Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020110965 - BUSE À GAZ, PROCÉDÉ DE PRODUCTION DE BUSE À GAZ ET DISPOSITIF DE TRAITEMENT AU PLASMA

Document

明 細 書

発明の名称 ガスノズルおよびガスノズルの製造方法ならびにプラズマ処理装置

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

発明が解決しようとする課題

0005   0006   0007   0008  

課題を解決するための手段

0009   0010   0011   0012   0013  

発明の効果

0014  

図面の簡単な説明

0015  

発明を実施するための形態

0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039  

符号の説明

0040  

請求の範囲

1   2   3   4   5   6   7   8   9  

図面

1   2   3  

明 細 書

発明の名称 : ガスノズルおよびガスノズルの製造方法ならびにプラズマ処理装置

技術分野

[0001]
 本開示は、ガスノズルおよびプラズマ処理装置に関する。

背景技術

[0002]
 従来、半導体・液晶製造におけるエッチングや成膜などの各工程において、プラズマを利用して被処理物への処理が施されている。この工程には、反応性の高いフッ素系、塩素系等のハロゲン元素を含む腐食性ガスが用いられている。したがって、半導体・液晶製造装置に用いられる腐食性ガスやそのプラズマに接触する部材には高い耐食性が要求される。このような部材として、特許文献1では、腐食性ガスの流れる内面が焼成したままの面であり、腐食性ガスあるいは腐食性ガスのプラズマに曝される外表面が粗面化されているY 23焼結体ガスノズルが提案されている。この外表面の粗面化は、ブラスト処理によってなされることが記載されている。
[0003]
 特許文献2では、CIP成形法によって得られる成形体を大気雰囲気中にて1400℃以上1700℃以下で焼成した後、研削加工で貫通孔を形成したイットリアを主成分とするガスノズルが記載されている。

先行技術文献

特許文献

[0004]
特許文献1 : 特開2007-63595号公報
特許文献2 : 国際公開2013/065666号公報

発明の概要

発明が解決しようとする課題

[0005]
 特許文献1に示されるように、研磨粒子によるブラスト処理によって外表面を粗面化したガスノズルは、ガスノズルの貫通孔内に入り込んだ研磨粒子が内表面に固着しやすい。そのため、腐食性ガスが貫通孔内を通過すると、この研磨粒子が新たにパーティクルとなってプラズマ空間を浮遊するという問題がある。
[0006]
 特許文献2に示されるガスノズルは、貫通孔が研削加工によって得られる。そのため、貫通孔を形成する内周面は研削痕が残り、場合によってはむしれが生じ、このむしれから生じる脱粒がパーティクルとなってプラズマ空間を浮遊するおそれがある。さらに、ガスノズル本体と同軸上に位置する貫通孔が長尺化すると、研削加工自体が困難になるという問題がある。
[0007]
 一方、昨今、半導体の高集積化に伴い、半導体の内部構造の微細化が進み、メモリ配線幅が、例えば、10nm以下と狭くなってきている。メモリ配線幅が10nm以下になると、今まで注目されていなかった、直径が0.2μm以下の微細なパーティクルがメモリ配線や半導体素子に損傷を与えている。このような問題に伴い、特許文献1および2で提案されたガスノズルから生じるパーティクルよりもさらに微細なパーティクルの発生を低減させなければならなくなっている。
[0008]
 本開示は、微細なパーティクルの発生を抑制することが可能なカスノズルおよびプラズマ処理装置を提供することを目的とする。

課題を解決するための手段

[0009]
 本開示のガスノズルは、ガスを案内する管状の供給孔と、該供給孔に接続する噴射孔とを備え、該噴射孔より前記ガスを噴射する、希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とするセラミックスまたは単結晶からなるガスノズルであって、前記供給孔を形成する内周面の算術平均粗さRaの最大値が0.01μm~0.14μmである。
[0010]
 本開示のガスノズルの製造方法は、希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする顆粒を加圧成形して成形体を得る工程と、前記成形体に切削加工を施して供給孔用下穴および噴射孔用下穴が形成された前駆体を得る工程と、前記前駆体を焼成して前記供給孔および前記噴射孔を備えた焼結体を得る工程と、前記焼結体の少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程とを含む。
[0011]
 本開示のガスノズルの製造方法は、希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする顆粒を加圧成形して成形体を得る工程と、前記成形体に切削加工を施して供給孔用下穴が形成された前駆体を得る工程と、前記前駆体を焼成して前記供給孔を備えた焼結体を得る工程と、前記焼結体にホーニング加工、超音波ロータリー加工または研削加工を施して前記噴射孔を形成する工程と、前記焼結体の少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程とを含む。
[0012]
 本開示のガスノズルの製造方法は、希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする円柱状の単結晶インゴットを育成する工程と、前記単結晶インゴットにホーニング加工、超音波ロータリー加工または研削加工を施して前記供給孔および前記噴射孔を形成する工程と、前記単結晶インゴットの少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程とを含む。
[0013]
 本開示のプラズマ処理装置は上記ガスノズルを含む。

