN/mであり、好ましくは10mN/mm~40mN/mmである。
[0263]
 上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合には、充電終止時において正極13の電位Eが上昇しすぎない反面、充電終止時において負極14の電位Eが著しく低下する。これにより、負極14の理論容量に対して実際に使用する容量範囲が十分に大きくなるため、充電終止時において二次電池が膨張しやすくなる。二次電池の膨張に起因して負極14がセパレータ15から剥離すると、充放電反応が安定に進行しにくくなると共に、充放電時において電解液が分解しやすくなるため、電池特性が低下する。しかしながら、2つの構成条件が満たされている場合において、さらに、接着強度FAに関して上記した構成条件が満たされていると、セパレータ15に対する負極14の接着性が担保されるため、充電電圧Ecを4.38V以上まで増大させても、セパレータ15から負極14が剥離しにくくなる。
[0264]
 ここでは、例えば、セパレータ15(正極側高分子化合物層15BX)に対する正極13(正極活物質層13B)の接着強度FCも同様に、5mN/mm~100mN/mであり、好ましくは10mN/mm~40mN/mmである。上記した接着強度FAと同様の理由により、セパレータ15に対する正極13の接着性が担保されるため、充電電圧Ecを4.38V以上まで増大させてもセパレータ15から正極13が剥離しにくくなるからである。
[0265]
 接着強度FC,FAのそれぞれに関して上記した構成条件が満たされているのは、後述するように、二次電池の製造工程(初回の充電時)において巻回電極体10が熱プレスされており、すなわち巻回電極体10が加圧されながら加熱されているからである。この熱プレスにより、セパレータ15(正極側高分子化合物層15BX)に対する正極活物質層13Bの接着性が向上していると共に、セパレータ15(負極側高分子化合物層15BY)に対する負極活物質層14Bの接着性が向上している。二次電池の熱プレスの詳細に関しては、後述する。
[0266]
 ここで、接着強度FC,FAの測定方法は、例えば、以下の通りである。ここでは、例えば、接着強度FAを測定する手順に関して説明する。接着強度FCを測定する手順は、負極14の代わりに正極13を用いることを除いて、接着強度FAを測定する手順と同様である。
[0267]
 接着強度FAを測定する場合には、最初に、二次電池を準備する。充電状態の二次電池を用いる場合には、発煙および発火などを回避するために、閉回路電圧が0.5V以下になるまで二次電池を放電させる。続いて、二次電池を解体することにより、4層構造体(正極13/セパレータ15/負極14/セパレータ15)を回収したのち、セパレータ15と負極14との界面において4層構造体を剥離させる。これにより、正極13を含む2層構造体(正極13/セパレータ15)が得られると共に、負極14を含む2層構造体(負極14/セパレータ15)が得られる。
[0268]
 続いて、負極14を含む2層構造体を短冊状に切断することにより、図1に示したように、接着強度FAの測定用の試料Sを採取する。この場合には、平坦部10Fにおいて、巻回電極体10の巻回方向と交差する方向(巻回軸Jの延在方向に沿った方向=Y軸方向)に試料Sが延在するように2層構造体を切断する。試料Sの幅W(mm)は、任意に設定可能である。図1では、試料Sの採取範囲(負極14を含む2層構造体の切断箇所)を破線で表していると共に、その試料Sの採取範囲に網掛けを施している。
[0269]
 試料Sを採取するために平坦部10Fを用いるのは、本来の接着強度FAが再現性よく安定に測定されやすいからである。詳細には、湾曲部10Rでは、二次電池の加圧時において内部応力が発生しやすいため、その内部応力の影響に起因して接着強度FAが変動しやすくなる。これに対して、平坦部10Fでは、二次電池の加圧時において内部応力が発生しにくいため、その内部応力の影響を受けずに接着強度FAが維持されやすくなる。
[0270]
 続いて、両面テープを用いて、金属製の支持板に試料Sを固定する。この場合には、試料Sに両面テープを貼ることにより、その試料Sを支持板に接着させる。続いて、負極14からセパレータ15を5mm程度剥離させたのち、そのセパレータ15が剥離された領域において負極14に固定用のテープを貼る。
[0271]
 最後に、引っ張り試験機(株式会社島津製作所製のオートグラフAGS-50B)に試料Sをセットしたのち、その引っ張り試験機(測定種類=ピール)を用いて負極14からセパレータ15を剥離させながら引っ張り試験力N(mN)を測定する。この場合には、試料Sの延在方向に対して180°の方向にセパレータ15を引っ張ると共に、そのセパレータ15の引っ張り速度を100mm/分とする。また、引っ張り試験力Nを試料Sの幅Wで除することにより、荷重(=N/W)、すなわち接着強度FA(mN/mm)を算出する。特に、引っ張り開始後5mmの範囲において算出された荷重(引っ張り開始直後の荷重)と、引っ張り終了前5mmの範囲において算出された荷重(引っ張り終了直前の荷重)とを除外することにより、それら以外の範囲において算出された荷重の平均値を算出することにより、接着強度FAとする。
[0272]
 接着強度FAを算出する際に、引っ張り開始直後の荷重と引っ張り終了直前の荷重とを除外するのは、それらの範囲では引っ張り開始後の引っ張り動作および引っ張り終了前の引っ張り動作に起因して引っ張り試験力が大きく変動しやすいからである。これらの範囲において算出された荷重を除外しながら接着強度FAを算出することにより、その接着強度FAを安定かつ高精度に算出することができる。
[0273]
<5-3.動作>
 第5実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0274]
<5-4.製造方法>
 第5実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製すると共に、その正極13および負極14を用いて二次電池を組み立てたのち、その二次電池を熱プレスする。
[0275]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0276]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、黒鉛を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0277]
 正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにする。
[0278]
[セパレータの作製]
 有機溶剤などの溶媒に高分子化合物などを加えたのち、その溶媒を撹拌することにより、前駆溶液を調製する。この場合には、必要に応じて、溶媒に複数の絶縁性粒子を加えてもよい。続いて、基材層15Aの一面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、高分子化合物層15B(正極側高分子化合物層15BX)を形成する。また、基材層15Aの他面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、高分子化合物層15B(負極側高分子化合物層15BY)を形成する。
[0279]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0280]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。続いて、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成される。よって、外装部材20の内部に巻回電極体10が収納されるため、二次電池が組み立てられる。
[0281]
[二次電池の熱プレス]
 二次電池を組み立てたのち、その二次電池を充電(いわゆる初回充電)させながら、巻回軸Jと交差する方向(Z軸方向)において熱プレス機などを用いて二次電池を加圧および加熱する。充電条件は、閉回路電圧が2.5V以上になる条件であれば、特に限定されない。この初回充電により、負極14の表面にSEI(Solid Electrolyte Interphase)膜などの被膜が形成される。加熱時の温度は、特に限定されないが、例えば、25℃~105℃である。加圧時の圧力は、特に限定されないが、例えば、3kgf/cm 2 ~30kgf/cm 2 である。これにより、セパレータ15に対して正極13が密着すると共に、セパレータ15に対して負極14が密着するため、二次電池が完成する。
[0282]
 この熱プレスでは、上記した温度および圧力などの条件を調整することにより、上記した構成条件(接着強度FA)が満たされるようにする。同様に、熱プレスでは、例えば、上記した構成条件(接着強度FC)が満たされるようにする。
[0283]
<5-5.作用および効果>
 第5実施形態の二次電池によれば、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、セパレータ15が負極活物質層14Bに接着されている場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび接着強度FA)が満たされている。この場合には、上記したように、3つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなり、負極14においてリチウム金属が析出しにくくなると共に、セパレータ15から負極14が剥離しにくくなる。これにより、容量損失が発生しにくくなると共にガスが発生しにくくなるだけでなく、電池容量も減少しにくくなる。しかも、充放電反応が安定に進行しやすくなると共に、充放電時において電解液が分解しにくくなるため、容量損失およびガスがより発生しにくくなると共に、電池容量がより減少しにくくなる。よって、優れた電池特性を得ることができる。
[0284]
 特に、セパレータ15が基材層15Aと共に高分子化合物層15B(負極側高分子化合物層15BY)を含んでいれば、そのセパレータ15に対して負極活物質層14Bが密着しやすくなるため、より高い効果を得ることができる。この場合には、負極側高分子化合物層15BYが複数の絶縁性粒子を含んでいれば、安全性も向上するため、さらに高い効果を得ることができる。
[0285]
 また、接着強度FCに関しても上記した構成条件が満たされており、すなわち上記した4つの構成条件(負極電位Ef、負極電位変動量Evおよび接着強度FC,FA)が満たされていれば、充電電圧Ecを4.38V以上まで増大させてもセパレータ15から正極13が剥離しにくくなるため、より高い効果を得ることができる。この場合には、セパレータ15が基材層15Aと共に高分子化合物層15B(正極側高分子化合物層15BX)を含んでいれば、そのセパレータ15に対して正極活物質層13Bが密着しやすくなるため、さらに高い効果を得ることができる。また、正極活物質層13B(正極結着剤)および正極側高分子化合物層15BXのそれぞれがフッ素系高分子化合物を含んでいれば、セパレータ15に対して正極活物質層13Bがより密着しやすくなるため、さらに高い効果を得ることができる。また、正極側高分子化合物層15BXが複数の絶縁性粒子を含んでいれば、安全性も向上するため、さらに高い効果を得ることができる。
[0286]
<6.二次電池(第6実施形態)>
 次に、本技術の第6実施形態の二次電池に関して説明する。第6実施形態の二次電池は、以下で説明する点を除いて、既に説明した第1実施形態の二次電池の構成とほぼ同様の構成を有している。
[0287]
<6-1.構成>
 第6実施形態の二次電池における電解液は、溶媒および電解質塩を含んでいる。ただし、溶媒の種類は、1種類だけでもよいし、2種類以上でもよいと共に、電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。
[0288]
 溶媒は、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。具体的には、溶媒は、炭酸エステルおよびラクトンのうちの一方または双方と、鎖状カルボン酸エステルとを含んでいる。この炭酸エステルは、例えば、環状(環状炭酸エステル)でもよいし、鎖状(鎖状炭酸エステル)でもよいし、双方でもよい。また、鎖状カルボン酸エステルは、鎖状でもよいし、1または2以上の側鎖を有する分岐状でもよい。炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。このように種類が1種類だけでも2種類以上でもよいことは、ラクトンおよび鎖状カルボン酸エステルのそれぞれに関しても同様である。
[0289]
 環状炭酸エステルの種類は、特に限定されないが、例えば、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルの種類は、特に限定されないが、例えば、炭酸ジメチルおよび炭酸ジエチルなどである。ラクトンの種類は、特に限定されないが、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。
[0290]
 鎖状カルボン酸エステルの種類は、特に限定されないが、例えば、酢酸エステル、プロピオン酸エステルおよび酪酸エステルのうちのいずれか1種類または2種類以上が好ましい。この場合において、鎖状カルボン酸エステルの分子量は、特に限定されないが、中でも、119以下であることが好ましい。電解液の粘度が増加しすぎないため、リチウムイオンの移動が阻害されにくくなるからである。これにより、リチウムイオンの伝導率が向上する。具体的には、鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、2-メチルプロピオン酸エチル、2-メチルプロピオン酸メチルおよび2,2-ジメチルプロピオン酸などである。
[0291]
 溶媒が炭酸エステルおよびラクトンと共に鎖状カルボン酸エステルを含んでいるのは、その鎖状カルボン酸エステルが低粘度を有しているため、電解液中においてリチウムイオンが移動しやすくなるからである。これにより、充放電時における負極14においてリチウム金属が析出しにくくなり、特に、後述する充電電圧Ecを増大させてもリチウム金属が析出しにくくなる。この場合には、鎖状カルボン酸エステルが上記した酢酸メチルなどであると、リチウムイオンが十分に移動しやすくなるため、リチウム金属が十分に析出しにくくなる。
[0292]
 なお、溶媒は、上記した炭酸エステル、ラクトンおよび鎖状カルボン酸エステルと共に、他の非水溶媒のうちのいずれか1種類または2種類以上を含んでいてもよい。
[0293]
 他の非水溶媒は、例えば、ニトリル(モノニトリル)化合物などのうちのいずれか1種類または2種類以上である。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。容量特性、サイクル特性および保存特性などが担保されるからである。
[0294]
 特に、非水溶媒は、ジニトリル化合物のうちのいずれか1種類または2種類以上を含んでいることが好ましい。鎖状カルボン酸エステルの酸化耐性は低いため、充放電時において鎖状カルボン酸エステルは分解しやすいが、電解液がジニトリル化合物を含んでいると、鎖状カルボン酸エステルの酸化耐性が向上するため、充放電時において鎖状カルボン酸エステルが分解しにくくなるからである。特に、鎖状カルボン酸エステルは高温環境下において分解しやすくなる傾向を有するため、電解液がジニトリル化合物を含んでいると、高温環境下においても鎖状カルボン酸エステルが十分に分解しにくくなる。
[0295]
 ジニトリル化合物の種類は、特に限定されないが、例えば、スクシノニトリル(NC-C 2 4 -CN)、グルタロニトリル(NC-C 3 6 -CN)、アジポニトリル(NC-C 4 8 -CN)、セバコニトリル(NC-C 8 10-CN)およびフタロニトリル(NC-C 6 4 -CN)などである。
[0296]
 電解液中におけるジニトリル化合物の含有量は、特に限定されないが、中でも、1重量%~20重量%であることが好ましい。電池容量が減少することなどが抑制されながら、鎖状カルボン酸エステルが十分に分解しにくくなるからである。
[0297]
 特に、非水溶媒は、ハロゲン化炭酸エステルと共にジオキサン化合物を含んでいることが好ましい。このジオキサン化合物は、例えば、下記の式(17)で表される化合物のうちのいずれか1種類または2種類以上である。ハロゲン化炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。充放電時において、ハロゲン化炭酸エステルに由来する被膜が負極14の表面に形成されるため、その被膜により負極14の表面が保護されるからである。これにより、負極14においてリチウム金属が析出しても、そのリチウム金属が電解液と過剰に反応しにくくなることにより、充放電時においてリチウム金属の可逆性が向上するため、そのリチウム金属が析出しにくくなる。しかも、ハロゲン化炭酸エステルは、電解液などと反応することに起因してガスを発生させやすい性質を有しているが、そのハロゲン化炭酸エステルの反応に起因したガスの発生は、ジオキサン化合物により抑制されるからである。これにより、二次電池の内部においてガスが発生しても、その二次電池が膨れにくくなる。
[0298]
[化1]


