Certains contenus de cette application ne sont pas disponibles pour le moment.
Si cette situation persiste, veuillez nous contacter àObservations et contact
1. (WO2019001323) SYSTÈME ET PROCÉDÉ DE TRAITEMENT DE SIGNAL
Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115  

权利要求书

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15  

附图

1   2   3   4   5   6   7   8   9   10   11   12  

说明书

发明名称 : 信号处理的系统和方法

[0001]
本申请要求于2017年06月30日提交中国专利局、申请号为201710525239.4、申请名称为“信号处理的系统和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。

技术领域

[0002]
本申请涉及人工智能领域,尤其涉及信号处理的系统和方法。

背景技术

[0003]
人工神经网络(artificial neural networks,ANN),也简称为神经网络(neural network,NN),是一种模仿动物神经网络行为特征进行信息处理的网络结构。该结构由大量的节点(或称神经元)相互联接构成,基于特定运算模型通过对输入信息进行学习和训练达到处理信息的目的。一个神经网络包括输入层、隐藏层及输出层,输入层负责接收输入信号,输出层负责输出神经网络的计算结果,隐藏层负责学习、训练等计算过程,是网络的记忆单元,隐藏层的记忆功能由权重矩阵来表征。
[0004]
循环神经网络(recurrent neural network,RNN)是一种神经网络。循环神经网络的隐藏层存在一定的循环反馈机制,神经元彼此之间相互连接,且对历史输入信息具有记忆功能。通常每个隐藏层的神经元个数数以千计,其权重矩阵的大小远远超出神经网络硬件处理器的承载值,因此权重矩阵存储在外部存储器中,而从片外读取权重矩阵的操作大大增加了处理器的带宽需求和循环神经网络的处理功耗。
[0005]
针对权重矩阵过大的问题,通常的解决方案是对权重矩阵进行稀疏化,即将权重矩阵中小于预设阈值的元素置为零。这种稀疏化方案在降低权重矩阵大小的同时导致权重矩阵非零参数分布不均,由于权重矩阵的运算通常是在多个处理器核中并行运算的,权重矩阵的不均匀导致每个处理器核的运算量不均匀,运算资源利用率不高,从而降低了神经网络的运算效率。
[0006]
针对上述问题,现有的解决方案是对稀疏策略进行调整,通过设置自适应的稀疏化阈值,使得稀疏之后的权重矩阵的非零参数趋于均匀,从而使处理器核的运算负载趋于均匀。但是自适应阈值的选择与处理器核的个数强相关,对于不同的处理器规格稀疏方案也要相应调整,增加了计算复杂度;且关键权重的分布不可能是均匀的,通过改变阈值强行使其均匀会导致神经网络性能下降。
[0007]
发明内容
[0008]
本申请的实施例提供一种信号处理的系统和方法,用于提高神经网络的运算效率。
[0009]
有鉴于此,本申请第一方面提供了一种信号处理方法,该方法包括:
[0010]
接收输入信号矩阵,该信号矩阵包括多个计算机可处理的待处理信号;接收权重矩阵,该权重矩阵包括多个权重系数;对该输入信号矩阵进行交织,得到交织信号矩阵;对该交织信号矩阵进行分块,得到多个分块信号矩阵;对该权重矩阵进行交织, 得到交织权重矩阵;对该交织权重矩阵进行处理,得到多个稀疏化分块权重矩阵;将该多个稀疏化分块权重矩阵与该多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号;输出信号处理结果,其中该信号处理结果包括上述的多个矩阵乘运算结果。
[0011]
在一种可能的设计中,对交织权重矩阵的处理包括:先对交织权重矩阵进行分块,得到多个分块权重矩阵;再对该多个分块权重矩阵进行稀疏化,得到多个稀疏化分块权重矩阵。
[0012]
在一种可能的设计中,对交织权重矩阵的处理包括:先对交织权重矩阵进行稀疏化,得到稀疏化权重矩阵;再对该稀疏化权重矩阵进行分块,得到多个稀疏化分块权重矩阵。
[0013]
在一种可能的设计中,交织该输入信号矩阵和交织该权重矩阵遵循相同的交织规则。
[0014]
在一种可能的设计中,该待处理信号包括语音信号、文本信号或图像信号中的至少一项。在一种可能的设计中,该输入信号矩阵来自神经网络的输入层或中间层。
[0015]
在一种可能的设计中,该信号处理结果去往神经网络的输出层或中间层。
[0016]
在一种可能的设计中,该多个分块信号矩阵和该多个稀疏化分块权重矩阵满足矩阵乘规则。
[0017]
