Certains contenus de cette application ne sont pas disponibles pour le moment.
Si cette situation persiste, veuillez nous contacter àObservations et contact
1. (WO2018177362) VÉHICULE ÉLECTRIQUE HYBRIDE ET SYSTÈME DE PUISSANCE ASSOCIÉ
Document

说明书

发明名称 0001   0002   0003   0004   0005   0006   0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179   0180   0181   0182   0183   0184   0185   0186   0187   0188   0189   0190   0191   0192   0193   0194   0195   0196   0197   0198   0199   0200   0201   0202   0203   0204   0205   0206   0207   0208   0209   0210   0211   0212   0213   0214   0215   0216   0217   0218   0219   0220   0221   0222   0223   0224   0225   0226   0227   0228   0229   0230   0231   0232   0233   0234   0235   0236   0237   0238   0239   0240   0241   0242   0243   0244   0245   0246   0247   0248   0249   0250   0251   0252   0253   0254   0255   0256   0257   0258   0259   0260   0261   0262   0263   0264   0265   0266   0267   0268   0269   0270   0271   0272   0273   0274   0275   0276   0277   0278   0279   0280   0281   0282   0283   0284   0285   0286   0287   0288   0289   0290   0291   0292   0293   0294   0295   0296   0297   0298   0299   0300   0301   0302   0303   0304   0305   0306   0307   0308   0309   0310   0311   0312   0313   0314   0315   0316   0317   0318   0319   0320   0321   0322   0323   0324   0325   0326   0327   0328   0329   0330   0331   0332   0333   0334   0335   0336   0337   0338   0339   0340   0341   0342   0343   0344   0345   0346   0347   0348   0349   0350   0351   0352   0353   0354   0355   0356   0357   0358   0359   0360   0361   0362   0363   0364   0365   0366   0367   0368   0369   0370   0371   0372   0373   0374   0375   0376   0377   0378   0379   0380   0381   0382   0383   0384   0385   0386   0387   0388   0389   0390   0391   0392   0393   0394   0395   0396   0397   0398   0399   0400   0401   0402   0403   0404   0405   0406   0407   0408   0409   0410   0411   0412   0413   0414   0415   0416   0417   0418   0419   0420   0421   0422   0423   0424   0425   0426   0427   0428   0429   0430   0431   0432   0433   0434   0435   0436   0437   0438   0439   0440   0441   0442   0443   0444   0445   0446   0447   0448   0449   0450   0451   0452   0453   0454   0455   0456   0457   0458   0459   0460   0461   0462   0463   0464   0465   0466   0467   0468   0469   0470   0471   0472   0473   0474   0475   0476   0477   0478   0479   0480   0481   0482   0483   0484   0485   0486   0487   0488   0489   0490   0491   0492   0493   0494   0495   0496   0497   0498   0499   0500   0501   0502   0503   0504   0505   0506   0507   0508   0509   0510   0511   0512   0513   0514   0515   0516   0517   0518   0519   0520   0521   0522   0523   0524   0525   0526   0527   0528   0529   0530   0531   0532   0533   0534   0535   0536   0537   0538   0539   0540   0541   0542   0543   0544   0545   0546   0547   0548   0549   0550   0551   0552   0553   0554   0555   0556   0557   0558   0559   0560   0561   0562   0563   0564   0565   0566   0567   0568   0569   0570   0571   0572   0573   0574   0575   0576   0577   0578   0579   0580   0581   0582   0583   0584   0585   0586   0587   0588   0589   0590   0591   0592   0593   0594   0595   0596   0597   0598   0599   0600   0601   0602   0603   0604   0605   0606   0607   0608   0609   0610   0611   0612   0613   0614   0615   0616   0617   0618   0619   0620   0621   0622   0623   0624   0625   0626   0627   0628   0629   0630   0631   0632   0633   0634   0635   0636   0637   0638   0639   0640   0641   0642   0643   0644   0645   0646   0647   0648   0649   0650   0651   0652   0653   0654   0655   0656   0657   0658   0659   0660   0661   0662   0663   0664   0665   0666   0667   0668   0669   0670   0671   0672   0673   0674   0675   0676   0677   0678   0679   0680   0681   0682   0683   0684   0685   0686   0687   0688   0689   0690   0691   0692   0693   0694   0695   0696   0697   0698   0699   0700   0701   0702   0703   0704   0705   0706   0707   0708   0709   0710   0711   0712   0713   0714   0715   0716   0717   0718   0719   0720   0721   0722   0723   0724   0725   0726   0727   0728   0729   0730   0731   0732   0733   0734   0735   0736   0737   0738   0739   0740   0741   0742   0743   0744   0745   0746   0747   0748   0749   0750   0751   0752   0753   0754   0755   0756   0757   0758   0759   0760   0761   0762   0763   0764   0765   0766   0767   0768   0769   0770   0771   0772   0773   0774   0775   0776   0777   0778   0779   0780   0781   0782   0783   0784   0785   0786   0787   0788   0789   0790   0791   0792   0793   0794   0795   0796   0797   0798   0799   0800   0801   0802   0803   0804   0805   0806   0807   0808   0809   0810   0811   0812   0813   0814   0815   0816   0817   0818   0819   0820   0821   0822   0823   0824   0825   0826   0827   0828   0829   0830   0831   0832   0833   0834   0835   0836   0837   0838   0839   0840   0841   0842   0843   0844   0845   0846   0847   0848   0849   0850   0851   0852   0853   0854   0855   0856   0857   0858   0859  

权利要求书

1   2   3   4   5   6   7   8   9   10  

附图

1   2A   2B   3   4   5   6   7   8   9A   9B   9C   10   11   12   13   14   15   16   17   18   19   20   21   22   23  

说明书

发明名称 : 混合动力汽车及其动力系统

[0001]
本申请要求于2017年03月31日提交中国专利局、申请号为201710211041.9、发明名称为“混合动力汽车及其动力系统”的中国专利申请的优先权,申请号为201720340394.4、发明名称为“混合动力汽车及其动力系统”其全部内容通过引用结合在本申请中。

技术领域

[0002]
本发明涉及车辆技术领域,特别涉及一种混合动力汽车的动力系统以及一种具有该系统的混合动力汽车。

背景技术

[0003]
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动。
[0004]
但是,在相关技术中,混合动力汽车的前电机在充当驱动电机的同时还充当发电机,进而导致低速行驶时前电机的转速较低,发电功率和发电效率也非常低,从而无法满足低速行驶的用电需求,使得整车维持低速时的电平衡相对较困难。
[0005]
发明内容
[0006]
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种混合动力汽车的动力系统,可实现整车低速电平衡。
[0007]
本发明的第二个目的在于提出一种混合动力汽车。
[0008]
为达到上述目的,本发明第一方面实施例提出了一种混合动力汽车的动力系统,包括:发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;动力电池,所述动力电池用于给所述动力电机供电;DC-DC变换器;与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电时以实现给所述动力电池充电、给所述动力电机供电、给所述DC-DC变换器供电中的至少一个。
[0009]
根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电时以实现给动力电池充电、给动力电机供电、给DC-DC变换器供电中的至少一个,从而能够维持整车低速电平衡及低速平顺性,提升整车性能。
[0010]
为达到上述目的,本发明第二方面实施例提出了一种混合动力汽车,包括所述的混合动力汽车的动力系统。
[0011]
根据本发明实施例提出的混合动力汽车,能够维持整车低速电平衡及低速平顺性,提升整车性能。

附图说明

[0012]
图1是根据本发明实施例的混合动力汽车的动力系统的方框示意图;
[0013]
图2a是根据本发明一个实施例的混合动力汽车的动力系统的结构示意图;
[0014]
图2b是根据本发明另一个实施例的混合动力汽车的动力系统的结构示意图;
[0015]
图3是根据本发明一个实施例的混合动力汽车的动力系统的方框示意图;
[0016]
图4是根据本发明一个实施例的发动机与对应车轮之间的传动结构的示意图;
[0017]
图5是根据本发明另一个实施例的发动机与对应车轮之间的传动结构的示意图;
[0018]
图6是根据本发明另一个实施例的混合动力汽车的动力系统的方框示意图;
[0019]
图7是根据本发明一个实施例的发动机万有特性的曲线示意图;
[0020]
图8是根据本发明一个实施例的混合动力汽车的动力系统的结构框图;
[0021]
图9a是本发明一个实施例的混合动力汽车的动力系统的结构示意图;
[0022]
图9b是本发明另一个实施例的混合动力汽车的动力系统的结构示意图;
[0023]
图9c是本发明又一个实施例的混合动力汽车的动力系统的结构示意图;
[0024]
图10是根据本发明一个实施例的稳压电路的结构框图;
[0025]
图11是根据本发明一个实施例的稳压控制的原理图;
[0026]
图12是根据本发明一个具体实施例的混合动力汽车的动力系统的结构框图;
[0027]
图13是根据本发明实施例的混合动力汽车的方框示意图;
[0028]
图14是根据本发明一个实施例的混合动力汽车的发电控制方法的流程图;
[0029]
图15是根据本发明一个具体实施例的混合动力汽车的发电控制方法的流程图
[0030]
图16是根据本发明另一个实施例的混合动力汽车的发电控制方法的流程图;
[0031]
图17是根据本发明另一个具体实施例的混合动力汽车的发电控制方法的流程图;
[0032]
图18是根据本发明又一个实施例的混合动力汽车的发电控制方法的流程图;
[0033]
图19是根据本发明又一个具体实施例的混合动力汽车的发电控制方法的流程图;
[0034]
图20是根据本发明再一个实施例的混合动力汽车的发电控制方法的流程图;
[0035]
图21是根据本发明再一个具体实施例的混合动力汽车的发电控制方法的流程图;
[0036]
图22是根据本发明再一个实施例的混合动力汽车的发电控制方法的流程图;以及
[0037]
图23是根据本发明再一个具体实施例的混合动力汽车的发电控制方法的流程图。

