Certains contenus de cette application ne sont pas disponibles pour le moment.
Si cette situation persiste, veuillez nous contacter àObservations et contact
1. (WO2019043623) CAPTEUR DE COURANT INTELLIGENT CONFIGURABLE PAR BROCHES
Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

PIN CONFIGURABLE SMART CURRENT SENSOR

[0001] The present invention is directed to a current sensor. In particular, the present invention is directed to a configurable current sensor able to measure large currents.

[0002] Current sensors are frequently employed to measure current in a variety of applications including microelectronics and power systems. Hall Effect current sensors generate a voltage in response to a magnetic field generated by a current. The Hall voltage of the sensor is based on the magnitude and direction of the current producing the magnetic field.

[0003] A method of regulating the operation of an electrical system, the electrical system including, at least one contactor unit including a contactor and a conductive element, sensing circuitry including at least two Hall Effect sensors, and a control unit including at least a trip circuit, an I2t unit, and at least one coil current monitor is provided. The method includes receiving, by the control unit, one or more first measurements, from the sensing circuitry and determining, by the control unit, a current corresponding to a current in the at least one conductive element based on the one or more first measurements. The method also includes determining, by the control unit the instantaneous power generated by a load based on the current and regulating, by the control unit, the operation of the at least one contactor unit based on the power generated by the load.

[0004] The invention will now be described by way of example with reference to the accompanying drawings in which:

[0005] FIG. 1 is a block diagram of an electrical system, according to an embodiment.

[0006] FIG. 2 is a flow chart of a method of operating an electrical system, according to an embodiment.

[0007] Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.

[0008] In an embodiment, a method of regulating the operation of an electrical system, the electrical system including, at least one contactor unit including a contactor and a conductive element, sensing circuitry including at least two Hall Effect sensors, and a control unit including at least a trip circuit, an I2t unit, and at least one coil current monitor. The method includes receiving, by the control unit, one or more first measurements, from the sensing

circuitry and determining, by the control unit, a current corresponding to a current in the at least one conductive element based on the one or more first measurements. The method also includes determining, by the control unit the instantaneous power generated by a load based on the current and regulating, by the control unit, the operation of the at least one contactor unit based on the power generated by the load.

[0009] In another embodiment, an electrical system including a conductive element configured to transfer a current between a current source and a load and a contactor electrically coupled to the conductive element and configured to regulate the current in the conductive element. The system also includes a sensing circuit comprising at least two Hall Effect sensors and a control unit configured to regulate the operation of the contactor.

[0010] Provided is system employing a Hall Effect sensor to regulate the operation of electrical equipment. Embodiments of the present disclosure, for example, in comparison to concepts failing to include one or more of the features disclosed herein, provide a control system to energize and/or de-energize an electrical circuit based on Hall Effect current measurements.

[0011] An embodiment of an electrical system 100 is shown in FIG. 1. The electrical system 100 includes a contactor unit 102 having a conductive element 104 (e.g., bus bar) and a contactor 106 configured to regulate a flow of current through the conductive element 104. The current through the conductive element 104 may be used to power an external load 108 (e.g., DC motor).

[0012] A control unit 110 may be used to regulate the operation of the contactor unit 102. The control unit 110 includes sensing circuitry 111 configured to monitor the operation of the contactor unit 102. The sensing circuitry 111 includes a first Hall circuit 112 and a second Hall circuit 114 which are independently configured to generate a measurement (e.g., voltage) based on the current through the conductive element 104. The first and/or second Hall circuits 112, 114 may include one or more Hall Effect sensors or current sensors to monitor the current flow in the conductive element 104. In some embodiments, suitable Hall Effect current sensors may include those found in co-pending Application No. 15/693,929, filed September 1, 2017, the contents of which are hereby incorporated by reference in their entirety.

[0013] The sensing circuitry 111 is communicatively coupled to an I2t unit 120. A multiplier circuit 122 is configured to square the instantaneous energy generated by the load 108. An integrator circuit 124, is configured to sum up the signal from the multiplier circuit 122 with respect to time. In some embodiments, the I2t unit 120 may be configurable by a remote user. In some embodiments, the I2t unit 120 may be remotely configurable, such as via a switch or selection circuitry. In an embodiment, the I2t unit 120 may be remotely configured by a signal provided via a multi-pin connector. In some embodiments, the I2t unit 120 may be configured for loads 108 having a nominal current capacity such as 100 amps, 200 amps, 300 amps, 400 amps, 500 amps or more amps.

[0014] If the temperature or level of the load 108 exceeds a predetermined threshold, a trip circuit 126 may cause the control unit 110 to regulate the operation of the contactor 106 to disconnect the load 108. In some embodiments, the control unit 110 may additionally be connected to a means (e.g., display, computer, wireless device (e.g., tablet, laptop, cell phone)) for notifying a remote user the status of the load 108. In one embodiment, the control unit 110 may notify the remote user that the load 108 has been disconnected. A reset circuit 128 may be provided in conjunction with the trip circuit 126 to cause the control unit 110 to regulate the operation of the contactor unit 102 allowing the load 108 to be connected. In some embodiments, the operation of the reset circuit 128 may be regulated by the remote user. In some embodiments, the reset circuit 128 may additionally provide the remote user the ability to activate/deactivate the contactor 102.

[0015] The control unit 110 may also regulate the operation of the contactor 106 to maintain operation of the load 108 in applications requiring near continuous service. In some embodiments, a coil current monitor 130 determines the duration that a pick up current has been applied to the contactor 106. If the pick up current duration is greater than a predetermined threshold, the coil current monitor 130 may cause the control unit 110 to regulate the operation of the contactor 106.

[0016] The control unit 110 may additionally regulate the operation of the contactor 106 to protect the load 108 from reverse currents. In some embodiments, a reverse current monitoring circuit 132 may receive from at least one of the first Hall circuit 112 and/or second Hall circuit 114 a measurement indicating a polarity of the Hall voltage resulting from a reverse current flow through the load 108. If the reverse current exceeds a predetermined threshold, the reverse current monitoring circuit 132 may cause the control unit 110 to regulate the operation of the contactor 106 to provide an open circuit to protect the load 108. In some embodiments, a reverse current monitoring enabling/disabling circuit 134 may enable a remote user to activate or deactivate this feature as desired.

[0017] FIG. 2 is a flowchart 200 of a method 200 of regulating the operation of an electrical system. At block 210, the control unit 110 receives one or more first measurements from the sensing circuitry 111. At block 220, the control unit 110 determines a current corresponding to a current in the at least one conductive element 104 based on the one or more first measurements. At block 230, the control unit 110 determines an instantaneous power generated by a load 108 based on the current. At block 240, the control unit 110 regulates the operation of the at least one contactor unit 102 based on the power generated by the load 108.