Recherche dans les collections de brevets nationales et internationales
Une partie du contenu de cette demande n'est pas disponible pour le moment.
Si cette situation persiste, contactez-nous auObservations et contact
1. (WO2015177501) VECTEURS LENTIVIRAUX
Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

LENTIVIRAL VECTORS

The present invention relates to lentiviral gene transfer vectors pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene; and methods of making the same. The present invention also relates to the use of said vectors in gene therapy, particularly for the treatment of respiratory tract diseases such as Cystic Fibrosis (CF).

BACKGROUND TO THE INVENTION

Lentiviruses belong to a genus of viruses of the Retroviridae family, and are characterised by a long incubation period. Lentiviruses can deliver a significant amount of viral RNA into the DNA of the host cell and have the unique ability among retroviruses of being able to infect non-dividing cells, so they are one of the most efficient methods of a gene delivery vector.

Lentiviral vectors, especially those derived from HIV-1 , are widely studied and frequently used vectors. The evolution of the lentiviral vectors backbone and the ability of viruses to deliver recombinant DNA molecules (transgenes) into target cells have led to their use in many applications. Two possible applications of viral vectors include restoration of functional genes in genetic therapy and in vitro recombinant protein production.

Pseudotyping is the process of producing viruses or viral vectors in combination with foreign viral envelope proteins. As such, the foreign viral envelope proteins can be used to alter host tropism or an increased/decreased stability of the virus particles. For example, pseudotyping allows one to specify the character of the envelope proteins. A frequently used protein is the glycoprotein G of the Vesicular stomatitis virus (VSV), short VSV-G.

Efficient and controllable retroviral expression of a transgene is understood to require the presence of intron sequences. However, incorporation of such introns into retroviral vectors involves elaborate and time-consuming methods owing to the multi-step processes employed.

To date, viral gene transfer agents have not been useful for the treatment of diseases, without the transduction of stem cell populations, because of the host adaptive immune response, which prevents successful repeat administration.

Moreover, gene transfer to the airway epithelium has proven more difficult than originally anticipated. For example, the use of lentiviral pseudotypes that require disruption of epithelial integrity to transduce the airways, for example by the use of detergents such as lysophosphatidylcholine or ethylene glycol bis(2-aminoethyl

tetraacetic acid, has been linked to an increased risk of sepsis.

One example of a clinical setting which would benefit from gene transfer to the airway epithelium is treatment of Cystic Fibrosis (CF). CF is a fatal genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which acts as a chloride channel in airway epithelial cells. CF is characterised by recurrent chest infections, increased airway secretions, and eventually respiratory failure. In the UK, the current median age at death is -25 years. For most genotypes, there are no treatments targeting the basic defect; current treatments for symptomatic relief require hours of self-administered therapy daily. Gene therapy, unlike small molecule drugs, is independent of CFTR mutational class and is thus applicable to all affected CF individuals. However, to date no viral vector has met the requirements for clinical use, and the same applies to other diseases, particularly many other respiratory tract diseases.

In this regard, at least three major problems have been encountered. Gene transfer efficiency is generally poor, at least in part because the respective receptors for many viral vectors appear to be predominantly localised to the basolateral surface of the airway epithelium. Second, penetration of the respiratory tract mucus layer is generally poor. Finally, the ability to administer viral vectors repeatedly, mandatory for the life-long treatment of a self-renewing epithelium, is limited.

Administration of the vectors for clinical application is another pertinent factor. Therefore, viral stability through use of clinically relevant devices (e.g. bronchoscope and nebuliser) must be maintained for treatment efficacy.

Another example of a potential target for gene therapy is a1 -antitrypsin (A1AT) deficiency. A1AT deficiency is an inherited disorder that may cause lung disease and liver disease. Symptoms include shortness of breath/wheezing, reduced ability to

exercise, weight loss, recurring respiratory infections, fatigue and rapid heartbeat upon standing. Affected individuals often develop emphysema. About 10-15% percent of patients with A1AT deficiency develop liver disease. Individuals with A1 AT deficiency are also at risk of developing a hepatocellular carcinoma.

A1AT is a secreted protein, produced mainly in the liver and then trafficked to the lung, with smaller amounts also being produced in the lung itself. The main function of A1AT is to bind and neutralise neutrophil elastase. A1AT gene therapy is likely to be of therapeutic value in patients with A1AT deficiency, CF and chronic obstructive pulmonary disease (COPD), where increasing or introducing A1AT may improve lung function.

A1AT therapy is also potentially valuable for the treatment of non-respiratory/non-pulmonary diseases, such as type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis and infections, particularly viral infections, due to the effect of A1AT deficiency on other tissues/organs, such as the liver and pancreas (see, for example, Lewis Mol. Med. 2012; 18:957-970, which is herein incorporated by reference).

A1AT deficiency is an attractive target disease for gene therapy because the therapeutic threshold levels are well defined. A comparison of A1AT levels in subjects with the risk of developing emphysema/COPD determined a protective threshold level of 1 1 μΜ in serum, with levels below 1 1 μΜ are used as threshold for initiating protein augmentation therapy where available. A1AT levels in airway lining fluid are only -10% of serum level, because the lung epithelium constitutes a barrier and the therapeutic threshold in airway surface lining fluid is therefore considered to be 1.1 μΜ (see Ferraroti et al. Thorax. 2012 Aug;67(8):669-74 and Abusriwil & Stockley 2006 Current Opinion in Pulmonary Medicine 12: 125-131 , each of which is herein incorporated by reference).

Six FDA-approved commercial formulations of A1AT protein isolated from pooled human blood are in clinical use in the US for the treatment of patients with severe A1AT deficiency (via weekly intravenous injections). Enzyme replacement therapy (ERT) is expensive (~$100,000/year) and although biochemical efficacy for ERT protein augmentation therapy has been proven clinical efficacy has been more difficult to prove.

A1AT ERT is currently not accessible in all countries and currently not available in the UK. In addition, it is difficult to achieve sufficiently sustained tissue levels using current therapies, which may in part be responsible for the modest clinical efficacy observed so far.

Other attractive targets for gene therapy include cardiovascular diseases and blood disorders, particularly blood clotting deficiencies such as Haemophilia (A and B), von Willebrand disease and Factor VII deficiency.

Haemophilia, particularly Haemophilia A, is an attractive target for gene therapy. Haemophilia A is an inherited bleeding disorder caused by a deficiency or mutation of Factor VIII (FVIII). Its inheritance is sex-linked, with almost all patients being male. Bleeding is typically into the joints. Bleeding into the muscle, mucosal tissue and central nervous system (CNS) is uncommon but can occur. Disease severity is inversely proportional to the level of FVIII: less than 1 % (<0.01 Ill/ml) results in severe disease, with bleeding after minimal injury; between 1 -5% (0.01 IU/ml-0.05 Ill/ml) causes moderate disease, with bleeding after mild injury; and greater than 5% (>0.05 Ill/ml) causes mild disease, with bleeding only after significant trauma or surgery.

There is accordingly a need for a gene therapy vector that is able to circumvent one or more of the problems described above.

SUMMARY OF THE INVENTION

The present inventors have developed a lentiviral vector, which has been pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene. Typically the backbone of the vector is from a simian immunodeficiency virus (SIV), such as SIV1 or African green monkey SIV (SIV-AGM). Preferably the backbone of a viral vector of the invention is from SIV-AGM. The HN and F proteins function, respectively, to attach to sialic acids and mediate cell fusion for vector entry to target cells. The present inventors have discovered that this specifically F/HN-pseudotyped lentiviral vector can efficiently transduce airway epithelium, resulting in transgene expression sustained for periods beyond the proposed lifespan of airway epithelial cells. Importantly, the present

inventors have also found that re-administration does not result in a loss of efficacy. These features make the vectors of the present invention attractive candidates for treating diseases via their use in expressing therapeutic proteins: (i) within the cells of the respiratory tract; (ii) secreted into the lumen of the respiratory tract; and (iii) secreted into the circulatory system.

The present invention addresses one or more of the above needs by providing lentiviral vectors pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus, comprising a promoter and a transgene. In one embodiment, the promoter is preferably a hybrid human CMV enhancer/EF1a (hCEF) promoter. The present invention also provides methods of manufacturing said vectors, compositions comprising said vectors, and uses thereof in therapy.

The vectors of the present invention enable higher and sustained gene expression through efficient gene transfer. The above-identified problems are addressed by the present invention which provides F/HN-pseudotyped lentiviral vectors which are capable of: (i) airway transduction without disruption of epithelial integrity; (ii) persistent gene expression; (iii) lack of chronic toxicity; and (iv) efficient repeat administration. Long term/persistent stable gene expression, preferably at a therapeutical ly-effective level, may be achieved using repeat doses of a vector of the present invention. Alternatively, a single dose may be used to achieve the desired long-term expression.

By contrast with known lentiviral vectors, the lentiviral vectors of the invention exhibit efficient airway cell uptake, enhanced transgene expression, and suffer no loss of efficacy upon repeated administration.

Thus, advantageously, the lentiviral vectors of the present invention can be used in gene therapy. By way of example, the efficient airway cell uptake properties of the vectors of the invention make them highly suitable for treating respiratory tract diseases. The lentiviral vectors of the invention can also be used in methods of gene therapy to promote secretion of therapeutic proteins. By way of further example, the invention provides secretion of therapeutic proteins into the lumen of the respiratory tract or the circulatory system. Thus, administration of a vector of the invention and its uptake by airway cells may enable the use of the lungs (or nose or airways) as a "factory" to produce a therapeutic protein that is then secreted and enters the general circulation at

therapeutic levels, where it can travel to cells/tissues of interest to elicit a therapeutic effect. In contrast to intracellular or membrane proteins, the production of such secreted proteins does not rely on specific disease target cells being transduced, which is a significant advantage and achieves high levels of protein expression. Thus, other diseases which are not respiratory tract diseases, such as cardiovascular diseases and blood disorders, particularly blood clotting deficiencies, can also be treated by the vectors of the present invention.