在一种可能的设计中,该多个分块信号矩阵的个数与该多个稀疏化分块权重矩阵的个数相同。
[0018]
在一种可能的设计中,该方法还包括:对该多个矩阵乘运算结果进行组合,得到该信号处理结果。
[0019]
在一种可能的设计中,该输出信号处理结果包括:将该多个矩阵乘运算结果作为整体输出,以形成该信号处理结果。
[0020]
本申请第二方面提供了一种信号处理装置,包括:
[0021]
第一输入模块,用于接收输入信号矩阵,该输入信号矩阵包括多个计算机可处理的待处理信号;第二输入模块,用于接收权重矩阵,该权重矩阵包括多个权重系数;第一交织模块,用于交织输入信号矩阵,得到交织信号矩阵;第一分块模块,用于分块该交织信号矩阵,得到多个分块信号矩阵;第二交织模块,用于交织权重矩阵,得到交织权重矩阵;处理模块,用于处理该交织权重矩阵,得到多个稀疏化分块权重矩阵;矩阵乘模块,用于将多个稀疏化分块权重矩阵与多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号;输出模块,用于输出信号处理结果,其中该信号处理结果包括上述的多个矩阵乘运算结果。
[0022]
在一种可能的设计中,对交织权重矩阵进行处理的处理模块包括:第二分块模块和稀疏化模块,第二分块模块在稀疏化模块之前,先在第二分块模块中对交织权重矩阵进行分块,得到多个分块权重矩阵;然后在稀疏化模块中对该多个分块权重矩阵进 行稀疏化,得到多个稀疏化分块权重矩阵。
[0023]
在一种可能的设计中,对交织权重矩阵进行处理的处理模块还可以包括:第二分块模块和稀疏化模块,稀疏化模块在第二分块模块之前,先在稀疏化模块中对交织权重矩阵进行稀疏化,得到稀疏化权重矩阵;然后在第二分块模块中对该稀疏化权重矩阵进行分块,得到多个稀疏化分块权重矩阵。
[0024]
在一种可能的设计中,该第一交织模块与该第二交织模块遵循相同的交织规则。
[0025]
在一种可能的设计中,该待处理信号包括语音信号、文本信号或图像信号中的至少一项。
[0026]
在一种可能的设计中,该输入信号矩阵来自神经网络的输入层或中间层。
[0027]
在一种可能的设计中,该信号处理结果去往神经网络的输出层或中间层。
[0028]
在一种可能的设计中,该第一分块模块与该第二分块模块遵循相同的分块规则。
[0029]
在一种可能的设计中,该多个分块信号矩阵和该多个稀疏化分块权重矩阵满足矩阵乘规则。
[0030]
本申请第三方面提供了一种信号处理装置,包括:输入接口,用于接收输入信号矩阵,该输入信号矩阵包括多个计算机可处理的待处理信号,以及用于接收权重矩阵,该权重矩阵包括多个权重系数;处理器,被配置为可处理如下操作:交织输入信号矩阵,得到交织信号矩阵;分块该交织信号矩阵,得到多个分块信号矩阵;交织该权重矩阵,得到交织权重矩阵;处理该交织权重矩阵,得到多个稀疏化分块权重矩阵;将该多个稀疏化分块权重矩阵与该多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号;输出接口,用于输出信号处理结果,其中该信号处理结果包括上述的多个矩阵乘运算结果。
[0031]
在一种可能的设计中,处理该交织权重矩阵,得到多个稀疏化分块权重矩阵包括:先对交织权重矩阵进行分块,得到多个分块权重矩阵;再对该多个分块权重矩阵进行稀疏化,得到该多个稀疏化分块权重矩阵。
[0032]
在一种可能的设计中,处理该交织权重矩阵,得到多个稀疏化分块权重矩阵包括:先对交织权重矩阵进行稀疏化,得到稀疏化权重矩阵;再对该稀疏化权重矩阵进行分块,得到该多个稀疏化分块权重矩阵。
[0033]
在一种可能的设计中,交织该输入信号矩阵和交织该权重矩阵遵循相同的交织规则。
[0034]
在一种可能的设计中,该待处理信号包括语音信号、文本信号或图像信号中的至少一项。
[0035]
在一种可能的设计中,该输入信号矩阵来自该输入接口或上级处理器。
[0036]
在一种可能的设计中,该信号处理结果去往该输出接口或下级处理器。
[0037]
在一种可能的设计中,该输入接口可用于以分时复用的方式接收所述输入信号矩阵和接收所述权重矩阵。
[0038]
在一种可能的设计中,该信号处理装置还可以包括存储器,该存储器用于存储计算机指令,该计算机指令用于驱动该处理器执行上述操作。
[0039]
在一种可能的设计中,该存储装置包括计算机可读存储介质、软盘设备、硬盘设备、光盘设备或磁盘设备中的至少一项。
[0040]
本申请的第四方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
[0041]
本申请第五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第一方面所述的方法。
[0042]
从以上技术方案可以看出,本申请实施例具有以下优点:由于先对权重矩阵进行交织,然后再进行分块和稀疏化,使得每个稀疏化分块权重矩阵中关键权重参数趋于均匀,既不会增加计算复杂度导致神经网络性能下降,同时又解决了权重矩阵不均匀导致神经网络运算效率降低的问题。