(R1~R8のそれぞれは、水素基および1価の炭化水素基のうちのいずれかである。)
[0299]
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲンを構成元素として含む炭酸エステルの総称であり、環状でもよいし、鎖状でもよい。ハロゲンの種類は、例えば、フッ素、塩素、臭素およびヨウ素などのうちのいずれか1種類または2種類以上である。
[0300]
 具体的には、環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。また、鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。
[0301]
 ジオキサン化合物は、式(17)から明らかなように、1,3-ジオキサンおよびその誘導体である。R1~R8のそれぞれの種類は、上記したように、水素基および1価の炭化水素基のうちのいずれかであれば、特に限定されない。この1価の炭化水素基は、炭素および水素により形成される1価の基の総称であり、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよいし、1個または2個以上の環を含む環状でもよいし、それらの2種類以上が互いに結合された結合体でもよい。また、1価の炭化水素基は、1個または2個以上の炭素間不飽和結合(炭素間二重結合および炭素間三重結合のうちの一方または双方)を含んでいてもよいし、その炭素間不飽和結合を含んでいなくてもよい。
[0302]
 1価の炭化水素基は、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基および結合基などである。この結合基は、アルキル基、アルケニル基、アルキニル基、シクロアルキル基およびアリール基のうちの2種類以上が互いに結合された1価の基である。1価の炭化水素基の炭素数は、特に限定されない。
[0303]
 具体的には、ジオキサン化合物は、例えば、1,3-ジオキサン、4-メチル-1,3-ジオキサン、4,5-ジメチル-1,3-ジオキサンおよび4,5,6-トリメチル-1,3-ジオキサンなどである。
[0304]
 電解液中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、中でも、1重量%~20重量%であることが好ましい。また、電解液中におけるジオキサン化合物の含有量は、特に限定されないが、中でも、0.1重量%~2重量%であることが好ましい。二次電池の膨れが十分に抑制されながら、リチウム金属が電解液と十分に反応しにくくなるからである。
[0305]
 この他、非水溶媒は、例えば、不飽和環状炭酸エステル、スルホン酸エステル、酸無水物、ジイソシアネート化合物およびリン酸エステルのうちのいずれか1種類または2種類以上を含んでいてもよい。電池容量、サイクル特性および保存特性などがより向上するからである。
[0306]
 不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートなどである。リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。
[0307]
 電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、さらに、リチウム塩以外の軽金属塩のうちのいずれか1種類または2種類以上を含んでいてもよい。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF 6 )、四フッ化ホウ酸リチウム(LiBF 4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO 2 F) 2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF 3 SO 2 2 )、フルオロリン酸リチウム(Li 2 PFO 3 )、ジフルオロリン酸リチウム(LiPF 2 2 )およびビス(オキサラト)ホウ酸リチウム(LiC 4 BO 8 )などである。容量特性、サイクル特性および保存特性などが担保されるからである。
[0308]
 電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg以上3.0mol/kg以下である。
[0309]
 特に、電解液は、ホウ素を構成元素として含むリチウム塩(以下、「ホウ素含有リチウム塩」と呼称する。)と共にジオキサン化合物を含んでいることが好ましい。このジオキサン化合物に関する詳細は、上記した通りである。非水溶媒がハロゲン化炭酸エステルと共にジオキサン化合物を含んでいる場合と同様の理由により、充放電時においてリチウム金属が析出しにくくなると共に、二次電池が膨れにくくなるからである。ホウ素含有リチウム塩の種類は、1種類だけでもよいし、2種類以上でもよい。
[0310]
 ホウ素含有リチウム塩の種類は、特に限定されないが、上記した四フッ化ホウ酸リチウムの他、下記の式(18-1)および式(18-2)のそれぞれで表される化合物などである。
[0311]
[化2]