As an example, Alpha-1 Antitrypsin (A1AT) is a secreted anti-protease that is produced mainly in the liver and then trafficked to the lung, with smaller amounts also being produced in the lung itself. The main function of A1AT is to bind and neutralise/inhibit neutrophil elastase. Gene therapy with A1AT according to the present invention is relevant to A1AT deficient patient, as well as in other lung diseases such as cystic fibrosis or chronic obstructive pulmonary disease (COPD), and offers the opportunity to overcome some of the problems encountered by enzyme replacement therapy.

The present inventors have previously demonstrated that there is a significant correlation between neutrophil elastase (NE) and A1AT in sputum samples from cystic fibrosis patients, showing that the body produces A1AT in response to NE challenge. The present inventors have also shown that there is a statistically significant correlation between NE and lung clearance index, a marker of small airways disease, implying that increased NE has a negative impact on lung function. As presented herein, the inventors have now surprisingly demonstrated that the lentiviral vectors of the invention can achieve high concentrations of A1AT and long term (at least 90 days) A1AT expression in vivo. Thus, gene therapy with A1 AT may neutralise NE, improving the lung function of patients with cystic fibrosis and/or COPD (and having a therapeutic effect in other indications as described herein). Accordingly, the present invention relates to the use of a lentiviral vector as described herein for the administration of an A1AT transgene and gene therapy of conditions including, but not limited to, A1AT deficiency, cystic fibrosis and//or COPD. Administration of lentiviral A1AT directly to the nasal epithelium and/or lung may overcome some of the limitations currently faced by enzyme replacement therapy (A1AT isolated from human blood and administered intravenously every week), providing stable, long-lasting expression in the target tissue (lung/nasal epithelium), ease of administration and unlimited availability.

In some embodiments, transduction with a lentiviral vector of the invention leads to secretion of the recombinant protein into the lumen of the lung as well as into the circulation. One benefit of this is that the therapeutic protein reaches the interstitium. In the case of A1AT deficiency, this is advantageous because NE inhibition is also required at this site. A1AT gene therapy may therefore also be beneficial in other disease indications, non-limiting examples of which include type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.

A1 AT has numerous other anti-inflammatory and tissue-protective effects, for example in pre-clinical models of diabetes, graft versus host disease and inflammatory bowel disease. The production of A1AT in the lung and/or nose following transduction according to the present invention may, therefore, be more widely applicable, including to these indications.

Other examples of diseases that may be treated with gene therapy of a secreted protein according to the present invention include cardiovascular diseases and blood disorders, particularly blood clotting deficiencies such as haemophilia (A and B), von Willebrand disease and Factor VII deficiency.

In some embodiments, Haemophilia A may be treated according to the present invention. Disease severity is inversely proportional to the level of FVIII, and an increase in FVIII of 2-5% (0.02-0.05 Ill/ml) is enough to be therapeutically effective.

In some embodiments the nose is a preferred production site for a therapeutic protein using a gene therapy vector of the invention for at least one of the following reasons: (i) extracellular barriers such as inflammatory cells and sputum are less pronounced in the nose; (ii) ease of vector administration; (iii) smaller quantities of vector required; and (iv) ethical considerations. Thus, transduction of nasal epithelial cells with a lentiviral vector of the invention may result in efficient (high-level) and long-lasting expression of the therapeutic transgene of interest.

The vectors of the present invention enable long term gene expression, resulting in long term expression of a therapeutic protein. As described herein, the phrases "long term

expression", "sustained expression" and "persistent expression" are used interchangeably. Long term expression according to the present invention means expression of a therapeutic gene and/or protein, preferably at therapeutic levels, for at least 45 days, at least 60 days, at least 90 days, at least 120 days, at least 180 days, at least 250 days, at least 360 days, at least 450 days, at least 730 days or more. Preferably long term expression means expression for at least 90 days, at least 120 days, at least 180 days, at least 250 days, at least 360 days, at least 450 days, at least 720 days or more, more preferably at least 360 days, at least 450 days, at least 720 days or more. This long term expression may be achieved by repeated doses or by a single dose.

Repeated doses may be administered twice-daily, daily, twice-weekly, weekly, monthly, every two months, every three months, every four months, every six months, yearly, every two years, or more. Dosing may be continued for as long as required, for example, for at least six months, at least one year, two years, three years, four years, five years, ten years, fifteen years, twenty years, or more, up to for the lifetime of the patient to be treated.

Lentiviral vectors, such as those of the invention, can integrate into the genome of transduced cells and lead to long-lasting expression, making them suitable for transduction of stem/progenitor cells. In the lung, several cell types with regenerative capacity have been identified as responsible for maintaining specific cell lineages in the conducting airways and alveoli. These include basal cells and submucosal gland duct cells in the upper airways, Clara cells and neuroendocrine cells in the bronchiolar airways, bronchioalveolar stem cells in the terminal bronchioles and type II pneumocytes in the alveoli. Therefore, and without being bound by theory, it is believed that the vectors of the present invention bring about long term gene expression of the transgene of interest by introducing the transgene into one or more long-lived airway epithelial cells or cell types, such as basal cells and submucosal gland duct cells in the upper airways, Clara cells and neuroendocrine cells in the bronchiolar airways, bronchioalveolar stem cells in the terminal bronchioles and type II pneumocytes in the alveoli.

Accordingly, the lentiviral vectors of the invention may transduce one or more cells or cell lines with regenerative potential within the lung (including the airways and respiratory tract) to achieve long term gene expression. In a preferred embodiment the lentiviral vector of the invention transduces basal cells, such as those in the upper airways/respiratory tract. Basal cells have a central role in processes of epithelial maintenance and repair following injury. In addition, basal cells are widely distributed along the human respiratory epithelium, with a relative distribution ranging from 30% (larger airways) to 6% (smaller airways).

The lentiviral vectors of the invention may be used to transduce isolated and expanded stem/progenitor cells ex vivo prior administration to a patient. Preferably, the lentiviral vectors of the invention are used to transduce cells within the lung (or airways/respiratory tract) in vivo.

The vectors of the present invention enable high levels of gene expression, resulting in high levels (preferably therapeutic levels) of expression of a therapeutic protein. Expression may be measured by any appropriate method (qualitative or quantitative, preferably quantitative), and concentrations given in any appropriate unit of measurement, for example ng/ml. A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least 10 ng/ml, at least 20 ng/ml, at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml, at least 60 ng/ml, at least 70 ng/ml, at least 80 ng/ml, at least 90 ng/ml, at least 100 ng/ml, at least 200 ng/ml, at least 300 ng/ml, at least 400 ng/ml, at least 500 ng/ml, at least 600 ng/ml, at least 700 ng/ml, at least 800 ng/ml, at least 900 ng/ml, at least 1 ,000 ng/ml, at least 2,000 ng/ml, at least 3,000 ng/ml, at least 4,000 ng/ml, at least 5,000 ng/ml, at least 10,000, at least 15,000 ng/ml, at least 20,000 ng/ml or more. Therapeutic expression may be defined using these same values.

The lentiviral vectors of the present invention typically provide high expression levels of a transgene when administered to a patient. The terms high expression and therapeutic expression are used interchangeably herein.

A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least about 100nM, at least about 200nM, at least about 300nM, at least about 400nM, at least about 500nM, at least about 600nM, at least about 700nM, at least about 800nM, at least about 900nM, at least about 1 μΜ, at least about 1.1 μΜ, at least about 1.2μΜ, at least about 1.3μΜ, at least about 1.4μΜ, at least about 1.5μΜ, at least about 2μΜ, at least about 3μΜ, at least about 4μΜ, at least about 5μΜ, at least about 6μΜ, at least about 7μΜ, at least about 8μΜ, at least about 9μΜ, at least about 10μΜ, at least about 11 μΜ, at least about 12μΜ, at least about 13μΜ, at least about 14μΜ, at least about 15μΜ, at least about 20μΜ, at least about 25μΜ, at least about 30μΜ, at least about 40μΜ, at least about 50μΜ, at least about 75μΜ, or at least about 100μΜ or more. Therapeutic expression may be defined using these same values.

A high level of expression according to the present invention may mean expression of a therapeutic gene (typically measured by mRNA expression) at least about 1 %, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20% or more compared with the expression level of the corresponding endogenous (defective) mRNA. Therapeutic expression may be defined using these same values. For example, a typical expression level of endogenous CFTR mRNA may be quantified in terms of the number of copies of the mRNA per lung cell, for example one copy of the endogenous CFTR mRNA per lung cell, two copies of the endogenous CFTR mRNA per lung cell, three copies of the endogenous CFTR mRNA per lung cell, four copies of the endogenous CFTR mRNA per lung cell, five copies of the endogenous CFTR mRNA per lung cell, or more, preferably two copies of the endogenous CFTR mRNA per lung cell. The expression of the therapeutic gene of the invention, such as a functional CFTR gene, may be quantified relative to the endogenous gene, such as the endogenous (dysfunctional) CFTR genes in terms of mRNA copies per cell or any other appropriate unit.

A high level of expression according to the present invention may mean expression of a therapeutic gene and/or protein at a concentration of at least about 0.5%, at least about 1 %, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more compared with the wild type level of the therapeutic gene and/or protein, wherein the wild type level is the level in a normal individual without the disease. In some embodiments, wild type expression is given as 100%, with any improvement in gene expression measured relative to that. As a non-

limiting example, if in a normal individual without the disease the expression of the functional gene is given as 100%, and in an individual with the disease, the expression of the functional gene is 0%, a therapeutic level of expression of the gene or protein may be at least about 0.5%, at least about 1 %, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 6%, at least about 7%, at least about 8%, at least about 9%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, or more compared with the wild type level of the therapeutic gene and/or protein. As another non-limiting example, if in a normal individual without the disease the expression of the functional gene is given as 100%, and in an individual with the disease, the expression of the functional gene is 50%, a therapeutic level of expression of the gene or protein may be at least about 55%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more compared with the wild type level of the therapeutic gene and/or protein.

For secreted proteins such as A1AT, typically the concentration in the lung or epithelial lining fluid (as measured using BAL) is approximately ten times that in serum. As a non-limiting example, if the concentration of secreted protein in the lung or epithelial lining fluid is in the region of 750 ng/ml, the serum concentration of the protein is in the region of 75 ng/ml.