附图说明

[0043]
图1为本申请实施例中一种神经网络的原理示意图;
[0044]
图2为本申请实施例中一种神经网络的具体实施场景;
[0045]
图3为本申请实施例中另一种神经网络的具体实施场景;
[0046]
图4为本申请实施例中一种信号处理方法的流程示意图;
[0047]
图5为本申请实施例中的一种交织过程示意图;
[0048]
图6为本申请实施例中的另一种交织过程示意图;
[0049]
图7为本申请实施例中的一种分块过程示意图;
[0050]
图8为本申请实施例中的另一种分块过程示意图;
[0051]
图9为本申请实施例中一种信号处理方法的流程示意图;
[0052]
图10为本申请实施例中一种信号处理装置的示意图;
[0053]
图11为图10中信号处理装置的稀疏化分块模块的示意图;
[0054]
图12为本申请实施例中一种信号处理装置的结构示意图。

具体实施方式

[0055]
本申请实施例提供了一种信号处理的系统和方法,用于提高神经网络的运算效率。
[0056]
为了使本技术领域的人员更好地理解本申请实施例方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
[0057]
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”、和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0058]
如图1所示,是一种神经网络的原理示意图,该神经网络100具有N个处理层,N≥3且N取自然数,该神经网络的第一层为输入层101,负责接收输入信号,该神经网络的最后一层为输出层103,输出神经网络的处理结果,除去第一层和最后一层的其他层为中间层104,这些中间层共同组成隐藏层102,隐藏层中的每一层中间层既可以接收输入信号, 也可以输出信号,隐藏层负责输入信号的处理过程。每一层代表了信号处理的一个逻辑级别,通过多个层,数据信号可经过多级逻辑的处理。
[0059]
为便于理解,下面对本申请实施例中神经网络的处理原理进行描述,神经网络的处理通常是非线性函数f(x i),如f(x i)=max(0,x i),在一些可行的实施例中,该处理函数可以是激活函数如:Rectified Linear Units函数、双曲正切函数(tanh)或S型函数(sigmoid)等。假设(x 1,x 2,x 3)是一个一维输入信号矩阵,(h 1,h 2,h 3)是输出信号矩阵,W ij表示输入x j与输出h i之间的权重系数,权重系数构成的矩阵为权重矩阵,则该一维输入信号矩阵与输出信号矩阵对应的权重矩阵W如式(1)所示:
[0060]
[0061]
输入信号与输出信号的关系如式(2)所示,其中b i为神经网络处理函数的偏置值,该偏置值对神经网络的输入进行调整从而得到理想的输出结果。
[0062]
[0063]
在一些可行的实施例中该神经网络的输入信号可以是语音信号、文本信号、图像信号、温度信号等各种形式的信号,该语音信号可以是录音设备录制的语音信号、移动手机或固定电话在通话过程中接收的语音信号、以及收音机接收的电台发送的语音信号等,文本信号可以是TXT文本信号、Word文本信号、以及PDF文本信号等,图像信号可以是相机拍摄的风景信号、显监控设备捕捉的社区环境的图像信号以及门禁系统获取的人脸的面部信号等,该神经网络的输入信号包括其他各种计算机可处理的工程信号,在此不再一一列举。该神经网络的隐藏层102进行的处理可以是去除语音信号中混杂的噪音信号从而增强语音信号、对文本信号中的特定内容进行理解、以及对人脸的面部图像信号进行识别等处理。
[0064]