具体实施方式

[0038]
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
[0039]
下面参考图1-5来描述本发明一方面实施例提出的混合动力汽车的动力系统,该动力系统为混合动力汽车正常行驶提供充足的动力和电能。
[0040]
图1是根据本发明实施例的混合动力汽车的动力系统的方框示意图。如图1所示,该混合动力汽车的动力系统包括:发动机1、动力电机2、动力电池3、DC-DC变换器4和副电机5。
[0041]
结合图1至图3所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力。在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2可同时输出动力至车轮7。
[0042]
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连。副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可单独带动副电机5发电。
[0043]
由此,动力电机2和副电机5分别一一对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
[0044]
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池 3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
[0045]
另外,在本发明的一些实施例中,副电机5可用于启动发动机1,即副电机5可具有实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
[0046]
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图2a所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图2b所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
[0047]
换言之,当发动机1和动力电机2共同驱动一对前轮71时,动力系统的驱动力均输出至一对前轮71,整车可采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统的驱动力分别输出至一对前轮71和一对后轮72,整车可采用四驱的驱动方式。
[0048]
进一步地,在发动机1和动力电机2共同驱动同一车轮时,结合图2a所示,混合动力汽车的动力系统还包括差速器8、主减速器9和变速器90,其中,发动机1通过离合器6、变速器90、主减速器9以及差速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器9以及差速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。其中,离合器6与变速器90可集成设置。
[0049]
在发动机1驱动第一车轮且动力电机2驱动第二车轮时,结合图2b所示,混合动力汽车的动力系统还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。其中,离合器6与第一变速器91可集成设置。
[0050]
进一步地,在本发明的一些实施例中,如图1至图3所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
[0051]
具体来说,第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动 力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
[0052]
第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
[0053]
换言之,如图3所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。也就是说,副电机5可通过第一控制器51实现给动力电池3充电和给DC-DC变换器4供电中的任意一个或两个。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
[0054]
进一步地,如图1至图3所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
[0055]
在一些实施例中,如图3所示,第一控制器51具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
[0056]
进一步地,如图3所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
[0057]
在一些实施例中,如图3所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。也就是说,DC-DC变换器4可将动力电池3输出的高压直流电和副电机5通过第一控制器51输出的高压直流电中的任意一个或两个转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中,第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
[0058]
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0059]
如上,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。也就是说,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4实现给第一电器设备10供电和给低压蓄电池20充电中的任意一个或两个,以使混合动力汽车以纯燃油模式行驶。
[0060]
换言之,当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电即以实现给第一电器设备10供电和给低压蓄电池20充电中的任意一个或两个。
[0061]
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0062]
进一步结合图3的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合动力汽车中的第二电器设备30相连。
[0063]
在一些实施例中,如图3所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换为高压直流电,并直接给第二电器设备30供电。
[0064]
动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
[0065]
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
[0066]
如上,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/ 或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提升了整车的性能。
[0067]
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
[0068]
由此,本发明实施例的混合动力汽车的动力系统中,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作启动机用。
[0069]
下面结合图4详细描述混合动力汽车的动力系统的一个具体实施例,该实施例适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图2a中变速器90的结构,其余部分与图1和图3的实施例基本相同,这里不再详细赘述。
[0070]
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴上相关齿轮以及换挡元件等可用以构成图2a中的变速器90。
[0071]
在一些实施例中,如图1、图3和图4所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
[0072]
如图4所示,发动机1通过离合器6例如图4示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
[0073]
例如,在图4的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912可同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
[0074]
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922分别与第一输入轴911平行设置。
[0075]
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
[0076]
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
[0077]
如图4所示,电机动力轴931设置成可与多个输出轴(例如,第一输出轴921、第二输出轴922)中的一个进行联动,通过电机动力轴931与输出轴中的所述一个进行联动,从而动力可在电机动力轴931与输出轴中的所述一个之间进行传递。例如,经该输出轴的动力(如来自发动机1输出的动力)可输出给电机动力轴931,或者经电机动力轴931的动力(如来自动力电机2输出的动力)也可输出给该输出轴。
[0078]
需要说明的是,上述的“联动”可以理解为多个部件(例如,两个)关联运动,以两个部件联动为例,在其中一个部件运动时,另一个部件也随之运动。
[0079]
例如,在本发明的一些实施例中,齿轮与轴联动可以理解为是在齿轮旋转时、与其联动的轴也将旋转,或者在该轴旋转时、与其联动的齿轮也将旋转。
[0080]
又如,轴与轴联动可以理解为是在其中一根轴旋转时、与其联动的另一根轴也将旋转。
[0081]
再如,齿轮与齿轮联动可以理解为是在其中一个齿轮旋转时、与其联动的另一个齿轮也将旋转。
[0082]
在本发明下面有关“联动”的描述中,如果没有特殊说明,均作此理解。
[0083]
动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
[0084]
需要说明一点,在本发明的描述中,电机动力轴931可以是动力电机2自身的电机轴。当然,可以理解的是,电机动力轴931与动力电机2的电机轴也可以是两个单独的轴。
[0085]
在一些实施例中,如图4所示,输出部221相对输出轴中的所述一个(例如,第二输出轴922)可差速转动,换言之,输出部221与该输出轴能够以不同的转速独立旋转。
[0086]
进一步,输出部221设置成可选择性地接合输出轴中的所述一个以与该输出轴同步转动,换言之,输出部221相对该输出轴能够差速转动或同步转动。简言之,输出部221相对输出轴的所述一个可接合以同步转动,当然也可断开以差速转动。
[0087]
如图4所示,该输出部221可以空套设置在输出轴中的所述一个上,但不限于此。例如在图4的示例中,该输出部221空套在第二输出轴922上,即输出部221与第二输出轴922能够以不同的转速差速转动。
[0088]
如上所述,输出部221可与输出轴的所述一个同步转动,例如,可以通过增设对应的同步器在需要时实现输出部221与该输出轴的同步作用。该同步器可以是输出部同步器221c,输出部同步器221c设置成用于同步输出部221和输出轴中的所述一个。
[0089]
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图4的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
[0090]
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器9的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
[0091]
在一些实施例中,如图1所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
[0092]
下面再结合图5详细描述混合动力汽车的动力系统的另一个具体实施例,该实施例同样适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图2a中变速器90的结构,其余部分与图1和图3的实施例基本相同,这里不再详细赘述。
[0093]
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴上相关齿轮以及换挡元件等可用以构成图2a中的变速器90。
[0094]
在一些实施例中,如图1、图3和图5所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
[0095]
如图5所示,发动机1通过离合器6例如图4示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离 合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
[0096]
例如,在图5的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
[0097]
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922与第一输入轴911平行设置。
[0098]
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
[0099]
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
[0100]
如图5所示,输出轴(例如第一输出轴921和第二输出轴922)中的一个上空套设置有至少一个倒挡输出齿轮81,并且该输出轴上还设置有用于接合倒挡输出齿轮81的倒挡同步器(例如五挡同步器5c、六挡同步器6c),换言之,倒挡同步器同步对应的倒挡输出齿轮81和该输出轴,从而使得输出轴与由倒挡同步器同步的倒挡输出齿轮81能够同步转动,进而倒挡动力能够从该输出轴输出。
[0101]
在一些实施例中,如图5所示,倒挡输出齿轮81为一个,该一个倒挡输出齿轮81可以空套在第二输出轴922上。但本发明并不限于此,在另一些实施例中,倒挡输出齿轮81也可以是两个,该两个倒挡输出齿轮81同时空套在第二输出轴922上。当然,可以理解的是,倒挡输出齿轮81也可以是三个或三个以上。
[0102]
倒挡轴89设置成与输入轴(例如第一输入轴911和第二输入轴912)中的一个联动且还与至少一个倒挡输出齿轮81联动,例如,经输入轴中的所述一个上的动力可以通过倒挡轴89而传递给倒挡输出齿轮81,从而倒挡动力能够从倒挡输出齿轮81输出。在本发明的 示例中,倒挡输出齿轮81均是空套在第二输出轴922上的,并且倒挡轴89是与第一输入轴911联动的,例如发动机1输出的倒挡动力可通过第一输入轴911、倒挡轴89后输出给倒挡输出齿轮81。
[0103]
下面对电机动力轴931进行详细描述。电机动力轴931上空套设置有电机动力轴第一齿轮31、电机动力轴第二齿轮32。电机动力轴第一齿轮31可与主减速器从动齿轮74啮合传动,以传输驱动力至混合动力汽车的车轮7。
[0104]
电机动力轴第二齿轮32设置成与其中一个挡位从动齿轮联动,在具有根据本发明实施例的动力系统的混合动力汽车处于某些工况时,动力源输出的动力可以在电机动力轴第二齿轮32以及与其联动的挡位从动齿轮之间进行传递,此时电机动力轴第二齿轮32与该挡位从动齿轮联动。例如,电机动力轴第二齿轮32与二挡从动齿轮2b联动,电机动力轴第二齿轮32与二挡从动齿轮2b可以直接啮合或通过中间传动部件间接传动。
[0105]
进一步,电机动力轴931上还设置有电机动力轴同步器33c,电机动力轴同步器33c位于电机动力轴第一齿轮31与电机动力轴第二齿轮32之间,电机动力轴同步器33c可以选择性地将电机动力轴第一齿轮31或电机动力轴第二齿轮32与电机动力轴3接合。例如在图5的示例中,电机动力轴同步器33c的接合套向左移动可接合电机动力轴第二齿轮32、向右移动则可接合电机动力轴第一齿轮31。
[0106]
动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
[0107]
对于电机动力轴第一齿轮31而言,由于其与主减速器从动齿轮74啮合,因此动力电机2可通过电机动力轴同步器33c接合电机动力轴第一齿轮31而将产生的动力直接从电机动力轴第一齿轮31输出,这样可以缩短传动链,减少中间传动部件,提高传动效率。
[0108]
其次对电机动力轴931与动力电机2的传动方式结合具体实施例进行详细说明。
[0109]
在一些实施例中,如图5所示,电机动力轴931上还固定设置有电机动力轴第三齿轮33,动力电机2设置成与电机动力轴第三齿轮33直接啮合传动或间接传动。
[0110]
进一步,动力电机2的电机轴上设置有第一电机齿轮511,第一电机齿轮511通过中间齿轮512与电机动力轴第三齿轮33传动。又如,动力电机2与电机动力轴931也可以同轴相连。
[0111]
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图5的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
[0112]
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器9的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
[0113]
进一步,第一输出轴921上固定设置有第一输出轴输出齿轮211,第一输出轴输出齿轮211随第一输出轴921同步转动,第一输出轴输出齿轮211与主减速器从动齿轮74啮合传动,从而经第一输出轴921的动力能够从第一输出轴输出齿轮211传递至主减速器从动齿轮74以及差速器75。
[0114]
类似地,第二输出轴922上固定设置有第二输出轴输出齿轮212,第二输出轴输出齿轮212随第二输出轴922同步转动,第二输出轴输出齿轮212与主减速器从动齿轮74啮合传动,从而经第二输出轴922的动力能够从第二输出轴输出齿轮212传递至主减速器从动齿轮74以及差速器75。
[0115]
类似地,电机动力轴第一齿轮31可用于输出经电机动力轴931的动力,因此电机动力轴第一齿轮31同样与主减速器从动齿轮74啮合传动。
[0116]
在一些实施例中,如图1所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
[0117]
而言,如图6所示,混合动力汽车的动力系统还包括控制模块101,控制模块101用于对混合动力汽车的动力系统进行控制。应当理解的是,控制模块101可为混合动力汽车中具有控制功能的控制器的集成,例如可为混合动力汽车的整车控制器、图3实施例中的第一控制器51和第二控制器21等的集成,但不限于此。下面来详细描述控制模块101所执行的控制方法。
[0118]
实施例一:
[0119]
在本发明的一些实施例中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)、低压蓄电池20的SOC值和副电机5的最大允许发电功率,并根据动力电池3的SOC值、低压蓄电池20的SOC值和副电机5的最大允许发电功率判断副电机5是否对动力电池3和/或低压蓄电池20进行充电。
[0120]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值和低压蓄电池20的SOC值,从而电池管理系统将采集到的动力电池3的SOC值和低压蓄电池20的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值和低压蓄电池 20的SOC值。
[0121]
由此,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0122]
根据本发明的一个具体示例,副电机5的最大允许发电功率与副电机5和发动机1的性能参数等相关,换言之,副电机5的最大允许发电功率可依据副电机5和发动机1的性能参数等提前预设。
[0123]
进一步地,根据本发明的一个实施例,控制模块101还用于,当动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值大于等于第二预设SOC值时,控制发动机1带动副电机5进行发电以给动力电池3充电。
[0124]
其中,应当理解的是,第一预设SOC值可为动力电池3的充电限制值,第二预设SOC值可为低压蓄电池20的充电限制值,第一预设SOC值与第二预设SOC值可依次各个电池自身的性能独立设置,可为同一值,也可为不同值。
[0125]
具体而言,控制模块101在获取到动力电池3的SOC值和低压蓄电池20的SOC值之后,可判断动力电池3的SOC值是否小于第一预设SOC值,并判断低压蓄电池20的SOC值是否小于第二预设SOC值,如果动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值大于等于第二预设SOC值,则说明动力电池3的剩余电量较低、需要充电,而低压蓄电池20的剩余电量较高、无需充电,此时控制模块101控制发动机1带动副电机5进行发电以给动力电池3充电。
[0126]
如前所述,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电。
[0127]
控制模块101还用于,当动力电池3的SOC值大于等于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值时,控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电。
[0128]
也就是说,如果动力电池3的SOC值大于等于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值,则说明动力电池3的剩余电量较高、无需充电,而低压蓄电池20的剩余电量较低、需要充电,此时控制模块101控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电。
[0129]
如前所述,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能需经过DC-DC变换器4进行电压变换后再给低压蓄电池20 充电。
[0130]
更进一步地,根据本发明的一个实施例,控制模块101还用于:当动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值时,根据动力电池3的SOC值获取动力电池3的充电功率,并根据低压蓄电池20的SOC值获取低压蓄电池20的充电功率,以及在动力电池3的充电功率与低压蓄电池20的充电功率之和大于副电机5的最大允许发电功率时,控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电。
[0131]
并且,控制模块101还用于,当动力电池3的充电功率与低压蓄电池20的充电功率之和小于等于副电机5的最大允许发电功率时,控制发动机1带动副电机5进行发电以给动力电池3充电,同时通过DC-DC变换器4给低压蓄电池20充电。
[0132]
也就是说,如果动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值,则说明动力电池3和低压蓄电池20的剩余电量均较低、需要充电,此时控制模块101根据动力电池3的SOC值计算动力电池3的充电功率,并根据低压蓄电池20的SOC值计算低压蓄电池20的充电功率,以及进一步判断动力电池3的充电功率与低压蓄电池20的充电功率之和是否大于副电机5的最大允许发电功率。
[0133]
如果动力电池3的充电功率与低压蓄电池20的充电功率之和大于副电机5的最大允许发电功率,则说明副电机5所能够产生的电能不足以给两个电池同时充电,此时优先给低压蓄电池20充电,即控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电。
[0134]
如果动力电池3的充电功率与低压蓄电池20的充电功率之和小于等于副电机5的最大允许发电功率,则说明副电机5所能够产生的电能可给两个电池同时充电,此时同时给动力电池3和低压蓄电池20充电,即控制发动机1带动副电机5进行发电以给动力电池3充电,同时通过DC-DC变换器4给低压蓄电池20充电。
[0135]
由此,通过优先对低压蓄电池充电,可优先确保低压电器设备的用电需求,进而可在动力电池电量不足时确保整车实现纯燃油模式行驶,提高整车行驶里程。
[0136]
当然,应当理解的是,当动力电池3的SOC值大于等于第一预设SOC值且低压蓄电池20的SOC值大于等于第二预设SOC值时,说明动力电池3和低压蓄电池20的剩余电量均较高、无需充电,此时可不对动力电池3和低压蓄电池20充电。
[0137]
如上所述,在混合动力汽车行驶过程中,控制模块101可实时获取动力电池3的SOC值和低压蓄电池20的SOC值,并对动力电池3的SOC值和低压蓄电池20的SOC值进行判断,判断结果可分为以下四种:
[0138]
第一种情况为,动力电池3的剩余电量较低,而低压蓄电池20的剩余电量较高,即动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值大于等于第二预设SOC值,此时,控制模块101控制发动机1带动副电机5进行发电以给动力电池3充电;
[0139]
第二种情况为,动力电池3的剩余电量较高,而低压蓄电池20的剩余电量较低,即动力电池3的SOC值大于等于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值,此时,控制模块101控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电;
[0140]
第三种情况为,动力电池3的剩余电量和低压蓄电池20的剩余电量均较低,即动力电池3的SOC值小于第一预设SOC值且低压蓄电池20的SOC值小于第二预设SOC值,此时,可根据副电机5的最大允许发电功率判断是否给动力电池3充电(优先给低压蓄电池20充电),如果动力电池3的充电功率与低压蓄电池20的充电功率之和大于副电机5的最大允许发电功率,则不给动力电池3充电,仅给低压蓄电池20充电,即控制模块101控制发动机1带动副电机5进行发电以通过DC-DC变换器4给低压蓄电池20充电;如果动力电池3的充电功率与低压蓄电池20的充电功率之和小于等于副电机5的最大允许发电功率,则给低压蓄电池20充电的同时还给动力电池3充电,即控制模块101控制发动机1带动副电机5进行发电以给动力电池3充电,同时通过DC-DC变换器4给低压蓄电池20充电。
[0141]
第四种情况为,动力电池3和低压蓄电池20的剩余电量均较高,即动力电池3的SOC值大于等于第一预设SOC值且低压蓄电池20的SOC值大于等于第二预设SOC值,此时,不给动力电池3和低压蓄电池20充电。
[0142]
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电时以实现给动力电池充电、给动力电机供电、给DC-DC变换器供电中的至少一个,控制模块根据动力电池的SOC值、低压蓄电池的SOC值和电机的最大允许发电功率判断副电机是否对动力电池和/或低压蓄电池进行充电,从而能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能,并且该系统既可为动力电池充电,也可为低压蓄电池充电,从而可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且可确保低压电器设备的用电需求,进而可在副电机停止发电且动力电池故障或电量不足时,确保整车可实现纯燃油 模式行驶,提高整车行驶里程。
[0143]
实施例二:
[0144]
在本发明的一些实施例中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)和混合动力汽车的车速V,并根据动力电池3的SOC值和混合动力汽车的车速V控制副电机5进入发电功率调节模式,以使发动机1运行在预设的最佳经济区域。其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机1带动副电机5进行发电以对副电机5的发电功率进行调节。
[0145]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值,从而电池管理系统将采集到的动力电池3的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值。
[0146]
还需说明的是,可结合发动机万有特性曲线图确定发动机1的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机1的输出扭矩,横坐标是发动机1的转速,曲线a为发动机1的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机1的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,控制模块101可通过控制发动机1的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机1运行在预设的最佳经济区域。
[0147]
具体来说,在混合动力汽车行驶过程中,发动机1可通过离合器6将动力输出到混合动力汽车的车轮7,并且发动机1还可带动副电机5进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机5,即带动副电机5进行发电的发电功率,另一部分是输出至车轮7,即驱动车轮7的驱动功率。
[0148]
在发动机1带动副电机5进行发电时,控制模块101可首先获取动力电池3的SOC值和混合动力汽车的车速,然后根据动力电池3的SOC值和混合动力汽车的车速控制副电机5进入发电功率调节模式,以使发动机1工作在预设的最佳经济区域。在发电功率调节模式,控制模块主控制器101可在使发动机1工作在预设的最佳经济区域的前提下调节副电机5的发电功率。
[0149]
由此,能够使发动机1工作在预设的最佳经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机1的油耗,降低发动机1的噪音,提高整车运行的经济性。而且,由于低速时副电机5具有较高的发电功率和发电效率,从 而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
[0150]
进一步地,根据本发明的一个实施例,控制模块101用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1时,如果混合动力汽车的车速V小于第一预设车速V1,控制副电机5进入发电功率调节模式。
[0151]
其中,第一预设值M1可为预先设置的动力电池3的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池3的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池3的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池3的SOC值小于或等于预设的极限值时,动力电池3的SOC值处于第一电量区间,此时动力电池3只充电不放电;当动力电池3的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池3的SOC值处于第二电量区间,此时动力电池3存在充电需求,即可主动给动力电池3充电;当动力电池3的SOC值大于第一预设值时,动力电池3的SOC值处于第三电量区间,此时动力电池3可不充电,即不会主动给动力电池3充电。
[0152]
具体来说,控制模块101在获取动力电池3的SOC值和混合动力汽车的车速之后,可判断动力电池3的SOC值所处的区间,如果动力电池3的SOC值处于第二电量区间,动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池3进行充电,此时控制模块101进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则控制副电机5进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0153]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0154]
进一步地,根据本发明的一个实施例,控制模块101还用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1时,获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,控制副电机5进入发电功率调节模式。
[0155]
具体来说,在混合动力汽车的行驶过程中,如果动力电池3的SOC值大于预设的极限 值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,控制模块101则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,控制副电机5进入发电功率调节模式。
[0156]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0157]
更进一步地,根据本发明的一个实施例,控制模块101还用于当动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制副电机5进入发电功率调节模式。
[0158]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0159]
具体来说,如果动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax,控制模块101则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制模块101控制副电机5进入发电功率调节模式。
[0160]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0161]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0162]
相应地,当混合动力汽车的动力电池3的SOC值、车速V、油门踏板深度D和整车阻力F不满足上述条件时,发动机1可参与驱动,其具体工作过程如下。
[0163]
根据本发明的一个实施例,控制模块101还用于:在动力电池3的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机1参与驱动。
[0164]
也就是说,在动力电池3的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块101控制发动机1参与驱动,此时,动力电池3不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机2不足以驱动混合动力汽车行驶,发动机1参与驱动以进行补足驱动。
[0165]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0166]
更具体地,控制模块101还用于:当整车需求功率大于副电机5的最大允许发电功率时,还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
[0167]
并且,控制模块101还用于:当动力电池3的SOC值小于预设的极限值M2时,控制发动机1参与驱动以使发动机1通过离合器6输出驱动力至车轮7;当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7;当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0168]
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,控制模块101实时获取动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断。
[0169]
其一,当动力电池3的SOC值小于预设的极限值M2时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0170]
其二,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0171]
其三,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0172]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0173]
此外,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0174]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0175]
当然,应当理解的是,控制模块101还用于:当动力电池3的SOC值大于第一预设值时,发动机1不带动副电机5进行发电,此时动力电池3的电量接近满电,无需充电,发动机1不带动副电机5进行发电。也就是说,在动力电池3的电量接近满电时,发动机1不带动副电机5进行发电,从而副电机5不对动力电池3充电。
[0176]
进一步而言,在副电机5进入发电功率调节模式后,控制模块101可对副电机5的发电功率进行调节,下面对本发明实施例的控制模块101的发电功率调节过程进行具体描述。
[0177]
根据本发明的一个实施例,控制模块101还用于:当副电机5进入发电功率调节模式后,根据混合动力汽车的整车需求功率P2和动力电池3的充电功率P3对副电机5的发电功率P1进行调节。
[0178]
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功 率P3调节副电机5的发电功率P1的公式如下:
[0179]
P1=P2+P3,其中,P2=P11+P21,
[0180]
P1为副电机5的发电功率,P2为整车需求功率,P3为动力电池3的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0181]
需要说明的是,电器设备包括第一电器设备10和第二电器设备30,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0182]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,控制模块101可根据动力电机2的预设油门-转矩曲线以及动力电机2的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,控制模块101可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,控制模块101可根据动力电池3的SOC值获取动力电池3的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池3的充电功率P3=b3kw,则副电机5的发电功率=b1+b2+b3。
[0183]
具体来说,在混合动力汽车行驶过程中,控制模块101可获取动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机5的发电功率P1,由此,控制模块101可根据计算出的P1值对副电机5的发电功率进行调节,例如控制模块101可根据计算出的P1值对发动机1的输出扭矩和转速进行控制,以对发动机1带动副电机5进行发电的功率进行调节。
[0184]
进一步地,根据本发明的一个实施例,控制模块101还用于:获取动力电池3的SOC值变化速率,并根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机5的发电功率P1。
[0185]
应当理解的是,控制模块101可根据动力电池3的SOC值获取动力电池3的SOC值变化速率,例如,每个时间间隔t采集一次动力电池3的SOC值,如此可将动力电池3的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。
[0186]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,控制模块101在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率调节副电 机5的发电功率。
[0187]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0188]
下面进一步介绍当副电机5进入发电功率调节模式后,控制模块101根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率调节副电机5的发电功率的具体调节方式。
[0189]
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,控制模块101对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
[0190]
第一种情况为:整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机5的最大允许发电功率Pmax。
[0191]
在第一种情况的一个实施例中,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机1以该最小输出功率Pmin进行发电以调节副电机5的发电功率P1;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以调节副电机5的发电功率P1。
[0192]
需要说明的是,控制模块101内可预存动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表,由此,控制模块101在获取动力电池3的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池3的充电功率P3。动力电池3的SOC值变化速率与动力电池3的充电功率P3满足下表1所示的关系。
[0193]
表1
[0194]
[表0001]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5