Expression levels of a therapeutic gene and/or protein of the invention may be measured in the lung tissue, epithelial lining fluid and/or serum/plasma as appropriate. A high and/or therapeutic expression level may therefore refer to the concentration in the lung, epithelial lining fluid and/or serum/plasma.

As a non-limiting example, a therapeutic expression level of CFTR is typically 1 -5% of the therapeutic CFTR mRNA compared with the expression level of the endogenous (defective) CFTR mRNA.

As another non-limiting example, a therapeutic expression level of A1AT is typically at least about 1 μΜ in the epithelial lining fluid, and/or at least about 0.1 μΜ in the serum. In a preferred embodiment, a therapeutic expression level of A1AT in the epithelial lining fluid is at least about 1.1 μΜ, and/or a therapeutic serum expression level of A1AT

according to the present invention is at least about 1 1 μΜ. As another non-limiting example, a therapeutic expression level of A1AT in the epithelial lining fluid (ELF, i.e. the fluid lining the airways and airspaces in the lungs) is 70pg/ml (compared with a "normal" target level of ATT (A1AT) in the ELF of 200Mg/ml).

As another non-limiting example, a therapeutic expression level of FVIII protein is typically at least about 1 -3% or at least about 1 -6% of the expression level in a normal individual who does not suffer from haemophilia.

The therapeutic gene included in the vector of the invention may be modified to facilitate expression. For example, the gene sequence may be in CpG-depleted and/or codon-optimised form to facilitate gene expression. Standard techniques for modifying the gene sequence in this way are known in the art.

The promoter included in the vector of the invention may be specifically selected and/or modified to further refine regulation of expression of the therapeutic gene. Again, suitable promoters and standard techniques for their modification are known in the art. As a non-limiting example, a number of suitable (CpG-free) promoters suitable for use in the present invention are described in Pringle et al. (J. Mol. Med. Berl. 2012, 90(12): 1487-96), which is herein incorporated by reference in its entirety.

The vector of the invention may be modified to allow shut down of gene expression. Standard techniques for modifying the vector in this way are known in the art. As a non-limiting example, Tet-responsive promoters are widely used.

The vectors of the present invention also demonstrate remarkable resistance to shear forces with only modest reduction in transduction ability when passaged through clinically-relevant delivery devices such as bronchoscopes, spray bottles and nebulisers.

In one embodiment, the invention provides F/HN lentiviral vectors comprising a promoter and a transgene, having no intron positioned between the promoter and the transgene. In one embodiment, the vector of the present invention is delivered to cells of the respiratory tract. In embodiment, the lentivirus is SIV. In one embodiment, the promoter is a hybrid human CMV enhancer/EF1 a (hCEF) promoter. Typically said promoter of the invention lacks the intron corresponding to nucleotides 570-709 and the exon

corresponding to nucleotides 728-733 of the hCEF promoter. A preferred example of an hCEF promoter sequence of the invention is provided by SEQ ID NO: 6. The promoter may be a CMV promoter. An example of a CMV promoter sequence is provided by SEQ ID NO: 17. Other promoters for transgene expression are known in the art and their suitability for the lentiviral vectors of the invention determined using routine techniques known in the art. Non-limiting examples of other promoters include UbC and UCOE. As described herein, the promoter may be modified to further regulate expression of the transgene of the invention.

In one embodiment, the transgene encodes a CFTR. An example of a CFTR cDNA is provided by SEQ I D NO: 7.

In one embodiment, the transgene encodes an A1AT. An example of an A 1AT transgene is provided by SEQ ID NO: 15, or by the complementary sequence of SEQ I D NO: 26. SEQ I D NO: 15 is a codon-optimized CpG depleted A 1AT transgene designed by the present inventors to enhance translation in human cells. Such optimisation has been shown to enhance gene expression by up to15-fold. Thus, in one embodiment, the invention provides a polynucleotide comprising or consisting of the nucleotide sequence of SEQ ID NO: 15. Variants of same sequence (as defined herein) which possess the same technical effect of enhancing translation compared with the unmodified (wild-type) A 1AT gene sequence are also encompassed by the present invention. The invention further provides a polypeptide encoded by said A 1AT transgene, as exemplified by the polypeptide of SEQ ID NO: 27, plasmids (particularly vector genome plasmids as defined herein) and lentiviral vectors comprising said A1AT transgene. In a preferred embodiment, aspects of the invention relating to A 1AT gene therapy according to the present invention use the A 1A T transgene sequence of SEQ ID NO: 15.

In one embodiment, the transgene encodes a FVII I. Examples of a FVIII transgene are provided by SEQ ID NOs: 16 and 30, or by the respective complementary sequences of SEQ ID NO: 28 and 31.

Lentiviral vectors suitable for use in the present invention include Human immunodeficiency virus (HIV), Simian immunodeficiency virus (SIV), Feline immunodeficiency virus (FIV), Equine infectious anaemia virus (EIAV), and Visna/maedi virus. In one embodiment of the invention, an SIV vector is used, preferably SIV-AGM. In another embodiment, an HIV vector is used.

The lentiviral vectors of the present invention are pseudotyped with hemagglutinin-neuraminidase (HN) and fusion (F) proteins from a respiratory paramyxovirus. In one embodiment, the respiratory paramyxovirus is a Sendai virus (murine parainfluenza virus type 1 ).

In one embodiment of the invention, the lentiviral vector is integrase-competent (IC). In an alternative embodiment, the lentiviral vector is integrase-deficient (ID).

In another embodiment of the invention, the transgene of the invention is any one or more of DNAH5, DNAH11, DNAI1, and DNAI2, or other known related gene.

In one embodiment of the invention, the respiratory tract epithelium is targeted for delivery of the vector. In this embodiment, the transgene encodes Alpha-1 Antitrypsin (A1AT), Surfactant Protein B (SFTPB), or Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF). In another embodiment, the transgene encodes a monoclonal antibody (mAb) against an infectious agent. In one embodiment, transgene encodes anti-TNF alpha. In a further embodiment, the transgene encodes a therapeutic protein implicated in an inflammatory, immune or metabolic condition.

In one embodiment of the invention, the vector is delivered to the cells of the respiratory tract to allow production of proteins to be secreted into circulatory system. In this embodiment, the transgene encodes for Factor VII, Factor VIII, Factor IX, Factor X, Factor XI and/or von Willebrand's factor. Such a vector may be used in the treatment of diseases, particularly cardiovascular diseases and blood disorders, preferably blood clotting deficiencies such as Haemophilia. In another embodiment, the transgene encodes a monoclonal antibody (mAb) against an infectious agent. In one embodiment, the transgene encodes a protein implicated in an inflammatory, immune or metabolic condition, such as, lysosomal storage disease.

In accordance with the invention, there is provided an F/HN-SIV lentiviral vector comprising an hCEF promoter and a CFTR transgene, having no intron positioned between the promoter and the transgene. Similarly, there is no intron between the promoter and the transgene in the vector genome (pDNA1 ) plasmid (for example, pGM326 as described herein, illustrated in Figure 1A and with the sequence of SEQ ID NO: 1).

The invention also provides an F/HN-SIV lentiviral vector comprising an hCEF promoter and an A1AT transgene, having no intron positioned between the promoter and the transgene. Such a lentiviral vector may be produced by the method described herein, using a plasmid carrying the A1AT transgene and a promoter. Similarly, there is no intron between the promoter and the A1AT transgene in the vector genome (pDNA1) plasmid. An exemplary sequence of such a plasmid is given in SEQ ID NO: 9 (F/HN-SIV-hCEF-soA1AT, illustrated in Figure 15A).

The invention also provides an F/HN-SIV lentiviral vector comprising (i) an hCEF promoter or a CMV promoter; and (ii) an FVIII transgene; wherein no intron is positioned between the promoter and the transgene. Such a lentiviral vector may be produced by the method described herein, using a plasmid carrying the FVIII transgene and a promoter. Similarly, there is no intron between the promoter and the FVIII transgene in the vector genome (pDNA1 ) plasmid. Exemplary sequences of such plasmids are given in SEQ ID NO: 11 to 14 (illustrated in Figure 22A to E).

The lentiviral vector as described above comprises a transgene. The transgene comprises a nucleic acid sequence encoding a gene product, e.g., a protein.

For example, in one embodiment, the nucleic acid sequence encoding a CFTR, A1AT or FVIII comprises (or consists of) a nucleic acid sequence having at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%) sequence identity to the CFTR , A1AT or FVIII nucleic acid sequence respectively. In a further embodiment, the nucleic acid sequence encoding CFTR, A1AT or FVIII comprises (or consists of) a nucleic acid sequence having at least 95% (such as at least 95, 96, 97, 98, 99 or 100%) sequence identity to the CFTR, A1AT or FVIII nucleic acid sequence respectively. In one embodiment, the nucleic acid sequence encoding CFTR is provided by SEQ ID NO: 7, the nucleic acid sequence encoding A1AT is provided by SEQ ID NO: 15, or by the complementary sequence of SEQ ID NO: 26 and/or the nucleic acid sequence encoding FVIII is provided by SEQ ID NO: 16 and 30, or by the respective complementary sequences of SEQ ID NO: 28 and 31 , or variants thereof.

The term "polypeptide" as used herein also encompasses variant sequences. Thus, the polypeptide encoded by the transgene of the invention may have at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%) sequence identity to a functional CFTR, A1AT or FVIII polypeptide sequence respectively. In a further embodiment, the amino acid sequence of the CFTR, A1AT or FVIII transgene comprises (or consists of) an amino acid sequence having at least 95% (such as at least 95, 96, 97, 98, 99 or 100%) sequence identity to the functional CFTR, A1AT or FVIII polypeptide sequence respectively. In one embodiment, the amino acid sequence of the A1 AT protein encoded by the transgene of the invention comprises (or consists of) the amino acid sequence of SEQ ID NO: 27, or variants thereof. Preferably said variant A1AT proteins of the invention have at least 90% (such as at least 90, 92, 94, 95, 96, 97, 98, 99 or 100%), more preferably at least 95% or more sequence identity with SEQ ID NO: 27.