本申请实施例提供一种该神经网络100具体的实施场景,如图2所示,移动智能手机客户201向移动智能手机客户205发起语音呼叫,语音信号经智能手机202发出,经基站203转送给智能手机204,由于发起语音呼叫时暴雨骤起且伴有强烈的电闪雷鸣,导致输入信号206被严重削弱且含有较大的噪声,该输入信号可以为一维数字语音信号,智能手机204中配备有神经网络100,该神经网络可以是以专用电路的形式在芯片中实现,也可以是运行在中央处理单元(Central Processing Unit,CPU)或其他处理器中的程序指令。输入信号206在智能手机204中的神经网络中经过处理,该处理包括噪声去除以及有效信号增强等,得到输出信号207,该输出信号完整的保留了主叫用户传送的语音信息,避免了恶劣自然环境对信号的干扰。
[0065]
本申请实施例提供该神经网络100的另一种具体的实施场景,如图3所示,一轿车303在高速行驶,一路人301使用数码相机302拍下了该轿车303的车牌号,但是由于轿车303具有较高的车速v,数码相机的输入信号304发生了运动模糊现象,该输入信号为二维数字图像信号,该数码相机302中配备有神经网络100,该神经网络可以是以专用电路的形式在芯片中实现,也可以是运行在图像信号处理器中的软件模块。输入信号304在数码相机302中的神经网络中经过处理后,该处理包括轿车运动模型估计、运动模糊去除等,得 到输出信号305,输出信号中包含的车牌号信息清晰度得以提高,可得到准确辨识。
[0066]
为了便于理解,下面对本申请实施例中一种具体的信号处理方法进行描述,如图4所示,400为该信号处理方法的一种流程示意图,该信号处理方法可以在如图1所示神经网络的隐藏层中的任一个中间层104中进行处理。
[0067]
401、接收输入信号矩阵。
[0068]
在本申请实施例中,该输入信号矩阵来自神经网络的输入层或者信号处理所在中间层的上一层中间层,该输入信号可以是语音信号、文本信号、图像信号以及温度信号等各种可以被采集并且被处理的信号,该矩阵可以是一维列向量、一维行向量、二维矩阵如灰度图像以及三维矩阵如RGB彩色图像等。
[0069]
402、交织输入信号矩阵。
[0070]
在本申请实施例中,交织是指将矩阵中的元素按一定规则进行重组,改变矩阵元素的存储次序,使得重组后的矩阵中非零元素的排列趋于均匀。图5给出了三种交织过程示意图,图5A中将原始矩阵的第一行和第三行交换、第二行和第五行交换、第四行保持不变,图5B中将原始矩阵的第一列与第四列交换、第二列换到第三列、第三列换到第五列、第五列换到第二列,图5C中将矩阵块儿(W 11,W 12,W 21,W 22)与矩阵块儿(W 43,W 44,W 53,W 54)互换,将列块儿(W 41,W 51)与行块儿(W 24,W 25)进行互换。该重组规则存在很多种可能性,上述交织实例只是对该重组规则进行的示意性举例,而不是对交织规则的限制。
[0071]
本申请实施例提供一种交织前后处理器内部的多个处理器核运算负载比例对比示意图,如图6所示,交织前,权重矩阵中的非零权重系数集中在第二行至第四行,因此处理器核2至处理器核4的运算负载较大,而处理器核1和处理器核5运算负载较小,运算负载的不均衡导致运算资源利用率不高,从而降低了神经网络的运算率。交织后,权重矩阵中的非零权重系数的分布趋于均匀,每个处理器核的运算负载相等,运算资源得到充分利用,提高了神经网络的运算率。
[0072]
403、分块交织信号矩阵。
[0073]
在本申请实施例中,该步骤得到多个分块信号矩阵,分块是指将矩阵分成多个子块,分块所得子块的大小可以相同、也可以不同,子块的形状也不仅限于矩形。原始的输入信号矩阵通常都具有较大的维度,直接对大矩阵进行运算的运算量大、对处理器的带宽需求极大,将大矩阵分成多个子块并将多个子块分配到处理器中的多个运算单元,例如核,并行处理可以在降低处理器运算负担的同时提高运算效率。