[0195]
由表1所知,当控制模块101获取到的SOC值变化速率为A1时,获取到的相应的动力电池3的充电功率P3为B1;当控制模块101获取到的SOC值变化速率为A2时,获取到的相应的动力电池3的充电功率P3为B2;当控制模块101获取到的SOC值变化速率为A3时,获取到的相应的动力电池3的充电功率P3为B3;当控制模块101获取到的SOC值变化速率为A4时,获取到的相应的动力电池3的充电功率P3为B4;当控制模块101获取到的SOC值变化速率为A5时,获取到的相应的动力电池3的充电功率P3为B5。
[0196]
具体来说,在副电机5进入发电功率调节模式后,控制模块101实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
[0197]
当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以调节副电机1的发电功率;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率。
[0198]
由此,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,根据动力电池3的充电功率P3与发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机1的发电功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0199]
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的 充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,以及通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率P1。
[0200]
具体来说,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,控制模块101在控制发动机1工作在预设的最佳经济区域时还根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,其中,获取的输出功率=P3+P2。进而,控制模块101控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率P1,从而使动力电池3的SOC值增加,并使发动机1工作在预设的最佳经济区域。
[0201]
由此,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1的输出功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0202]
在第三种情况的一个实施例中,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,控制模块101还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0203]
具体来说,当整车需求功率P2大于副电机5的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机5的发电功率P1时,控制模块101还控制发动机1通过离合器6输出驱动力至车轮7以使发动机1参与驱动,从而通过发动机1承担部分驱动功率P',以降低对副电机5的发电功率P1的需求,使发动机1工作在预设的最佳经济区域。
[0204]
由此,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,动力电池3对外放电以给动力电机2供电,此时,控制模块101控制发动机1和动力电机2同时将动力输出到混合动力汽车的车轮7,以使发动机1工作在预设的最佳经济区域。
[0205]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0206]
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电,控制模块获取动力电池的SOC值和混合 动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
[0207]
实施例三:
[0208]
在本发明的一些实施例中,混合动力汽车的动力系统还包括控制模块101,在混合动力汽车的行驶过程中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)和混合动力汽车的车速V,并根据动力电池3的SOC值和混合动力汽车的车速V控制副电机5的发电功率P1,以及根据副电机5的发电功率P1获得发动机1的发电功率P0以控制发动机1运行在预设的最佳经济区域。
[0209]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值,从而电池管理系统将采集到的动力电池3的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值。
[0210]
还需说明的是,可结合发动机万有特性曲线图确定发动机1的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机1的输出扭矩,横坐标是发动机1的转速,曲线a为发动机1的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机1的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,控制模块101可通过控制发动机1的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机1运行在预设的最佳经济区域。
[0211]
具体来说,在混合动力汽车行驶过程中,发动机1可通过离合器6将动力输出到混合动力汽车的车轮7,并且发动机1还可带动副电机5进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机5,即带动副电机5进行发电的发电功率,另一部分是输出至车轮7,即驱动车轮7的驱动功率。
[0212]
在发动机1带动副电机5进行发电时,控制模块101可首先获取动力电池3的SOC值和混合动力汽车的车速,然后根据动力电池3的SOC值和混合动力汽车的车速控制副电机5的发电功率P1,以及根据副电机5的发电功率P1获得发动机1的发电功率P0以控制发动机1运行在预设的最佳经济区域。控制模块101可在使发动机1工作在预设的最佳经济区域的前提下确定发动机1带动副电机5进行发电的功率,从而调节副电机5的发电功率P1。
[0213]
由此,能够使发动机1工作在预设的最佳经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机1的油耗,降低发动机1的噪音,提高整车运行的经济性。而且,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
[0214]
进一步地,根据本发明的一个实施例,控制模块101用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1时,如果混合动力汽车的车速V小于第一预设车速V1,对副电机5的发电功率P1进行控制。
[0215]
其中,第一预设值可为预先设置的动力电池3的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池3的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池3的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池3的SOC值小于或等于预设的极限值时,动力电池3的SOC值处于第一电量区间,此时动力电池3只充电不放电;当动力电池3的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池3的SOC值处于第二电量区间,此时动力电池3存在充电需求,即可主动给动力电池3充电;当动力电池3的SOC值大于第一预设值时,动力电池3的SOC值处于第三电量区间,此时动力电池3可不充电,即不会主动给动力电池3充电。
[0216]
具体来说,控制模块101在获取动力电池3的SOC值和混合动力汽车的车速之后,可判断动力电池3的SOC值所处的区间,如果动力电池3的SOC值处于第二电量区间,动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池3进行充电,此时控制模块101进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则对副电机5的发电功率P1进行控制,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0217]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0218]
进一步地,根据本发明的一个实施例,控制模块101还用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一 预设车速V1时,获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,对副电机5的发电功率P1进行控制。
[0219]
具体来说,在混合动力汽车的行驶过程中,如果动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,控制模块101则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,对副电机5的发电功率P1进行控制。
[0220]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0221]
更进一步地,根据本发明的一个实施例,控制模块101还用于当动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,对副电机5的发电功率P1进行控制。
[0222]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0223]
具体来说,如果动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax,控制模块101则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制模块101对副电机5的发电功率P1进行控制。
[0224]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0225]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性, 从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0226]
根据本发明的一个实施例,控制模块101还用于:当控制发动机1单独带动副电机5进行发电、并控制动力电机2独自输出驱动力时,根据以下公式获得发动机1的发电功率:
[0227]
P0=P1/η/ζ
[0228]
其中,P0为发动机1的发电功率,P1为副电机5的发电功率,η皮带传动效率,ζ为副电机5的效率。
[0229]
也就是说,在发动机1可只发电不参与驱动的情况下,控制模块101可根据副电机5的发电功率、皮带传动效率η和副电机5的效率ζ计算出发动机1的发电功率P0,并控制发动机1以获取的发电功率P0带动副电机5进行发电,以控制副电机5的发电功率。
[0230]
相应地,当混合动力汽车的动力电池3的SOC值、车速V、油门踏板深度D和整车阻力F不满足上述条件时,发动机1可参与驱动,其具体工作过程如下。
[0231]
根据本发明的一个实施例,控制模块101还用于:在动力电池3的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机1参与驱动。
[0232]
也就是说,在动力电池3的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块101控制发动机1参与驱动,此时,动力电池3不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机2不足以驱动混合动力汽车行驶,发动机1参与驱动以进行补足驱动。
[0233]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0234]
更具体地,控制模块101还用于:当整车需求功率大于副电机5的最大允许发电功率时,还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
[0235]
并且,控制模块101还用于:当动力电池3的SOC值小于预设的极限值M2时,控制发动机1参与驱动以使发动机1通过离合器6输出驱动力至车轮7;当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器 6将动力输出到车轮7;当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0236]
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,控制模块101实时获取动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断。
[0237]
其一,当动力电池3的SOC值小于预设的极限值M2时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0238]
其二,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0239]
其三,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
[0240]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0241]
此外,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0242]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行 驶,提高了整车的动力性能,提高了整车的行驶里程。
[0243]
当然,应当理解的是,控制模块101还用于:当动力电池3的SOC值大于第一预设值时,发动机1不带动副电机5进行发电,此时动力电池3的电量接近满电,无需充电,发动机1不带动副电机5进行发电。也就是说,在动力电池3的电量接近满电时,发动机1不带动副电机5进行发电,从而副电机5不对动力电池3充电。
[0244]
进一步而言,在副电机5进入发电功率调节模式后,控制模块101可对副电机5的发电功率进行控制,下面对本发明实施例的控制模块101的发电功率控制过程进行具体描述。
[0245]
根据本发明的一个实施例,控制模块101还用于:根据混合动力汽车的整车需求功率P2和动力电池3的充电功率P3对副电机5的发电功率P1进行控制。
[0246]
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3控制副电机5的发电功率P1的公式如下:
[0247]
P1=P2+P3,其中,P2=P11+P21,
[0248]
P1为副电机5的发电功率,P2为整车需求功率,P3为动力电池3的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0249]
需要说明的是,电器设备包括第一电器设备10和第二电器设备30,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。。
[0250]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率控制模块101可根据动力电机2的预设油门-转矩曲线以及动力电机2的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,控制模块101可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,控制模块101可根据动力电池3的SOC值获取动力电池3的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池3的充电功率P3=b3kw,则副电机5的发电功率=b1+b2+b3。
[0251]
具体来说,在混合动力汽车行驶过程中,控制模块101可获取动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机5的发电功率P1,由此,控制模块101可根据计算出的P1值对副电机5的发电功率进行控制,例如控制模块101可根据计算出的P1值对发动机1的输出扭矩和转速进行控制,以对发动机1带动副电机5进行发电的功率进行控制。
[0252]
进一步地,根据本发明的一个实施例,控制模块101还用于:获取动力电池3的SOC值变化速率,并根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率控制副电机5的发电功率P1。
[0253]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,控制模块101在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率控制副电机5的发电功率。
[0254]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0255]
下面进一步介绍,控制模块101根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率控制副电机5的发电功率的具体调节方式。
[0256]
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,控制模块101对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
[0257]
第一种情况为:整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机5的最大允许发电功率Pmax。
[0258]
在第一种情况的一个实施例中,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机1以该最小输出功率Pmin进行发电以控制副电机5的发电功率P1;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功 率P2之差,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以控制副电机5的发电功率P1。
[0259]
需要说明的是,控制模块101内可预存动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表,由此,控制模块101在获取动力电池3的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池3的充电功率P3。动力电池3的SOC值变化速率与动力电池3的充电功率P3满足下表1所示的关系。
[0260]
表1
[0261]
[表0002]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5

[0262]
由表1所知,当控制模块101获取到的SOC值变化速率为A1时,获取到的相应的动力电池3的充电功率P3为B1;当控制模块101获取到的SOC值变化速率为A2时,获取到的相应的动力电池3的充电功率P3为B2;当控制模块101获取到的SOC值变化速率为A3时,获取到的相应的动力电池3的充电功率P3为B3;当控制模块101获取到的SOC值变化速率为A4时,获取到的相应的动力电池3的充电功率P3为B4;当控制模块101获取到的SOC值变化速率为A5时,获取到的相应的动力电池3的充电功率P3为B5。
[0263]
具体来说,在对副电机5进行发电功率控制时,,实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于等于该最小输出功率Pmin与整车需求功率P2之差。
[0264]
当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以控制副电机1的发电功率;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率。
[0265]
由此,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时, 根据动力电池3的充电功率P3与发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机1的发电功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0266]
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,以及通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率P1。
[0267]
具体来说,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,控制模块101在控制发动机1工作在预设的最佳经济区域时还根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,其中,获取的输出功率=P3+P2。进而,控制模块101控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率P1,从而使动力电池3的SOC值增加,并使发动机1工作在预设的最佳经济区域。
[0268]
由此,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1的输出功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0269]
在第三种情况的一个实施例中,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,控制模块101还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
[0270]
具体来说,当整车需求功率P2大于副电机5的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机5的发电功率P1时,控制模块101还控制发动机1通过离合器6输出驱动力至车轮7以使发动机1参与驱动,从而通过发动机1承担部分驱动功率P',以降低对副电机5的发电功率P1的需求,使发动机1工作在预设的最佳经济区域。
[0271]
由此,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,动力电池3对外放电以给动力电机2供电,此时,控制模块101控制动力电机2将动力输出到混合动力 汽车的车轮7,以使发动机1工作在预设的最佳经济区域。
[0272]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0273]
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电,控制模块获取动力电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
[0274]
实施例四:
[0275]
在本发明的一些实施例中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)、低压蓄电池20的SOC值和混合动力汽车的车速,并根据动力电池3的SOC值和混合动力汽车的车速控制副电机5进入发电功率调节模式,以使发动机1运行在预设的最佳经济区域,其中,当副电机5进入发电功率调节模式后,控制模块101还用于根据低压蓄电池20的SOC值对副电机5的发电功率进行调节。其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机1带动副电机5进行发电以对副电机5的发电功率进行调节。
[0276]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值和低压蓄电池20的SOC值,从而电池管理系统将采集到的动力电池3的SOC值和低压蓄电池20的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值和低压蓄电池20的SOC值。
[0277]
还需说明的是,可结合发动机万有特性曲线图确定发动机1的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机1的输出扭矩,横坐标是发动机1的转速,曲线a为发动机1的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机1的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,控制模块101可通过控制发动机1的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机1运行在预设的最佳经济区域。
[0278]
具体来说,在混合动力汽车行驶过程中,发动机1可通过离合器6将动力输出到混合动力汽车的车轮7,并且发动机1还可带动副电机5进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机5,即带动副电机5进行发电的发电功率,另一部分是输出至车轮7,即驱动车轮7的驱动功率。
[0279]
在发动机1带动副电机5进行发电时,控制模块101可首先获取动力电池3的SOC值和混合动力汽车的车速,然后根据动力电池3的SOC值和混合动力汽车的车速控制副电机5进入发电功率调节模式,以使发动机1工作在预设的最佳经济区域。在发电功率调节模式,控制模块101可在使发动机1工作在预设的最佳经济区域的前提下调节副电机5的发电功率。其中,在副电机5进入发电功率调节模式后,控制模块101还根据低压蓄电池20的SOC值进一步调节副电机5的发电功率。
[0280]
由此,能够使发动机1工作在预设的最佳经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机1的油耗,降低发动机1的噪音,提高整车运行的经济性。而且,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0281]
进一步地,根据本发明的一个实施例,控制模块101用于:当动力电池3的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速小于第一预设车速,控制副电机5进入发电功率调节模式。
[0282]
其中,第一预设值可为预先设置的动力电池3的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池3的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池3的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池3的SOC值小于或等于预设的极限值时,动力电池3的SOC值处于第一电量区间,此时动力电池3只充电不放电;当动力电池3的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池3的SOC值处于第二电量区间,此时动力电池3存在充电需求,即可主动给动力电池3充电;当动力电池3的SOC值大于第一预设值时,动力电池3的SOC值处 于第三电量区间,此时动力电池3可不充电,即不会主动给动力电池3充电。
[0283]
具体来说,控制模块101在获取动力电池3的SOC值和混合动力汽车的车速之后,可判断动力电池3的SOC值所处的区间,如果动力电池3的SOC值处于第二电量区间,动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池3进行充电,此时控制模块101进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则控制副电机5进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0284]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0285]
进一步地,控制模块101还用于:当动力电池3的SOC值大于预设的极限值且小于等于第一预设值、以及混合动力汽车的车速小于第一预设车速时,获取混合动力汽车的整车需求功率,并在整车需求功率小于等于副电机5的最大允许发电功率时,控制副电机5进入发电功率调节模式。
[0286]
也就是说,在判断动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速之后,控制模块101还可以进一步判断整车需求功率是否大于副电机5的最大允许发电功率,如果整车需求功率小于等于副电机5的最大允许发电功率,则控制副电机5进入发电功率调节模式,此时,整车所需的驱动力较少,且整车需求功率较小,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0287]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0288]
更进一步地,控制模块101还用于:当动力电池的SOC值大于预设的极限值且小于等于第一预设值、混合动力汽车的车速小于第一预设车速、且整车需求功率小于等于副电机的最大允许发电功率时,获取混合动力汽车的油门踏板深度和混合动力汽车的整车阻力,并在油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力时,控制副电机进入发电功率调节模式。
[0289]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0290]
也就是说,在判断动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速,且整车需求功率小于等于副电机5的最大允许发电功率之后,控制模块101还可以进一步判断油门踏板深度是否大于第一预设深度且混合动力汽车的整车阻力是否大于第一预设阻力,如果油门踏板深度小于等于第一预设深度或者混合动力汽车的整车阻力小于等于第一预设阻力,则控制副电机5进入发电功率调节模式,此时,整车所需的驱动力较少,且整车需求功率较小,油门踏板深度较小,整车阻力也较小,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0291]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0292]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0293]
另外,根据本发明的一个实施例,控制模块101还用于:在动力电池3的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机1参与驱动。
[0294]
也就是说,在动力电池3的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块101控制发动机1参与驱动,此时,动力电池3不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机2不足以驱动混合动力汽车行驶,发动机1参与驱动以进行补足驱动。
[0295]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0296]
更具体地,控制模块101还用于:当整车需求功率大于副电机5的最大允许发电功率时,还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
[0297]
并且,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮;当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮;当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
[0298]
也就是说,控制模块101可实时获取动力电池3的SOC值、混合动力汽车的油门踏板深度、车速、整车阻力以及整车需求功率,并对动力电池3的SOC值、混合动力汽车的油门踏板深度、车速和整车阻力进行判断:
[0299]
其一,当动力电池3的SOC值小于预设的极限值时,因动力电池3的电量过低,动力电池3无法提供足够的电能,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过调节副电机5的发电功率可使发动机1工作在预设的最佳经济区域。
[0300]
其二,当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,因油门踏板深度较深,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过调节副电机5的发电功率可使发动机1工作在预设的最佳经济区域。
[0301]
其三,当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,因整车阻力较大,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过调节副电机5的发电功率可使发动机1工作在预设的最佳经济区域。
[0302]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0303]
此外,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机1参与驱动以使发动机1通过离合器6 将动力输出到车轮7。
[0304]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0305]
当然,应当理解的是,控制模块101还用于:当动力电池3的SOC值大于第一预设值时,发动机1不带动副电机5进行发电,此时动力电池3的电量接近满电,无需充电,发动机1不带动副电机5进行发电。也就是说,在动力电池3的电量接近满电时,发动机1不带动副电机5进行发电,从而副电机5不对动力电池3充电。
[0306]
进一步而言,在副电机5进入发电功率调节模式后,控制模块101可对副电机5的发电功率进行调节,下面对本发明实施例的控制模块101的发电功率调节过程进行具体描述。
[0307]
根据本发明的一个实施例,控制模块101还用于:当副电机5进入发电功率调节模式后,根据混合动力汽车的整车需求功率、动力电池3的充电功率和低压蓄电池20的充电功率、低压蓄电池20的SOC值对副电机5的发电功率进行调节。
[0308]
具体地,根据混合动力汽车的整车需求功率、动力电池3的充电功率和低压蓄电池20的充电功率调节副电机5的发电功率的公式可如下:
[0309]
P1=P2+P3+P4,其中,P2=P11+P21,
[0310]
其中,P1为副电机5的发电功率,P2为整车需求功率,P3为动力电池3的充电功率,P4为低压蓄电池20的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0311]
需要说明的是,电器设备包括第一电器设备10和第二电器设备30,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0312]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,控制模块101可根据动力电机2的预设油门-转矩曲线以及动力电机2的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定;控制模块101可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21;控制模块101可根据动力电池3的SOC值获取动力电池3的充电功率P3,并根据低压蓄电池20的SOC值获取低压蓄电池20的充电功率P4。
[0313]
具体来说,在混合动力汽车行驶过程中,控制模块101可获取动力电池3的充电功率P3、低压蓄电池20的充电功率P4、整车驱动功率P11和电器设备功率P21,并将动力电池3的充电功率P3、低压蓄电池20的充电功率P4、整车驱动功率P11和电器设备功率P21之和作为副电机5的发电功率P1,由此,控制模块101可根据计算出的P1值对副电机5 的发电功率进行调节,例如控制模块101可根据计算出的P1值对发动机1的输出扭矩和转速进行控制,以对发动机1带动副电机5进行发电的功率进行调节。
[0314]
进一步地,根据本发明的一个实施例,控制模块101还用于:获取动力电池3的SOC值变化速率,并根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率调节副电机5的发电功率。
[0315]
应当理解的是,控制模块101可根据动力电池3的SOC值获取动力电池3的SOC值变化速率,例如,每个时间间隔t采集一次动力电池3的SOC值,如此可将动力电池3的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。类似地,可根据低压蓄电池20的SOC值获取低压蓄电池20的SOC值变化速率,例如,每个时间间隔t采集一次低压蓄电池20的SOC值,如此可将低压蓄电池20的当前SOC值与前一SOC值之差与时间间隔t的比值作为低压蓄电池20的SOC值变化速率。
[0316]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,控制模块101在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率调节副电机5的发电功率。
[0317]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0318]
下面进一步介绍当副电机5进入发电功率调节模式后,控制模块101根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率调节副电机5的发电功率的具体调节方式。
[0319]
具体地,控制模块101还用于:当低压蓄电池20的SOC值大于预设的低电量阈值时,根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池3的充电功率P3小于发动机1的最佳经济区域对应的最小 输出功率Pmin与整车需求功率P2之差,则通过控制发动机1以该最小输出功率进行发电以调节副电机5的发电功率;如果动力电池3的充电功率P3大于等于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率。
[0320]
具体地,控制模块101还用于:当低压蓄电池20的SOC值小于等于预设的低电量阈值时,获取低压蓄电池20的SOC值变化速率和动力电池3的SOC值变化速率,并根据低压蓄电池20的SOC值变化速率获取低压蓄电池20的充电功率P4和根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,以及判断低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,其中,如果低压蓄电池20的充电功率P4与动力电池20的充电功率P3之和小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则通过控制发动机1以该最小输出功率Pmin进行发电以调节副电机5的发电功率;如果低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和大于等于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,以及通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率。
[0321]
需要说明的是,控制模块101内可预存动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表,由此,控制模块101在获取动力电池3的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池3的充电功率P3。例如,动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表可如下表1所示。
[0322]
表1
[0323]
[表0003]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率 B1 B2 B3 B4 B5

[0324]
由上表1可知,当动力电池3的SOC值变化速率为A1时控制模块101可获取对应的动力电池3的充电功率P3为B1;当动力电池3的SOC值变化速率为A2时控制模块101可获取对应的动力电池3的充电功率P3为B2;当动力电池3的SOC值变化速率为A3时 控制模块101可获取对应的动力电池3的充电功率P3为B3;当动力电池3的SOC值变化速率为A4时控制模块101可获取对应的动力电池3的充电功率P3为B4;当动力电池3的SOC值变化速率为A5时控制模块101可获取对应的动力电池3的充电功率P3为B5。
[0325]
类似地,控制模块101内可预存低压蓄电池20的SOC值变化速率与低压蓄电池20的充电功率P4之间的第二关系表,由此,控制模块101在获取低压蓄电池20的SOC值变化速率之后,通过比对第二关系表即可获取对应的低压蓄电池20的充电功率P4。例如,低压蓄电池20的SOC值变化速率与低压蓄电池20的充电功率P4之间的第一关系表可如下表2所示。
[0326]
表2
[0327]
[表0004]
低压蓄电池20的SOC值变化速率 A11 A12 A13 A14 A15
低压蓄电池20的充电功率 B11 B12 B13 B14 B15