[0312]
 電解液中におけるホウ素含有リチウム塩の含有量は、特に限定されないが、中でも、0.1mol/l~2mol/l(=0.1mol/dm 3 ~2mol/dm 3 )であることが好ましい。また、電解液中におけるジオキサン化合物の含有量は、特に限定されないが、中でも、0.1重量%~2重量%であることが好ましい。二次電池の膨れが十分に抑制されながら、リチウム金属が電解液と十分に反応しにくくなるからである。
[0313]
<6-2.充放電原理および構成条件>
 ここで、第6実施形態の二次電池の充放電原理および構成条件に関して説明する。
[0314]
[前提事項および充放電原理]
 第6実施形態の二次電池に関する前提事項および充放電原理は、既に説明した第1実施形態の二次電池に関する前提事項および充放電原理と同様である。
[0315]
[構成条件]
 第6実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する3つの構成条件が満たされている。
[0316]
 第1に、4.38V以上の閉回路電圧(OCV)において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極14の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
[0317]
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
[0318]
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(16)で表される負極14の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(16)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
[0319]
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(16)
(電位E1は、満充電状態の二次電池において測定される負極14の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極14の開回路電位(リチウム金属基準)である。)
[0320]
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極14の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図6および図7から明らかなように、その負極14の電位Eが急激に増加する。これにより、放電後における負極14の電位E(E2)は、放電前(満充電状態)における負極14の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
[0321]
 第3に、電解液に含まれている溶媒の組成に関して、炭酸エステルの体積とラクトンの体積と鎖状カルボン酸エステルの体積との総和に対して鎖状カルボン酸エステルの体積の占める割合は、10体積%~80体積%である。この鎖状カルボン酸エステルの体積の割合(体積%)は、鎖状カルボン酸エステルの体積の割合=[鎖状カルボン酸エステルの体積/(炭酸エステルの体積+ラクトンの体積+鎖状カルボン酸エステルの体積)]×100という計算式により算出される。
[0322]
 上記したように、充電終止時において負極14の電位Eが低下すると、その負極14の理論容量に対して実際に使用する容量範囲が十分に大きくなるため、その充電終止時では負極14においてリチウム金属が析出しやすくなる傾向にある。しかしながら、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合において、さらに、低粘度を有する鎖状カルボン酸エステルの割合に関して上記した構成条件が満たされていると、その鎖状カルボン酸エステルの割合が適正化される。これにより、充電電圧Ecを4.38V以上まで増大させても、負極14においてリチウム金属がより析出しにくくなる。
[0323]
<6-3.動作>
 第6実施形態の二次電池は、例えば、以下のように動作する。充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極14に吸蔵される。また、二次電池では、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極13に吸蔵される。
[0324]
<6-4.製造方法>
 第6実施形態の二次電池を製造する場合には、例えば、以下で説明するように、正極13および負極14を作製したのち、その正極13および負極14を用いて二次電池を組み立てる。
[0325]
[正極の作製]
 最初に、層状岩塩型リチウムコバルト複合酸化物を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの溶媒に正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[0326]
[負極の作製]
 上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、黒鉛を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤または水性溶媒などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、負極活物質層14Bを圧縮成型してもよい。
[0327]
 なお、正極13および負極14を作製する場合には、正極活物質の質量が十分に多くなるように正極活物質と負極活物質との混合比(正極活物質の質量と負極活物質の質量との関係)を調整することにより、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされるようにする。
[0328]
[電解液の調製]
 電解液を調製する場合には、炭酸エステルおよびラクトンのうちの一方または双方と鎖状カルボン酸エステルとを含む溶媒に電解質塩を加えたのち、その溶媒を撹拌する。この場合には、炭酸エステルとラクトンと鎖状カルボン酸エステルとの混合比(体積比)を調整することにより、上記した構成条件(鎖状カルボン酸エステルの割合)が満たされるようにする。
[0329]
[二次電池の組み立て]
 最初に、溶接法などを用いて正極13(正極集電体13A)に正極リード11を接続させると共に、溶接法などを用いて負極14(負極集電体14A)に負極リード12を接続させる。続いて、セパレータ15を介して正極13および負極14を互いに積層させたのち、その正極13、負極14およびセパレータ15を巻回させることにより、巻回体を形成する。この場合には、扁平な形状を有する治具(図示せず)を用いて、巻回軸Jを中心として正極13、負極14およびセパレータ15を巻回させることにより、図1に示したように、巻回体が扁平な形状となるようにする。
[0330]
 続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材20の内部に巻回体を収納する。最後に、袋状の外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20を密封する。この場合には、外装部材20と正極リード11との間に密着フィルム31を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が形成される。よって、外装部材20の内部に巻回電極体10が収納されるため、二次電池が完成する。
[0331]
<6-5.作用および効果>
 第6実施形態の二次電池によれば、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、電解液が溶媒(炭酸エステルおよびラクトンのうちの一方または双方と共に鎖状カルボン酸エステル)を含んでいる場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび鎖状カルボン酸エステルの割合)が満たされている。この場合には、上記したように、3つの構成条件が満たされていない場合と比較して、充電電圧Ecを4.38V以上まで増大させても、正極13の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極13の電位Eが相転移に伴う電位一定領域P2を通過しにくくなると共に、負極14においてリチウム金属が析出しにくくなる。よって、容量損失が発生しにくくなると共にガスが発生しにくくなるだけでなく、電池容量も減少しにくくなるため、優れた電池特性を得ることができる。
[0332]
 特に、鎖状カルボン酸エステルが酢酸エステルなどを含んでおり、その鎖状カルボン酸エステルの分子量が119以下であれば、電解液の粘度が増加しすぎないことにより、リチウムイオンの伝導率が向上するため、より高い効果を得ることができる。
[0333]
 また、電解液がジニトリル化合物を含んでおり、その電解液中におけるジニトリル化合物の含有量が1重量%~20重量%であれば、電池容量が減少することなどが抑制されながら鎖状カルボン酸エステルが十分に分解しにくくなるため、より高い効果を得ることができる。
[0334]
 また、電解液がハロゲン化炭酸エステルと共にジオキサン化合物を含んでおり、その電解液中におけるハロゲン化炭酸エステルの含有量が1重量%~20重量%であると共に、その電解液中におけるジオキサン化合物の含有量が0.1重量%~2重量%であれば、二次電池の膨れが十分に抑制されながらリチウム金属が電解液と十分に反応しにくくなるため、より高い効果を得ることができる。
[0335]
 また、電解液がホウ素含有リチウム塩と共にジオキサン化合物を含んでおり、その電解液中における四フッ化ホウ酸リチウムの含有量が0.1mol/dm 3 ~2mol/dm 3 であると共に、その電解液中におけるジオキサン化合物の含有量が0.1重量%~2.0重量%であれば、二次電池の膨れが十分に抑制されながらリチウム金属が電解液と十分に反応しにくくなるため、より高い効果を得ることができる。
[0336]
 また、複数の黒鉛粒子のメジアン径D50が3.5μm~30μmであれば、リチウム金属が析出することを抑制しながらリチウムイオンの受け入れ性が向上するため、より高い効果を得ることができる。
[0337]
 また、黒鉛の(002)面の面間隔Sが0.3355nm~0.3370nmであれば、電池容量が担保されながら電解液の分解反応が抑制されるため、より高い効果を得ることができる。
[0338]
<7.変形例>
 上記した二次電池の構成に関しては、以下で説明するように、適宜、変更可能である。なお、以下で説明する一連の変形例は、互いに組み合わされてもよい。
[0339]
[変形例1]
 図11は、変形例1の二次電池(巻回電極体10)の断面構成を表しており、図3に対応している。セパレータ15は、例えば、図11に示したように、基材層15Aと、その基材層15Aの上に形成された高分子化合物層15Bとを含んでいてもよい。この高分子化合物層15Bは、基材層15Aの片面だけに形成されていてもよいし、基材層15Aの両面に形成されていてもよい。図11では、例えば、高分子化合物層15Bが基材層15Aの両面に形成されている場合を示している。
[0340]
 基材層15Aは、例えば、上記した多孔質膜である。高分子化合物層15Bは、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。なお、高分子化合物層は、例えば、複数の無機粒子などの複数の絶縁性粒子を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が吸熱すると共に、セパレータ15の破損(例えば、融解など)時において複数の絶縁性粒子が正極13および負極14を互いに電気的に分離させるため、安全性が向上するからである。無機粒子の種類は、特に限定されないが、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
[0341]
 セパレータ15を作製する場合には、例えば、高分子化合物および有機溶剤などを含む前駆溶液を調製することにより、基材層15Aの両面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、高分子化合物層15Bを形成する。
[0342]
 この場合においても、上記した構成条件(負極電位Efおよび負極電位変動量Ev)が満たされていることにより、同様の効果を得ることができる。この場合には、特に、正極13に対するセパレータ15の密着性が向上すると共に、負極14に対するセパレータ15の密着性が向上するため、巻回電極体10が歪みにくくなる。これにより、電解液の分解反応が抑制されると共に、基材層15Aに含浸された電解液の漏液も抑制されるため、より高い効果を得ることができる。
[0343]
[変形例2]
 図12は、変形例3の二次電池(巻回電極体10)の断面構成を表しており、図3に対応している。巻回電極体10は、例えば、図12に示したように、液状の電解質である電解液の代わりに、ゲル状の電解質である電解質層16を備えていてもよい。
[0344]
 この巻回電極体10では、例えば、図12に示したように、セパレータ15および電解質層16を介して正極13および負極14が互いに積層されたのち、その正極13、負極14、セパレータ15および電解質層16が巻回されている。電解質層16は、例えば、正極13とセパレータ15との間に介在していると共に、負極14とセパレータ15との間に介在している。ただし、正極13とセパレータ15との間および負極14とセパレータ15との間のうちのいずれか一方だけに電解質層16が介在していてもよい。
[0345]
 電解質層16は、電解液と共に高分子化合物を含んでいる。ここで説明する電解質層16は、上記したように、ゲル状の電解質であるため、その電解質層16中では、電解液が高分子化合物により保持されている。電解液の構成は、上記した通りである。ただし、ゲル状の電解質である電解質層16において、電解液に含まれる溶媒は、液状の材料だけでなく、電解質塩を解離可能であるイオン伝導性を有する材料も含む広い概念である。よって、イオン伝導性を有する高分子化合物も溶媒に含まれる。高分子化合物は、例えば、単独重合体および共重合体のうちの一方または双方を含んでいる。単独重合体は、例えば、ポリフッ化ビニリデンなどであると共に、共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。
[0346]
 電解質層16を形成する場合には、例えば、電解液、高分子化合物および有機溶剤などを含む前駆溶液を調製することにより、正極13および負極14のそれぞれに前駆溶液を塗布したのち、その前駆溶液を乾燥させる。
[0347]
 この場合においても、上記した構成条件(負極電位Efおよび負極位変動量Ev)が満たされていることにより、同様の効果を得ることができる。この場合には、特に、電解液の漏液が抑制されるため、より高い効果を得ることができる。
[0348]
[変形例3]
 負極14(負極活物質層14B)は、複数の第1負極活物質粒子(黒鉛)だけを含んでおり、複数の第2負極活物質粒子(ケイ素含有材料)を含んでいなくてもよい。この場合においても、上記した5つの構成条件(負極電位Ef、負極電位変動量Ev、メジアン径D50A、体積密度および積分強度比)が満たされていることにより、同様の効果を得ることができる。
[0349]
[変形例4]
 接着強度FAに関して上記した構成条件が満たされると共に、接着強度FCに関しても上記した構成条件が満たされるようにした。
[0350]
 しかしながら、接着強度FAに関して構成条件が満たされているのに対して、接着強度FCに関して構成条件が満たされていなくてもよい。この場合における接着強度FCは、構成条件が満たされない範囲において任意に設定可能である。この場合においても、接着強度FC,FAのいずれに関しても構成条件が満たされていない場合と比較して、セパレータ15から負極14が剥離しにくくなるため、同様の効果を得ることができる。
[0351]
 接着強度FAに関して構成条件が満たされていれば、接着強度FCに関して構成条件が満たされていなくてもよいのは、ここで説明した二次電池では、上記したように、充電時において負極14がリチウムイオンを吸蔵するため、その負極14が正極13よりも膨張しやすくなるからである。よって、接着強度FAだけでも担保されていれば、充放電反応が安定に進行しやすくなると共に充放電時において電解液が分解しにくくなるため、上記したように、同様の効果を得ることができる。
[0352]
 ただし、充放電時において電解液が分解することを十分に抑制するためには、接着強度FC,FAの双方に関して構成条件が満たされていることが好ましい。
[0353]
[変形例5]
 セパレータ15が2つの高分子化合物層15B(正極側高分子化合物層15BXおよび負極側高分子化合物層15BY)を含むようにした。しかしながら、接着強度FAだけに関して上記した構成条件が満たされており、または接着強度FC,FAの双方に関して構成条件が満たされていれば、そのセパレータ15の構成は、任意に変更可能である。
[0354]
 具体的には、セパレータ15が正極側高分子化合物層15BXおよび負極側高分子化合物層15BYのうちのいずれか一方だけを含んでいてもよいし、セパレータ15が正極側高分子化合物層15BXおよび負極側高分子化合物層15BYの双方を含んでいなくてもよい。これらの場合においても、接着強度FAだけに関して構成条件が満たされており、または接着強度FC,FAの双方に関して構成条件が満たされていれば、同様の効果を得ることができる。
[0355]
<8.二次電池の用途>
 二次電池の用途は、その二次電池を駆動用の電源および電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。
[0356]
 具体的には、二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時に備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記した用途以外の他の用途でもよい。
実施例
[0357]
 本技術の実施例に関して説明する。
[0358]
(実験例1-1~1-20)
 以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0359]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。
[0360]
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛,メジアン径D50=10μm,(002)面の面間隔S=0.3360μm)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて、水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。
[0361]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)、負極電位変動量Ev(mV)および正極電位変動量Ew(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Ef、負極電位変動量Evおよび正極電位変動量Ewのそれぞれは、表1に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0362]
 電解液を調製する場合には、溶媒(炭酸エチレン、炭酸プロピレンおよび炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル=15:15:70とすると共に、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
[0363]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接すると共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0364]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0365]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入された。よって、ラミネートフィルム型の二次電池が完成した。
[0366]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表1に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性を調べた。
[0367]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0368]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0369]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0370]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0371]
 低温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、低温環境中(温度=0℃)において二次電池を100サイクル充放電させることにより、102サイクル目の放電容量を測定した。最後に、低温維持率(%)=(102サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.5Cに変更したと共に放電時の電流を0.5Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.5Cとは、電池容量(理論容量)を2時間で放電しきる電流値である。
[0372]
[表1]