[0074]
如图7所示,为本申请实施例提供的两种分块过程示意图,图7A为满足矩阵乘规则的两个矩阵,该矩阵乘规则是指参加矩阵乘的第一个矩阵的列数必须等于参加矩阵乘的第二个矩阵的行数。图7B将参加矩阵乘的第一个矩阵分成两个1×5的行向量,对应的,将参加矩阵乘的第二个矩阵分成两个维度为5×2的子矩阵,得到两组矩阵子块,对应的矩阵子块分别满足矩阵乘规则。图7C将参加矩阵乘的第一个矩阵分成两个大小不等的子块,第一个子块包括第一个矩阵原始矩阵的第一列和第二列、第二个子块包括第一个矩阵原始矩阵的第三列至第五列,对应的,将参加矩阵乘的第二个矩阵也分成两个大小不等的子块,第一个子块包括第二个矩阵原始矩阵的第一行和第二行、第二个子块包括第二个矩阵原始矩阵的第三行至第五行,两组对应的矩阵子块分别满足矩阵乘规则。
[0075]
如图8所示,为本申请实施例提供的另一种分块过程示意图,该分块所得子块不是矩 形,将所得子块中的元素组合成新维度的矩阵,使得参加矩阵乘运算的子块矩阵满足矩阵乘规则。
[0076]
404、接收权重矩阵,本申请实施例中,权重矩阵由一个个权重系数构成,该权重矩阵是由神经网络定义的。
[0077]
405、交织权重矩阵,权重矩阵与输入信号矩阵存在对应关系,因为对输入信号进行了交织操作,为了确保交织不改变输出结果的特征分布,需要对权重矩阵也进行交织,该交织参考上述交织输入信号矩阵中对交织的定义,以及附图5和附图6提供的交织的具体实施例,在此不再赘述。
[0078]
406、分块交织权重矩阵,得到多个分块权重矩阵。神经网络对应的权重矩阵通常都具有较大的维度,直接对原始权重矩阵进行运算的运算量大、对处理器的带宽需求极大,将大矩阵分成多个子块并将多个子块分配到多个运算单元并行处理可以在降低处理器运算负担的同时提高运算效率。另外,原始输入信号矩阵与原始权重矩阵满足矩阵乘规则,在对信号矩阵进行分块之后,为了继续满足矩阵乘原则,对权重矩阵也需要进行分块。该分块应该使得分块之后的交织权重矩阵满足两个条件:一、分块权重矩阵的个数与分块信号矩阵的个数相等,二、分块权重矩阵与分块信号矩阵满足矩阵乘规则。
[0079]
407、稀疏化分块权重矩阵,即对多个分块权重矩阵进行稀疏化,得到多个稀疏化分块权重矩阵。在上面的描述中已经提过,神经网络的权重矩阵具有极大的维度,但是在这些数以千计的权重系数中重要的权重系数所占的比例通常较小,大部分权重系数都接近于零,在神经网络后续的处理过程中发挥的作用也较小,因此可以设置一个阈值,将低于该阈值的权重系数置为零,高于该阈值的权重系数保持不变,我们将这种处理称作稀疏化,稀疏化后的权重矩阵仅保留了重要的权重信息,大大减小了后续的计算量。稀疏化方案有很多,如局部稀疏化和全局稀疏化,稀疏化方案中选取的阈值可以是固定的,也可以是自适应变化的,在同一个稀疏化处理中可以只有一个阈值,也可以有多个阈值。
[0080]
408、对应分块矩阵乘,将步骤407得到的多个稀疏化分块权重矩阵与步骤403得到的多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,进一步地,在上面的描述中已经提到过,分块权重矩阵的个数与分块信号矩阵的个数相等,即每个分块权重矩阵都有一个与其对应的分块信号矩阵,且两者之间满足矩阵乘规则,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号。分块权重矩阵与分块信号矩阵的对应关系除附图7和附图8中列举的情况外还可以有很多种,只要两者满足矩阵乘规则即可。
[0081]