[0328]
由上表2可知,当低压蓄电池20的SOC值变化速率为A11时控制模块101可获取对应的低压蓄电池20的充电功率P4为B11;当低压蓄电池20的SOC值变化速率为A12时控制模块101可获取对应的低压蓄电池20的充电功率P4为B12;当低压蓄电池20的SOC值变化速率为A13时控制模块101可获取对应的低压蓄电池20的充电功率P4为B13;当低压蓄电池20的SOC值变化速率为A14时控制模块101可获取对应的低压蓄电池20的充电功率P4为B14;当低压蓄电池20的SOC值变化速率为A15时控制模块101可获取对应的低压蓄电池20的充电功率P4为B15。
[0329]
具体来说,在副电机5进入发电功率调节模式后,控制模块101可获取低压蓄电池20的SOC值、动力电池3的SOC值、整车需求功率P2(整车驱动功率P11与电器设备功率P21之和),然后,判断低压蓄电池20的SOC值是否大于预设的低电量阈值。
[0330]
如果低压蓄电池20的SOC值大于预设的低电量阈值,则获取动力电池3的SOC值变化速率,并查询动力电池3的SOC值变化速率对应的动力电池3的充电功率P3,以选择出合适的充电功率P3使动力电池3的SOC值能够上升,并进一步判断动力电池3的充电功率P3是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,如果是,即P3<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以调节副电机5的发电功率,即控制发动机1在最佳经济区域对应的最小输出功率Pmin运行;如果否,即P3≥Pmin-P2,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发 动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率,即在发动机1的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池3的充电功率P3与整车需求功率P2之和即(P2+P3或P11+P21+P3),此时可控制发动机1以获取的输出功率进行发电。
[0331]
如果低压蓄电池20的SOC值小于等于预设的低电量阈值,则获取动力电池3的SOC值变化速率,并查询动力电池3的SOC值变化速率对应的动力电池3的充电功率P3,以选择出合适的充电功率P3使动力电池3的SOC值能够上升,并获取低压蓄电池20的SOC值变化速率,并查询低压蓄电池20的SOC值变化速率对应的低压蓄电池20的充电功率P4,以选择出合适的充电功率P4使低压蓄电池20的SOC值能够上升,并进一步判断低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。如果是,即P3+P4<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以调节副电机5的发电功率,即控制发动机1在最佳经济区域对应的最小输出功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池3和低压蓄电池20充电;如果否,即P3+P4≥Pmin-P2,则根据动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,以及通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率,即在发动机1的预设的最佳经济区域内查找相应的功率,该获取的输出功率为动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和即(P2+P3+P4或P11+P21+P3+P4),并控制发动机1以获取的输出功率进行发电。
[0332]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0333]
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电时以实现给动力电池充电、给动力电机供电、给DC-DC变换器供电中的至少一个,控制模块获取动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,当副电机进入发电功率调节模式后,控制模块还用于根据低压蓄电池的SOC值对副电机的发电功率进行调节,从而能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨, 同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。
[0334]
实施例五:
[0335]
在本发明的一些实施例中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)、低压蓄电池20的SOC值和混合动力汽车的车速,并根据动力电池3的SOC值、低压蓄电池20的SOC值和混合动力汽车的车速控制副电机5的发电功率,以及根据副电机5的发电功率获得发动机1的发电功率以控制发动机1运行在预设的最佳经济区域。
[0336]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值和低压蓄电池20的SOC值,从而电池管理系统将采集到的动力电池3的SOC值和低压蓄电池20的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值和低压蓄电池20的SOC值。
[0337]
还需说明的是,可结合发动机万有特性曲线图确定发动机1的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机1的输出扭矩,横坐标是发动机1的转速,曲线a为发动机1的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机1的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,控制模块101可通过控制发动机1的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机1运行在预设的最佳经济区域。
[0338]
具体来说,在混合动力汽车行驶过程中,发动机1可通过离合器6将动力输出到混合动力汽车的车轮7,并且发动机1还可带动副电机5进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机5,即带动副电机5进行发电的发电功率,另一部分是输出至车轮7,即驱动车轮7的驱动功率。
[0339]
在发动机1带动副电机5进行发电时,控制模块101可首先获取动力电池3的SOC值、低压蓄电池20的SOC值和混合动力汽车的车速,然后根据动力电池3的SOC值、低压蓄电池20的SOC值和混合动力汽车的车速控制副电机5的发电功率,并进一步根据副电机5的发电功率获得发动机1的发电功率,以控制发动机1运行在预设的最佳经济区域。换言之,控制模块101可在使发动机1工作在预设的最佳经济区域的前提下控制副电机5的发 电功率。
[0340]
由此,能够使发动机1工作在预设的最佳经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机1的油耗,降低发动机1的噪音,提高整车运行的经济性。而且,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0341]
进一步地,根据本发明的一个实施例,控制模块101用于:当动力电池3的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速小于第一预设车速,则对副电机5的发电功率进行控制。
[0342]
其中,第一预设值可为预先设置的动力电池3的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池3的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池3的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池3的SOC值小于或等于预设的极限值时,动力电池3的SOC值处于第一电量区间,此时动力电池3只充电不放电;当动力电池3的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池3的SOC值处于第二电量区间,此时动力电池3存在充电需求,即可主动给动力电池3充电;当动力电池3的SOC值大于第一预设值时,动力电池3的SOC值处于第三电量区间,此时动力电池3可不充电,即不会主动给动力电池3充电。具体来说,控制模块101在获取动力电池3的SOC值和混合动力汽车的车速之后,可判断动力电池3的SOC值所处的区间,如果动力电池3的SOC值处于第二电量区间,动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池3进行充电,此时控制模块101进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则对副电机5的发电功率进行控制,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0343]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用, 从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0344]
进一步地,控制模块101还用于:当动力电池3的SOC值大于预设的极限值且小于等于第一预设值、以及混合动力汽车的车速小于第一预设车速时,获取混合动力汽车的整车需求功率,并在整车需求功率小于等于副电机5的最大允许发电功率时,则对副电机5的发电功率进行控制。
[0345]
也就是说,在判断动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速之后,控制模块101还可以进一步判断整车需求功率是否大于副电机5的最大允许发电功率,如果整车需求功率小于等于副电机5的最大允许发电功率,则对副电机5的发电功率进行控制,此时,整车所需的驱动力较少,且整车需求功率较小,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0346]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0347]
更进一步地,控制模块101还用于:当动力电池3的SOC值大于预设的极限值且小于等于第一预设值、混合动力汽车的车速小于第一预设车速、且整车需求功率小于等于副电机5的最大允许发电功率时,获取混合动力汽车的油门踏板深度和混合动力汽车的整车阻力,并在油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力时,则对副电机5的发电功率进行控制。
[0348]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0349]
也就是说,在判断动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速,且整车需求功率小于等于副电机5的最大允许发电功率之后,控制模块101还可以进一步判断油门踏板深度是否大于第一预设深度或者混合动力汽车的整车阻力是否大于第一预设阻力,如果油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力,则对副电机5的发电功率进行控制,此时,整车所需的驱动力较少,且整车需求功率较小,油门踏板深度较小,整车阻力也较小,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
[0350]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用, 从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0351]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0352]
根据本发明的一个具体实施例,控制模块101还用于:当控制发动机1单独带动副电机5进行发电、并控制动力电机2独自输出驱动力时,根据以下公式获得发动机1的发电功率:
[0353]
P0=P1/η/ζ
[0354]
其中,P0为发动机1的发电功率,P1为副电机5的发电功率,η皮带传动效率,ζ为副电机5的效率。
[0355]
也就是说,在发动机1可只发电不参与驱动的情况下,控制模块101可根据副电机5的发电功率、皮带传动效率η和副电机5的效率ζ计算出发动机1的发电功率P0,并控制发动机1以获取的发电功率P0带动副电机5进行发电,以控制副电机5的发电功率。
[0356]
另外,根据本发明的一个实施例,控制模块101还用于:在动力电池3的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机1参与驱动。
[0357]
也就是说,在动力电池3的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块101控制发动机1参与驱动,此时,动力电池3不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机2不足以驱动混合动力汽车行驶,发动机1参与驱动以进行补足驱动。
[0358]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0359]
更具体地,控制模块101还用于:当整车需求功率大于副电机5的最大允许发电功率时,还控制发动机1参与驱动以使发动机1通过离合器将动力输出到车轮。
[0360]
并且,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮;当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮;当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
[0361]
也就是说,控制模块101可实时获取动力电池3的SOC值、混合动力汽车的油门踏板深度、车速、整车阻力以及整车需求功率,并对动力电池3的SOC值、混合动力汽车的油门踏板深度、车速和整车阻力进行判断:
[0362]
其一,当动力电池3的SOC值小于预设的极限值时,因动力电池3的电量过低,动力电池3无法提供足够的电能,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过控制发动机1的发电功率可使发动机1工作在预设的最佳经济区域。
[0363]
其二,当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,因油门踏板深度较深,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过控制发动机1的发电功率可使发动机1工作在预设的最佳经济区域。
[0364]
其三,当动力电池3的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,因整车阻力较大,控制模块101控制发动机1和动力电机2同时参与驱动,此时控制模块101还可控制发动机1带动副电机5进行发电,并且通过控制发动机1的发电功率可使发动机1工作在预设的最佳经济区域。
[0365]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0366]
此外,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机1参与驱动以使发动机1通过离合器6 将动力输出到车轮7。
[0367]
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0368]
当然,应当理解的是,控制模块101还用于:当动力电池3的SOC值大于第一预设值时,发动机1不带动副电机5进行发电,此时动力电池3的电量接近满电,无需充电,发动机1不带动副电机5进行发电。也就是说,在动力电池3的电量接近满电时,发动机1不带动副电机5进行发电,从而副电机5不对动力电池3充电。
[0369]
进一步而言,当发动机1只带动副电机5发电不参与驱动时,控制模块101可对副电机5的发电功率进行控制,下面对本发明实施例的控制模块101的发电功率控制过程进行具体描述。
[0370]
根据本发明的一个实施例,控制模块101还用于:根据混合动力汽车的整车需求功率、动力电池3的充电功率和低压蓄电池20的充电功率对副电机5的发电功率进行控制。
[0371]
具体地,根据混合动力汽车的整车需求功率、动力电池3的充电功率和低压蓄电池20的充电功率控制副电机5的发电功率的公式如下:
[0372]
P1=P2+P3+P4,其中,P2=P11+P21,
[0373]
其中,P1为副电机5的发电功率,P2为整车需求功率,P3为动力电池3的充电功率,P4为低压蓄电池20的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0374]
需要说明的是,电器设备包括第一电器设备10和第二电器设备30,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0375]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,控制模块101可根据动力电机2的预设油门-转矩曲线以及动力电机2的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定;控制模块101可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21;控制模块101可根据动力电池3的SOC值获取动力电池3的充电功率P3,并根据低压蓄电池20的SOC值获取低压蓄电池20的充电功率P4。
[0376]
具体来说,在混合动力汽车行驶过程中,控制模块101可获取动力电池3的充电功率P3、低压蓄电池20的充电功率P4、整车驱动功率P11和电器设备功率P21,并将动力电池3的充电功率P3、低压蓄电池20的充电功率P4、整车驱动功率P11和电器设备功率P21之和作为副电机5的发电功率P1,由此,控制模块101可根据计算出的P1值对副电机5 的发电功率进行控制,例如控制模块101可根据计算出的P1值对发动机1的输出扭矩和转速进行控制,以对发动机1带动副电机5进行发电的功率进行控制。
[0377]
进一步地,根据本发明的一个实施例,控制模块101还用于:获取动力电池3的SOC值变化速率,并根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率控制副电机5的发电功率。
[0378]
应当理解的是,控制模块101可根据动力电池3的SOC值获取动力电池3的SOC值变化速率,例如,每个时间间隔t采集一次动力电池3的SOC值,如此可将动力电池3的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。类似地,可根据低压蓄电池20的SOC值获取低压蓄电池20的SOC值变化速率,例如,每个时间间隔t采集一次低压蓄电池20的SOC值,如此可将低压蓄电池20的当前SOC值与前一SOC值之差与时间间隔t的比值作为低压蓄电池20的SOC值变化速率。
[0379]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,控制模块101在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率控制副电机5的发电功率。
[0380]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0381]
下面进一步介绍当发动机1只带动副电机5发电不参与驱动时,控制模块101根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率、低压蓄电池20的SOC值、低压蓄电池20的SOC值变化速率调节副电机5的发电功率的具体控制方式。
[0382]
具体地,控制模块101还用于:当低压蓄电池20的SOC值大于预设的低电量阈值时,根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池3的充电功率P3小于发动机1的最佳经济区域对应的最小 输出功率Pmin与整车需求功率P2之差,则通过控制发动机1以该最小输出功率进行发电以控制副电机5的发电功率;如果动力电池3的充电功率大于等于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率。
[0383]
具体地,控制模块101还用于:当低压蓄电池20的SOC值小于等于预设的低电量阈值时,获取低压蓄电池20的SOC值变化速率和动力电池3的SOC值变化速率,并根据低压蓄电池20的SOC值变化速率获取低压蓄电池20的充电功率P4和根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,以及判断低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,其中,如果低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则通过控制发动机1以该最小输出功率Pmin进行发电以控制副电机5的发电功率;如果低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和大于等于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,以及通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率。
[0384]
需要说明的是,控制模块101内可预存动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表,由此,控制模块101在获取动力电池3的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池3的充电功率P3。例如,动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表可如下表1所示。
[0385]
表1
[0386]
[表0005]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率 B1 B2 B3 B4 B5

[0387]
由上表1可知,当动力电池3的SOC值变化速率为A1时控制模块101可获取对应的动力电池3的充电功率P3为B1;当动力电池3的SOC值变化速率为A2时控制模块101可获取对应的动力电池3的充电功率P3为B2;当动力电池3的SOC值变化速率为A3时 控制模块101可获取对应的动力电池3的充电功率P3为B3;当动力电池3的SOC值变化速率为A4时控制模块101可获取对应的动力电池3的充电功率P3为B4;当动力电池3的SOC值变化速率为A5时控制模块101可获取对应的动力电池3的充电功率P3为B5。
[0388]
类似地,控制模块101内可预存低压蓄电池20的SOC值变化速率与低压蓄电池20的充电功率P4之间的第二关系表,由此,控制模块101在获取低压蓄电池20的SOC值变化速率之后,通过比对第二关系表即可获取对应的低压蓄电池20的充电功率P4。例如,低压蓄电池20的SOC值变化速率与低压蓄电池20的充电功率P4之间的第一关系表可如下表2所示。
[0389]
表2
[0390]
[表0006]
低压蓄电池20的SOC值变化速率 A11 A12 A13 A14 A15
低压蓄电池20的充电功率 B11 B12 B13 B14 B15