In one embodiment, the nucleic acid sequence encoding CFTR, A1AT or FVIII comprises (or consists of) the CFTR, A1AT or FVII complementary DNA sequence respectively. In one embodiment, the CFTR, A1AT or FVIII transgene is a sequence-optimised CFTR, A1 AT or FVIII {soCFTR2, soAIAT or FVIII). An example is provided by SEQ ID NOS: 7, 15 and 16 respectively. An exemplary complementary sequence-optimised A 1AT sequence is given by SEQ ID NO: 26. Exemplary complementary sequence optimised FVIII sequences are given by SEQ ID NOs: 28 and 31.

In one embodiment of the invention, the F/HN vector transgene expression is driven by cytomegalovirus (CMV) promoter. In another embodiment, the vector transgene expression is driven by elongation factor 1a (EF1a) promoter. In a preferred embodiment, the vector transgene expression is driven by hybrid human CMV enhancer/EF1 a (hCEF) promoter. In one embodiment, the hCEF promoter has all CG dinucleotides replaced with any one of AG, TG or GT. Thus, in one embodiment, the hCEF promoter is CpG-free.

In one embodiment, the lentiviral vector may be produced using the F/HN-SIV-hCEF-soCFTR2-IC plasmid. In this embodiment, CFTR is expressed under control of the hCEF promoter. This lentiviral vector may be described as comprising F/HN-SIV-hCEF-soCFTR2-IC, as it comprises the SIV F/HN elements, as well as an integrase competent expression cassette comprising CFTR under the control of the hCEF promoter. This lentiviral vector of the invention is capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, CFTR gene transfer into the CF lung for the treatment of CF lung disease.

In a preferred embodiment, the lentiviral vector may be produced using the F/HN-SIV-hCEF-soA1AT plasmid. In this embodiment, A 1AT is expressed under control of the hCEF promoter. This lentiviral vector may be described as comprising F/HN-SIV-hCEF-SOA1AT, as it comprises the SIV F/HN elements, as well as an expression cassette comprising A 1AT under the control of the hCEF promoter. This lentiviral vector of the invention is capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, A 1AT gene transfer into a patient's lung or nose for the production of A1AT which is then secreted into the circulatory system (as described herein). Thus, this vector and other vectors of the invention comprising the A1AT transgene may be used in the treatment of A1AT deficiency, or other indications as described herein.

In another preferred embodiment, the lentiviral vectors may be produced using the F/HN-SIV-CMV-HFVI II-V3, F/HN-SIV-hCEF-HFVII I-V3, F/HN-SIV-CMV-HFVIII-N6-CO and/or F/HN-SIV-hCEF-HFVII I-N6-co plasmids. HFVIII refers to human FVI II. In this embodiment, FVIII is expressed under control of the hCEF or CMV promoter. These lentiviral vectors may be described as comprising F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVIII-V3, F/HN-SIV-CMV-HFVI II-N6-C0 and F/HN-SIV-hCEF-HFVII I-N6-co respectively, as they comprise the SIV F/HN elements, as well as an expression cassette comprising FVIII under the control of the hCEF/CMV promoter. Viral vector products produced using the F/HN-SIV-CMV-HFVIII-V3, F/HN-SIV-hCEF-HFVI II-V3, F/HN-SIV-CMV-HFVIII-N6-CO and/or F/HN-SIV-hCEF-HFVIII-N6-co plasmids are also known as vGM 126, vGM 127, vGM 142 and vGM 129 (see Figure 22). These lentiviral vectors of the invention are capable of producing long-lasting, repeatable, high-level expression in airway cells without inducing an undue immune response. Consequently, the invention provides an efficient means of in vivo gene therapy, for example, FVIII gene transfer into a patient's lung or nose for the production of FVI II which is then secreted into the circulatory system (as described herein). Thus, these vectors and other vectors of the invention comprising the FVIII transgene may be used in the treatment of haemophilia, or other indications as described herein.

The lentiviral vectors of the invention do not contain an intron between the promoter and the transgene. Similarly, the vector genome plasmids of the invention (used to generate said lentiviral vectors as described herein) also do not contain an intron between the promoter and the transgene. The invention therefore provides, in one embodiment, no intron between the hCEF promoter and the coding sequences to be expressed. In one preferred embodiment, the coding sequence to be expressed is a CFTR, A1AT and/or FVIII nucleic acid sequence.

In one embodiment, the vectors of the invention comprise central polypurine tract (cPPT) and the Woodchuck hepatitis virus posttranscriptional regulatory elements (WPRE). In one embodiment, the WPRE sequence is provided by SEQ ID NO: 8.

In one embodiment the vector of the invention is used for gene therapy. In one embodiment the disease to be treated is CF. In another embodiment of the invention, the disease to be treated is Primary Ciliary Dyskinesia (PCD). In one embodiment, the vector is used to treat acute lung injury. In one embodiment of the invention, the disease to be treated is Surfactant Protein B (SP-B) deficiency, Alpha 1 -antitrypsin Deficiency (A1AD), Pulmonary Alveolar Proteinosis (PAP), Chronic obstructive pulmonary disease (COPD). In another embodiment, the disease is an inflammatory, immune or metabolic condition.

The disease to be treated may be a cardiovascular disease or blood disorder, particularly a blood clotting deficiency. Thus, in some embodiments, the disease to be treated is Haemophilia A, Haemophilia B, or Haemophilia C, Factor VII deficiency and/or von Willebrand disease. In yet another embodiment, the disease to be treated is an inflammatory disease, infectious disease or metabolic condition, such as, lysosomal storage disease.

Non-limiting examples of diseases which may be treated using A1AT gene therapy according to the present invention include type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.

In one aspect of the invention, the vector can effectively treat a disease by providing a transgene for the correction of the disease. For example, inserting a functional copy of the CFTR gene to ameliorate or prevent lung disease in CF patients, independent of the underlying mutation.

In another embodiment of the invention, a lentiviral production method is provided. In this embodiment, the method of the invention is a scalable GMP-compatible method. Thus, the method of the invention allows the generation of high titre purified F/HN vectors.

The method of the invention comprises the following steps:

(a) growing cells in suspension;

(b) transfecting the cells with one or more plasmids;

(c) adding a nuclease;

(d) harvesting the lentivirus;

(e) adding trypsin; and

(f) purification.

In one embodiment of the method of the invention, the one or more plasmids provide the vector genome, the Gag-Pol, Rev, F and HN. Thus, there can be five plasmids for each of the vector genome, the Gag-Pol, Rev, F and HN, respectively. In the preferred 5 plasmid method of the invention, the vector genome plasmid encodes all the genetic material that is packaged into final lentiviral vector, including the transgene. Typically only a portion of the genetic material found in the vector genome plasmid ends up in the virus. The vector genome plasmid may be designated herein as "pDNA1". The other four plasmids are manufacturing plasmids encoding the Gag-Pol, Rev, F and HN proteins. These plasmids may be designated "pDNA2a", "pDNA2b", "pDNA3a" and "pDNA3b" respectively.

In one embodiment of the invention, the lentivirus is SIV, such as SIV1 , preferably SIV-AGM. In one embodiment, the F and HN proteins are derived from a Paramyxovirus, such as Sendai virus. In one embodiment, the vector genome plasmid (pDNA1 ) comprises the transgene and the transgene promoter.

In a specific embodiment relating to CFTR, the five plasmids are characterised by Figures 1A-1 E, thus pDNA1 is the pGM326 plasmid of Figure 1A, pDNA2a is the pGM299 plasmid of Figure 1 B, pDNA2b is the pGM299 plasmid of Figure 1C, pDNA3a is the pGM301 plasmid of Figure 1 D and pDNA3b is the pGM303 plasmid of Figure 1 E. In this embodiment, the final CFTR containing lentiviral vector may be referred to as

vGM058 (see the Examples). The vGM058 vector is a preferred embodiment of the invention.

In an embodiment relating to A 1AT, the five plasmids may be characterised by Figures 15A (thus plasmid pDNA1 may be pGM407) and 1 B-E (as above for the specific CFTR embodiment).

In an embodiment relating to FVIII, the five plasmids may be characterised by Figures 22C-F (thus plasmid pDNA1 may be pGM41 1 , pGM412, pGM413 or pGM414) and 1 B-E.

In these embodiments of the invention, the plasmid as defined in Figure 1A is represented by SEQ I D NO: 1 ; the plasmid as defined in Figure 1 B is represented by SEQ I D NO: 2; the plasmid as defined in Figure 1 C is represented by SEQ ID NO: 3; the plasmid as defined in Figure 1 D is represented by SEQ I D NO: 4; the plasmid as defined in Figure 1 E is represented by SEQ ID NO: 5; the plasmid as defined in Figure 15A is represented by SEQ ID NO: 9 and the F/H N -S I V-C M V- H F VI 11 -V3 , F/HN-SIV-hCEF-HFVII I-V3, F/HN-SIV-CMV-HFVIII-N6-CO and/or F/HN-SIV-hCEF-HFVI II-N6-co plasmids as defined in Figure 22B are represented by SEQ I D NOs: 1 1 to 14 respectively.

In the 5 plasmid method of the invention all five plasmids contribute to the formation of the final lentiviral vector. During manufacture of the lentiviral vector, the vector genome plasmid (pDNA1 ) provides the enhancer/promoter, Psi, RRE, cPPT, mWPRE, SI N LTR, SV40 polyA (see Figure 1A), which are important for viral manufacture. Using pGM326 as a non-limiting example of a pDNA1 , the CMV enhancer/promoter, SV40 polyA, colE1 Ori and KanR are involved in manufacture of the lentiviral vector of the invention (e.g. vGM058), but are not found in the final viral vector. The RRE, cPPT (central polypurine tract), hCEF, soCFTR2 (transgene) and mWPRE from pGM326 are found in the final viral vector. SI N LTR (long terminal repeats, SIN/IN self inactivating) and Psi (packaging signal) may be found in the final viral vector.

For other lentiviral vectors of the invention, corresponding elements from the other vector genome plasmids (pDNA1 ) are required for manufacture (but not found in the final vector), or are present in the final viral vector.

The F and HN proteins from pDNA3a and pDNA3b (preferably Sendai F and HN proteins) are important for infection of target cells with the final lentiviral vector, i.e. for entry of a patients epithelial cells (typically lung or nasal cells as described herein). The products of the pDNA2a and pDNA2b plasmids are important for virus transduction, i.e. for inserting the lentiviral DNA into the host's genome. The promoter, regulatory elements (such as WPRE) and transgene are important for transgene expression within the target cell(s).