409、输出信号处理结果,该信号处理结果包含上述多个分块矩阵乘结果,该分块矩阵乘结果可以是一维列向量、一维行向量、二维矩阵如灰度图像以及三维矩阵如RGB彩色图像等,该输出信号可以是与输入信号对应的语音信号、文本信号、图像信号以及温度信号等各种可以被处理或者可以被播放、显示的信号。该信号处理结果去往信号处理所在中间层的下一层中间层或者神经网络的输出层。
[0082]
需要说明的是,在图4对应的实施例中对输入信号矩阵的处理如401-403中任一个或多个步骤与对权重矩阵的处理如404-407中任一个或多个步骤之间没有严格的时间先后顺序,例如,401-403这几个步骤与404-407这几个步骤可并行执行,或者在执行顺序上没有 严格的先后关系。
[0083]
上面对本申请实施例中一种信号处理方法进行描述,下面对本申请实施例中的另一种信号处理方法进行描述。
[0084]
如图9所示,900为该信号处理方法的一种流程示意图,该信号处理方法可以在如图1所示神经网络的隐藏层中的任一个中间层104中进行处理。
[0085]
901、接收输入信号矩阵,该步骤与上一个信号处理方法实施例中401步骤相同,具体请参照401部分的描述。
[0086]
902、交织输入信号矩阵,该步骤具体请参照402部分的描述。
[0087]
903、分块交织信号矩阵,该步骤具体请参照403部分的描述。
[0088]
904、接收权重矩阵,该步骤具体请参照404部分的描述。
[0089]
905、交织权重矩阵,该步骤具体请参照405部分的描述。
[0090]
906、稀疏化交织权重矩阵,得到稀疏化交织权重矩阵,该步骤与上一个信号处理方法实施例的不同在于该信号处理方法实施例先对交织权重矩阵进行稀疏化,该稀疏化具体情况请参照上述信号处理方法实施例中的407部分的描述。
[0091]
907、分块稀疏化权重矩阵,得到多个稀疏化分块权重矩阵,该步骤与上一个信号处理方法实施例的不同在于该信号处理方法实施例在对交织权重矩阵进行稀疏化之后再进行分块操作,该分块规则具体情况请参照上述信号处理方法实施例中的406部分的描述。908、对应分块矩阵乘,该步骤具体请参照408部分的描述。
[0092]
909、输出信号处理结果,该步骤具体请参照409部分的描述。
[0093]
关于图9对应的实施例的部分具体流程可参照图4对应的实施例的类似描述。
[0094]
在对本申请实施例的信号处理方法进行描述之后,下面对本申请实施例的一种信号处理装置进行描述。
[0095]
如附图10所示,本申请实施例提供了一种信号处理装置,该信号处理装置1000包括:
[0096]
输入模块1001:用于接收输入信号矩阵。
[0097]
交织模块1002:用于交织输入信号矩阵,得到交织信号矩阵。
[0098]
分块模块1003:用于分块交织信号矩阵,得到多个分块信号矩阵。
[0099]
输入模块1004:用于接收权重矩阵,权重矩阵由一个个权重系数构成,该权重矩阵的具体情况请参照404部分的描述。
[0100]
交织模块1005:用于交织权重矩阵,得到交织权重矩阵。
[0101]
稀疏化分块模块1006:用于对交织权重矩阵进行稀疏化分块处理,得到多个稀疏化分块权重矩阵。
[0102]
在一些可行的实施例中,稀疏化分块模块1006有两种不同的构成形态,如附图11所示,图11A中为稀疏化分块模块1006的一种构成形态,该稀疏化分块模块包括:分块模块10061和稀疏化模块10062,分块模块10061在稀疏化模块10062之前,在接收交织权重矩阵之后,先对交织权重矩阵进行分块,得到多个分块权重矩阵,再对多个分块权重矩阵进行稀疏化,得到多个稀疏化分块权重矩阵;图11B为稀疏化分块模块1006的另一种构成形态,该稀疏化分块模块包括:稀疏化模块10061和分块模块10062,稀疏化模块10061在分块模块10062之前,在接收交织权重矩阵之后,先对交织权重矩阵进行稀疏化,得到稀疏化权重矩阵,再对稀疏化权重矩阵进行分块,得到多个稀疏化分块权重矩阵。