[0391]
由上表2可知,当低压蓄电池20的SOC值变化速率为A11时控制模块101可获取对应的低压蓄电池20的充电功率P4为B11;当低压蓄电池20的SOC值变化速率为A12时控制模块101可获取对应的低压蓄电池20的充电功率P4为B12;当低压蓄电池20的SOC值变化速率为A13时控制模块101可获取对应的低压蓄电池20的充电功率P4为B13;当低压蓄电池20的SOC值变化速率为A14时控制模块101可获取对应的低压蓄电池20的充电功率P4为B14;当低压蓄电池20的SOC值变化速率为A15时控制模块101可获取对应的低压蓄电池20的充电功率P4为B15。
[0392]
具体来说,在控制副电机5的发电功率进行控制时,控制模块101可获取低压蓄电池20的SOC值、动力电池3的SOC值、整车需求功率P2(整车驱动功率P11与电器设备功率P21之和),然后,判断低压蓄电池20的SOC值是否大于预设的低电量阈值。
[0393]
如果低压蓄电池20的SOC值大于预设的低电量阈值,则获取动力电池3的SOC值变化速率,并查询动力电池3的SOC值变化速率对应的动力电池3的充电功率P3,以选择出合适的充电功率P3使动力电池3的SOC值能够上升,并进一步判断动力电池3的充电功率P3是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,如果是,即P3<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以控制副电机5的发电功率,即控制发动机1在最佳经济区域对应的最小输出功率Pmin运行;如果否,即P3≥Pmin-P2,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发 动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率,即在发动机1的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池3的充电功率P3与整车需求功率P2之和即(P2+P3或P11+P21+P3),此时可控制发动机1获取的输出功率进行发电。
[0394]
如果低压蓄电池20的SOC值小于等于预设的低电量阈值,则获取动力电池3的SOC值变化速率,并查询动力电池3的SOC值变化速率对应的动力电池3的充电功率P3,以选择出合适的充电功率P3使动力电池3的SOC值能够上升,并获取低压蓄电池20的SOC值变化速率,并查询低压蓄电池20的SOC值变化速率对应的低压蓄电池20的充电功率P4,以选择出合适的充电功率P4使低压蓄电池20的SOC值能够上升,并进一步判断低压蓄电池20的充电功率P4与动力电池3的充电功率P3之和是否小于发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。如果是,即P3+P4<Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以控制副电机5的发电功率,即控制发动机1在最佳经济区域对应的最小输出功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池3和低压蓄电池20充电;如果否,即P3+P4≥Pmin-P2,则根据动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的功率,以及通过控制发动机1以获取的输出功率进行发电以控制副电机5的发电功率,即在发动机1的预设的最佳经济区域内查找相应的功率,该获取的输出功率可为动力电池3的充电功率P3、低压蓄电池20的充电功率P4与整车需求功率P2之和即(P2+P3+P4或P11+P21+P3+P4),并控制发动机1以获取的输出功率进行发电。
[0395]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0396]
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电时以实现给动力电池充电、给动力电机供电、给DC-DC变换器供电中的至少一个,控制模块获取动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速控制副电机的发电功率,以及根据副电机的发电功率获得发动机的发电功率以控制发动机运行在预设的最佳经济区域,从而能够使发动机在低速时不参与驱动, 进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。
[0397]
此外,本发明实施例还提出了一种混合动力汽车的动力系统中用于电机发电的整流稳压电路。下面结合附图描述本发明实施例的混合动力汽车的动力系统中用于电机发电的整流稳压电路。
[0398]
图8是本发明一个实施例的混合动力汽车的动力系统的结构框图。如图8所示,该混合动力汽车的动力系统包括:发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5和稳压电路300。
[0399]
结合图8-10所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力,换言之,在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2可同时输出动力至车轮7。
[0400]
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连,副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连。稳压电路300连接在副电机5与DC-DC变换器4之间,稳压电路300对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,以使稳定后的电压通过DC-DC变换器4给整车低压电器供电。换言之,副电机5发电时输出的电能通过稳压电路300后,输出稳定电压供给DC-DC变换器4。
[0401]
由此,动力电机2和副电机5可分别对应充当驱动电机和发电机,从而低速时副电机5可具有较高的发电功率和发电效率,从而满足低速行驶的用电需求,维持整车低速电平衡,维持低速平顺性,提升整车性能。且可通过稳压电路300对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,使DC-DC变换器4的输入电压保持稳定,从而保证DC-DC变换器正常工作。
[0402]
进一步地,副电机5在发动机1的带动下进行发电时,可实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可单独带动副电机5发电。
[0403]
其中,副电机5可为BSG电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电,还可给动力电机2和/或DC-DC变换器4供电。并且副电机5也可属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
[0404]
需要说明的是,稳压电路300可以设置在副电机5的输出线上,副电机5通过稳压电路300分别与动力电机2、动力电池3和DC-DC变换器4相连,如图9b、9c所示,此时,副电机5发电时可通过稳压电路300输出稳定电压,实现给动力电池3稳压充电、给动力电机2稳压供电、给DC-DC变换器4稳压供电,由此,无论动力电池3和DC-DC变换器4连接与否,均能保证DC-DC变换器4正常工作。稳压电路300也可以设置在DC-DC变换器4的进线上,且副电机5可分别与DC-DC变换器4、动力电池3连接,同时动力电池3可与DC-DC变换器4连接,如图8、图9a所示,由此,在动力电池3与DC-DC变换器4断开连接时,副电机5发电时输出至DC-DC变换器4的电压仍是稳定的,进而保证了DC-DC变换器4正常工作。
[0405]
进一步地,副电机5可用于启动发动机1,即副电机5可实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中的启动机的功能。
[0406]
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图9a、9b所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图9c所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
[0407]
换言之,当发动机1和动力电机2共同驱动一对前轮71时,动力系统的驱动力将均输出至一对前轮71,整车采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统的驱动力将分别输出至一对前轮71和一对后轮72,整车采用四驱的驱动方式。
[0408]
进一步地,在两驱的驱动方式下,结合图9a、图9b所示,混合动力汽车的动力系统,还包括差速器8、主减速器9和变速器90,其中,发动机1通过离合器6、变速器90、主减速器9和差速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器9和差速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。其中,离合器6与变速器90可集成设置。
[0409]
在四驱的驱动方式下,结合图9c所示,混合动力汽车的动力系统,还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。
[0410]
其中,离合器6与第一变速器91可集成设置。
[0411]
在本发明的实施例中,由于副电机5的发电电压一般是连接在动力电池3的两端,因此在动力电池3与DC-DC变换器4连接时,输入至DC-DC变换器4的电压是稳定的。当动力电池3失效或损坏而与DC-DC变换器4断开连接时,此时需要对副电机5发电时输出的交流电进行控制,即可通过稳压电路300对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理。
[0412]
在本发明的一些实施例中,如图10所示,副电机5包括副电机控制器51,副电机控制器51包括逆变器511和调节器512,调节器512用于当动力电池3断开与DC-DC变换器4的连接时,根据稳压电路300的输出信号输出第一调节信号和第二调节信号,以使逆变器511输出的直流母线电压保持稳定,其中,第一调节信号用于对副电机5的d轴电流进行调节,第二调节信号用于对副电机5的q轴电流进行调节。
[0413]
进一步地,在一些实施例中,如图10所示,稳压电路300包括第一电压采样器61和目标电压采集器62。第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至调节器512,目标电压采集器62获取目标参考电压,并将目标参考电压发送至调节器512。调节器512用于根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号。其中,稳压电路300的输出信号包括第一电压采样值和目标参考电压。
[0414]
具体地,副电机控制器51通过稳压电路300与DC-DC变换器4相连。副电机控制器51通过逆变器511输出直流母线电压,第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至调节器512。目标电压采集器62获取目标参考电压,并将目标参考电压发送至调节器512,调节器512根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号,通过第一调节信号对副电机5的d轴电流进行调节,通过第二调节信号对副电机5的q轴电流进行调节,以便副电机控制器51在动力电池3断开与DC-DC变换器4连接时根据副电机5的d轴电流和q轴电流对逆变器511进行控制,使逆变器511输出的直流母线电压保持稳定。
[0415]
在一些示例中,可以采用PWM(Pulse Width Modulation,脉宽调制技术)对逆变器511 进行控制,以使逆变器511输出的直流母线电压保持稳定。如图11所示,调节器512包括误差计算单元a、第一PID调节单元b和第二PID调节单元c。
[0416]
其中,误差计算单元a分别与第一电压采样器61和目标电压采集器62相连,误差计算单元a用以获取目标参考电压与第一电压采样值之间的电压差值。第一PID调节单元b与误差计算单元a相连,第一PID调节单元b对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第一调节信号。第二PID调节单元c与误差计算单元a相连,第二PID调节单元c对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第二调节信号。
[0417]
具体地,如图11所示,第一电压采样器61实时对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至误差计算器a,目标电压采集器62获取目标参考电压,并将目标参考电压输出至误差计算单元a。误差计算单元a获取目标参考电压与第一电压采样值之间的电压差值,并将该差值分别输入至第一PID调节单元b和第二PID调节单元c,通过第一PID调节单元b输出第一调节信号(即图11中的Id *)和通过第二PID调节单元c输出第二调节信号(即图11中的Iq *)。此时,副电机5输出的三相电流经3S/2R变换后变为dq坐标系下的d轴电流Id和q轴电流Iq,分别获取Id *和Id、Iq *和Iq之间差值,并分别通过相应的PID调节器对差值进行控制以得到副电机5的α轴电压Uα和副电机5的β轴电压Uβ;将Uα和Uβ输入给SVPWM模块,输出三相占空比,通过该占空比对逆变器511进行控制,通过逆变器511调整副电机5输出的d轴电流Id和q轴电流Iq,进而通过第一控制信号再次对调整后的副电机的d轴电流进行调节,通过第二调节信号再次对副电机的q轴电流进行调节。由此,形成对副电机d轴电流和q轴电流的闭环控制,通过该闭环控制能够使逆变器511输出的直流母线电压保持稳定,即副电机5发电时输出至DC-DC变换器4的直流电压保持稳定。
[0418]
需要说明的是,副电机控制器51中逆变器511输出的直流电压和副电机5输出的反电动势有一定的相关性,为保证控制效率,可以将逆变器511输出的电压设为3/2的相电压(即驱动状态时最大相电压为直流母线电压的2/3)。由此,逆变器511输出的直流电压与副电机5转速呈一定的关系,当副电机5转速越高,逆变器511输出的直流电压越高,副电机5转速越低,逆变器511输出的直流电压越低。
[0419]
进一步地,为了保证输入DC-DC变换器4的直流电压在预设电压区间,在本发明的一些实施例中,如图10所示,稳压电路300还可以包括稳压器63、第二电压采样器64和稳 压控制器65。
[0420]
其中,稳压器63连接到逆变器511的直流输出端,稳压器63对逆变器511输出的直流母线电压进行稳压处理,稳压器63的输出端连接DC-DC变换器4的输入端。第二电压采样器64对稳压器63的输出电压进行采样以获得第二电压采样值。稳压控制器65分别与稳压器63和第二电压采样器64相连,稳压控制器65用于根据预设参考电压和第二电压采样值对稳压器63的输出电压进行控制以使稳压器63的输出电压处于预设电压区间。
[0421]
在一些示例中,稳压器63可以采用开关型稳压电路,如BOOST升压电路,其不仅能够升压,且控制精度高。其中,BOOST升压电路中开关器件可以采用碳化硅MOSFET,如英飞凌的IMW120R45M1,可耐压1200V,内阻为45mΩ,具有耐压高,内阻小,导热性能良好的特点,比同样规格的高速IGBT损耗要小好几十倍。稳压器63的驱动芯片可以采用英飞凌的1EDI60N12AF,其采用无磁芯变压隔离,控制安全可靠。可以理解,该驱动芯片可产生驱动信号。
[0422]
在另一些示例中,稳压器63可以采用升降压型的BUCK-BOOST电路,其能够在电机转速为高速时降压,在电机转速为低速时升压,且控制精度高。
[0423]
在又一些示例中,稳压器63还可以采用线性稳压电路或者三端稳压电路(如LM317和7805等)。
[0424]
可以理解,为便于电路设计,第一电压采样器61和第二电压采样器64的电路结构可以是相同的。例如,第一电压采样器61和第二电压采样器64均可以包括差分电压电路,其具有精度高,且方便调整放大倍数的特点。
[0425]
可选地,稳压控制器65可以采用PWM专用调制芯片SG3525,其具有体积小,控制简单,能够输出稳定的PWM波的特点。
[0426]
举例而言,上述混合动力汽车的动力系统的工作流程为:第二电压采样器64对稳压器63的输出电压进行采样以获得第二电压采样值,并将第二电压采样值输出至芯片SG3525,芯片SG3525可以设置参考电压,并对参考电压和第二电压采样值进行比较,再结合芯片SG3525产生的三角波可以生成两路的PWM波,通过两路PWM波对稳压器63进行控制以使稳压器63输出至DC-DC变换器4的电压处于预设电压区间,如11-13V,由此,能够保证混合动力汽车中低压负载的正常工作。
[0427]
需要说明的是,如果输出的直流母线电压过低,第二电压采样值就很小,则SG3525可发出占空比较大的PWM波,来进行升压。
[0428]
由此,副电机5和DC-DC变换器4有一路单独稳压供电通道,当动力电池3发生故障,断开与DC-DC变换器4的连接时,可通过副电机5和DC-DC变换器4的单独稳压供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0429]
在本发明的一个具体实施例中,如图12所示,动力电池3损坏,断开与DC-DC变换器4的连接时,稳压电路300连接在DC-DC变换器4的进线端。
[0430]
其中,动力电机2还包括第二控制器21,副电机控制器51与第二控制器21相连,并通过稳压电路300与DC-DC变换器4相连。副电机5发电时产生交流电,逆变器511可将副电机5发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电机2、DC-DC变换器4中的至少一个供电。
[0431]
可以理解,第二控制器21可具有DC-AC变换单元,DC-AC变换单元可将逆变器511输出的高压直流电变换为交流电,以给动力电机4充电。
[0432]
具体地,如图12所示,副电机控制器51的逆变器511具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3。副电机控制器51的第一直流端DC1通过稳压电路300与DC-DC变换器4的第三直流端DC3相连,以给DC-DC变换器4提供稳定电压,且DC-DC变换器4可对稳压后的直流电进行DC-DC变换。并且,副电机控制器51的逆变器511还可通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
[0433]
进一步地,如图12所示,DC-DC变换器4还分别与混合动力汽车中的电器设备10和低压蓄电池20相连以给电器设备10和低压蓄电池20供电,且低压蓄电池20还与电器设备10相连。
[0434]
具体地,如图12所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将副电机5通过副电机控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。DC-DC变换器4的第四直流端DC4与第一电器设备10相连,以为第一电器设备10供电,其中,第一电器设备10可为低压用电设备,其包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以为低压蓄电池20充电。低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0435]
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,预设电压区间可指11~13V或23~25V,但不限于此。
[0436]
综上,本发明实施例的混合动力汽车的动力系统,不仅能够维持整车低速电平衡及低 速平顺性,还能够在动力电池失效或损坏而断开与DC-DC变换器的连接时保证DC-DC变换器正常工作,且控制精度高,损耗小。
[0437]
此外,本发明实施例还提出了一种混合动力汽车。
[0438]
图13是根据本发明实施例的混合动力汽车的方框示意图。如图13所示,混合动力汽车200包括上述实施例的混合动力汽车的动力系统100。
[0439]
根据本发明实施例提出的混合动力汽车,能够维持整车低速电平衡及低速平顺性。
[0440]
基于上述实施例的混合动力汽车及其动力系统,本发明实施例还提出一种混合动力汽车的发电控制方法。
[0441]
图14是根据本发明实施例的混合动力汽车的发电控制方法的流程图。如图14所示,混合动力汽车的发电控制方法,包括以下步骤:
[0442]
S1:获取混合动力汽车的动力电池的SOC值和低压蓄电池的SOC值。
[0443]
其中,需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值和低压蓄电池的SOC值,以获取动力电池的SOC值和低压蓄电池的SOC值。
[0444]
S2:获取混合动力汽车的副电机的最大允许发电功率。
[0445]
根据本发明的一个具体示例,副电机的最大允许发电功率与副电机和发动机的性能参数等相关,换言之,副电机的最大允许发电功率可依据副电机和发动机的性能参数等提前预设。
[0446]
S3:根据动力电池的SOC值、低压蓄电池的SOC值和副电机的最大允许发电功率判断副电机是否对动力电池和/或低压蓄电池进行充电。
[0447]
由此,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0448]
进一步地,根据本发明的一个实施例,当动力电池的SOC值小于第一预设SOC值且低压蓄电池的SOC值大于等于第二预设SOC值时,控制混合动力汽车的发动机带动副电机进行发电以给动力电池充电。
[0449]
其中,应当理解的是,第一预设SOC值可为动力电池的充电限制值,第二预设SOC值可为低压蓄电池的充电限制值,第一预设SOC值与第二预设SOC值可依次各个电池自身的性能独立设置。
[0450]
具体而言,在获取到动力电池的SOC值和低压蓄电池的SOC值之后,可判断动力电 池的SOC值是否小于第一预设SOC值,并判断低压蓄电池的SOC值是否小于第二预设SOC值,如果动力电池的SOC值小于第一预设SOC值且低压蓄电池的SOC值大于等于第二预设SOC值,则说明动力电池的剩余电量较低、需要充电,而低压蓄电池的剩余电量较高、无需充电,此时控制模块控制发动机带动副电机进行发电以给动力电池充电。
[0451]
如前所述,副电机属于高压电机,例如副电机的发电电压与动力电池的电压相当,从而副电机产生的电能可不经过电压变换直接给动力电池充电。
[0452]
类似地,当动力电池的SOC值大于等于第一预设SOC值且低压蓄电池的SOC值小于第二预设SOC值时,控制混合动力汽车的发动机带动副电机进行发电以通过混合动力汽车的DC-DC变换器给低压蓄电池充电。
[0453]
也就是说,如果动力电池的SOC值大于等于第一预设SOC值且低压蓄电池的SOC值小于第二预设SOC值,则说明动力电池的剩余电量较高、无需充电,而低压蓄电池的剩余电量较低、需要充电,此时控制模块控制发动机带动副电机进行发电以通过DC-DC变换器给低压蓄电池充电。
[0454]
如前所述,副电机属于高压电机,例如副电机的发电电压与动力电池的电压相当,从而副电机产生的电能需经过DC-DC变换器进行电压变换后再给低压蓄电池充电。
[0455]
更进一步地,根据本发明的一个实施例,当动力电池的SOC值小于第一预设SOC值且低压蓄电池的SOC值小于第二预设SOC值时,根据动力电池的SOC值获取动力电池的充电功率,并根据低压蓄电池的SOC值获取低压蓄电池的充电功率,以及在动力电池的充电功率与低压蓄电池的充电功率之和大于副电机的最大允许发电功率时,控制混合动力汽车的发动机带动副电机进行发电以通过混合动力汽车的DC-DC变换器给低压蓄电池充电。
[0456]
并且,当动力电池的充电功率与低压蓄电池的充电功率之和小于等于副电机的最大允许发电功率时,控制发动机带动副电机进行发电以给动力电池充电,同时通过DC-DC变换器给低压蓄电池充电。
[0457]
也就是说,如果动力电池的SOC值小于第一预设SOC值且低压蓄电池的SOC值小于第二预设SOC值,则说明动力电池和低压蓄电池的剩余电量均较低、需要充电,此时进一步判断动力电池的充电功率与低压蓄电池的充电功率之和是否大于副电机的最大允许发电功率。
[0458]
如果动力电池的充电功率与低压蓄电池的充电功率之和大于副电机的最大允许发电功率,则说明副电机所能够产生的电能不足以给两个电池同时充电,此时优先给低压蓄电池充电,即控制发动机带动副电机进行发电以通过DC-DC变换器给低压蓄电池充电。
[0459]
如果动力电池的充电功率与低压蓄电池的充电功率之和小于等于副电机的最大允许发 电功率,则说明副电机所能够产生的电能可给两个电池同时充电,此时同时给动力电池和低压蓄电池充电,即控制发动机带动副电机进行发电以给动力电池充电,同时通过DC-DC变换器给低压蓄电池充电。
[0460]
由此,通过优先对低压蓄电池充电,可优先确保低压电器设备的用电需求,进而可在动力电池电量不足时确保整车实现纯燃油模式行驶,提高整车行驶里程。
[0461]
当然,应当理解的是,当动力电池的SOC值大于等于第一预设SOC值且低压蓄电池的SOC值大于等于第二预设SOC值时,说明动力电池和低压蓄电池的剩余电量均较高、无需充电,此时可不对动力电池和低压蓄电池充电。
[0462]
具体而言,如图15所示,本发明实施例的混合动力汽车的发电控制方法具体包括以下步骤:
[0463]
S101:获取动力电池的SOC值和低压蓄电池的SOC值。
[0464]
S102:判断动力电池的SOC值是否小于第一预设SOC值。
[0465]
如果是,则执行步骤S105;如果否,则执行步骤S103。
[0466]
S103:判断低压蓄电池的SOC值是否小于第二预设SOC值。
[0467]
如果是,则执行步骤S104;如果否,则返回步骤S101。
[0468]
S104:给低压蓄电池充电,即控制发动机带动副电机进行发电以通过DC-DC变换器给低压蓄电池充电。
[0469]
S105:判断低压蓄电池的SOC值是否小于第二预设SOC值。
[0470]
如果是,则执行步骤S107;如果否,则执行步骤S106。
[0471]
S106:给动力电池充电,即控制发动机带动副电机进行发电以给动力电池充电。
[0472]
S107:获取动力电池的充电功率和低压蓄电池的充电功率。
[0473]
S108:判断动力电池的充电功率与低压蓄电池的充电功率之和是否大于副电机的最大允许发电功率。
[0474]
如果是,则执行步骤S109;如果否,则执行步骤S110。
[0475]
S109:优先给低压蓄电池充电,即控制发动机带动副电机进行发电以通过DC-DC变换器给低压蓄电池充电。
[0476]
S110:同时给动力电池和低压蓄电池充电,即控制发动机带动副电机进行发电以给动力电池充电,同时通过DC-DC变换器给低压蓄电池充电。
[0477]
综上,根据本发明实施例提出的混合动力汽车的发电控制方法,根据动力电池的SOC值、低压蓄电池的SOC值和电机的最大允许发电功率判断副电机是否对动力电池和/或低压蓄电池进行充电,从而该方法既可为动力电池充电,也可为低压蓄电池充电,从而可确 保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且可确保低压电器设备的用电需求,进而可在副电机停止发电且动力电池故障或电量不足时,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0478]
基于上述实施例的混合动力汽车及其动力系统,本发明实施例还提出另一种混合动力汽车的发电控制方法。
[0479]
图16是根据本发明实施例的混合动力汽车的发电控制方法的流程图。如图16所示,混合动力汽车的发电控制方法包括以下步骤:
[0480]
S10:获取动力电池的SOC值和混合动力汽车的车速。
[0481]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值,以使获取动力电池的SOC值。
[0482]
S20:根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域。
[0483]
还需说明的是,可结合发动机万有特性曲线图确定发动机的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机的输出扭矩,横坐标是发动机的转速,曲线a为发动机的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,可通过控制发动机的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机运行在预设的最佳经济区域。
[0484]
进一步地,根据本发明的一个实施例,在混合动力汽车的行驶过程中,获取动力电池的SOC值和混合动力汽车的车速V,并根据动力电池的SOC值和混合动力汽车的车速V控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域。其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机1带动副电机5进行发电以对副电机5的发电功率进行调节。
[0485]
具体来说,在混合动力汽车行驶过程中,发动机可通过离合器将动力输出到混合动力汽车的车轮,并且发动机还可带动副电机进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机,即带动副电机进行发电的功率,另一部分是输出至车轮,即驱动车轮的功率。
[0486]
在发动机带动副电机进行发电时,可首先获取动力电池的SOC值和混合动力汽车的车速,然后根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机工作在预设的最佳经济区域。在发电功率调节模式,可在使发动机工作在预设 的最佳经济区域的前提下调节副电机的发电功率。
[0487]
由此,能够使发动机工作在预设的最佳经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机的油耗,降低发动机的噪音,提高整车运行的经济性。而且,由于低速时副电机具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
[0488]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速V小于第一预设车速,则控制副电机进入发电功率调节模式。
[0489]
其中,第一预设值可为预先设置的动力电池的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池的SOC值小于或等于预设的极限值时,动力电池的SOC值处于第一电量区间,此时动力电池只充电不放电;当动力电池的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池的SOC值处于第二电量区间,此时动力电池存在充电需求,即可主动给动力电池充电;当动力电池的SOC值大于第一预设值时,动力电池的SOC值处于第三电量区间,此时动力电池可不充电,即不会主动给动力电池充电。
[0490]
具体来说,在获取动力电池的SOC值和混合动力汽车的车速V之后,可判断动力电池的SOC值所处的区间,如果动力电池的SOC值处于第二电量区间,动力电池的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池进行充电,此时进一步判断混合动力汽车的车速V是否小于第一预设车速V1,如果混合动力汽车的车速V小于第一预设车速V1,则控制副电机进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0491]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0492]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值M2且 小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1时,还获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,控制副电机进入发电功率调节模式。
[0493]
具体来说,在混合动力汽车的行驶过程中,如果动力电池的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,控制副电机进入发电功率调节模式。
[0494]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0495]
更进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,还获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制副电机进入发电功率调节模式。
[0496]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0497]
具体来说,如果动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax,则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,说明混合动力汽车运行在低速模式,控制副电机进入发电功率调节模式。
[0498]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0499]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0500]
相应地,当混合动力汽车的动力电池的SOC值、车速V、油门踏板深度D和整车阻力 F不满足上述条件时,发动机可参与驱动,其具体工作过程如下。
[0501]
根据本发明的一个实施例,在动力电池的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动。
[0502]
也就是说,在动力电池的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动,此时,动力电池不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机不足以驱动混合动力汽车行驶,发动机参与驱动以进行补足驱动。
[0503]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0504]
更具体地,当整车需求功率大于副电机的最大允许发电功率时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0505]
并且,当动力电池的SOC值小于等于预设的极限值M2时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的整车阻力F大于第一预设阻力F1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0506]
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断,并根据以下三种判断结果调节副电机的发电功率:
[0507]
其一,当动力电池的SOC值小于预设的极限值M2时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值 快速下降。
[0508]
其二,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
[0509]
其三,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
[0510]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0511]
此外,当动力电池的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0512]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0513]
当然,应当理解的是,当动力电池的SOC值大于第一预设值时,发动机不带动副电机进行发电,此时动力电池的电量接近满电,无需充电,发动机不带动副电机进行发电。也就是说,在动力电池的电量接近满电时,发动机不带动副电机进行发电,从而副电机不对动力电池充电。
[0514]
进一步而言,在副电机进入发电功率调节模式后,可对副电机的发电功率进行调节,下面对本发明实施例的发电功率调节过程进行具体描述。
[0515]
根据本发明的一个实施例,当副电机进入发电功率调节模式后,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3对副电机的发电功率P1进行调节。
[0516]
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3调节副电机的发电功率P1的公式如下:
[0517]
P1=P2+P3,其中,P2=P11+P21,
[0518]
P1为副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0519]
需要说明的是,电器设备包括第一电器设备和第二电器设备,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0520]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,整车驱动功率P11可包括动力电机的输出功率,可根据动力电机的预设油门-转矩曲线以及动力电机的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,可根据动力电池的SOC值获取动力电池的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池的充电功率P3=b3kw,则副电机的发电功率=b1+b2+b3。
[0521]
具体来说,在混合动力汽车行驶过程中,可获取动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机的发电功率P1,由此,可根据计算出的P1值对副电机的发电功率进行调节,例如可根据计算出的P1值对发动机的输出扭矩和转速进行控制,以对发动机带动副电机进行发电的功率进行调节。
[0522]
进一步地,根据本发明的一个实施例,对副电机的发电功率进行调节,包括:获取动力电池的SOC值变化速率,并根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机的发电功率。
[0523]
应当理解的是,可根据动力电池的SOC值获取动力电池的SOC值变化速率,例如,每个时间间隔t采集一次动力电池的SOC值,如此可将动力电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。
[0524]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机5的发电功率。
[0525]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机可只发电不参与驱动,由于发动 机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0526]
下面进一步介绍当副电机进入发电功率调节模式后,根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机的发电功率的具体调节方式。
[0527]
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
[0528]
第一种情况为:整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机的最大允许发电功率Pmax。
[0529]
在第一种情况的一个实施例中,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以调节副电机的发电功率P1。
[0530]
需要说明的是,可预存动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表,由此,在获取动力电池的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池的充电功率P3。动力电池的SOC值变化速率与动力电池的充电功率P3满足下表1所示的关系。
[0531]
表1
[0532]
[表0007]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5