[0373]
[考察]
 表1に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率、膨れ増加率および低温維持率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0374]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例1-1~1-10)には、その2つの構成条件が同時に満たされていない場合(実験例1-11~1-20)と比較して、容量維持率および膨れ増加率のそれぞれが十分に減少したと共に、高温維持率および低温維持率のそれぞれが十分に増加した。より具体的には、2つの構成条件が満たされている場合には、1%未満の容量変動率、70%以上の高温維持率、最大でも10%台の膨れ増加率および70%以上の低温維持率が得られた。
[0375]
 また、2つの構成条件が満たされている場合には、正極電位変動量Ewが2mV以上であると、高温維持率がより増加した。
[0376]
(実験例2-1~2-6)
 表2に示したように、負極14の構成(負極活物質(人造黒鉛)のメジアン径D50(μm))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0377]
[表2]


[0378]
 メジアン径D50が適正な範囲内(=3.5μm~30μm)である場合(実験例1-4,2-2~2-5)には、メジアン径D50が適正な範囲外である場合(実験例2-1,2-6)と比較して、高い高温維持率が得られたと共に、高い低温維持率も得られた。特に、メジアン径D50が5μm~20μmであると(実験例1-4,2-3,2-4)、より高い高温維持率が得られたと共に、より高い低温維持率も得られた。
[0379]
(実験例3-1~3-5)
 表3に示したように、負極14の構成(負極活物質(人造黒鉛)の(002)面の面間隔S(nm))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0380]
[表3]


[0381]
 面間隔Sが適正な範囲内(=0.3355nm~0.3370nm)である場合(実験例1-4,3-1~3-4)には、面間隔Sが適正な範囲外である場合(実験例3-5)と比較して、高い高温維持率が得られたと共に、高い低温維持率も得られた。特に、面間隔Sが0.3356nm~0.3363nmであると(実験例1-4,3-2,3-3)、より高い高温維持率が得られたと共に、より高い低温維持率も得られた。
[0382]
[まとめ]
 表1~表3に示した結果から、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、上記した2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされていると、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0383]
(実験例4-1~4-20)
 次に、以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0384]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))96質量部と、正極結着剤(フッ化ビニリデン系高分子化合物であるポリフッ化ビニリデン)1質量部と、正極導電剤(黒鉛)3質量部とを混合することにより、正極合剤とした(含有割合=1.0重量%)。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した(面積密度=40mg/cm 2 および体積密度=4.10g/cm 3 )。
[0385]
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛,メジアン径D50=10μm,(002)面の面間隔S=0.3360μm)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。
[0386]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)および負極電位変動量Ev(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Efおよび負極電位変動量Evのそれぞれは、表4に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0387]
 電解液を調製する場合には、溶媒(環状炭酸エステルである炭酸エチレン(EC)および炭酸プロピレン(PC)、鎖状炭酸エステルである炭酸ジエチル(DEC)および鎖状カルボン酸エステルであるプロピオン酸プロピル(PP))に電解質塩(六フッ化リン酸リチウム(LiPF 6 ))を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル:プロピオン酸プロピル=5:4:51:40とした(溶媒比=0.1)。また、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
[0388]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接したと共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0389]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入したと共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0390]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入された。よって、ラミネートフィルム型の二次電池が完成した。
[0391]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表4に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性を調べた。
[0392]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0393]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0394]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0395]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0396]
 低温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、低温環境中(温度=0℃)において二次電池を100サイクル充放電させることにより、102サイクル目の放電容量を測定した。最後に、低温維持率(%)=(102サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.5Cに変更したと共に放電時の電流を0.5Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。
[0397]
[表4]


[0398]
[考察]
 表4に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率、膨れ増加率および低温維持率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0399]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例4-1~4-10)には、その2つの構成条件が同時に満たされていない場合(実験例4-11~4-20)と比較して、容量変動率および膨れ増加率のそれぞれが減少したと共に、高温容量維持率および低温維持率のそれぞれがわずかに増加した。
[0400]
(実験例5-1~5-131)
 表5~表10に示したように、正極13の構成(面積密度(mg/cm 2 )、体積密度(g/cm 3 )および含有割合(重量%))および電解液の組成(溶媒比および含有量(mol/kg))を変更したと共に、上記した高温サイクル特性と共に新たに耐久特性を調べたことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0401]
 正極13を作製する場合には、表5~表10に示したように、圧縮成型時の条件を変更することにより、面積密度および体積密度のそれぞれを変化させたと共に、正極結着剤の添加量を変更することにより、含有割合を変化させた。また、電解液を調製する場合には、表5~表10に示したように、環状炭酸エステルの添加量を変更することにより、溶媒比を変化させたと共に、電解質塩の添加量を変更することにより、その電解質塩の含有量を変化させた。
[0402]
 耐久特性を調べる場合には、上記した手順により、扁平な形状を有する巻回体を作製したのち、最内周の湾曲部10Rにおいて正極活物質層13B(負極活物質層14Bと対応している部分)の状態を目視で観察することにより、その正極活物質層13Bの状態を判定した。
[0403]
 この場合には、正極活物質層13Bの状態が正常であった場合を「A」と判定した。正極活物質層13Bは破断していなかったが、複数のピンホールが観察された場合を「B」と判定した。幅方向(Y軸方向)において正極活物質層13Bは部分的に破断していたが、その破断している部分の幅が正極活物質層13Bの幅の50%未満であった場合を「C」と判定した。幅方向において正極活物質層13Bが部分的に破断しており、その破断している部分の幅が正極活物質層13Bの幅の50%以上であった場合を「D」と判定した。幅方向において正極活物質層13Bが全体的に破断していたため、その正極活物質層13Bが断裂していた場合を「E」と判定した。正極13の作製工程において正極活物質層13Bの剥離および滑落が発生したため、その正極13を作製できなかった場合を「X」と判定した。
[0404]
 なお、表5~表10では、下欄に「評価結果:状態判定,高温維持率」と記載しているように、耐久特性の判定結果(A~E)と高温サイクル特性の評価結果(高温維持率(%))とを併記している。一例を挙げると、「A,91%」という表記は、耐久特性の判定結果がAであると共に、高温維持率が91%であることを示している。
[0405]
[表5]