In one embodiment, steps (a)-(f) are carried out sequentially. In one embodiment, the cells are HEK293 cells or 293T/17 cells. In one embodiment, the cells are grown in animal-component free (serum-free) media. In one embodiment, the transfection is carried out by the use of PEIPro™. In one embodiment, the nuclease is an endonuclease, for example, Benzonase®. In one embodiment, the trypsin activity is provided by an animal origin free, recombinant enzyme such as TrypLE Select™.

In one embodiment of the invention, the addition of the nuclease is at the pre-harvest stage. In an alternative embodiment, the addition of the nuclease is at the post-harvest stage. In another embodiment, the addition of trypsin is at the pre-harvest stage. In another embodiment, the addition of the trypsin is at the post-harvest stage.

In one embodiment, the purification step comprises a chromatography step. In this embodiment, mixed-mode size exclusion chromatography (SEC) is used. In one embodiment, anion exchange chromatography is used. In this embodiment, no salt gradient is used for the elution step.

In one embodiment, this method is used to produce the lentiviral vectors of the invention. In this embodiment, the vector of the invention comprises the CFTR, A1AT and/or FVIII gene. In an alternative embodiment, the vector of the invention comprises any of the above-mentioned genes, or the genes encoding the above-mentioned proteins.

In one embodiment of the method of the invention, any combination of one or more of the specific plasmid constructs provided by Figures 1A-1 E, Figure 15A and/or Figure 22C-22F is used to provide a vector of the invention.

The invention further provides a method of treating a disease, the method comprising administering a lentiviral vector of the invention to a subject. In this embodiment, the invention provides a lentiviral vector of the invention for use in treatment of a lung disease. In one embodiment, disease is a chronic disease. In a specific embodiment, a method of treating CF is provided. In other embodiments, a method of treating Primary Ciliary Dyskinesia (PCD), Surfactant Protein B (SP-B) deficiency, Alpha 1 -antitrypsin Deficiency (A1AD), Pulmonary Alveolar Proteinosis (PAP), Chronic obstructive pulmonary disease (COPD) is provided. In another embodiment, the disease is an inflammatory, immune or metabolic condition.

In another embodiment, the disease may be a cardiovascular disease or blood disorder, particularly a blood clotting deficiency, such as Haemophilia A, Haemophilia B, Haemophilia C, Factor VII deficiency and/or von Willebrand disease, an inflammatory disease, infectious disease or metabolic condition, such as, lysosomal storage disease.

The disease may be type 1 and type 2 diabetes, acute myocardial infarction, ischemic heart disease, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, graft versus host (GvH) disease, multiple sclerosis, liver disease, cirrhosis, vasculitides and infections, such as bacterial and/or viral infections.

The lentiviral vectors of the invention may be administered in any dosage appropriate for achieving the desired therapeutic effect. Appropriate dosages may be determined by a clinician or other medical practitioner using standard techniques and within the normal course of their work. Non-limiting examples of suitable dosages include 1x108 transduction units (TU), 1x109 TU, 1x1010 TU, 1x1011 TU or more.

The invention also provides compositions comprising the lentiviral vectors described above, and a pharmaceutically-acceptable carrier. Non-limiting examples of pharmaceutically acceptable carriers include water, saline, and phosphate-buffered saline. In some embodiments, however, the composition is in lyophilized form, in which case it may include a stabilizer, such as bovine serum albumin (BSA). In some embodiments, it may be desirable to formulate the composition with a preservative, such as thiomersal or sodium azide, to facilitate long-term storage.

The vectors of the invention may be administered by any appropriate route. It may be desired to direct the compositions of the present invention (as described above) to the respiratory system of a subject. Efficient transmission of a therapeutic/prophylactic composition or medicament to the site of infection in the respiratory tract may be achieved by oral or intra-nasal administration, for example, as aerosols (e.g. nasal sprays), or by catheters. Typically the lentiviral vectors of the invention are stable in clinically relevant nebulisers, catheters and aerosols, etc.

Formulations for intra-nasal administration may be in the form of nasal droplets or a nasal spray. An intra-nasal formulation may comprise droplets having approximate diameters in the range of 100-5000 m, such as 500-4000 m, 1000-3000 m or 100-1000 pm. Alternatively, in terms of volume, the droplets may be in the range of about 0.001-100 μΙ, such as 0.1 -50 μΙ or 1.0-25 μΙ, or such as 0.001 -1 μΙ.

The aerosol formulation may take the form of a powder, suspension or solution. The size of aerosol particles is relevant to the delivery capability of an aerosol. Smaller particles may travel further down the respiratory airway towards the alveoli than would larger particles. In one embodiment, the aerosol particles have a diameter distribution to facilitate delivery along the entire length of the bronchi, bronchioles, and alveoli. Alternatively, the particle size distribution may be selected to target a particular section of the respiratory airway, for example the alveoli. In the case of aerosol delivery of the medicament, the particles may have diameters in the approximate range of 0.1-50 μηι, preferably 1 -25 μηι, more preferably 1 -5 μηι.

Aerosol particles may be for delivery using a nebulizer (e.g. via the mouth) or nasal spray. An aerosol formulation may optionally contain a propellant and/or surfactant.

As used herein, the terms "nucleic acid sequence" and "polynucleotide" are used interchangeably and do not imply any length restriction. As used herein, the terms "nucleic acid" and "nucleotide" are used interchangeably. The terms "nucleic acid sequence" and "polynucleotide" embrace DNA (including cDNA) and RNA sequences. The terms "transgene" and "gene" are also used interchangeably and both terms encompass fragments or variants thereof encoding the target protein.

The transgenes of the present invention include nucleic acid sequences that have been removed from their naturally occurring environment, recombinant or cloned DNA

isolates, and chemically synthesized analogues or analogues biologically synthesized by heterologous systems.

The polynucleotides of the present invention may be prepared by any means known in the art. For example, large amounts of the polynucleotides may be produced by replication in a suitable host cell. The natural or synthetic DNA fragments coding for a desired fragment will be incorporated into recombinant nucleic acid constructs, typically DNA constructs, capable of introduction into and replication in a prokaryotic or eukaryotic cell. Usually the DNA constructs will be suitable for autonomous replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to and integration within the genome of a cultured insect, mammalian, plant or other eukaryotic cell lines.

The polynucleotides of the present invention may also be produced by chemical synthesis, e.g. by the phosphoramidite method or the tri-ester method, and may be performed on commercial automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

When applied to a nucleic acid sequence, the term "isolated" in the context of the present invention denotes that the polynucleotide sequence has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences (but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators), and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment.

In view of the degeneracy of the genetic code, considerable sequence variation is possible among the polynucleotides of the present invention. Degenerate codons encompassing all possible codons for a given amino acid are set forth below:

Amino Acid Codons Degenerate Codon

~Cys TGC TGT TGY

Ser AGC AGT TCA TCC TCG TCT WSN

Thr ACA ACC ACG ACT ACN

Pro CCA CCC CCG CCT CCN

Ala GCA GCC GCG GCT GCN

Gly GGA GGC GGG GGT GGN

Asn AAC AAT AAY

Asp GAC GAT GAY

Glu GAA GAG GAR

Gin CAA CAG CAR

His CAC CAT CAY

Arg AGA AGG CGA CGC CGG CGT MGN

Lys AAA AAG AAR

Met ATG ATG lie ATA ATC ATT ATH

Leu CTA CTC CTG CTT TTA TTG YTN

Val GTA GTC GTG GTT GTN

Phe TTC TTT TTY

Tyr TAC TAT TAY

Trp TGG TGG

Ter TAA TAG TGA TRR

Asn/ Asp RAY

Glu/ Gin SAR

Any NNN One of ordinary skill in the art will appreciate that flexibility exists when determining a degenerate codon, representative of all possible codons encoding each amino acid. For example, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequences of the present invention.

A "variant" nucleic acid sequence has substantial homology or substantial similarity to a reference nucleic acid sequence (or a fragment thereof). A nucleic acid sequence or fragment thereof is "substantially homologous" (or "substantially identical") to a reference sequence if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 70%, 75%, 80%, 82, 84, 86, 88, 90, 92, 94, 96, 98 or 99% of the nucleotide bases. Methods for homology determination of nucleic acid sequences are known in the art.

Alternatively, a "variant" nucleic acid sequence is substantially homologous with (or substantially identical to) a reference sequence (or a fragment thereof) if the "variant" and the reference sequence they are capable of hybridizing under stringent (e.g. highly stringent) hybridization conditions. Nucleic acid sequence hybridization will be affected by such conditions as salt concentration (e.g. NaCI), temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. Stringent temperature conditions are preferably employed, and generally include temperatures in excess of 30°C, typically in excess of 37°C and preferably in excess of 45°C. Stringent salt conditions will ordinarily be less than 1000 mM, typically less than 500 mM, and preferably less than 200 mM. The pH is typically between 7.0 and 8.3. The combination of parameters is much more important than any single parameter.

Methods of determining nucleic acid percentage sequence identity are known in the art. By way of example, when assessing nucleic acid sequence identity, a sequence having a defined number of contiguous nucleotides may be aligned with a nucleic acid sequence (having the same number of contiguous nucleotides) from the corresponding portion of a nucleic acid sequence of the present invention. Tools known in the art for determining nucleic acid percentage sequence identity include Nucleotide BLAST.

One of ordinary skill in the art appreciates that different species exhibit "preferential codon usage". As used herein, the term "preferential codon usage" refers to codons that are most frequently used in cells of a certain species, thus favouring one or a few representatives of the possible codons encoding each amino acid. For example, the amino acid threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian host cells ACC is the most commonly used codon; in other species, different codons may be preferential. Preferential codons for a particular host cell species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. Introduction of preferential codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species.

Thus, in one embodiment of the invention, the nucleic acid sequence is codon optimized for expression in a host cell.