[0533]
由表1所知,当获取到的SOC值变化速率为A1时,获取到的相应的动力电池的充电 功率P3为B1;当获取到的SOC值变化速率为A2时,获取到的相应的动力电池的充电功率P3为B2;当获取到的SOC值变化速率为A3时,获取到的相应的动力电池的充电功率P3为B3;当获取到的SOC值变化速率为A4时,获取到的相应的动力电池的充电功率P3为B4;当获取到的SOC值变化速率为A5时,获取到的相应的动力电池的充电功率P3为B5。
[0534]
具体来说,在副电机进入发电功率调节模式后,实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
[0535]
当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以调节副电机1的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
[0536]
由此,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的充电功率P3与发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机的发电功率,以使发动机运行在预设的最佳经济区域,且发动机只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0537]
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率P1。
[0538]
具体来说,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于副电机的最大允许发电功率Pmax时,在控制发动机工作在预设的最佳经济区域时还根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,其 中,获取的输出功率=P3+P2。进而,控制发动机以获取的输出功率进行发电以调节副电机的发电功率P1,从而使动力电池的SOC值增加,并使发动机工作在预设的最佳经济区域。
[0539]
由此,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于副电机的最大允许发电功率Pmax时,根据动力电池的充电功率P3与整车需求功率P2之和获取发动机的输出功率,以使发动机运行在预设的最佳经济区域,且发动机只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0540]
在第三种情况的一个实施例中,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0541]
具体来说,当整车需求功率P2大于副电机的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机的发电功率P1时,还控制发动机通过离合器输出驱动力至车轮以使发动机参与驱动,从而通过发动机承担部分驱动功率P',以降低对副电机的发电功率P1的需求,使发动机工作在预设的最佳经济区域。
[0542]
由此,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,动力电池对外放电以为动力电机供电,此时,控制发动机和动力电机同时将动力输出到混合动力汽车的车轮,以使发动机工作在预设的最佳经济区域。
[0543]
如上所述,如图17所示,本发明实施例的混合动力汽车的发电控制方法具体包括以下步骤:
[0544]
S201:获取动力电池的SOC值M和混合动力汽车的车速V。
[0545]
S202:判断混合动力汽车的车速V是否小于第一预设车速V1。
[0546]
如果是,则执行步骤S203;如果否,则执行步骤S204。
[0547]
S203:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0548]
如果是,则执行步骤S207;如果否,则执行步骤S206。
[0549]
S204:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0550]
如果是,则执行步骤S205;如果否,则执行步骤S206。
[0551]
S205:控制发动机参与驱动。
[0552]
S206:控制发动机不带动副电机发电。
[0553]
S207:获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
[0554]
S208:判断油门踏板深度D是否大于第一预设深度D1或者混合动力汽车的整车阻力F是否大于第一预设阻力F1或者动力电池的SOC值M是否小于预设的极限值M2。
[0555]
如果是,则执行步骤S205;如果否,则执行步骤S209。
[0556]
S209:获取混合动力汽车的整车需求功率P2。
[0557]
S210:判断整车需求功率P2是否小于等于副电机的最大允许发电功率Pmax。
[0558]
如果是,则执行步骤S211;如果否,则执行步骤S205。
[0559]
S211:控制发动机带动副电机进行发电,且发动机不参与驱动。
[0560]
此时,控制副电机进入发电功率调节模式。
[0561]
S212:判断整车需求功率P2是否小于发动机的最佳经济区域对应的最小输出功率Pmin。
[0562]
如果是,则执行步骤S213;如果否,则执行步骤S214。
[0563]
S213:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S215。
[0564]
S214:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S216。
[0565]
S215:判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
[0566]
如果是,则执行步骤S217;如果否,则执行步骤S216。
[0567]
S216:根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电。
[0568]
S217:通过控制发动机以该最小输出功率Pmin进行发电。
[0569]
综上,根据本发明实施例的混合动力汽车的发电控制方法,先获取动力电池的SOC值和混合动力汽车的车速,根据动力电池的SOC值和混合动力汽车的车速扣工资复点机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
[0570]
基于上述实施例的混合动力汽车及其动力系统,本发明实施例还提出又一种混合动力汽车的发电控制方法。
[0571]
图18是根据本发明实施例的混合动力汽车的发电控制方法的流程图。如图18所示,混合动力汽车的发电控制方法包括以下步骤:
[0572]
S100:获取动力电池的SOC值和混合动力汽车的车速。
[0573]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值,以使获取动力电池的SOC值。
[0574]
S200:根据动力电池的SOC值和混合动力汽车的车速控制副电机的发电功率P1。
[0575]
S300:根据副电机的发电功率获得混合动力汽车的发动机的发电功率,以控制发动机运行在预设的最佳经济区域,其中,副电机在发动机的带动下进行发电。
[0576]
还需说明的是,可结合发动机万有特性曲线图确定发动机的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机的输出扭矩,横坐标是发动机的转速,曲线a为发动机的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,可通过控制发动机的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机运行在预设的最佳经济区域。
[0577]
进一步地,根据本发明的一个实施例,在混合动力汽车的行驶过程中,获取动力电池的SOC值和混合动力汽车的车速V,并根据动力电池的SOC值和混合动力汽车的车速V控制副电机的发电功率P1,以及根据副电机的发电功率P1获得发动机1的发电功率P0以控制发动机运行在预设的最佳经济区域。
[0578]
具体来说,在混合动力汽车行驶过程中,发动机可通过离合器将动力输出到混合动力汽车的车轮,并且发动机还可带动副电机进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机,即带动副电机进行发电的功率,另一部分是输出至车轮,即驱动车轮的功率。
[0579]
在发动机带动副电机进行发电时,可首先获取动力电池的SOC值和混合动力汽车的车速,然后根据动力电池的SOC值和混合动力汽车的车速控制副电机的发电功率P1,以及根据副电机的发电功率P1获得发动机1的发电功率P0以控制发动机运行在预设的最佳经济区域。在使发动机工作在预设的最佳经济区域的前提下确定发动机带动副电机进行发电的功率,从而调节副电机的发电功率。
[0580]
由此,能够使发动机工作在预设的最佳经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机的油耗,降低发动机的噪音,提高整车运行的经济性。而且,由于低速时副电机具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
[0581]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于 等于第一预设值时,如果混合动力汽车的车速V小于第一预设车速V1,则对副电机的发电功率P1进行控制。
[0582]
其中,第一预设值可为预先设置的动力电池的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池的SOC值小于或等于预设的极限值时,动力电池的SOC值处于第一电量区间,此时动力电池只充电不放电;当动力电池的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池的SOC值处于第二电量区间,此时动力电池存在充电需求,即可主动给动力电池充电;当动力电池的SOC值大于第一预设值时,动力电池的SOC值处于第三电量区间,此时动力电池可不充电,即不会主动给动力电池充电。
[0583]
具体来说,在获取动力电池的SOC值和混合动力汽车的车速V之后,可判断动力电池的SOC值所处的区间,如果动力电池的SOC值处于第二电量区间,动力电池的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池进行充电,此时进一步判断混合动力汽车的车速V是否小于第一预设车速V1,如果混合动力汽车的车速V小于第一预设车速V1,则对副电机5的发电功率P1进行控制,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0584]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0585]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1时,还获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,对副电机的发电功率P1进行控制。
[0586]
具体来说,在混合动力汽车的行驶过程中,如果动力电池的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,对副电机的发电功率P1进行控制。
[0587]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用, 从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0588]
更进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,还获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,对副电机的发电功率P1进行控制。
[0589]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0590]
具体来说,如果动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax,则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,说明混合动力汽车运行在低速模式,并对副电机的发电功率P1进行控制。
[0591]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0592]
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0593]
根据本发明的一个实施例,当控制发动机单独带动副电机进行发电、并控制动力电机单独输出驱动力时,发动机的发电功率P0根据以下公式获得:
[0594]
P0=P1/η/ζ
[0595]
其中,P1表示副电机的发电功率,η表示皮带传动效率,ζ表示副电机的效率。
[0596]
也就是说,在发动机可只发电不参与驱动的情况下,可根据副电机的发电功率、皮带传动效率η和副电机的效率ζ计算出发动机的发电功率P0,并控制发动机以获取的发电功率P0带动副电机进行发电,以控制副电机的发电功率。
[0597]
相应地,当混合动力汽车的动力电池的SOC值、车速V、油门踏板深度D和整车阻力F不满足上述条件时,发动机可参与驱动,其具体工作过程如下。
[0598]
根据本发明的一个实施例,在动力电池的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动。
[0599]
也就是说,在动力电池的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动,此时,动力电池不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机不足以驱动混合动力汽车行驶,发动机参与驱动以进行补足驱动。
[0600]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0601]
更具体地,当整车需求功率大于副电机的最大允许发电功率时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0602]
并且,当动力电池的SOC值小于等于预设的极限值M2时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的整车阻力F大于第一预设阻力F1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0603]
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断,并根据以下三种判断结果调节副电机的发电功率:
[0604]
其一,当动力电池的SOC值小于预设的极限值M2时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池 的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
[0605]
其二,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
[0606]
其三,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
[0607]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0608]
此外,当动力电池的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0609]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0610]
当然,应当理解的是,当动力电池的SOC值大于第一预设值时,发动机不带动副电机进行发电,此时动力电池的电量接近满电,无需充电,发动机不带动副电机进行发电。也就是说,在动力电池的电量接近满电时,发动机不带动副电机进行发电,从而副电机不对动力电池充电。
[0611]
进一步而言,在副电机进入发电功率调节模式后,可对副电机的发电功率进行调节,下面对本发明实施例的发电功率调节过程进行具体描述。
[0612]
根据本发明的一个实施例,当副电机进入发电功率调节模式后,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3对副电机的发电功率P1进行控制。
[0613]
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功 率P3控制副电机的发电功率P1的公式如下:
[0614]
P1=P2+P3,其中,P2=P11+P21,
[0615]
P1为副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0616]
需要说明的是,电器设备可包括第一电器设备和第二电器设备,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0617]
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,可根据动力电机的预设油门-转矩曲线以及动力电机的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,可根据动力电池的SOC值获取动力电池的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池的充电功率P3=b3kw,则副电机的发电功率=b1+b2+b3。
[0618]
具体来说,在混合动力汽车行驶过程中,可获取动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机的发电功率P1,由此,可根据计算出的P1值对副电机的发电功率进行控制,例如可根据计算出的P1值对发动机的输出扭矩和转速进行控制,以对发动机带动副电机进行发电的功率进行控制。
[0619]
进一步地,根据本发明的一个实施例,对副电机的发电功率进行调节,包括:获取动力电池的SOC值变化速率,并根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率控制副电机的发电功率。
[0620]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率控制副电机5的发电功率。
[0621]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0622]
下面进一步介绍当副电机进入发电功率调节模式后,根据整车需求功率P2与发动机的 最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率控制副电机的发电功率的具体调节方式。
[0623]
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
[0624]
第一种情况为:整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机的最大允许发电功率Pmax。
[0625]
在第一种情况的一个实施例中,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机以该最小输出功率Pmin进行发电以控制副电机的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以控制副电机的发电功率P1。
[0626]
需要说明的是,可预存动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表,由此,在获取动力电池的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池的充电功率P3。动力电池的SOC值变化速率与动力电池的充电功率P3满足下表1所示的关系。
[0627]
表1
[0628]
[表0008]
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5

