Recherche dans les collections de brevets nationales et internationales
Certains contenus de cette application ne sont pas disponibles pour le moment.
Si cette situation persiste, veuillez nous contacter àObservations et contact
1. (WO2017004300) PROCÉDÉ DE MOULAGE PAR INJECTION À RÉGULATION DE FRONT D'ÉCOULEMENT À VITESSE CONSTANTE
Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

CLAIMS

What is claimed is:

1. A method, characterized in that the method comprises:

simulating, using a mold flow simulator, an injection molding filling cycle;

determining a flow profile comprising a cross-sectional area of a flow front of a flow of molten thermoplastic material during the simulated injection molding filling cycle; and

determining a force profile based at least in part on the determined flow profile, the force profile comprising a force to be applied to an injection molding ram such that the molten thermoplastic material has a substantially uniform flow front velocity at all times during a filling of one or more mold cavities in an injection molding apparatus operating the injection molding ram according to the determined force profile.

2. The method of claim 1, wherein determining the force profile comprises determining the force to be applied to the injection molding ram as a function of the cross-sectional area of the flow front.

3. The method of claim 1, wherein determining the force profile comprises determining the force to be applied to the injection molding ram such that a flow rate of the molten thermoplastic material is proportional to the cross-sectional area of the flow front.

4. The method of claim 1, wherein the flow profile comprises the cross-sectional area of the flow front of the flow of the molten thermoplastic material as a function of time, a distance from a gate of the mold cavities, or a cavity percent fill of the mold cavities.

5. The method of claim 1, wherein the cross-sectional area varies.

6. The method of claim 1, wherein the flow profile comprises a first cross-sectional area of the flow front at a first location and a second cross-sectional area of the flow front at a second location downstream of the first location, the second cross-sectional area being greater than the first cross-sectional area, and wherein determining the force profile comprises determining the force profile comprising a first force to be applied to the injection molding ram when it is determined that the flow front is proximate to the first location and a second force to be applied to the injection molding ram for the second cross-sectional area when it is determined that the flow front is proximate to the second location, the second force being larger than the first force.

7. The method of claim 1, wherein the flow profile comprises a first cross-sectional area of the flow front at a first location and a second cross-sectional area of the flow front at a second location downstream of the first location, the second cross-sectional area being less than the first cross-sectional area, and wherein determining the force profile comprises determining the force profile comprising a first force to be applied to the injection molding ram when it is determined that the flow front is proximate to the first location and a second force to be applied to the injection molding ram for the second cross-sectional area when it is determined that the flow front is proximate to the second location, the first force being larger than the second force.

8. The method of claim 1, wherein determining the force profile comprises determining at least one of a viscosity, a temperature, a density, regrind content, fillers, additives, and processing aids of the molten thermoplastic material.

9. The method of claim 1, wherein simulating comprises simulating the injection molding cycle for first and second mold cavities in the injection molding apparatus, the first and second mold cavities having different thicknesses, and wherein determining the flow profile comprises determining a first cross-sectional area of the flow front of the flow of molten thermoplastic material into the first mold cavity during the simulated injection molding filling cycle and a second cross-sectional area of the flow front of the flow of molten thermoplastic material into the second mold cavity during the simulated injection molding filling cycle.

10. The method of claim 1, further comprising operating the injection molding ram according to the determined force profile.