発明の効果

[0014]
 本開示のガスノズルは、微細なパーティクルの発生を抑制することができる。

図面の簡単な説明

[0015]
[図1] 本開示の一実施形態に係るガスノズルを用いたプラズマ処理装置の一例を示す断面図である。
[図2] 図1に示すプラズマ処理装置に用いられる一実施形態に係るガスノズルを示し、(a)は斜視図であり、(b)は(a)のA1-A1線における断面図である。
[図3] 図1に示すプラズマ処理装置に用いられる他の実施形態に係るガスノズルを示し、(a)は斜視図であり、(b)は(a)の底面図であり、(c)はB1-B1線における断面図である。

発明を実施するための形態

[0016]
 以下、図面を参照して、本開示のガスノズルおよびプラズマ処理装置について詳細に説明する。図1は、本開示の一実施形態に係るガスノズルを用いたプラズマ処理装置の一例を示す断面図である。
[0017]
 図1に示すプラズマ処理装置1は、例えば、半導体ウェハ、ガラス基板等の基板5にプラズマCVD法によって薄膜を形成したり、その薄膜にエッチング処理したりする装置である。プラズマ処理装置1は、薄膜を形成するための反応室2と、反応室2にプラズマ生成用ガス、エッチングガス等のガスを導入するガス導入管3と、反応室2の内部でガス導入管3に接続するガスノズル4と、基板5が載置される、内部電極6を備えた静電チャック等の基板保持部7と、内部電極6に電気的に接続されるバイアス電源8と、反応室2の内部にプラズマを生成するためのコイル9および電源10とを備えている。バイアス電源8、コイル9および電源10は、いずれも反応室2の外部に設けられ、バイアス電源8は、内部電極6に高周波電力を供給する電源であり、コイル9および電源10は、反応室2に供給されたガスに放電する放電手段である。
[0018]
 このようなプラズマ処理装置1において、基板5の上方では、ガスノズル4から導入されたガスは、コイル9および電源10によってプラズマ化される。プラズマ化されたガスによって、基板5上に薄膜が形成されたり、その薄膜がエッチング処理されたりする。例えば、基板5上に酸化ケイ素(SiO 2)からなる薄膜を形成するときは、シラン(SiH 4)ガス、アルゴン(Ar)ガスおよび酸素(O 2)ガス等のプラズマ生成用ガスが供給される。エッチング処理するときは、SF 6、CF 4、CHF 3、ClF 3、NF 3、C 38、C 48、HF等のフッ素系ガス、Cl 2、HCl、BCl 3、CCl 4等の塩素系ガス等のエッチングガスが供給される。
[0019]
 図2は、図1に示すプラズマ処理装置に用いられる、一実施形態に係るガスノズルを示し、(a)は斜視図であり、(b)は(a)のA1-A1線における断面図である。図3は、図1に示すラズマ処理装置に用いられる、一実施形態に係るガスノズルを示し、(a)は斜視図であり、(b)は(a)の底面図であり、(c)はB1-B1線における断面図である。
[0020]
 図2および3に示すガスノズル4は、ガスを案内する管状の供給孔11と、供給孔11に接続する噴射孔12とを備え、噴射孔12からガスを噴射する、希土類元素の酸化物、フッ化物もしくは酸フッ化物(以下、「希土類元素の酸化物、フッ化物および酸フッ化物」を「希土類元素の化合物」と記載する場合がある)、またはイットリウムアルミニウム複合酸化物を主成分とするセラミックスまたは単結晶からなるガスノズルである。
[0021]
 ガスノズル4は、例えば、円柱状に形成されており、供給孔11は、ガスノズル4の軸心に沿って円周上に複数(図2に示す例では4本)設けられている。それぞれの供給孔11には噴射孔12が接続されている。供給孔11は、ガスが供給される供給口13を、噴射孔12はガスが噴射される噴射口14をそれぞれ有する。供給孔11は、ガスノズル4の全長の60%以上の長尺状である。供給孔11は、例えば、長さが10mm以上100mm以下であり、直径が1mm以上20mm以下である。
[0022]
 噴射孔12は、その軸心がガスノズル4の外周側に向かって傾斜するように供給孔11に接続している。噴射孔12は供給孔11よりも短い。噴射孔12の直径は、供給孔11の直径よりも小さい。噴射孔12は、例えば、長さが1mm以上10mm以下であり、直径が0.1mm以上2mm以下である。ガス導入管3から、供給口13に導入されたガスは、供給孔11および噴射孔12を介して、噴射口14から反応室2の内部に噴射して拡散される。