A "fragment" of a polynucleotide of interest comprises a series of consecutive nucleotides from the sequence of said full-length polynucleotide. By way of example, a "fragment" of a polynucleotide of interest may comprise (or consist of) at least 30 consecutive nucleotides from the sequence of said polynucleotide (e.g. at least 35, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 850, 900, 950 or 1000 consecutive nucleic acid residues of said polynucleotide). A fragment may include at least one antigenic determinant and/or may encode at least one antigenic epitope of the corresponding polypeptide of interest. Typically a fragment as defined herein retains the same function as the full-length polynucleotide or polypeptide.

DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of example only with reference to the accompanying drawings, in which:

Figure 1 shows exemplary plasmids utilised in the invention. Figures 1A-1 E show schematic drawings of plasmids used for production of the vectors of the invention. In one embodiment of the invention, Figure 1A provides a tool of the invention.

Figure 2 shows the duration of F/HN-SIV transgene expression in mouse nasal tissue, which was perfused with 4x108 TU F/HN-SIV-CMV-EGFP and EGFP expression

determined at the indicated number of days post-treatment. A negative control is shown where nasal tissue was perfused with vector diluent (PBS).

Figure 3 demonstrates consistency of F/HN-SIV transgene expression, by showing at 1 year post-treatment. EGFP expression was determined in 10 independent mice at 360 days post-treatment.

Figure 4 shows cellular distribution of F/HN-SIV transgene expression. EGFP expression was determined in histological sections of the mouse nasal cavity (2 mm from tip of nose) at 30 days post-treatment. EGFP positive cells produce a white punctate signal.

Figure 5 shows cell types transduced by F/HN-SIV treatment of the mouse nose. 69% of the cells transduced in the mouse nasal cavity were ciliated respiratory epithelial cells. Other cell types transduced included neuronal cells in the olfactory epithelium (21 %) and squamous cells (7%).

Figure 6 shows repeat administration of F/HN-SIV to the mouse nose. Mouse nasal tissue which was transduced (as Figure 1 ) with one dose of F/HN-SIV-CMV-Lux or, two doses of F/HN-SIV-CMV-EGFP followed by one dose of F/HN-SIV-CMV-Lux at 28 day intervals. Thus, repeat administration of F/HN-SIV to the mouse nose does not alter gene expression levels. Transgene expression is compared to a leading non-viral gene transfer formulation (CMV-Lux plasmid complexed with GL67A).

Figure 7 displays transduction of human air liquid interface (ALI) respiratory cell cultures. Human ALI cultures were transduced with F/HN-SIV-Lux at the indicated multiplicity of infection (MOI) and imaged for Lux expression at 5 days post-treatment.

Figure 8 demonstrates that F/HN-SIV can direct functional CFTR expression. HEK293T cells were transduced with F/HN-SIV-CMV-EGFP-CFTR at 500 MOI and CFTR functional activity was determined by iodide efflux. F/HN-SIV-CMV-EGFP served as a negative control.

Figure 9 exhibits that F/HN-SIV efficiently transduces sheep & human primary lung cells and mouse lung. Figure 9A shows that transduction of human nasal brushing cells (MOI 250) and human and sheep lung slices cultured ex vivo (1 E7 TU/slice) with F/HN-SIV-CMV-Lux results in substantial luciferase transgene expression 24-48 hours post-transduction. Figures 9B and 9C display transduction of (-1x105) primary human CF lung cells cultured at the air-liquid interface (CF hALIs) with (3E7 TU) F/HN-SIV-

SOCFTR2 vectors containing CMV- and hCEF transgene promoters. (B) Vector copy number (copies of pro-viral DNA per copy of endogenous CFTR DNA) at 6-8 days post-transduction. (C) CFTR mRNA expression level (%VE: copies of CFTR mRNA per copy of endogenous CFTR mRNA x 100) at 6-8 days post-transduction. The horizontal line in (C) represents target expression level of 5% VE - thought to represent the therapeutic threshold. Following in vivo delivery of F/HN-SIV-EGFPLux vectors containing CMV-, EF1 aS and hCEF promoters in integrase defective (ID) or integrase competent form (IC or no label) airway cells transgene expression was determined in the nasal (D) and lung (E) murine epithelium (n=6-10/group). Time course of luciferase transgene expression was monitored by repeated in vivo bioluminescence imaging and as normalised to delivered dose. Figure 9F shows representative bioluminescence images following in vivo murine transduction at day 14 post transduction. Figure 9G portrays representative bioluminescence images following in vitro transduction of non-CF hALI at day 5-6 post transduction. Figure 9H represents EGFP expression at 14 days post transduction in the murine nasal epithelium following delivery of 1.6E8 TU of F/HN-SIV-hCEF-EGFPLux (vGM020). EGFP visualised by immunohistochemistry, nuclei visualised by DAPI. Figure 9I shows time-course of luciferase transgene expression in non-CF ALIs was monitored by repeated bioluminescence imaging and was normalised to delivered dose.

Figure 10 shows that F/HN-SIV efficiently transduces sheep lung in vivo. Figure A shows that to model virus delivery to the sheep lung, we instilled (3χ100μΙ_ aliquots over ~5 minutes) acriflavine to a proximal airway under direct bronchoscopic visualisation. The distribution of the acriflavine can be appreciated by the orange colouration of the dissected airway at postmortem. Note the acriflavine is largely restricted to the conducting airways and absent from the alveolar regions. Arrow indicates the approximate site of instillation. Numbers on ruler are cm. Figure 10B is a diagrammatic representation of the sheep lung (trachea centre/top). Green circle represents region in (A). In (B), line indicates passage of bronchoscope to deliver 3χ100μΙ_ aliquots of 2.2E9 TU/mL (6.6E8 TU total) F/HN SIV CMV- EGFPLux to n=3 individual sheep (animal codes T121 , T156 & T251). At seven days post-delivery, 5-6 tissue sample blocks were taken at post-mortem at ~1 cm intervals from the site of instillation. Blocks were divided into 2-3 approximately equivalent samples and analysed for transgene expression by (C) luciferase assays normalised to protein content; and (D) quantitative RT-PCR normalised to endogenous CFTR mRNA levels. Horizontal line in (C) represents highest luciferase activity noted in any sample treated with a non-viral gene transfer vector, and (D) target expression level of 5% VE - thought to represent the therapeutic threshold.

Figure 11 depicts the production and purification of F/HN SIV Vectors. F/HN SIV Vectors were produced by 5 plasmid (pDNA) PEI-mediated transient transfection of 293T cells grown in suspension at 1 L scale in pH controlled WAVE Bioreactors (GE), using scalable methods of the invention. Vectors were clarified by depth/end-filtration (GE/Pall), contaminating nucleic acids were removed with Benzonase® (Merck), vectors were activated with TrypLE Select™ (Life Technology), purified and concentrated by anion exchange membrane chromatography (Pall) and tangential-flow filtration (Spectrum). All process vessels, containers and columns were single-use cGMP compliant. All reagents except plasmid DNA were animal-free cGMP compliant. Data from a variety of vector configurations (transgene promoter, transgene, integrase status) are shown. Physical and functional titres were determined using Q-PCR. (A) Physical titre from initial clarified harvest and final purified product. Median process yield is -44%. (B) Functional titre of final product. Median functional titre is -2x109 TU/mL product and -3x109 TU/L bioreactor volume. Target productivity and yields were exceeded. Lower yielding CFTR vectors utilise CMV transgene promoter. Higher yielding CFTR vectors utilise EF1 aS and hCEF transgene promoters. (C) Final product particle: infectivity ratio is tightly clustered and similar to values from other high quality vector manufacturers (Oxford BioMedica, BlueBirdBio). Median particle: infectivity ratio is -300. Product consistency has been achieved with the use of "Design of Experiments" methods supporting ultimate transition to QbD-based regulatory agency approval of manufacturing process. (D) Final product functional titre is strongly correlated with initial physical titre indicating non-saturating process conditions with no vector concentration limiting process steps - suggests purification scale-up will be efficient.

Figure 12 displays insertion site (IS) profiling and survival of transduced mice. Figures 12A-F provide a comparison of IS profiles from F/HN-SIV transduced mouse lung and VSV-G-HIV vector transduced mouse retina (Bartholomae et al, Mol Ther (2011 ) 19:703-710). IS profiles for (A,C,E) were derived from deep sequencing of lung DNA from two mice transduced with F/HN-SIV, and for (B,D,F) from retinal VSV-G-HIV IS sequences (Schmidt laboratory). (A,B) Aggregated IS sites (lung, 2862; retina, 262) plotted on karyograms generated via the Ensembl genome browser. (C,D) IS distances to transcription start sites (TSS). Numbers of IS in each distance bin are shown above bars. The sum exceeds the total number of IS analysed because a typical IS is located

near to several TSS. Graphs were generated by use of the UCSC genome browser and the GREAT genome analyser (great.stanford.edu). (E,F) QuickMap (www.gtsg.org) comparison between random (diamond) and observed (square) insertion frequencies per chromosome. (G) Survival of mice treated with progenitor F/HN-SIV vector (virus vector manufactured in accordance with known method using adherent cells: black line, 24 months of data) and current generation vector (GTC: dark grey line, 8 months of data) compared with buffer treated mice (light grey line, 24 months of data). Data aggregated from various experiments involving mice treated with buffer or ~1 E7 TU virus by nasal sniffing.

Figure 13 shows hCEF mediated respiratory transgene expression - using lentivirus gene transfer with a CpG rich transgene - transgene expression (average radiance p/s/cm2/sr) against days post dose. High levels of Gaussia luciferase reporter gene expression compared with the control (naive lung) was observed in both the lung (square) and nose (circle) for at least 168 days after dosing.

Figure 14 shows the effect of transduction of human intestinal organoids with a CFTR lentiviral vector (vGM058) of the invention. The left-hand panel shows that forskolin induced swelling was significantly (p<0.001 ) reduced in vGM058 transduced organoids. In the right-hand panel, A549 cells were transduced with vGM058 or a control virus and CFTR function quantified using a radioactive iodide-efflux assay. Significant (p<0.05) levels of CFTR-mediated iodide efflux were detected in vGM058 transduced cells.