[0103]
矩阵乘模块1007:用于将多个稀疏化分块权重矩阵与多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号
[0104]
输出模块1008:用于输出信号处理结果,该信号处理结果包含多个分块矩阵乘运算结果。
[0105]
上述信号处理装置的各组成模块可以采用硬件、软件功能单元,或者两者的结合来实现。当采用硬件实现的时候,该装置中的至少一个模块可以是一个逻辑集成电路所形成的逻辑模块。
[0106]
上面从模块化功能实体的角度对本申请实施例中的一种信号处理装置进行描述,下面从处理器硬件处理的角度对本申请实施例中的一种信号处理装置进行描述。
[0107]
本申请实施例提供一种信号处理装置,如图12所示,该信号处理装置1200包括:
[0108]
输入接口1201:该输入接口用于接收输入信号矩阵和/或权重矩阵,该输入接口可以通过选择器实现接收输入信号矩阵和接收权重矩阵的切换;在一些可行的实施例中,该输入接口可用以分时复用的方式接收上述的输入信号矩阵或权重矩阵;在一些可行的实施例中,该输入接口可以有两个,分别实现输入信号矩阵和权重矩阵的接收,例如可实现同时接收输入信号矩阵和权重矩阵。
[0109]
处理器1202:被配置为可处理上述信号处理方法的402-408部分的功能。在一些可行的实施例中,该处理器可以是单处理器结构、多处理器结构、单线程处理器以及多线程处理器等,在一些可行的实施例中,该处理器可以集成在专用集成电路中,也可以是独立于集成电路之外的处理器芯片。
[0110]
输出接口1203:该输出接口用于输出上述信号处理方法中的信号处理结果,在一些可行的实施例中,该信号处理结果可以由处理器直接输出,也可以先被存储于存储器然后经所述存储器输出;在一些可行的实施例中,可以只有一个输出接口,也可以有多个输出接口。在一些可行的实施例中,该输出接口输出的信号处理结果可以送到存储器中存储,也可以送到下一个信号处理装置继续进行处理,或者送到显示设备进行显示、送到播放器终端进行播放等。
[0111]
该信号处理装置1200还可以包括:
[0112]
存储器1204:该存储器中可存储上述的输入信号矩阵、信号处理结果、权重矩阵、以及配置处理器的相关指令等。在一些可行的实施例中,可以有一个存储器,也可以有多个存储器;该存储器可以是软盘,硬盘如内置硬盘和移动硬盘,磁盘,光盘,磁光盘如CD_ROM、DCD_ROM,非易失性存储设备如RAM、ROM、PROM、EPROM、EEPROM、闪存、或者技术领域内所公知的任意其他形式的存储介质。
[0113]
本申请实施例提供的上述信号处理装置的各组成部分分别用于实现相对应的前述信号处理方法的各步骤的功能,由于在前述的信号处理方法实施例中,已经对各步骤进行了详细说明,在此不再赘述。
[0114]
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述信号处理方法401-409中的一个或多个步骤。上述信号处理装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品 销售或使用时,可以存储在所述计算机可读取存储介质中。基于这样的理解,本申请实施例还提供一种包含指令的计算机程序产品,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或其中的处理器执行本申请各个实施例所述方法的全部或部分步骤。该存储介质的种类请参考存储器1204部分中描述的存储器的种类。
[0115]
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