[0023]
 図3に示すガスノズル4は、噴射口14側が半球状に形成された円柱状である。半球状の部分の半径は、例えば、20mm~50mmである。供給口13側の軸心には、凹部15が形成されており、この凹部15は、反応室2に装着されるためのものである。図3に示すガスノズル4は、図2に示すガスノズル4の構成に加え、供給孔11と噴射孔12との間に、ガスを一時的に貯留する環状の貯留部16が備えられている。貯留部16が備えられていると、供給孔11に対する噴射孔12の位置決めが容易になり、さらに供給口13に供給されたガスの逆流も防ぐことができる。
[0024]
 ここで、本開示における主成分とは、セラミックスまたは単結晶を構成する成分100質量%のうち、90質量%以上の成分をいう。
[0025]
 希土類元素の化合物のうち、特に、酸化イットリウム、酸化イッテルビウム、酸化ホルミウム、酸化ジスプロシウム、酸化エルビウム、フッ化イットリウム、フッ化イッテルビウム、フッ化ホルミウム、フッ化ジスプロシウム、フッ化エルビウム、酸フッ化イットリウム、酸フッ化イッテルビウム、酸フッ化ホルミウム、酸フッ化ジスプロシウムおよび酸フッ化エルビウムは、プラズマ生成用ガスに対して高い耐食性を有する成分である。本開示のガスノズルは、希土類元素の化合物の含有量が高いほど耐食性が高くなる。特に、希土類元素の化合物の含有量は、98.0質量%以上、99.5質量%以上、さらに99.9質量%以上としてもよい。
[0026]
 本開示のガスノズルを形成するセラミックスまたは単結晶は、主成分以外に、例えば、珪素、鉄、アルミニウム、カルシウムおよびマグネシウムのうち少なくとも1種を元素として含んでいてもよい。珪素の含有量がSiO 2換算で300質量ppm以下、鉄の含有量がFe 23換算で50質量ppm以下、アルミニウムの含有量がAl 23換算で100質量ppm以下、カルシウムおよびマグネシウムの含有量がそれぞれCaOおよびMgO換算した合計で350質量ppm以下としてもよい。さらに、炭素の含有量を100質量ppm以下としてもよい。
[0027]
 セラミックスまたは単結晶を構成する成分は、CuKα線を用いたX線回折装置(XRD)を用いて同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置(ICP)を用いて、元素の含有量を求め、同定された成分の含有量に換算すればよい。炭素の含有量については、炭素分析装置を用いて求めればよい。
[0028]
 本開示のガスノズル4は、供給孔11を形成する内周面の算術平均粗さRaの最大値が0.01μm~0.14μmである。内周面の算術平均粗さRaの最大値が0.01μmであると、内周面の凹凸が大きくなるので、浮遊するパーティクルが補足されやすくなり、パーティクルの飛散を抑制することができる。内周面の算術平均粗さRaの最大値が0.14μm以下であると、内周面の凹部、凸部間の高低差が小さくなる。そのため、内周面から生じるおそれのある微細なパーティクルの発生を抑制することができる。内周面の算術平均粗さRaの最大値を0.01μm~0.14μmとすることによって、パーティクルの飛散および発生を抑制することができる。
[0029]
 内周面の算術平均粗さRaの標準偏差が0.01μm~0.025μmであってもよい。内周面の算術平均粗さRaの標準偏差が0.01μm以上であると、内周面の凹部、凸部間の高低差のばらつきが大きくなるので、浮遊するパーティクルはばらついた凹凸に補足されやすくなり、パーティクルの飛散の抑制効果が高くなる。内周面の算術平均粗さRaの標準偏差が0.025μm以下であると、内周面の凹部、凸部間の高低差のばらつきが小さくなる。そのため、内周面から生じるおそれのある微細なパーティクルの発生を抑制することができる。
[0030]
 内周面の算術平均粗さRaの標準偏差を0.01μm~0.025μmにすることによって、パーティクルの飛散および発生の抑制効果が高くなる。上述した作用および効果から、噴射孔12を形成する内周面の算術平均粗さRaの最大値が0.01μm~0.14μmであってもよい。噴射孔12を形成する内周面の算術平均粗さRaの標準偏差が0.01μm~0.025μmであってもよい。
[0031]