Figures 15A shows a schematic drawings of a plasmid used for production of the A1AT vectors of the invention. In one embodiment of the invention, Figure 15A provides a tool of the invention. Figure 15B shows a control plasmid encoding the Gaussia luciferase reporter gene.

Figure 16 shows that F/HN-SIV efficiently transduces human primary lung cells in ALI culture. In particular, transduction of human ALI cultures results in substantial luciferase transgene expression for at least 80 days post-transduction. Each point represents the mean value of RLU/μΙ in the media from n = 6 ALIs at the timepoint shown. Vertical bars represent the standard error of the mean.

Figure 17 shows gene expression following transduction of human lung slices (n=6 per group) with SIV1 hCEF-sogLux (Figure 17A) and SIV1 hCEF-sohAAT (Figure 17B). High levels of expression were observed. Each point represents the mean value of RLU/μΙ in the media from n = 6 lung slices at the timepoint shown. Vertical bars represent the standard error of the mean.

Figure 18 shows long term expression (>12 months) of Gaussia luciferase following lentiviral-mediated gene transfer (SIV1 hCEF-soGLux) in vivo. A: lung tissue homogenate; B: broncho-alveolar lavage (BAL) fluid; C: serum. Each point represents the mean value of RLU/ μΙ in one group of animals (n = 5 or 6 per group) harvested at the timepoint shown. Vertical bars represent standard error of the mean.

Figure 19 shows high levels of expression of A1AT expression following lentiviral-mediated gene transfer (SIV1 hCEF-sohAAT) in vivo. Each point represents one animal. Horizontal bars represent the median of each group.

Figure 21 shows the level of A1A1 in the epithelial lining fluid following lentiviral mediated gene transfer (SIV1 hCEF-sohAAT) in vivo, lentiviral mediated gene transfer (SIV1 hCEF-sohAAT) in vivo.

Figure 22A shows schematic drawings of FVIII cDNA constructs used for production of the FVI II vectors of the invention. Figure 22B shows viral vectors of the invention. In one embodiment of the invention, Figure 22B provides a tool of the invention. Figures 22C-F show schematic drawings of pDNA1 plasmids used for production of the FVIII vectors of the invention. In one embodiment of the invention, Figures 22C-F provide tools of the invention.

Figure 23 shows HEK293T transduction efficiency with vGM 142 (SIV-F/HN-FVIII-N6-co) for batch 1 (A) and batch 2 (B). The graphs show FVII I activity for each MOI at 48 and 72 hours post-transduction. Each symbol represents an independent experiment (n=5-6 experiments). The horizontal bar indicates group mean +/- SD. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons to untreated control ** p<0.01 ; *** p<0.001 ; **** p<0.0001.

Figure 24 shows the assessment of vGM142 in an in vivo system (murine model). A: lung; B: BAL fluid; C: plasma. The graphs show the level of hFVIII (as a percentage of the normal level) against the different treatments for Groups 1 to 3 (Groups 1 and 2 - 10 day treatment, 3 doses/week of 10ΟμΙ vector per mouse (total amount of doses was equal 3 per animal); Group 3 - 28 day treatment, 3 doses/week of 10ΟμΙ vector per mouse (total amount of doses was equal 12 per animal)). Each symbol represents an individual mouse (Group 1 (n=4) treated with total vector dose of 1.4x106 TTU/mouse; Group 2 (n=3) treated with total vector dose of 1.57x108 TTU/mouse and Group 3 (n=4) treated with total vector dose of 3.36x108 TTU/mouse). The horizontal bar indicates mean FVIII:Ag levels +/- SD. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons between treated groups **** p<0.0001.

EXAMPLES

The invention is now described with reference to the Examples below. These are not limiting on the scope of the invention, and a person skilled in the art would be appreciate that suitable equivalents could be used within the scope of the present invention. Thus, the Examples may be considered component parts of the invention, and the individual aspects described therein may be considered as disclosed independently, or in any combination.

Example 1 : Cell culture

HEK293T, Freestyle 293F (Life Technologies, Paisley, UK) and 293T/17 cells (CRL-1 1268; ATCC, Manassas, VA) were maintained in Dulbecco's minimal Eagle's medium (Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum and supplemented with penicillin (100 U/ml) and streptomycin (100 pg/ml) or Freestyle™ 293 Expression Medium (Life Technologies).

Example 2: Plasmid construction

pCAGGS-Fct4 and pCAGGS-SIVct+HN were constructed as follows:

(i) Plasmid SIVct/HN contains the gene encoding the cytoplasmic tail of SIVagm TMP (reversed) fused to the ectodomain and transmembrane regions of SeV HN protein. Three oligonucleotide pairs were synthesized: pair 1 , 5'-TCGAGATGTGGTCTGAGTTAAAAATCAGGAGCAACGACGGAGGTGAAGGACCAGA

CGCCAACGACCC-3' (SEQ ID NO: 18) and 5'- CCGGGGGTCGTTGGCGTCTGGTCCTTCACCTCCGTCGTTGCTCCTGATTTTTAACT CAGACCACATC-3' (SEQ ID NO: 19); pair 2, 5'-CCGGGGAAAGGGGGTGCAACACATCCATATCCAGCCATCTCTACCTGTTTATGGAC AGA-3' (SEQ ID NO: 20) and 5'- ACCCTCTGTCCATAAACAGGTAGAGATGGCTGGATATGGATGTGTTGCACCCCTTT CC-3' (SEQ ID NO: 21); and pair 3, 5'-GGGTTAGGTGGTTGCTGATTCTCTCATTCACCCAGTGGG-3' (SEQ ID NO: 22) and 5'-GATCCCCACTGGGTGAATGAGAGAATCAGCAACCACCTA-3' (SEQ ID NO: 23). These oligonucleotide pairs were annealed and cloned into the Xho\ and BamH\ sites of pBluescript KS+ (Stratagene) to yield pKS+SIVct. pCAGGS-SIVct/HN was constructed by cloning the 160-bp Xho\-Dra\\\ fragment from pKS+SIVct and a 1.5-kbp Dra\\\-Bsu36\ fragment from pCAGGS-HN, which carries the wild-type HN gene (HNwt), in the Xho\ site of pCAGGS vector, into the Xho\ and Bsu36\ sites of pCAGGS. This plasmid was constructed so that the cytoplasmic tail of the HN protein was replaced with the cytoplasmic tail of SIVagm TMP.

For construction of pCAGGS-SIVct+HN, the genes encoding the cytoplasmic tail of SIVagm TMP and the N terminus of HN protein were first amplified by PCR from pCAGGS-SIVct/HN with the primer pair 5'- GAGACTCGAGATGTGGTCTGAGTTAAAAATCAGG-3' (SEQ ID NO: 24) and 5'-AGAGGTAGACCAGTACGAGTCACGTTTGCCCCTATCACCATCCCTAACCCTCTGTC ATAAAC-3' (SEQ ID NO: 25). The resulting PCR fragment was cloned into the Xho\ and Acc\ sites of pKS+SIVct to generate pKS+SIVct-H. Then a X?ol-Dralll fragment from pKS+SIVct-H and a Dra\\\-Bsu36\ fragment from pCAGGS-HN were cloned into the Xho\ and Bsu36\ sites of pCAGGS to yield pCAGGS-SIVct+HN.

The cPPT and WPRE sequences were inserted in the SIV-derived gene transfer plasmid. An example of the WPRE sequence used is provided in SEQ ID NO: 8.

The plasmid pGM101 contains the colE1 origin of replication, kanamycin resistance gene and promoter and was created by synthetic gene synthesis (GeneArt, Regensburg, Germany; now LifeTechnologies Ltd).

The hybrid CMV/SIV R U5 LTR, partial Gag, RRE, cPPT, SIN U3 and R sequences from pBS/CG2-Rc/s-CMV-D U (Nakajima et al. 2000 Human Gene Therapy 1 1 : 1863) were amplified by PCR and inserted along with the hCEF enhancer/Promoter sequence amplified by PCR from pGM169 (Hyde et al. Nature Biotechnology 26:549) and the soCFTR2 cDNA isolated from pGM169 on a Nhel-Apal restriction enzyme fragment into pGM101 to create pGM326.

The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, SIV GagPol and RRE sequences and the SV40 polyA/origin of replication were amplified by PCR from pCAGGS/Sagm-gtr (Nakajima et al. 2000 Human Gene Therapy 11 :1863) to create pGM297. The CMV enhancer/ promoter along with associated exon/intron sequences and SV40 polyA sequence from pCI (Promega, Madison, Wl, USA) were isolated on a Bglll-BamHI restriction enzyme fragment and the SIV Rev sequence derived from pCAGGS/Sagm-gtr amplified by PCR were inserted into pGM 101 to create pGM299.

The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, the Fct4 cDNA and SV40 polyA/origin from pCAGGS-Fct4 were isolated on a Sall-Hindlll restriction enzyme fragment by a combination of gene synthesis, PCR and restriction enzyme fragment recombination and inserted into pGM101 to create pGM301.

The CMV enhancer/chicken beta actin promoter along with associated exon/intron sequences, the SIVct+HN cDNA and SV40 polyA/origin from pCAGGS-SIVct+HN were isolated on a Sall-Hindlll restriction enzyme fragment by a combination of gene synthesis, PCR and restriction enzyme fragment recombination and inserted into pGM101 to create pGM303.

Other pGM plasmids of the invention were made using standard techniques and in accordance with the above disclosure.

Throughout these plasmid DNA assembly approaches, restriction enzymes and PCR polymerases were supplied by New England Biolabs (Ipswich, MA, USA) and DNA purification reagents were supplied by Qiagen (Limburg, Netherlands).