[0629]
由表1所知,当获取到的SOC值变化速率为A1时,获取到的相应的动力电池的充电功率P3为B1;当获取到的SOC值变化速率为A2时,获取到的相应的动力电池的充电功率P3为B2;当获取到的SOC值变化速率为A3时,获取到的相应的动力电池的充电功率P3为B3;当获取到的SOC值变化速率为A4时,获取到的相应的动力电池的充电功率P3 为B4;当获取到的SOC值变化速率为A5时,获取到的相应的动力电池的充电功率P3为B5。
[0630]
具体来说,在对副电机进行发电功率控制时,实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于等于该最小输出功率Pmin与整车需求功率P2之差。
[0631]
当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以控制副电机1的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率。
[0632]
由此,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的充电功率P3与发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机的发电功率,以使发动机运行在预设的最佳经济区域,且发动机只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0633]
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率P1。
[0634]
具体来说,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于副电机的最大允许发电功率Pmax时,在控制发动机工作在预设的最佳经济区域时还根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,其中,获取的输出功率=P3+P2。进而,控制发动机以获取的输出功率进行发电以控制副电机的发电功率P1,从而使动力电池的SOC值增加,并使发动机工作在预设的最佳经济区域。
[0635]
由此,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin 且小于副电机5的最大允许发电功率Pmax时,根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1的输出功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
[0636]
在第三种情况的一个实施例中,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0637]
具体来说,当整车需求功率P2大于副电机的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机的发电功率P1时,还控制发动机通过离合器输出驱动力至车轮以使发动机参与驱动,从而通过发动机承担部分驱动功率P',以降低对副电机的发电功率P1的需求,使发动机工作在预设的最佳经济区域。
[0638]
由此,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,动力电池对外放电以给动力电机供电,此时,控制动力电机将动力输出到混合动力汽车的车轮,以使发动机工作在预设的最佳经济区域。
[0639]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0640]
如上所述,如图19所示,本发明实施例的混合动力汽车的发电控制方法具体包括以下步骤:
[0641]
S301:获取动力电池的SOC值M和混合动力汽车的车速V。
[0642]
S302:判断混合动力汽车的车速V是否小于第一预设车速V1。
[0643]
如果是,则执行步骤S303;如果否,则执行步骤S304。
[0644]
S303:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0645]
如果是,则执行步骤S307;如果否,则执行步骤S306。
[0646]
S304:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0647]
如果是,则执行步骤S305;如果否,则执行步骤S306。
[0648]
S305:控制发动机参与驱动。
[0649]
S306:控制发动机不带动副电机发电。
[0650]
S307:获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
[0651]
S308:判断油门踏板深度D是否大于第一预设深度D1或者混合动力汽车的整车阻力F是否大于第一预设阻力F1或者动力电池的SOC值M是否小于预设的极限值M2。
[0652]
如果是,则执行步骤S305;如果否,则执行步骤S309。
[0653]
S309:获取混合动力汽车的整车需求功率P2。
[0654]
S310:判断整车需求功率P2是否小于等于副电机的最大允许发电功率Pmax。
[0655]
如果是,则执行步骤S311;如果否,则执行步骤S305。
[0656]
S311:控制发动机带动副电机进行发电,且发动机不参与驱动。
[0657]
S312:判断整车需求功率P2是否小于发动机的最佳经济区域对应的最小输出功率Pmin。
[0658]
如果是,则执行步骤S313;如果否,则执行步骤S314。
[0659]
S313:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S315。
[0660]
S314:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S316。
[0661]
S315:判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
[0662]
如果是,则执行步骤S317;如果否,则执行步骤S316。
[0663]
S316:根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电。
[0664]
S317:通过控制发动机以该最小输出功率Pmin进行发电。
[0665]
综上,根据本发明实施例的混合动力汽车的发电控制方法,先获取动力电池的SOC值和混合动力汽车的车速,根据动力电池的SOC值和混合动力汽车的车速扣工资复点机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
[0666]
基于上述实施例的混合动力汽车及其动力系统,本发明实施例还提出再一种混合动力汽车的发电控制方法。
[0667]
图20是根据本发明实施例的混合动力汽车的发电控制方法的流程图。如图20所示,混合动力汽车的发电控制方法,包括以下步骤:
[0668]
S21:获取混合动力汽车的动力电池的SOC值和混合动力汽车的车速、混合动力汽车的低压蓄电池的SOC值;
[0669]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值和低压蓄电池的SOC值,以使获取动力电池的SOC值和低压蓄电池的SOC值。
[0670]
S22:根据动力电池的SOC值和混合动力汽车的车速控制混合动力汽车的副电机进入发电功率调节模式,以使混合动力汽车的发动机运行在预设的最佳经济区域,其中,副电机在发动机的带动下进行发电;
[0671]
其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机带动副电机进行发电以对副电机的发电功率进行调节。
[0672]
还需说明的是,可结合发动机万有特性曲线图确定发动机的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机的输出扭矩,横坐标是发动机的转速,曲线a为发动机的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,可通过控制发动机的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机运行在预设的最佳经济区域。
[0673]
S23:当副电机进入发电功率调节模式后,根据低压蓄电池的SOC值对副电机的发电功率进行调节。
[0674]
具体来说,在混合动力汽车行驶过程中,发动机可通过离合器将动力输出到混合动力汽车的车轮,并且发动机还可带动副电机进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机,即带动副电机进行发电的功率,另一部分是输出至车轮,即驱动车轮的功率。
[0675]
在发动机带动副电机进行发电时,可首先获取动力电池的SOC值和混合动力汽车的车速,然后根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机工作在预设的最佳经济区域。在发电功率调节模式,可在使发动机工作在预设的最佳经济区域的前提下调节副电机的发电功率。其中,在副电机进入发电功率调节模式后,还根据低压蓄电池的SOC值进一步调节副电机的发电功率。
[0676]
由此,能够使发动机工作在预设的最佳经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机的油耗,降低发动机的噪音,提高整车运行的经济性。而且,由于低速时副电机具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车 低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0677]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速小于第一预设车速,则控制副电机进入发电功率调节模式。
[0678]
其中,第一预设值可为预先设置的动力电池的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池的SOC值小于或等于预设的极限值时,动力电池的SOC值处于第一电量区间,此时动力电池只充电不放电;当动力电池的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池的SOC值处于第二电量区间,此时动力电池存在充电需求,即可主动给动力电池充电;当动力电池的SOC值大于第一预设值时,动力电池的SOC值处于第三电量区间,此时动力电池可不充电,即不会主动给动力电池充电。
[0679]
具体来说,在获取动力电池的SOC值和混合动力汽车的车速之后,可判断动力电池的SOC值所处的区间,如果动力电池的SOC值处于第二电量区间,动力电池的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池进行充电,此时进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则控制副电机进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0680]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0681]
进一步地,当动力电池的SOC值大于预设的极限值且小于等于第一预设值、以及混合动力汽车的车速小于第一预设车速时,还获取混合动力汽车的整车需求功率,并在整车需求功率小于等于副电机的最大允许发电功率时,控制副电机进入发电功率调节模式。
[0682]
也就是说,在判断动力电池的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速之后,还可以进一步判断整车需求功率是否大于副电机的最大允许发电功率,如果整车需求功率小于等于副电机的最大允许发电功率,则控制副电机进入发电功率调节模式,此时,整车所需的驱动力较少,且整车需求功率较小,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0683]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0684]
更进一步地,当动力电池的SOC值大于预设的极限值且小于等于第一预设值、混合动力汽车的车速小于第一预设车速、且整车需求功率小于等于副电机的最大允许发电功率时,还获取混合动力汽车的油门踏板深度和混合动力汽车的整车阻力,并在油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力时,控制副电机进入发电功率调节模式。
[0685]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0686]
也就是说,在判断动力电池的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速,且整车需求功率小于等于副电机的最大允许发电功率之后,还可以进一步判断油门踏板深度是否大于第一预设深度且混合动力汽车的整车阻力是否大于第一预设阻力,如果油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力,则控制副电机进入发电功率调节模式,此时,整车所需的驱动力较少,且整车需求功率较小,油门踏板深度较小,整车阻力也较小,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0687]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0688]
如上所述,在混合动力汽车低速行驶时,发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0689]
另外,根据本发明的一个实施例,根据本发明的一个实施例,在动力电池的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动。
[0690]
也就是说,在动力电池的SOC值小于预设的极限值、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度 大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块控制发动机参与驱动,此时,动力电池不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机不足以驱动混合动力汽车行驶,发动机参与驱动以进行补足驱动。
[0691]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0692]
更具体地,当整车需求功率大于副电机的最大允许发电功率时,还控制发动机参与驱动以使发动机通过离合器将动力输出到混合动力汽车的车轮。
[0693]
并且,当动力电池的SOC值小于等于预设的极限值时,还控制发动机参与驱动以使发动机通过离合器将动力输出到混合动力汽车的车轮;当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0694]
也就是说,可实时获取动力电池的SOC值、混合动力汽车的油门踏板深度、车速、整车阻力以及整车需求功率,并对动力电池的SOC值、混合动力汽车的油门踏板深度、车速和整车阻力进行判断:
[0695]
其一,当动力电池的SOC值小于预设的极限值时,因动力电池的电量过低,动力电池无法提供足够的电能,控制发动机和动力电机同时参与驱动,并且还可控制发动机带动副电机进行发电以对动力电池进行充电,此时还可控制发动机带动副电机进行发电,并且通过调节副电机的发电功率可使发动机工作在预设的最佳经济区域。
[0696]
其二,当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,因油门踏板深度较深,控制模块控制发动机和动力电机同时参与驱动,此时还可控制发动机带动副电机进行发电,并且通过调节副电机的发电功率可使发动机工作在预设的最佳经济区域。
[0697]
其三,当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,因整车阻力较大,可控制发动机和动力电机同时参与驱动,此时还可控制发动机带动副电机进行发电,并且通过调节副电机的发电功率可使发动机工作在预设的最佳经济区域。
[0698]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0699]
此外,控制模块还用于:当动力电池的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0700]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0701]
当然,应当理解的是,控制模块还用于:当动力电池的SOC值大于第一预设值时,发动机不带动副电机进行发电,此时动力电池的电量接近满电,无需充电,发动机不带动副电机进行发电。也就是说,在动力电池的电量接近满电时,发动机不带动副电机进行发电,从而副电机不对动力电池充电。
[0702]
进一步而言,在副电机进入电功率调节模式后,可对副电机的发电功率进行调节,下面对本发明实施例的发电功率调节过程进行具体描述。
[0703]
根据本发明的一个实施例,当副电机进入发电功率调节模式后,根据混合动力汽车的整车需求功率、动力电池的充电功率和低压蓄电池的充电功率、低压蓄电池的SOC值对副电机的发电功率进行调节。
[0704]
具体地,根据混合动力汽车的整车需求功率、动力电池的充电功率和低压蓄电池的充电功率调节副电机的发电功率的公式如下:
[0705]
P1=P2+P3+P4,其中,P2=P11+P21,
[0706]
P1为副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P4为低压蓄电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0707]
需要说明的是,电器设备包括第一电器设备和第二电器设备,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0708]
还需说明的是,整车驱动功率P11可包括动力电机的输出功率,可根据动力电机的预设油门-转矩曲线以及动力电机的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定;可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21;可根据动力电池的SOC值获取动 力电池的充电功率P3,并根据低压蓄电池的SOC值获取低压蓄电池的充电功率P4。
[0709]
具体来说,在混合动力汽车行驶过程中,可获取动力电池的充电功率P3、低压蓄电池的充电功率P4、整车驱动功率P11和电器设备功率P21,并将动力电池的充电功率P3、低压蓄电池的充电功率P4、整车驱动功率P11和电器设备功率P21之和作为副电机的发电功率P1,由此,可根据计算出的P1值对副电机的发电功率进行调节,例如可根据计算出的P1值对发动机的输出扭矩和转速进行控制,以对发动机副电机进行发电的功率进行调节。
[0710]
进一步地,根据本发明的一个实施例,对副电机的发电功率进行调节,包括:获取动力电池的SOC值变化速率,并根据整车需求功率与发动机的最佳经济区域对应的最小输出功率之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率调节副电机的发电功率。
[0711]
应当理解的是,可根据动力电池的SOC值获取动力电池的SOC值变化速率,例如,每个时间间隔t采集一次动力电池的SOC值,如此可将动力电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池的SOC值变化速率。类似地,可根据低压蓄电池的SOC值获取低压蓄电池的SOC值变化速率,例如,每个时间间隔t采集一次低压蓄电池的SOC值,如此可将低压蓄电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为低压蓄电池的SOC值变化速率。
[0712]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率,在确定发动机的最佳经济区域对应的最小输出功率之后,即可根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率调节副电机的发电功率。
[0713]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0714]
下面进一步介绍当副电机5进入发电功率调节模式后,根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率调节副电机的发电功率的具体控制方式。
[0715]
具体地,当低压蓄电池的SOC值大于预设的低电量阈值时,根据动力电池的SOC值变化速率获取动力电池的充电功率,并判断动力电池的充电功率是否小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,其中,如果动力电池的充电功率小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则通过控制发动机以该最小输出功率进行发电以调节副电机的发电功率;如果动力电池的充电功率大于等于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则根据动力电池的充电功率与整车需求功率之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
[0716]
具体地,当低压蓄电池的SOC值小于等于预设的低电量阈值时,获取低压蓄电池的SOC值变化速率和动力电池的SOC值变化速率,并根据低压蓄电池的SOC值变化速率获取低压蓄电池的充电功率和根据动力电池的SOC值变化速率获取动力电池的充电功率,以及判断低压蓄电池的充电功率与动力电池的充电功率之和是否小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,其中,如果低压蓄电池的充电功率与动力电池的充电功率之和小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则通过控制发动机以该最小输出功率进行发电以调节副电机的发电功率;如果低压蓄电池的充电功率与动力电池的充电功率之和大于等于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则根据动力电池的充电功率、低压蓄电池的充电功率与整车需求功率之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
[0717]
需要说明的是,控制模块内可预存动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表,由此,在获取动力电池的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池的充电功率P3。例如,动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表可如下表1所示。
[0718]
表1
[0719]
[表0009]
动力电池的SOC值变化速率 A1 A2 A3 A4 A5
动力电池的充电功率 B1 B2 B3 B4 B5

[0720]
由上表1可知,当动力电池的SOC值变化速率为A1时可获取对应的动力电池的充电功率P3为B1;当动力电池的SOC值变化速率为A2时可获取对应的动力电池的充电功率 P3为B2;当动力电池的SOC值变化速率为A3时可获取对应的动力电池的充电功率P3为B3;当动力电池的SOC值变化速率为A4时可获取对应的动力电池的充电功率P3为B4;当动力电池的SOC值变化速率为A5时可获取对应的动力电池的充电功率P3为B5。
[0721]
类似地,控制模块内可预存低压蓄电池的SOC值变化速率与低压蓄电池的充电功率P4之间的第二关系表,由此,在获取低压蓄电池的SOC值变化速率之后,通过比对第二关系表即可获取对应的低压蓄电池的充电功率P4。例如,低压蓄电池的SOC值变化速率与低压蓄电池的充电功率P4之间的第一关系表可如下表2所示。
[0722]
表2
[0723]
[表0010]
低压蓄电池的SOC值变化速率 A11 A12 A13 A14 A15
低压蓄电池的充电功率 B11 B12 B13 B14 B15