 供給孔11におけるガスの流入側の算術平均粗さRaの最大値は、噴射孔12におけるガスの流入側の算術平均粗さRaの最大値よりも小さく、その差は1μm以上であるとよい。算術平均粗さRaは、JIS B 0601:2013に準拠した測定モードを有するレーザー顕微鏡装置を用いて求めればよい。測定するサンプルが供給孔11の内周面である場合、例えば、供給孔11の供給口13近傍、噴射孔12への接続部近傍および中央部の少なくとも3サンプルとすればよい。測定するサンプルが噴射孔12の内周面である場合、例えば、供給孔11との接続部近傍、噴射孔12の排出口14近傍および中央部の少なくとも3サンプルとすればよい。
[0032]
 次に、本開示の一実施形態に係るガスノズルの製造方法について説明する。まず、ガスノズルがセラミックスからなる場合、純度が、例えば、99.9質量%以上の希土類元素の化合物またはイットリウムアルミニウム複合酸化物を主成分とする粉末に、純水と分散剤とを加える。その後、ビーズミルで粉砕し混合してスラリーを得る。希土類元素の化合物またはイットリウムアルミニウム複合酸化物を主成分とする粉末の平均粒径は、1.2μm以下である。
[0033]
 次いで、スラリーに有機バインダーを添加し撹拌した後、スラリーを噴霧乾燥して、希土類元素の化合物またはイットリウムアルミニウム複合酸化物を主成分とする顆粒を得る。この顆粒を成形型に充填した後、1軸加圧成形法または冷間静水圧加圧成形法(CIP成形法)などの任意の成形法を用いて円柱状に加圧成形して成形体を得る。
[0034]
 この成形体に焼成、研磨後に供給孔となる供給孔用下穴と、噴射孔となる噴射孔用下穴とを切削加工によって形成された前駆体を得る。この前駆体を順次、脱脂して焼成することで、焼結体を得ることができる。ここで、焼成雰囲気は大気雰囲気、焼成温度は1500℃以上1800℃以下とし、保持時間は2時間以上4時間以下とすればよい。前駆体を脱脂した後、焼成雰囲気を窒素ガス雰囲気、アルゴンガス雰囲気またはヘリウムガス雰囲気、焼成温度を1500℃以上1800℃以下、保持時間を2時間以上4時間以下、圧力を20MPa以上25MPa以下として加圧焼結してもよい。成形体に噴射孔用下穴を切削加工で形成せず、焼結体にホーニング加工、超音波ロータリー加工または研削加工を施して噴射孔を形成してもよい。
[0035]
 そして、焼結体の少なくとも供給孔を形成する内周面を磁性流体研磨法を用いて研磨することによって、本開示のガスノズルを得ることができる。具体的には、焼結体の外周側に一つの磁石を配置し、供給孔内に磁性粒とスラリー状砥粒とを供給する。焼結体および磁石の少なくともいずれかを回転させて供給孔の軸方向に相対移動させることによって、供給孔を形成する内周面が研磨される。
[0036]
 ここで、磁界の方向は供給孔の軸方向に沿って向くように磁石が設けられ、供給孔内には、鉄、ニッケル、コバルト、特殊処理したステンレス等の磁性体からなる粉状の磁性粒が挿入される。磁性粒の粒径は、例えば、0.1mm以上1.5mm以下である。
[0037]
 供給孔の内周面の算術平均粗さRaの標準偏差が0.01μm~0.025μmであるガスノズルを得るには、磁界の方向が供給孔の軸方向に対して45°傾斜するように磁石を配置して、上記磁性粒を挿入すればよい。噴射孔の内周面の算術平均粗さRaの最大値および標準偏差をそれぞれ上記範囲にする場合には、上述した磁性流体研磨法を用いて研磨すればよい。
[0038]
 本開示のガスノズルが単結晶からなる場合、まず、希土類元素の化合物またはイットリウムアルミニウム複合酸化物を主成分とする、円柱状の単結晶インゴットを育成する。単結晶インゴットは、例えばCZ法(チョクラルスキー法、引き上げ法)、FZ(フローティングゾーン)法等の単結晶育成法により形成すればよい。この単結晶インゴットに、ホーニング加工、超音波ロータリー加工または研削加工を施して供給孔および噴射孔を形成する。その後、少なくとも供給孔を形成する内周面を上述した磁性流体研磨法を用いて研磨することにより、本開示のガスノズルを得ることができる。
[0039]
 本開示は、前述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。例えば、必要に応じて、ガスノズルの両端面に研削加工を施してもよい。