权利要求书

[权利要求 1]
一种信号处理方法,其特征在于,包括: 接收输入信号矩阵,所述输入信号矩阵包括多个计算机可处理的待处理信号; 接收权重矩阵,所述权重矩阵包括多个权重系数; 交织所述输入信号矩阵,得到交织信号矩阵; 分块所述交织信号矩阵,得到多个分块信号矩阵; 交织所述权重矩阵,得到交织权重矩阵; 处理所述交织权重矩阵,得到多个稀疏化分块权重矩阵; 将所述多个稀疏化分块权重矩阵与所述多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号; 输出信号处理结果,其中所述信号处理结果包括所述多个矩阵乘运算结果。
[权利要求 2]
根据权利要求1所述方法,其特征在于,所述处理所述交织权重矩阵,得到多个稀疏化分块权重矩阵包括: 分块所述交织权重矩阵,得到多个分块权重矩阵; 稀疏化所述多个分块权重矩阵,得到所述多个稀疏化分块权重矩阵。
[权利要求 3]
根据权利要求1所述方法,其特征在于,所述处理所述交织权重矩阵,得到多个稀疏化分块权重矩阵包括: 稀疏化所述交织权重矩阵,得到稀疏化权重矩阵; 分块所述稀疏化权重矩阵,得到所述多个稀疏化分块权重矩阵。
[权利要求 4]
根据权利要求1至3中任一项所述方法,其特征在于,交织所述输入信号矩阵和交织所述权重矩阵遵循相同的交织规则。
[权利要求 5]
根据权利要求1至4中任一项所述方法,其特征在于,所述待处理信号包括语音信号、文本信号或图像信号中的至少一项。
[权利要求 6]
根据权利要求1至5中任一项所述方法,其特征在于,所述输入信号矩阵来自神经网络的输入层或中间层。
[权利要求 7]
根据权利要求1至6中任一项所述方法,其特征在于,所述信号处理结果去往神经网络的输出层或中间层。
[权利要求 8]
一种信号处理装置,其特征在于,包括: 第一输入模块,用于接收输入信号矩阵,所述输入信号矩阵包括多个计算机可处理的待处理信号; 第二输入模块,用于接收权重矩阵,所述权重矩阵包括多个权重系数; 第一交织模块,用于交织所述输入信号矩阵,得到交织信号矩阵; 第一分块模块,用于分块所述交织信号矩阵,得到多个分块信号矩阵; 第二交织模块,用于交织所述权重矩阵,得到交织权重矩阵; 处理模块,用于处理所述交织权重矩阵,得到多个稀疏化分块权重矩阵; 矩阵乘模块,用于将所述多个稀疏化分块权重矩阵与所述多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀 疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号; 输出模块,用于输出信号处理结果,其中所述信号处理结果包括所述多个矩阵乘运算结果。
[权利要求 9]
根据权利要求8所述装置,其特征在于,所述处理模块包括: 第二分块模块,用于分块所述交织权重矩阵,得到多个分块权重矩阵; 稀疏化模块,用于稀疏化所述多个分块权重矩阵,得到所述多个稀疏化分块权重矩阵。
[权利要求 10]
根据权利要求8所述装置,其特征在于,所述处理模块包括: 稀疏化模块,用于稀疏化所述交织权重矩阵,得到稀疏化权重矩阵; 第二分块模块,用于分块所述稀疏化权重矩阵,得到所述多个稀疏化分块权重矩阵。
[权利要求 11]
根据权利要求8至10中任一项所述装置,其特征在于,所述第一交织模块和所述第二交织模块遵循相同的交织规则。
[权利要求 12]
根据权利要求8至11中任一项所述装置,其特征在于,所述待处理信号包括语音信号、文本信号或图像信号中的至少一项。
[权利要求 13]
根据权利要求8至12中任一项所述装置,其特征在于,所述输入信号矩阵来自神经网络的输入层或中间层。
[权利要求 14]
根据权利要求8至13中任一项所述装置,其特征在于,所述信号处理结果去往神经网络的输出层或中间层。
[权利要求 15]
一种信号处理装置,其特征在于,包括: 输入接口,用于接收输入信号矩阵,所述输入信号矩阵包括多个计算机可处理的待处理信号,以及接收权重矩阵,所述权重矩阵包括多个权重系数; 处理器,被配置为可处理如下操作: 交织所述输入信号矩阵,得到交织信号矩阵; 分块所述交织信号矩阵,得到多个分块信号矩阵; 交织所述权重矩阵,得到交织权重矩阵; 处理所述交织权重矩阵,得到多个稀疏化分块权重矩阵; 将所述多个稀疏化分块权重矩阵与所述多个分块信号矩阵进行矩阵乘运算得到多个矩阵乘运算结果,其中,每个稀疏化分块权重矩阵与对应于该稀疏化分块权重矩阵的分块信号矩阵进行矩阵乘运算得到一个矩阵乘运算结果,每个矩阵乘运算结果包括多个计算机可处理的输出信号; 输出接口,用于输出信号处理结果,其中所述信号处理结果包括所述多个矩阵乘运算结果。

附图

[ 图 1]  
[ 图 2]  
[ 图 3]  
[ 图 4]  
[ 图 5]  
[ 图 6]  
[ 图 7]  
[ 图 8]  
[ 图 9]  
[ 图 10]  
[ 图 11]  
[ 图 12]