[0406]
[表6]


[0407]
[表7]


[0408]
[表8]


[0409]
[表9]


[0410]
[表10]


[0411]
 2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合(実験例5-1~5-131)には、正極13の構成(面積密度、体積密度および含有割合)および電解液の組成(溶媒比および含有量)に応じて、正極活物質層13Bの状態および高温維持率のそれぞれが変動した。
[0412]
 具体的には、エネルギー密度を増加させるために、面積密度が36mg/cm 2 以上であり、体積密度が3.90g/cm 3 以上であり、含有量が0.7mol/kg~1.2mol/kgであるという3つの構成条件が満たされるようにした。この場合には、さらに、溶媒比が0.2~1であり、含有割合が0.8重量%~2.5重量%であるという2つの構成条件が満たされていると(実験例5-26~5-39など)、その2つの構成条件が満たされていない場合(実験例4-4,5-1~5-25,5-40~5-43など)と比較して、正極活物質層13Bの状態が担保されながら高い高温維持率が得られた。
[0413]
(実験例6-1~6-10)
 表11に示したように、正極結着剤の構成(種類および共重合量(重量%))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0414]
 正極13を作製する場合には、新たに正極結着剤として、フッ化ビニリデンとテトラフルオロエチレンとの共重合体(VDF/TFE)と、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(VDF/HFP)と、フッ化ビニリデンとテトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体(VDF/TFE/HFP)とを用いた。この場合には、表11に示したように、VDFおよびHFPのそれぞれの共重合量を設定した。
[0415]
[表11]


[0416]
 正極結着剤の構成(種類および共重合量)を変更した場合(実験例6-1~6-10)においても、同様の結果が得られた。すなわち、正極結着剤の構成を変更しても、正極活物質層13Bの状態が担保されながら高い高温維持率が得られた。
[0417]
 特に、正極結着剤として共重合体を用いた場合には、正極活物質層13Bが破断しにくくなった。この場合には、TFEの共重合量が0.1重量%~20重量%であると共に、HFPの共重合量が0.2重量%~5重量%であると、正極活物質層13Bが十分に破断しにくくなった。
[0418]
(実験例7-1~7-8)
 表12に示したように、電解液の組成(溶媒の種類および電解質塩の種類)を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0419]
 電解液を調製する場合には、溶媒として新たな材料を用いたと共に、電解質塩として新たな材料を用いた。具体的には、鎖状炭酸エステルとして炭酸ジメチル(DMC)を用いた。鎖状カルボン酸エステルとしてプロピオン酸エチル(EP)およびプロピオン酸メチル(MP)を用いた。電解質塩として四フッ化ホウ酸リチウム(LiBF 4 )を用いた。
[0420]
[表12]


[0421]
 電解液の組成を変更した場合(実験例7-1~7-8)においても、同様の結果が得られた。すなわち、電解液の組成を変更しても、正極活物質層13Bの状態が担保されながら高い高温維持率が得られた。
[0422]
(実験例8-1~8-6)
 表13に示したように、負極14の構成(負極活物質(人造黒鉛)のメジアン径D50(μm))を変更したと共に新たに低温サイクル特性を評価したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0423]
[表13]


[0424]
 メジアン径D50が適正な範囲内(=3.5μm~30μm)である場合(実験例5-53,8-2~8-5)には、メジアン径D50が適正な範囲外である場合(実験例8-1,8-6)と比較して、高温維持率が増加したと共に、低温容量維持率も増加した。特に、メジアン径D50が5μm~25μmであると(実験例5-53,8-3,8-4)、高い低温容量維持率が得られたと共に、高い高温維持率も得られた。
[0425]
(実験例9-1~9-5)
 表14に示したように、負極14の構成(負極活物質(人造黒鉛)の(002)面の面間隔S(nm))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0426]
[表14]


[0427]
 面間隔Sが適正な範囲内(=0.3355nm~0.3370nm)である場合(実験例5-53,9-1~9-4)には、面間隔Sが適正な範囲外である場合(実験例9-5)と比較して、高温維持率が増加した。特に、面間隔Sが0.3356nm~0.3363nmであると(実験例5-53,9-2,9-3)、高い低温維持率が得られながら、高温維持率がより増加した。
[0428]
[まとめ]
 表4~表14に示した結果から、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)および正極結着剤(フッ化ビニリデン系高分子化合物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、電解液が溶媒(環状炭酸エステルと共に鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの一方または双方)を含んでいる場合において、上記した7つの構成条件(負極電位Ef、負極電位変動量Ev、面積密度、体積密度、含有割合、溶媒比および含有量)が満たされていると、容量維持特性、高温サイクル特性、高温膨れ特性、低温サイクル特性および耐久特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0429]
(実験例10-1~10-20)
 次に、以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0430]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。
[0431]
 負極14を作製する場合には、最初に、複数の負極活物質粒子(人造黒鉛,メジアン径D50A=10μm,(002)面の面間隔S=0.3360nm)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて、水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した(体積密度=1.6g/cm 3 ,積分強度比=568)。
[0432]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)および負極電位変動量Ev(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Efおよび負極電位変動量Evのそれぞれは、表15に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0433]
 電解液を調製する場合には、溶媒(炭酸エチレン、炭酸プロピレンおよび炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル=15:15:70としたと共に、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
[0434]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接したと共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0435]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入したと共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0436]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入された。よって、ラミネートフィルム型の二次電池が完成した。
[0437]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表15に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性を調べた。
[0438]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0439]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0440]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0441]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0442]
 低温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、低温環境中(温度=0℃)において二次電池を100サイクル充放電させることにより、102サイクル目の放電容量を測定した。最後に、低温維持率(%)=(102サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.5Cに変更したと共に放電時の電流を0.5Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。
[0443]
[表15]


[0444]
[考察]
 表15に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が複数の負極活物質粒子(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率、膨れ増加率および低温維持率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0445]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例10-1~10-10)には、その2つの構成条件が同時に満たされていない場合(実験例10-11~10-20)と比較して、容量変動率および膨れ増加率のそれぞれが減少したと共に、高温容量維持率および低温維持率のそれぞれがわずかに増加した。
[0446]
(実験例11-1~11-16)
 表16に示したように、負極14の構成(負極活物質の種類および被覆の有無)を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0447]
 負極14を作製する場合には、表16に示したように、新たに積分強度比が異なる他の人造黒鉛および球状化天然黒鉛を用いると共に、メジアン径D50A(μm)および体積密度(g/cm 3 )を変化させた。また、複数の第1負極活物質粒子に複数の第2負極活物質粒子(ケイ素含有材料である酸化ケイ素(SiO))を加えた。この場合には、表16に示したように、メジアン径D50Bおよび含有割合(重量%)を変化させた。
[0448]
 なお、表16に示した「被覆」の欄には、導電性材料(黒鉛)による第2負極活物質粒子の表面被覆の有無を示している。導電性材料を用いて第2負極活物質粒子の表面を被覆する場合には、炭素源として黒鉛を用いたCVDを利用して第2負極活物質粒子の表面に黒鉛を堆積させた。
[0449]
[表16]


[0450]
 2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合(実験例11-1~11-16)には、容量変動率、高温維持率、膨れ増加率および低温維持率のそれぞれが負極14の構成に応じて変動した。
[0451]
 具体的には、エネルギー密度を増加させるために体積密度を1.5g/cm 3 以上にすると、メジアン径D50Aが20μm以下であると共に積分強度比が500以下であるという2つの構成条件が同時に満たされている場合(実験例11-2~11-7)において、その2つの構成条件が同時に満たされていない場合(実験例10-4,11-1)と比較して、ほぼ同等の容量変動率、高温維持率および膨れ増加率が担保されながら、低温維持率が増加した。
[0452]
 また、複数の第2負極活物質粒子を用いた場合(実験例11-16)には、その複数の第2負極活物質粒子を用いなかった場合(実験例11-7)と比較して、高温維持率および低温維持率のそれぞれが増加したと共に、膨れ増加率が減少した。このような傾向は、同様に複数の第2負極活物質粒子を用いた場合(実験例11-8~11-15)においても同様に得られた。特に、複数の第2負極活物質粒子を用いた場合には、メジアン径D50Bが1μm~10μmであると共に含有割合が0.1重量%~5重量%であると、容量変動率および膨れ増加率のそれぞれが抑えられながら、高い高温維持率および低温維持率が得られた。
[0453]
 さらに、第2負極活物質粒子を被覆した場合(実験例11-9)には、第2負極活物質粒子を被覆しなかった場合(実験例11-16)と比較して、低温維持率がより増加した。
[0454]
(実験例12-1~12-5)
 表17に示したように、負極14の構成(負極活物質(人造黒鉛)の(002)面の面間隔S(nm))を変更したと共に新たに電池容量サイクル特性を評価したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0455]
[表17]


[0456]
 面間隔Sが適正な範囲内(=0.3355nm~0.3370nm)である場合(実験例11-2,12-1~12-4)には、面間隔Sが適正な範囲外である場合(実験例12-5)と比較して、膨れ増加率が抑えられながら、高い高温維持率および低温維持率が得られた。特に、面間隔Sが0.3356nm~0.3363nmであると(実験例11-2,12-2,12-3)、膨れ増加率がより抑えられながら、より高い高温維持率および低温維持率が得られた。
[0457]
[まとめ]
 表15~表17に示した結果から、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が複数の第1負極活物質粒子(黒鉛)を含んでいる場合において、上記した5つの構成条件(負極電位Ef、負極電位変動量Ev、メジアン径D50A、体積密度および積分強度比)が満たされていると、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0458]
(実験例13-1~13-20)
 次に、以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0459]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。
[0460]
 正極活物質層13Bを形成する場合には、面積密度=42.9mg/m 2 および体積密度=4.2g/cm 3 とした。また、正極13を用いて突刺試験を行ったところ、突刺強度=0.8Nであったため、耐久度=225であった。
[0461]
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて、水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。
[0462]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)および負極電位変動量Ev(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Efおよび負極電位変動量Evのそれぞれは、表18に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0463]
 電解液を調製する場合には、溶媒(炭酸エチレン、炭酸プロピレンおよび炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル=15:15:70とすると共に、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
[0464]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接すると共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0465]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0466]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入されたため、ラミネートフィルム型の二次電池が完成した。
[0467]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表18に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性、高温膨れ特性およびクラック耐久性を調べた。
[0468]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0469]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0470]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0471]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0472]
 クラック耐久性を調べる場合には、上記した高温サイクル特性を調べたのち、二次電池を解体することにより、正極13を回収した。こののち、湾曲部10Rに対応する領域において正極13(正極活物質層13B)の状態を目視で確認することにより、クラックの発生状況を調べた。
[0473]
[表18]