[0724]
由上表2可知,当低压蓄电池的SOC值变化速率为A11时可获取对应的低压蓄电池的充电功率P4为B11;当低压蓄电池的SOC值变化速率为A12时可获取对应的低压蓄电池的充电功率P4为B12;当低压蓄电池的SOC值变化速率为A13时可获取对应的低压蓄电池的充电功率P4为B13;当低压蓄电池的SOC值变化速率为A14时可获取对应的低压蓄电池的充电功率P4为B14;当低压蓄电池的SOC值变化速率为A15时可获取对应的低压蓄电池的充电功率P4为B15。
[0725]
具体来说,在副电5进入电功率调节模式后,可获取低压蓄电池的SOC值、动力电池的SOC值、整车需求功率P2(整车驱动功率P11与电器设备功率P21之和),然后,判断低压蓄电池的SOC值是否大于预设的低电量阈值。
[0726]
如果低压蓄电池的SOC值大于预设的低电量阈值,则获取动力电池的SOC值变化速率,并查询动力电池的SOC值变化速率对应的动力电池的充电功率P3,以选择出合适的充电功率P3使动力电池的SOC值能够上升,并进一步判断动力电池的充电功率P3是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,如果是,即P3<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率,即控制发动机在最佳经济区域对应的最小输出功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池充电;如果否,即P3≥Pmin-P2,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电 机的发电功率,即在发动机的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池的充电功率P3与整车需求功率P2之和即(P2+P3或P11+P21+P3),并控制发动机以获取的输出功率进行发电。
[0727]
如果低压蓄电池的SOC值小于等于预设的低电量阈值,则获取动力电池的SOC值变化速率,并查询动力电池的SOC值变化速率对应的动力电池的充电功率P3,以选择出合适的充电功率P3使动力电池的SOC值能够上升,并获取低压蓄电池的SOC值变化速率,并查询低压蓄电池的SOC值变化速率对应的低压蓄电池的充电功率P4,以选择出合适的充电功率P4使低压蓄电池的SOC值能够上升,并进一步判断低压蓄电池的充电功率P4与动力电池的充电功率P3之和是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。如果是,即P3+P4<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率,即控制发动机在最佳经济区域对应的最小输出功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池和低压蓄电池充电;如果否,即P3+P4≥Pmin-P2,则根据动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率,即在发动机的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和即(P2+P3+P4或P11+P21+P3+P4),并控制发动机以获取的输出功率进行发电。
[0728]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0729]
如上所述,如图21所示,本发明实施例的混合动力汽车的发电控制方法包括以下步骤:
[0730]
S601:获取动力电池的SOC值M和混合动力汽车的车速V。
[0731]
S602:判断混合动力汽车的车速V是否小于第一预设车速V1。
[0732]
如果是,则执行步骤S603;如果否,则执行步骤S604。
[0733]
S603:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0734]
如果是,则执行步骤S607;如果否,则执行步骤S606。
[0735]
S604:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0736]
如果是,则执行步骤S605;如果否,则执行步骤S606。
[0737]
S605:控制发动机参与驱动。
[0738]
S606:控制发动机不带动副电机发电。
[0739]
S607:获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
[0740]
S608:判断油门踏板深度D是否大于第一预设深度D1或者混合动力汽车的整车阻力F是否大于第一预设阻力F1或者动力电池的SOC值M是否小于预设的极限值M2。
[0741]
如果是,则执行步骤S605;如果否,则执行步骤S609。
[0742]
S609:获取混合动力汽车的整车需求功率P2。
[0743]
S610:判断整车需求功率P2是否小于等于副电机的最大允许发电功率Pmax。
[0744]
如果是,则执行步骤S611;如果否,则执行步骤S605。
[0745]
S611:控制发动机带动副电机进行发电,且发动机不参与驱动。此时,控制副电机进入发电功率调节模式。
[0746]
S612:判断低压蓄电池的SOC值是否小于等于预设的低电量阈值。
[0747]
如果是,则执行步骤S617;如果否,则执行步骤S613。
[0748]
S613:根据动力电池的SOC值变化速率获取动力电池的充电功率P3。
[0749]
S614:判断动力电池的充电功率P3是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。
[0750]
如果是,则执行步骤S615;如果否,则执行步骤S616。
[0751]
S615:通过控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率。
[0752]
S616:根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
[0753]
S617:根据低压蓄电池的SOC值变化速率获取低压蓄电池的充电功率P4。
[0754]
S618:根据动力电池的SOC值变化速率获取动力电池的充电功率P3。
[0755]
S619:判断低压蓄电池的充电功率P4与动力电池的充电功率P3之和是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。
[0756]
如果是,则执行步骤S620;如果否,则执行步骤S621。
[0757]
S620:通过控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率。
[0758]
S621:根据动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
[0759]
综上,根据本发明实施例提出的混合动力汽车的发电控制方法,获取动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,当副电机进入发电功率调节模式后,还根据低压蓄电池的SOC值对副电机的发电功率进行调节,从而能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。
[0760]
基于上述实施例的混合动力汽车及其动力系统,本发明实施例还提出再一种混合动力汽车的发电控制方法。
[0761]
图22是根据本发明实施例的混合动力汽车的发电控制方法的流程图。如图22所示,混合动力汽车的发电控制方法,包括以下步骤:
[0762]
S31:获取混合动力汽车的动力电池的SOC值和混合动力汽车的车速、混合动力汽车的低压蓄电池的SOC值;
[0763]
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值和低压蓄电池的SOC值,以使获取动力电池的SOC值和低压蓄电池的SOC值。
[0764]
S32:根据动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速控制混合动力汽车的副电机的发电功率;
[0765]
S33:根据副电机的发电功率获得混合动力汽车的发动机的发电功率,以控制发动机运行在预设的最佳经济区域,其中,副电机在发动机的带动下进行发电。
[0766]
还需说明的是,可结合发动机万有特性曲线图确定发动机的预设最佳经济区域。如图7所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机的输出扭矩,横坐标是发动机的转速,曲线a为发动机的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,可通过控制发动机的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机运行在预设的最佳经济区域。
[0767]
具体来说,在混合动力汽车行驶过程中,发动机可通过离合器将动力输出到混合动力汽车的车轮,并且发动机还可带动副电机进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机,即带动副电机进行发电的发电功率,另一部分是输出至车轮,即驱动车轮的驱动功率。
[0768]
在发动机带动副电机进行发电时,可首先动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速,然后根据动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速控制副电机的发电功率,并进一步根据副电机的发电功率获得发动机的发电功率,以控制发动机运行在预设的最佳经济区域。换言之,控制模块可在使发动机工作在预设的最佳经济区域的前提下控制副电机的发电功率。
[0769]
由此,能够使发动机工作在预设的最佳经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机的油耗,降低发动机的噪音,提高整车运行的经济性。而且,由于低速时副电机具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶,并且,通过对低压蓄电池充电,可确保低压电器设备的用电需求,并可在副电机停止发电且动力电池故障或电量不足时,通过低压蓄电池实现整车低压供电,进而确保整车可实现纯燃油模式行驶,提高整车行驶里程。
[0770]
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速小于第一预设车速,则对副电机的发电功率进行控制。
[0771]
其中,第一预设值可为预先设置的动力电池的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池的SOC值小于或等于预设的极限值时,动力电池的SOC值处于第一电量区间,此时动力电池只充电不放电;当动力电池的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池的SOC值处于第二电量区间,此时动力电池存在充电需求,即可主动给动力电池充电;当动力电池的SOC值大于第一预设值时,动力电池的SOC值处于第三电量区间,此时动力电池可不充电,即不会主动给动力电池充电。
[0772]
具体来说,在获取动力电池的SOC值和混合动力汽车的车速之后,可判断动力电池的SOC值所处的区间,如果动力电池的SOC值处于第二电量区间,动力电池的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池进行充电,此时进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速, 则对副电机的发电功率进行控制,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0773]
由此,在低速时发动机只发电不参与驱动,可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0774]
进一步地,当动力电池的SOC值大于预设的极限值且小于等于第一预设值、以及混合动力汽车的车速小于第一预设车速时,还获取混合动力汽车的整车需求功率,并在整车需求功率小于等于副电机的最大允许发电功率时,对副电机的发电功率进行控制。
[0775]
也就是说,在判断动力电池的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速之后,还可以进一步判断整车需求功率是否大于副电机的最大允许发电功率,如果整车需求功率小于等于副电机的最大允许发电功率,则对副电机的发电功率进行控制,此时,整车所需的驱动力较少,且整车需求功率较小,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0776]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0777]
更进一步地,当动力电池的SOC值大于预设的极限值且小于等于第一预设值、混合动力汽车的车速小于第一预设车速、且整车需求功率小于等于副电机的最大允许发电功率时,还获取混合动力汽车的油门踏板深度和混合动力汽车的整车阻力,并在油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力时,对副电机的发电功率进行控制。
[0778]
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
[0779]
也就是说,在判断动力电池的SOC值大于预设的极限值且小于或等于第一预设值,且混合动力汽车的车速小于第一预设车速,且整车需求功率小于等于副电机的最大允许发电功率之后,还可以进一步判断油门踏板深度是否大于第一预设深度且混合动力汽车的整车阻力是否大于第一预设阻力,如果油门踏板深度小于等于第一预设深度且混合动力汽车的整车阻力小于等于第一预设阻力,则对副电机的发电功率进行控制,此时,整车所需的驱动力较少,且整车需求功率较小,油门踏板深度较小,整车阻力也较小,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
[0780]
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用, 从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
[0781]
如上所述,在混合动力汽车低速行驶时,发动机可只发电不参与驱动,进由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
[0782]
根据本发明的一个具体实施例,当控制发动机单独带动副电机进行发电、并控制动力电机独自输出驱动力时,根据以下公式获得发动机的发电功率:
[0783]
P0=P1/η/ζ
[0784]
其中,P0为发动机的发电功率,P1为副电机的发电功率,η皮带传动效率,ζ为副电机的效率。
[0785]
也就是说,在发动机可只发电不参与驱动的情况下,控制模块可根据副电机的发电功率、皮带传动效率η和副电机的效率ζ计算出发动机的发电功率P0,并控制发动机以获取的发电功率P0带动副电机进行发电,以控制副电机的发电功率。
[0786]
另外,根据本发明的一个实施例,根据本发明的一个实施例,在动力电池的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动。
[0787]
也就是说,在动力电池的SOC值小于预设的极限值、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块控制发动机参与驱动,此时,动力电池不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机不足以驱动混合动力汽车行驶,发动机参与驱动以进行补足驱动。
[0788]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0789]
更具体地,当整车需求功率大于副电机的最大允许发电功率时,还控制发动机参与驱动以使发动机通过离合器将动力输出到混合动力汽车的车轮
[0790]
并且,当动力电池的SOC值小于等于预设的极限值时,还控制发动机参与驱动以使发 动机通过离合器将动力输出到混合动力汽车的车轮;当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0791]
也就是说,可实时获取动力电池的SOC值、混合动力汽车的油门踏板深度、车速、整车阻力以及整车需求功率,并对动力电池的SOC值、混合动力汽车的油门踏板深度、车速和整车阻力进行判断:
[0792]
其一,当动力电池的SOC值小于预设的极限值时,因动力电池的电量过低,动力电池无法提供足够的电能,控制发动机和动力电机同时参与驱动,此时还可控制发动机带动副电机进行发电,并且通过控制发动机的发电功率可使发动机工作在预设的最佳经济区域。
[0793]
其二,当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且油门踏板深度大于第一预设深度时,因油门踏板深度较深,控制模块控制发动机和动力电机同时参与驱动,此时还可控制发动机带动副电机进行发电,并且通过控制发动机的发电功率可使发动机工作在预设的最佳经济区域。
[0794]
其三,当动力电池的SOC值小于等于第一预设值、混合动力汽车的车速小于第一预设车速且混合动力汽车的整车阻力大于第一预设阻力时,因整车阻力较大,控制模块控制发动机和动力电机同时参与驱动,此时还可控制发动机带动副电机进行发电,并且通过控制发动机的发电功率可使发动机工作在预设的最佳经济区域。
[0795]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
[0796]
此外,控制模块还用于:当动力电池的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
[0797]
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
[0798]
当然,应当理解的是,控制模块还用于:当动力电池的SOC值大于第一预设值时,发 动机不带动副电机进行发电,此时动力电池的电量接近满电,无需充电,发动机不带动副电机进行发电。也就是说,在动力电池的电量接近满电时,发动机不带动副电机进行发电,从而副电机不对动力电池充电。
[0799]
进一步而言,当发动机可只带动副电机发电不参与驱动时,可对副电机的发电功率进行调节,下面对本发明实施例的发电功率控制过程进行具体描述。
[0800]
根据本发明的一个实施例,还根据混合动力汽车的整车需求功率、动力电池的充电功率和低压蓄电池的充电功率对副电机的发电功率进行控制。
[0801]
具体地,根据混合动力汽车的整车需求功率、动力电池的充电功率和低压蓄电池的充电功率控制副电机的发电功率的公式如下:
[0802]
P1=P2+P3+P4,其中,P2=P11+P21,
[0803]
P1为副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P4为低压蓄电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
[0804]
需要说明的是,电器设备包括第一电器设备和第二电器设备,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
[0805]
还需说明的是,整车驱动功率P11可包括动力电机的输出功率,可根据动力电机的预设油门-转矩曲线以及动力电机的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定;可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21;可根据动力电池的SOC值获取动力电池的充电功率P3,并根据低压蓄电池的SOC值获取低压蓄电池的充电功率P4。
[0806]
具体来说,在混合动力汽车行驶过程中,可获取动力电池的充电功率P3、低压蓄电池的充电功率P4、整车驱动功率P11和电器设备功率P21,并将动力电池的充电功率P3、低压蓄电池的充电功率P4、整车驱动功率P11和电器设备功率P21之和作为副电机的发电功率P1,由此,可根据计算出的P1值对副电机的发电功率进行控制,例如可根据计算出的P1值对发动机的输出扭矩和转速进行控制,以对发动机副电机进行发电的功率进行控制。
[0807]
进一步地,根据本发明的一个实施例,对副电机的发电功率进行控制,包括:获取动力电池的SOC值变化速率,并根据整车需求功率与发动机的最佳经济区域对应的最小输出功率之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率控制副电机的发电功率。
[0808]
应当理解的是,可根据动力电池的SOC值获取动力电池的SOC值变化速率,例如, 每个时间间隔t采集一次动力电池的SOC值,如此可将动力电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池的SOC值变化速率。类似地,可根据低压蓄电池的SOC值获取低压蓄电池的SOC值变化速率,例如,每个时间间隔t采集一次低压蓄电池的SOC值,如此可将低压蓄电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为低压蓄电池的SOC值变化速率。
[0809]
具体来说,可根据图7所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率,在确定发动机的最佳经济区域对应的最小输出功率之后,即可根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率控制副电机的发电功率。
[0810]
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0811]
下面进一步介绍当发动机只带动副电机发电不参与驱动时,根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率、低压蓄电池的SOC值、低压蓄电池的SOC值变化速率控制副电机的发电功率的具体控制方式。
[0812]
具体地,当低压蓄电池的SOC值大于预设的低电量阈值时,根据动力电池的SOC值变化速率获取动力电池的充电功率,并判断动力电池的充电功率是否小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,其中,如果动力电池的充电功率小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则通过控制发动机以该最小输出功率进行发电以控制副电机的发电功率;如果动力电池的充电功率大于等于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则根据动力电池的充电功率与整车需求功率之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率。
[0813]
具体地,当低压蓄电池的SOC值小于等于预设的低电量阈值时,获取低压蓄电池的SOC值变化速率和动力电池的SOC值变化速率,并根据低压蓄电池的SOC值变化速率获取低压蓄电池的充电功率和根据动力电池的SOC值变化速率获取动力电池的充电功率,以及判 断低压蓄电池的充电功率与动力电池的充电功率之和是否小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,其中,如果低压蓄电池的充电功率与动力电池的充电功率之和小于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则通过控制发动机以该最小输出功率进行发电以控制副电机的发电功率;如果低压蓄电池的充电功率与动力电池的充电功率之和大于等于发动机的最佳经济区域对应的最小输出功率与整车需求功率之差,则根据动力电池的充电功率、低压蓄电池的充电功率与整车需求功率之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率。
[0814]
需要说明的是,控制模块内可预存动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表,由此,在获取动力电池的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池的充电功率P3。例如,动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表可如下表1所示。
[0815]
表1
[0816]
[表0011]
动力电池的SOC值变化速率 A1 A2 A3 A4 A5
动力电池的充电功率 B1 B2 B3 B4 B5

[0817]
由上表1可知,当动力电池的SOC值变化速率为A1时可获取对应的动力电池的充电功率P3为B1;当动力电池的SOC值变化速率为A2时可获取对应的动力电池的充电功率P3为B2;当动力电池的SOC值变化速率为A3时可获取对应的动力电池的充电功率P3为B3;当动力电池的SOC值变化速率为A4时可获取对应的动力电池的充电功率P3为B4;当动力电池的SOC值变化速率为A5时可获取对应的动力电池的充电功率P3为B5。
[0818]
类似地,控制模块内可预存低压蓄电池的SOC值变化速率与低压蓄电池的充电功率P4之间的第二关系表,由此,在获取低压蓄电池的SOC值变化速率之后,通过比对第二关系表即可获取对应的低压蓄电池的充电功率P4。例如,低压蓄电池的SOC值变化速率与低压蓄电池的充电功率P4之间的第一关系表可如下表2所示。
[0819]
表2
[0820]
[0821]
[0822]
由上表2可知,当低压蓄电池的SOC值变化速率为A11时可获取对应的低压蓄电池的充电功率P4为B11;当低压蓄电池的SOC值变化速率为A12时可获取对应的低压蓄电池的充电功率P4为B12;当低压蓄电池的SOC值变化速率为A13时可获取对应的低压蓄电池的充电功率P4为B13;当低压蓄电池的SOC值变化速率为A14时可获取对应的低压蓄电池的充电功率P4为B14;当低压蓄电池的SOC值变化速率为A15时可获取对应的低压蓄电池的充电功率P4为B15。
[0823]
具体来说,在副电5进入电功率调节模式后,可获取低压蓄电池的SOC值、动力电池的SOC值、整车需求功率P2(整车驱动功率P11与电器设备功率P21之和),然后,判断低压蓄电池的SOC值是否大于预设的低电量阈值。
[0824]
如果低压蓄电池的SOC值大于预设的低电量阈值,则获取动力电池的SOC值变化速率,并查询动力电池的SOC值变化速率对应的动力电池的充电功率P3,以选择出合适的充电功率P3使动力电池的SOC值能够上升,并进一步判断动力电池的充电功率P3是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差,如果是,即P3<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以控制副电机的发电功率,即控制发动机在最佳经济区域对应的最小输出功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池充电;如果否,即P3≥Pmin-P2,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率,即在发动机的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池的充电功率P3与整车需求功率P2之和即(P2+P3或P11+P21+P3),并控制发动机以获取的输出功率进行发电。
[0825]
如果低压蓄电池的SOC值小于等于预设的低电量阈值,则获取动力电池的SOC值变化速率,并查询动力电池的SOC值变化速率对应的动力电池的充电功率P3,以选择出合适的充电功率P3使动力电池的SOC值能够上升,并获取低压蓄电池的SOC值变化速率,并查询低压蓄电池的SOC值变化速率对应的低压蓄电池的充电功率P4,以选择出合适的充电功率P4使低压蓄电池的SOC值能够上升,并进一步判断低压蓄电池的充电功率P4与动力电池的充电功率P3之和是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。如果是,即P3+P4<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以控制副电机的发电功率,即控制发动机在最佳经济区域对应的最小输出 功率Pmin运行,并以最佳经济区域对应的最小输出功率Pmin减去整车需求功率P2的功率即Pmin-P2对动力电池和低压蓄电池充电;如果否,即P3+P4≥Pmin-P2,则根据动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,以及通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率,即在发动机的预设的最佳经济区域内查找相应的输出功率,该获取的输出功率可为动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和即(P2+P3+P4或P11+P21+P3+P4),并控制发动机以获取的输出功率进行发电。
[0826]
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
[0827]
如上,如图23所示,本发明实施例的混合动力汽车的发电控制方法包括以下步骤:
[0828]
S701:获取动力电池的SOC值M和混合动力汽车的车速V。
[0829]
S702:判断混合动力汽车的车速V是否小于第一预设车速V1。
[0830]
如果是,则执行步骤S703;如果否,则执行步骤S704。
[0831]
S703:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0832]
如果是,则执行步骤S707;如果否,则执行步骤S706。
[0833]
S704:判断动力电池的SOC值M是否小于等于第一预设值M1。
[0834]
如果是,则执行步骤S705;如果否,则执行步骤S706。
[0835]
S705:控制发动机参与驱动。
[0836]
S706:控制发动机不带动副电机发电。
[0837]
S707:获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
[0838]
S708:判断油门踏板深度D是否大于第一预设深度D1或者混合动力汽车的整车阻力F是否大于第一预设阻力F1或者动力电池的SOC值M是否小于预设的极限值M2。
[0839]
如果是,则执行步骤S705;如果否,则执行步骤S709。
[0840]
S709:获取混合动力汽车的整车需求功率P2。
[0841]
S710:判断整车需求功率P2是否小于等于副电机的最大允许发电功率Pmax。
[0842]
如果是,则执行步骤S711;如果否,则执行步骤S705。
[0843]
S711:控制发动机带动副电机进行发电,且发动机不参与驱动。
[0844]
S712:判断低压蓄电池的SOC值是否小于等于预设的低电量阈值。
[0845]
如果是,则执行步骤S717;如果否,则执行步骤S713。
[0846]
S713:根据动力电池的SOC值变化速率获取动力电池的充电功率P3。
[0847]
S714:判断动力电池的充电功率P3是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。
[0848]
如果是,则执行步骤S715;如果否,则执行步骤S716。
[0849]
S715:通过控制发动机以该最小输出功率Pmin进行发电以控制副电机的发电功率。
[0850]
S716:根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率。
[0851]
S717:根据低压蓄电池的SOC值变化速率获取低压蓄电池的充电功率P4。
[0852]
S718:根据动力电池的SOC值变化速率获取动力电池的充电功率P3。
[0853]
S719:判断低压蓄电池的充电功率P4与动力电池的充电功率P3之和是否小于发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差。
[0854]
如果是,则执行步骤S720;如果否,则执行步骤S721。
[0855]
S720:通过控制发动机以该最小输出功率Pmin进行发电以控制副电机的发电功率。
[0856]
S721:根据动力电池的充电功率P3、低压蓄电池的充电功率P4与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以控制副电机的发电功率。
[0857]
综上,根据本发明实施例的混合动力汽车的发电控制方法,获取混合动力汽车的动力电池的SOC值和混合动力汽车的车速、混合动力汽车的低压蓄电池的SOC值,然后根据动力电池的SOC值、低压蓄电池的SOC值和混合动力汽车的车速控制混合动力汽车的副电机的发电功率,并根据副电机的发电功率获得混合动力汽车的发动机的发电功率,以控制发动机运行在预设的最佳经济区域,其中,副电机在发动机的带动下进行发电,从而能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。
[0858]
最后,本发明实施例还提出了一种计算机可读存储介质,具有存储于其中的指令,当指令被执行时,混合动力汽车执行上实施例的发电控制方法。
[0859]
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

权利要求书

[权利要求 1]
一种混合动力汽车的动力系统,其特征在于,包括: 发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮; 动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮; 动力电池,所述动力电池用于给所述动力电机供电; DC-DC变换器; 与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电时以实现给所述动力电池充电、给所述动力电机供电、给所述DC-DC变换器供电中的至少一个。
[权利要求 2]
如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述副电机还包括第一控制器,所述动力电机还包括第二控制器,所述副电机通过所述第一控制器分别连接到所述动力电池和所述DC-DC变换器,并通过所述第一控制器和第二控制器连接到所述动力电机。
[权利要求 3]
如权利要求1或2所述的混合动力汽车的动力系统,其特征在于,所述DC-DC变换器还与所述动力电池相连。
[权利要求 4]
如权利要求2或3所述的混合动力汽车的动力系统,其特征在于,所述DC-DC变换器还通过所述第二控制器与所述动力电机相连。
[权利要求 5]
如权利要求1-4任意一项所述的混合动力汽车的动力系统,其特征在于,所述DC-DC变换器还分别与所述混合动力汽车的第一电器设备和低压蓄电池相连以给所述第一电器设备和低压蓄电池供电,且所述低压蓄电池还与所述第一电器设备相连。
[权利要求 6]
如权利要求2-5任意一项所述的混合动力汽车的动力系统,其特征在于,所述第一控制器、所述第二控制器和所述动力电池还分别与所述混合动力汽车的第二电器设备相连。
[权利要求 7]
如权利要求1-6任意一项所述的混合动力汽车的动力系统,其特征在于,所述副电机为BSG电机。
[权利要求 8]
如权利要求1-7任意一项所述的混合动力汽车的动力系统,其特征在于,所述发动机和所述动力电机共同驱动所述混合动力汽车的同一车轮。
[权利要求 9]
如权利要求1-7任意一项所述的混合动力汽车的动力系统,其特征在于,所述混合动力汽车的车轮包括第一车轮和第二车轮; 发动机通过离合器将动力输出到所述混合动力汽车的第一车轮; 所述动力电机用于输出驱动力至所述混合动力汽车的第二车轮。
[权利要求 10]
一种混合动力汽车,其特征在于,包括如权利要求1-9中任一项所述的混合动力汽车的动力系统。

附图

[ 图 1]  
[ 图 2A]  
[ 图 2B]  
[ 图 3]  
[ 图 4]  
[ 图 5]  
[ 图 6]  
[ 图 7]  
[ 图 8]  
[ 图 9A]  
[ 图 9B]  
[ 图 9C]  
[ 图 10]  
[ 图 11]  
[ 图 12]  
[ 图 13]  
[ 图 14]  
[ 图 15]  
[ 图 16]  
[ 图 17]  
[ 图 18]  
[ 图 19]  
[ 图 20]  
[ 图 21]  
[ 图 22]  
[ 图 23]