符号の説明

[0040]
 1  プラズマ処理装置
 2  反応室
 3  ガス導入管
 4  ガスノズル
 5  基板
 6  内部電極
 7  基板保持部
 8  バイアス電源
 9  コイル
 10 電源
 11 供給孔
 12 噴射孔
 13 供給口
 14 噴射口
 15 凹部
 16 貯留部

請求の範囲

[請求項1]
 ガスを案内する管状の供給孔と、該供給孔に接続する噴射孔とを備え、該噴射孔から前記ガスを噴射する、希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とするセラミックスまたは単結晶からなるガスノズルであって、
 前記供給孔を形成する内周面の算術平均粗さRaの最大値が0.01μm~0.14μmである、ガスノズル。
[請求項2]
 前記内周面の算術平均粗さRaの標準偏差が0.01μm~0.025μmである、請求項1に記載のガスノズル。
[請求項3]
 前記噴射孔を形成する内周面の算術平均粗さRaの最大値が0.01μm~0.14μmである、請求項1または2に記載のガスノズル。
[請求項4]
 前記噴射孔を形成する前記内周面の算術平均粗さRaの標準偏差が0.01μm~0.025μmである、請求項3に記載のガスノズル。
[請求項5]
 前記供給孔と前記噴射孔との間に、前記ガスを一時的に貯留する環状の貯留部が備えられてなる、請求項1~4のいずれかに記載のガスノズル。
[請求項6]
 希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする顆粒を加圧成形して成形体を得る工程と、
 前記成形体に切削加工を施して供給孔用下穴および噴射孔用下穴が形成された前駆体を得る工程と、
 前記前駆体を焼成して前記供給孔および前記噴射孔を備えた焼結体を得る工程と、
 前記焼結体の少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程と、
を含むガスノズルの製造方法。
[請求項7]
 希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする顆粒を加圧成形して成形体を得る工程と、
 前記成形体に切削加工を施して供給孔用下穴が形成された前駆体を得る工程と、
 前記前駆体を焼成して前記供給孔を備えた焼結体を得る工程と、前記焼結体にホーニング加工、超音波ロータリー加工または研削加工を施して前記噴射孔を形成する工程と、
 前記焼結体の少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程と、
を含むガスノズルの製造方法。
[請求項8]
 希土類元素の酸化物、フッ化物もしくは酸フッ化物、またはイットリウムアルミニウム複合酸化物を主成分とする円柱状の単結晶インゴットを育成する工程と、
 前記単結晶インゴットにホーニング加工、超音波ロータリー加工または研削加工を施して前記供給孔および前記噴射孔を形成する工程と、
 前記単結晶インゴットの少なくとも前記供給孔を形成する内周面を磁性流体研磨法を用いて研磨する工程と、
を含むガスノズルの製造方法。
[請求項9]
 請求項1~5のいずれかに記載のガスノズルを含むプラズマ処理装置。

図面

[ 図 1]

[ 図 2]

[ 図 3]