[0474]
[考察]
 表18に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率および膨れ増加率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0475]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例13-1~13-10)には、その2つの構成条件が同時に満たされていない場合(実験例13-11~13-20)と比較して、容量変動率および膨れ増加率のそれぞれが場合によってはわずかに減少したと共に、高温維持率が場合によってはわずかに増加した。しかしながら、2つの構成条件だけが満たされている場合において得られた容量変動率、高温維持率および膨れ増加率のそれぞれは、十分ではなかった。
[0476]
 しかも、2つの構成条件(負極電位Efおよび負極電位変動量Ev)だけが満たされている場合には、クラックが発生した。
[0477]
(実験例14-1~14-35)
 表19および表20に示したように、耐久度を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。この場合には、正極活物質層13Bの面積密度および体積密度のそれぞれを変更すると共に、正極集電体13Aの厚さに応じて正極13の突刺強度を変更することにより、耐久度を変化させた。正極集電体13Aの厚さに関しては、12μm~18μmの範囲内において変化させた。
[0478]
[表19]


[0479]
[表20]


[0480]
 2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合(実験例13-4,14-1~14-35)には、クラックの発生状況が耐久度に応じて変動した。
[0481]
 具体的には、さらに、耐久度が200以下であるという構成条件が満たされている場合(実験例14-2~14-6など)には、その構成条件が満たされていない場合(実験例13-4,14-1など)と比較して、クラックが発生せずに、容量変動率および膨れ増加率のそれぞれが十分に減少したと共に高温維持率が十分に増加した。特に、耐久度が200以下である場合には、面積密度が20.0mg/cm 2 ~50.0mg/cm 2 であり、体積密度が3.5g/cm 3 ~4.3g/cm 3 であると、クラックが安定して発生しなかった。
[0482]
[まとめ]
 表18~表20に示した結果から、巻回電極体10が扁平形状を有しており、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んでいる場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび耐久度)が満たされていると、クラック耐久性が担保されながら、容量維持特性、高温サイクル特性および高温膨れ特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0483]
(実験例15-1~15-20)
 次に、以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0484]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。
[0485]
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて、水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。
[0486]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)および負極電位変動量Ev(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Efおよび負極電位変動量Evのそれぞれは、表21に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0487]
 電解液を調製する場合には、溶媒(炭酸エチレン、炭酸プロピレンおよび炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル=15:15:70とすると共に、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
[0488]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接すると共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0489]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0490]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入されたため、ラミネートフィルム型の二次電池が完成した。
[0491]
 なお、二次電池を作製する場合には、その二次電池を熱プレスしなかった。完成後の二次電池を解体することにより、接着強度FC,FA(mN/mm)を算出したところ、接着強度FC,FA=4mN/mmであった。
[0492]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表21に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性および高温膨れ特性を調べた。
[0493]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0494]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0495]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0496]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0497]
[表21]


[0498]
[考察]
 表21に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率および膨れ増加率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0499]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例15-1~15-10)には、その2つの構成条件が同時に満たされていない場合(実験例15-11~15-20)と比較して、容量変動率および膨れ増加率のそれぞれが場合によってはわずかに減少したと共に、高温維持率が場合によってはわずかに増加した。しかしながら、2つの構成条件だけが満たされている場合において得られた容量変動率、高温維持率および膨れ増加率のそれぞれは、十分ではなかった。
[0500]
(実験例16-1~16-19)
 表22に示したように、2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合において接着強度FC,FAのそれぞれを変更したと共に新たに低温サイクル特性を調べたことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0501]
 二次電池を作製する場合には、基材層15Aおよび高分子化合物層15Bを含むセパレータ15を用いたと共に、組み立て後の二次電池を初回充電させながら熱プレス機を用いて二次電池を加圧および加熱した。充電条件は、容量維持特性を調べた場合の充電条件と同様にした。この場合には、熱プレス時の温度(=40℃~90℃)および圧力(=5kgf/cm 2 ~50kgf/cm 2 )を調整することにより、表22に示したように、接着強度FC,FAのそれぞれを変化させた。温度および圧力のそれぞれが高くなると、接着強度FC,FAのそれぞれは増加する傾向を示した。
[0502]
 基材層15Aおよび高分子化合物層15Bを含むセパレータ15を作製する場合には、最初に、有機溶剤(N-メチル-2-ピロリドン)に高分子化合物(ポリフッ化ビニリデン)を加えたのち、その有機溶剤を撹拌することにより、前駆溶液を調製した。この場合には、前駆溶液中における高分子化合物の濃度を20重量%とした。続いて、基材層15A(微多孔性ポリエチレンフィルム,厚さ=12μm)の一面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、高分子化合物層15B(正極側高分子化合物層15BX)を形成した。最後に、基材層15Aの他面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、高分子化合物層15B(負極側高分子化合物層15BY)を形成した。
[0503]
 なお、接着強度FC,FAのうちの一方だけを変化させるためには、正極側高分子化合物層15BXおよび負極側高分子化合物層15BYのそれぞれの形成量を適宜調整した。
[0504]
 低温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、低温環境中(温度=0℃)において二次電池を100サイクル充放電させることにより、102サイクル目の放電容量を測定した。最後に、低温維持率(%)=(102サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.5Cに変更したと共に放電時の電流を0.5Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。
[0505]
[表22]


[0506]
 2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合(実験例15-4,16-1~16-19)には、容量変動率、高温維持率および膨れ増加率と共に低温維持率のそれぞれが接着強度FC,FAに応じて変動した。
[0507]
 具体的には、接着強度FC,FAのそれぞれが5mN/mm~100mN/mmであるという構成条件が満たされている場合(実験例16-1~16-6)には、その構成条件が満たされていない場合(実験例15-4,16-1,16-7)と比較して、高温維持率および低温維持率のそれぞれが十分に増加した共に、容量変動率および膨れ増加率のそれぞれが十分に減少した。
[0508]
 また、接着強度FAだけが5mN/mm~100mN/mmであるという構成条件が満たされている場合(実験例16-8~16-19)においても同様に、接着強度FC,FAの双方に関して構成条件が満たされていない場合(実験例15-4,16-1,16-7)と比較して、高温維持率および低温維持率のそれぞれが十分に増加した共に、容量変動率および膨れ増加率のそれぞれが十分に減少した。
[0509]
 ただし、接着強度FC,FAの双方に関して構成条件が満たされている場合には、接着強度FAだけに関して構成条件が満たされている場合と比較して、高温維持率および低温維持率のそれぞれがより増加した共に、容量変動率および膨れ増加率のそれぞれがより減少した。
[0510]
 特に、3つの構成条件(負極電位Ef、負極電位変動量Evおよび接着強度FA)が満たされている場合には、接着強度FAが10mN/mm~40mN/mmであると、高温維持率および低温維持率のそれぞれがより増加したと共に、膨れ増加率がより減少した。また、4つの構成条件(負極電位Ef、負極電位変動量Evおよび接着強度FC,FA)が満たされている場合においても、同様の傾向が得られた。
[0511]
[まとめ]
 表21および表22に示した結果から、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、セパレータ15が負極活物質層14Bに接着されている場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび接着強度FA)が満たされていると、容量維持特性、高温サイクル特性および高温膨れ特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0512]
(実験例17-1~17-20)
 最後に、以下で説明するように、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[0513]
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO 2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。
[0514]
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛,メジアン径D50=10μm,(002)面の面間隔S=0.3360μm)97質量部と、負極結着剤(カルボキシメチルセルロースナトリウム)1.5質量部とを混合することにより、負極合剤前駆体とした。続いて、水性溶媒(脱イオン水)に負極合剤前駆体を投入したのち、その水性溶媒に負極結着剤(スチレンブタジエンゴム分散液)固形分で1.5質量部を投入することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。
[0515]
 ここで、正極13および負極14を作製する場合には、正極活物質と負極活物質との混合比(重量比)を調整することにより、負極電位Ef(mV)および負極電位変動量Ev(mV)のそれぞれを変化させた。充電電圧Ecを4.38Vまたは4.45Vに設定した場合における負極電位Efおよび負極電位変動量Evのそれぞれは、表23に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
[0516]
 電解液を調製する場合には、溶媒(炭酸エステル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒として環状炭酸エステル(炭酸エチレン(EC))および鎖状炭酸エステル(炭酸ジエチル(DEC))を用いると共に、その溶媒の混合比(体積比)を炭酸エチレン:炭酸ジエチル=20:80とした。また、電解質塩の含有量を溶媒に対して1.2mol/l(=1.2mol/dm 3 )とした。続いて、溶媒に追加の溶媒(不飽和環状炭酸エステルである炭酸ビニレン)を加えたのち、その溶媒を撹拌した。この場合には、電解液中における不飽和環状炭酸エステルの含有量を1重量%とした。
[0517]
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接すると共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極13および負極14を互いに積層させることにより、積層体を得た。続いて、積層体を巻回させたのち、その積層体の表面に保護テープを貼り付けることにより、巻回体を得た。
[0518]
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、その外装部材20のうちの2辺の外周縁部同士を互いに熱融着した。外装部材20としては、表面保護層(ナイロンフィルム,厚さ=25μm)と、金属層(アルミニウム箔,厚さ=40μm)と、融着層(ポリプロピレンフィルム,厚さ=30μm)とがこの順に積層されたアルミラミネートフィルムを用いた。この場合には、外装部材20と正極リード11との間に密着フィルム31(ポリプロピレンフィルム,厚さ=5μm)を挿入すると共に、外装部材20と負極リード12との間に密着フィルム32(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
[0519]
 最後に、外装部材20の内部に電解液を注入したのち、減圧環境中において外装部材20のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成されると共に、その巻回電極体10が外装部材20の内部に封入された。よって、ラミネートフィルム型の二次電池が完成した。
[0520]
[電池特性の評価]
 二次電池の電池特性を評価したところ、表23に示した結果が得られた。ここでは、電池特性として、容量維持特性、高温サイクル特性および高温膨れ特性を調べた。
[0521]
 容量維持特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電池電圧が充電電圧Ec(=4.38Vまたは4.45V)に到達するまで定電流充電したのち、その充電電圧Ecに相当する電池電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電池電圧が放電電圧Ed(=3.00V)に到達するまで定電流放電した。なお、0.2Cおよび0.05Cとは、電池容量(理論容量)をそれぞれ5時間および20時間で放電しきる電流値である。
[0522]
 続いて、同環境中において、上記した充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更前の放電容量)を測定した。続いて、同環境中において、充電電圧Ecを10mVだけ低下させたことを除いて同様の充放電条件において二次電池を1サイクル充放電させることにより、放電容量(充電電圧Ecの変更後の放電容量)を測定した。最後に、容量変動率(%)=[(充電電圧Ecの変更前の放電容量-充電電圧Ecの変更後の放電容量)/充電電圧Ecの変更前の放電容量]×100を算出した。
[0523]
 高温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、高温環境中(温度=45℃)において二次電池を700サイクル充放電させることにより、702サイクル目の放電容量を測定した。最後に、高温維持率(%)=(702サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.7Cに変更したと共に放電時の電流を1Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。なお、0.7Cおよび1Cとは、電池容量(理論容量)をそれぞれ10/7時間および1時間で放電しきる電流値である。
[0524]
 高温膨れ特性を調べる場合には、上記した高温サイクル特性を調べる場合において、2サイクル目の放電容量を測定する際に二次電池の厚さ(2サイクル目の厚さ)を測定したと共に、702サイクル目の放電容量を測定する際に二次電池の厚さ(702サイクル目の厚さ)を測定した。これにより、膨れ増加率(%)=[(702サイクル目の厚さ-2サイクル目の厚さ)/2サイクル目の厚さ]×100を算出した。
[0525]
[表23]


[0526]
[考察]
 表23に示したように、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に負極14が負極活物質(黒鉛)を含んでいる場合において、充電電圧Ecを4.38V以上に設定すると、容量変動率、高温維持率および膨れ増加率のそれぞれが負極電位Efおよび負極電位変動量Evに応じて変動した。
[0527]
 具体的には、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であるという2つの構成条件が同時に満たされている場合(実験例17-1~17-10)には、その2つの構成条件が同時に満たされていない場合(実験例17-11~17-20)と比較して、容量変動率および膨れ増加率のそれぞれがわずかに減少したと共に、高温維持率がわずかに増加した。しかしながら、2つの構成条件だけが満たされている場合において得られた容量変動率、高温維持率および膨れ増加率のそれぞれは、十分ではなかった。
[0528]
(実験例18-1~18-18)
 表24および表25に示したように、2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合において電解液の組成を変更したと共に新たに低温サイクル特性を調べたことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0529]
 電解液を調製する場合には、炭酸エステル(環状炭酸エステルおよび鎖状炭酸エステル)の割合(体積%)を変更すると共に、新たに溶媒としてラクトン(γ-ブチロラクトン(GBL))および鎖状カルボン酸エステル(プロピオン酸プロピル(PP)、プロピオン酸エチル(EP)およびプロピオン酸メチル(MP))を用いた。この場合には、炭酸エステルとラクトンと鎖状カルボン酸エステルとの混合比(体積比)を調整することにより、表24および表25に示したように、その鎖状カルボン酸エステルの割合(体積%)を変化させた。
[0530]
 また、電解液を調製する場合には、新たにジニトリル化合物(スクシノニトリル(SN))、ハロゲン化炭酸エステル(4-フルオロ-1,3-ジオキサン-2-オン(FEC))、ホウ素含有リチウム塩(四フッ化ホウ酸リチウム(LiBF 4 ))およびジオキサン化合物(1,3-ジオキサン(DOX))を用いた。電解液中におけるジニトリル化合物、ハロゲン化炭酸エステルおよびジオキサン化合物のそれぞれの含有量(重量%)と、電解液中におけるホウ素含有リチウム塩の含有量(mol/dm 3 )とは、表24および表25に示した通りである。
[0531]
 低温サイクル特性を調べる場合には、上記した手順により、二次電池の状態を安定化させたのち、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、低温環境中(温度=0℃)において二次電池を100サイクル充放電させることにより、102サイクル目の放電容量を測定した。最後に、低温維持率(%)=(102サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充放電条件は、充電時の電流を0.5Cに変更したと共に放電時の電流を0.5Cに変更したことを除いて、容量維持特性を調べた場合と同様にした。
[0532]
[表24]


[0533]
[表25]


[0534]
 2つの構成条件(負極電位Efおよび負極電位変動量Ev)が満たされている場合(実験例17-4,18-1~18-5)には、容量変動率、高温維持率、膨れ増加率および低温維持率のそれぞれが鎖状カルボン酸エステルの割合に応じて変動した。
[0535]
 具体的には、鎖状カルボン酸エステルの割合が10体積%~80体積%であるという構成条件が満たされている場合(実験例18-2~18-4)には、その構成条件が満たされていない場合(実験例17-4,18-1,18-5)と比較して、容量変動率が維持されながら、高温維持率および低温維持率のそれぞれが十分に増加した共に、膨れ増加率が十分に減少した。
[0536]
 特に、3つの構成条件が満たされている場合には、以下で説明する有利な傾向が得られた。
[0537]
 第1に、他の種類の鎖状カルボン酸エステル(EP,MP)を用いた場合(実験例18-6~18-8)においても、上記した鎖状カルボン酸エステル(PP)を用いた場合(実験例18-2)と同様に、容量変動率が維持されながら、高温維持率および低温維持率のそれぞれが十分に増加したと共に、膨れ増加率が十分に減少した。
[0538]
 第2に、ラクトンを用いた場合(実験例18-9)においても、炭酸エステルを用いた場合(実験例18-2)と同様に、容量変動率が維持されながら、高温維持率および低温維持率のそれぞれが十分に増加したと共に、膨れ増加率が十分に減少した。
[0539]
 第3に、電解液がジニトリル化合物(SN)を含んでおり、そのジニトリル化合物の含有量が1重量%~20重量%である場合(実験例18-10~18-12)には、電解液がジニトリル化合物を含んでいない場合(実験例18-4)と比較して、容量変動率が維持されながら、高温維持率および低温維持率のそれぞれがより増加したと共に、膨れ増加率がより減少した。
[0540]
 第4に、電解液がハロゲン化炭酸エステル(FEC)およびジオキサン化合物(DOX)を含んでおり、そのハロゲン化炭酸エステルの含有量が1重量%~20重量%であると共にジオキサン化合物の含有量が0.1重量%~2重量%であると(実験例18-13~18-15)、電解液がハロゲン化炭酸エステルおよびジオキサン化合物ジニトリル化合物を含んでいない場合(実験例18-4)と比較して、高温維持率および低温維持率のそれぞれがより増加した。
[0541]
 第5に、電解液がホウ素含有リチウム塩(LiBF 4 )およびジオキサン化合物(DOX)を含んでおり、その四フッ化ホウ酸リチウムの含有量が0.1mol/dm 3 ~2mol/dm 3 であると共にジオキサン化合物の含有量が0.1重量%~2重量%であると(実験例18-16~18-18)、電解液が四フッ化ホウ酸リチウムおよびジオキサン化合物ジニトリル化合物を含んでいない場合(実験例18-4)と比較して、高温維持率および低温維持率のそれぞれがより増加した。
[0542]
(実験例19-1~19-6)
 表26に示したように、負極14の構成(負極活物質(人造黒鉛)のメジアン径D50(μm))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0543]
[表26]


[0544]
 メジアン径D50が適正な範囲内(=3.5μm~30μm)である場合(実験例18-4,19-2~19-5)には、メジアン径D50が適正な範囲外である場合(実験例19-1,19-6)と比較して、膨れ増加率が抑えられながら、高い高温維持率および低温維持率が得られた。特に、メジアン径D50が5μm~20μmであると(実験例18-4,19-3,19-4)、膨れ増加率がほぼ抑えられながら、より高い高温維持率および低温維持率が得られた。
[0545]
(実験例20-1~20-5)
 表27に示したように、負極14の構成(負極活物質(人造黒鉛)の(002)面の面間隔S(nm))を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性を調べた。
[0546]
[表27]


[0547]
 面間隔Sが適正な範囲内(=0.3355nm~0.3370nm)である場合(実験例18-4,20-1~20-4)には、面間隔Sが適正な範囲外である場合(実験例20-5)と比較して、容量変動率および膨れ増加率のそれぞれが抑えられながら、高い高温維持率および低温維持率が得られた。特に、面間隔Sが0.3356nm~0.3363nmであると(実験例18-4,20-3,20-4)、容量変動率および膨れ増加率のそれぞれがより抑えられながら、より高い高温維持率および低温維持率が得られた。
[0548]
[まとめ]
 表23~表27に示した結果から、正極13が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでおり、負極14が負極活物質(黒鉛)を含んでおり、電解液の溶媒が炭酸エステルおよびラクトンのうちの一方または双方と共に鎖状カルボン酸エステルを含んでいる場合において、上記した3つの構成条件(負極電位Ef、負極電位変動量Evおよび鎖状カルボン酸エステルの割合)が満たされていると、容量維持特性、高温サイクル特性、高温膨れ特性および低温サイクル特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
[0549]
 以上、いくつかの実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の態様は、上記した一連の実施形態および実施例において説明された態様に限定されないため、種々に変形可能である。
[0550]
 具体的には、ラミネートフィルム型の二次電池に関して説明したが、それに限られず、例えば、円筒型の二次電池、角型の二次電池およびコイン型の二次電池などの他の二次電池でもよい。また、二次電池に用いられる電池素子が巻回構造を有する場合に関して説明したが、それに限られず、例えば、電池素子が積層構造などの他の構造を有していてもよい。
[0551]
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。

請求の範囲

[請求項1]
 下記の式(1)で表されると共に層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物、を含む正極と、
 黒鉛を含む負極と、
 電解液と
 を備え、
 4.38V以上の閉回路電圧において24時間に渡って定電圧充電された状態を満充電状態として、前記満充電状態において測定される前記負極の開回路電位(リチウム金属基準)は、19mV以上86mV以下であり、
 前記満充電状態から前記閉回路電圧が3.00Vに到達するまで定電流放電されたのちに3.00Vの前記閉回路電圧において24時間に渡って定電圧放電された際に得られる放電容量を最大放電容量として、前記最大放電容量の1%に相当する容量分だけ前記満充電状態から放電された際に、下記の式(2)で表される前記負極の電位変動量は、1mV以上である、
 二次電池。
 Li x Co 1-y y 2-z z  ・・・(1)
(Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)、タングステン(W)およびホウ素(B)のうちの少なくとも1種である。Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)および硫黄(S)のうちの少なくとも1種である。x、yおよびzは、0.8<x<1.2、0≦y<0.15および0≦z<0.05を満たす。)
 負極の電位変動量(mV)=第2負極電位(mV)-第1負極電位(mV) ・・・(2)
(第1負極電位は、満充電状態において測定される負極の開回路電位(リチウム金属基準)である。第2負極電位は、最大放電容量の1%に相当する容量分だけ満充電状態から放電された状態において測定される負極の開回路電位(リチウム金属基準)である。)
[請求項2]
 前記最大放電容量の1%に相当する容量分だけ前記満充電状態から放電された際に、下記の式(3)で表される前記正極の電位変動量は、2mV以上である、
 請求項1記載の二次電池。
 正極の電位変動量(mV)=第1正極電位(mV)-第2正極電位(mV) ・・・(3)
(第1正極電位は、満充電状態において測定される正極の開回路電位(リチウム金属基準)である。第2正極電位は、最大放電容量の1%に相当する容量分だけ満充電状態から放電された状態において測定される正極の開回路電位(リチウム金属基準)である。)
[請求項3]
 前記正極は、正極活物質および正極結着剤を含む正極活物質層を備え、
 前記正極活物質は、前記リチウムコバルト複合酸化物を含み、
 前記正極結着剤は、フッ化ビニリデンを重合単位とする単独重合体および共重合体のうちの少なくとも1種を含み、
 前記電解液は、環状炭酸エステルと、鎖状炭酸エステルおよび鎖状カルボン酸エステルのうちの少なくとも一方とを含み、
 前記正極活物質層の面積密度は、36mg/cm 2 以上であり、
 前記正極活物質層の体積密度は、3.9g/cm 3 以上であり、
 前記正極活物質層の重量に対して前記正極結着剤の重量の占める割合は、0.8重量%以上2.5重量%以下であり、
 前記鎖状炭酸エステルの重量と前記鎖状カルボン酸エステルの重量との総和に対する前記環状炭酸エステルの重量の比は、0.2以上1以下であり、
 前記電解液中における前記電解質塩の含有量は、前記溶媒に対して0.7mol/kg以上1.5mol/kg以下である、
 請求項1記載の二次電池。
[請求項4]
 前記フッ化ビニリデンを重合単位とする単独重合体および共重合体は、ポリフッ化ビニリデン、前記フッ化ビニリデンとテトラフルオロエチレンとの共重合体、前記フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、および前記フッ化ビニリデンと前記テトラフルオロエチレンと前記ヘキサフルオロプロピレンとの共重合体のうちの少なくとも1種を含む、
 請求項3記載の二次電池。
[請求項5]
 前記テトラフルオロエチレンの共重合量は、0.1重量%以上20重量%以下であり、
 前記ヘキサフルオロプロピレンの共重合量は、0.2重量%以上5重量%以下である、
 請求項4記載の二次電池。
[請求項6]
 前記負極は、複数の第1負極活物質粒子を含む負極活物質層を備え、
 前記前記第1負極活物質粒子は、前記黒鉛を含み、
 前記複数の第1負極活物質粒子のメジアン径D50は、20μm以下であり、
 前記負極活物質層の体積密度は、1.5g/cm 3 以上であり、
 X線回折法を用いて前記負極活物質層を分析した際に、下記の式(8)で表される積分強度比は、500以下である、
 請求項1記載の二次電池。
 積分強度比=第2積分強度/第1積分強度 ・・・(8)
(第1積分強度は、黒鉛の(002)面に由来するピークの積分強度である。第2積分強度は、黒鉛の(110)面に由来するピークの積分強度である。)
[請求項7]
 前記負極活物質層は、さらに、複数の第2負極活物質粒子を含み、
 前記第2負極活物質粒子は、ケイ素を構成元素として含む材料を含む、
 請求項6記載の二次電池。
[請求項8]
 前記複数の第1負極活物質粒子の質量に対する前記複数の第2負極活物質粒子の質量の割合は、0.1質量%以上5質量%以下である、
 請求項6または請求項7に記載の二次電池。
[請求項9]
 前記複数の第2負極活物質粒子のメジアン径D50は、前記複数の第1負極活物質粒子のメジアン径D50よりも小さい、
 請求項6ないし請求項8のいずれか1項に記載の二次電池。
[請求項10]
 前記複数の第2負極活物質粒子のメジアン径D50は、1μm以上10μm以下である、
 請求項9記載の二次電池。
[請求項11]
 前記第2負極活物質粒子の表面のうちの少なくとも一部は、炭素材料により被覆されている、
 請求項6ないし請求項10のいずれか1項に記載の二次電池。
[請求項12]
 前記炭素材料は、非晶質炭素、黒鉛、グラフェン、カーボンナノチューブおよびカーボンナノファイバのうちの少なくとも1種を含む、
 請求項11記載の二次電池。
[請求項13]
 前記正極および前記負極を含むと共に前記正極および前記負極が互いに離間されながら巻回された巻回電極体を備え、
 前記巻回電極体は、平坦部と前記平坦部を介して互いに対向する一対の湾曲部とを含む扁平形状を有し、
 前記正極は、正極集電体と前記正極集電体の上に形成された正極活物質層とを備え、
 前記正極活物質層は、前記リチウムコバルト複合酸化物を含み、
 前記湾曲部において、下記の式(12)で表される前記正極の耐久度は、200以下である、
 請求項1記載の二次電池。
 耐久度=(正極活物質層の面積密度(mg/cm 2 )×正極活物質層の体積密度(g/cm 3 ))/正極の突刺強度(N) ・・・(12)
[請求項14]
 前記負極は、前記黒鉛を含む負極活物質層を備え、
 さらに、前記正極と前記負極との間に配置されると共に前記負極活物質層に接着されたセパレータを備え、
 前記セパレータに対する前記負極活物質層の接着強度は、5mN/mm以上100mN/m以下である、
 請求項1記載の二次電池。
[請求項15]
 前記セパレータは、
 基材層と、
 前記基材層の上に形成されると共に前記負極活物質層に接着された第1高分子化合物層と
 を含み、
 前記第1高分子化合物層は、複数の絶縁性粒子を含む、
 請求項14記載の二次電池。
[請求項16]
 前記正極は、前記リチウムコバルト複合酸化物を含む正極活物質層を備え、
 前記セパレータは、前記正極活物質層に接着されており、
 前記セパレータに対する前記正極活物質層の接着強度は、5mN/mm以上100mN/m以下である、
 請求項14または請求項15に記載の二次電池。
[請求項17]
 前記電解液は、炭酸エステルおよびラクトンのうちの少なくとも一方と、鎖状カルボン酸エステルとを含み、
 前記炭酸エステルの体積と前記ラクトンの体積と前記鎖状カルボン酸エステルの体積との総和に対して前記鎖状カルボン酸エステルの体積の占める割合は、10体積%以上80体積%以下である、
 請求項1記載の二次電池。
[請求項18]
 前記鎖状カルボン酸エステルは、酢酸エステル、プロピオン酸エステルおよび酪酸エステルのうちの少なくとも1種を含み、
 前記鎖状カルボン酸エステルの分子量は、119以下である、
 請求項17記載の二次電池。
[請求項19]
 前記電解液は、さらに、ジニトリル化合物を含み、
 前記電解液中における前記ジニトリル化合物の含有量は、1重量%以上20重量%以下である、
 請求項17または請求項18に記載の二次電池。
[請求項20]
 前記電解液は、さらに、ハロゲン化炭酸エステルと、下記の式(17)で表されるジオキサン化合物とを含み、
 前記電解液中における前記ハロゲン化炭酸エステルの含有量は、1重量%以上20重量%以下であり、
 前記電解液中における前記ジオキサン化合物の含有量は、0.1重量%以上2重量%以下である、
 請求項17ないし請求項19のいずれか1項に記載の二次電池。
[化1]


(R1~R8のそれぞれは、水素基および1価の炭化水素基のうちのいずれかである。)

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]