Example 3: Production of SIV vector

Four plasmid system:

Replication-defective self-inactivating SIV vector was constructed with minor modifications. Briefly, the SeV-F/HN-pseudotyped SIV vector was produced by transfecting 293T/17 cells (15 cm diameter culture dishes) with four plasmids complexed to Lipofectamine/Plus reagents (Invitrogen) according to the manufacturer's recommendations [Plasmid-1 : 10 g SIV-derived transfer plasmid carrying a GFP, a luciferase (lux) reporter gene, or a GFP-CFTR fusion construct, Plasmid-2: 3 g packaging plasmid, Plasmid-3: 2 g pCAGGS-Fct4, Plasmid 4: 2 g pCAGGS-SIVct+HN; Figures 1A-E show schematic drawings of plasmids used for the production of vectors of the invention]. The VSV-G pseudotyped SIV vector was produced using a similar protocol, but a pVSV-G plasmid (2 g; Clontech, Mountain View, CA) was used instead of pCAGGS-Fct4 and pCAGGS-SIVct+HN. At 12 hours after transfection the culture medium was replaced with 30 ml serum-free Dulbecco's modified Eagle medium containing 5 mmol/l sodium butyrate. Sodium butyrate stimulates the vector production to inhibit histone deacetylase. The culture supernatant containing the SIV vector was harvested 48 hours after transfection, filtered through a 0.45 pm filter membrane, and further concentrated by high-speed centrifugation (20,000 g for 4 hours at 4 °C, Avanti JA18 rotor; Beckman Coulter, Brea, CA). The vector pellets were suspended in PBS (Invitrogen) to 100- to 200-fold concentration and stored at -80 °C.

Five plasmid system (preferred):

SeV-F/HN-pseudotyped SIV vector was produced by transfecting HEK293T or 293T/17 cells cultured in Freestyle™ 293 Expression Medium with a mixture of five plasmids with the following characteristics: pDNA1 (for example pGM326; Figure 1A) encodes the lentiviral vector mRNA; pDNA2a (for example pGM297; Figure 1 B) encodes SIV Gag and Pol proteins; pDNA2b (for example pGM299: Figure 1 C) encodes SIV Rev proteins; pDNA3a (for example pGM301 ; Figure 1 D) encodes the Sendai virus-derived Fct4 protein [Kobayashi et al., 2003 J. Virol. 77:2607]; and pDNA3b (for example pGM303; Figure 1 E) encodes the Sendai virus-derived SIVct+HN [Kobayashi et al., 2003 J. Virol. 77:2607] complexed with PEIpro (Polyplus, lllkirch, France).

Cell culture media was supplemented at 12-24 post-transfection with sodium butyrate. Sodium butyrate stimulates vector production via inhibiting histone deacetylase resulting in increasing expression of the SIV and Sendai virus fusion protein components encoded by the five plasmids. Cell culture media was supplemented at 44-52 hours and/or 68-76 hours post-transfection with 5 units/mL Benzonase Nuclease (Merck Millipore, Nottingham, UK). The culture supernatant containing the SIV vector was harvested 68-76.5 hours after transfection, and clarified by filtration through a 0.45 pm membrane. The SIV vector is treated by digestion with a protease containing trypsin activity - for example an animal origin free, recombinant enzyme such as TrypLE Select™. Subsequently, SIV vector is typically further purified and concentrated by anion-exchange chromatography and/or tangential flow filtration ultra-filtration/dia-filtration.

This same method was used to generate lentiviral vectors comprising the A1AT and FVIII transgenes, with the plasmids of Figure 15A and Figure 22B replacing that of Figure 1A to provide the appropriate transgene (see Examples 15 and 20).

Example 4: Vector titration

Method V.

The particle titre was determined using real-time reverse transcriptase-PCR. Virus RNA was purified using a QIAamp viral RNA mini-kit (QIAGEN, Strasse, Germany), and reverse transcribed using Superscript II (Invitrogen). The QuantiTect probe PCR system (QIAGEN) and primers for amplifying 131 nucleotides (bp) spanning the WPRE sequence (forward primer: 5'-ggatacgctgctttaatgcc-3', reverse primer: 5'-acgccacgttgcctgacaac-3') were used according to the manufacturer's protocol in an ABI PRISM 7700 Sequence Detector System (PE Applied Biosystems, Foster City, CA). SIV gene transfer plasmid DNA (3 χ 104 to 2 χ 106 molecules) was used as standard.

Transduction units (TU/ml) were determined by transducing 293T cells with serial dilutions of vector stock and quantification of transduced cells by GFP fluorescence (for F/HN-SIV-GFP and VSV-G-SIV-GFP) or staining with anti-luciferase antibody (for F/HN-SIV-lux).

Method 2 (preferred):

The particle titre (VP/mL) was typically determined using real-time reverse transcriptase-PCR. Virus RNA was purified using a QIAamp viral RNA mini-kit (QIAGEN, Strasse, Germany), and reverse transcribed using reverse transcriptase (Life Technologies).

TaqMan quantitative PCR system (Life Technologies) using primers amplifying a portion of the WPRE sequence in an ABI PRISM 7700 Sequence Detector System (Life Technologies). In vitro transcribed WPRE RNA molecules were used as quantitative standards.

Transduction units (TU/mL) were determined by transducing 293T/17 or Freestyle 293F cells with serial dilutions of SIV vector and quantification of WPRE containing provirus DNA by TaqMan quantitative PCR system (Life Technologies) using primers amplifying a portion of the WPRE sequence in an ABI PRISM 7700 Sequence Detector System (Life Technologies). Plasmid DNA molecules containing WPRE sequences were used as quantitative standards.

Example 5: Generation of basal cells-enriched tEC cultures

Murine tracheal epithelial cells (tEC) were isolated as follows. C57BL/6N Mice were culled and the tracheas were excised from the larynx to the main bronchial branches using sterile surgical instruments. The tissues were placed in a tube containing cold Ham's F-12 medium with 100 U/ml penicillin (P), 100 pg/ml streptomycin (S) and 2.5 mg/ml amphotericin B (A) (Ham's F12/PSA medium) and kept on ice. In a sterile tissue culture hood, the tracheas were cleaned from adherent muscles and connective tissue, cut longitudinally to expose the internal respiratory epithelium, and placed in 0.15% pronase solution in F-12 medium (~5 ml in 15 ml tube). Tissue digestion was performed overnight (15-18 hr) at 4 °C. To block the enzymatic reaction, 10% fetal bovine serum (FBS) was added to the tissue digest. After gently inverting the tube to detach more cells, the tracheas were placed into a new tube containing 10% FBS/Ham's F-12/PS solution, and inverted as before. This step was repeated two more times. The content of the four tubes was pooled together and centrifuged at 500g for 10 min at 4°C. The pellet was re-suspended in DNase solution (0.5 mg/ml crude pancreatic DNase plus 10 mg/ml BSA in FBS/Ham's F-12/PS solution, about 200 μΙ/trachea), incubated on ice for 5 minutes, and centrifuged as before.

After removing the supernatant, tEC were resuspended in Progenitor Cell Targeted (PCT) medium (CnT-17, CELLnTEC, Bern, Switzerland), an antibiotics and antimycotics-free formulation specifically designed for human and mouse airways progenitor cells isolation and proliferation. tEC were then plated in a Primaria tissue culture dish (Becton Dickinson Labwere, Franklin Lakes, NJ, USA) and incubated for 3-4 hr in 5% C02 at 37

°C. Non-adherent cells were collected and centrifuged at 500g for 5 min at 4°C and counted in a haemocytometer. To generate basal cells-enriched cultures, tEC were suspended in PCT medium and seeded on a Nunclon™A plate (Nunc A/S, Roskilde, Denmark), coated with 50 pg/ml type 1 rat tail collagen at a recommended seeding density of 4x103 cells/cm2. tEC were also cultured in a control basic medium, containing DMEM/Ham's F12 supplemented with L-glutamine (4 mM), HEPES (15 mM) and NaHC03 (3.4 mM). Plates were incubated at 37°C with 5% C02. To determine the proportion of basal cells in the tEC population before and after expansion in PCT medium, cytospin preparations were stained with the anti-KRT5 antibody and the appropriate secondary antibody.

The pool of tEC produced comprised both fully differentiated cells (Clara and ciliated cells) and basal cells. Once seeded onto permeable membranes tEC were able to generate an air liquid interface (ALI) culture system as a result of basal cell proliferation and redifferentiation into secretory and ciliated cells. To establish an alternative and rapid protocol for basal cell expansion, two-dimensional (2D) tEC cultures using a commercially available proprietary Progenitor Cell Targeted (PCT) medium, specifically formulated to support the proliferation of airway progenitor cells while maintaining them in an undifferentiated status were assessed. As a negative control, tEC were exposed to a basic media formulation without addition of specific growth factors. tEC seeded on collagen-coated plastic surfaces (4x103 cells/cm2) and exposed to PCT medium were able to grow rapidly and became confluent within 5-8 days whereas tEC exposed to the growth factor-deficient control medium were unable to adhere and propagate. To establish whether the use of PCT medium resulted in a substantial enrichment of the basal cell population, tEC were harvested at approximately 80% confluence (n=6 wells), fixed and treated with an anti-keratin 5 (Krt5) antibody, a specific marker of basal cells. Freshly isolated tEC were used as controls (n=3 unique preparations). The proportion of Krt5 positive basal cells after expansion in PCT medium was higher (78±1.4%) than in freshly isolated pools of tEC (33±0.6%), demonstrating that murine airway basal cells can be selectively and rapidly expanded from a mixed pool of tEC using a commercial medium.

Example 6: Ex vivo transduction of basal cells-enriched tEC cultures with F/HN-SIV-GFP

To determine whether the F/HN-SIV vector can effectively transduce basal cells ex vivo, tEC prepared in Example 5 were grown to approximately 70% confluence over 7 days in PCT medium and transduced with F/HN-SIV carrying a green fluorescent protein reporter gene (F/HN-SIV-GFP) at an MOI 100 and incubated at 37°C with 5% C02 for 3 days. tEC derived from wild-type and GFP transgenic animals were cultured under the same conditions and used as negative (no viral transduction) and positive control groups, respectively (n=3-6 wells/group).

To quantify the proportion of GFP-positive cells, basal cells-enriched tEC cultures were detached with the enzyme accutase (CELLnTEC), re-suspended in PBS/1 %BSA and subjected to FACS analysis, counting an average of 20.277±2.478 cells/group. The F/HN-SIV vector transduced 26%±0.9% of basal cells-enriched tEC (p<0.0001 when compared to untransduced controls).

To assess whether transduced GFP-expressing cells were basal cells, three days postinfection cells were double stained with antibodies against Krt5 and GFP. Immunofluorescence staining of cultured cells showed that approximately 40% of Krt5-expressing cells also expressed the GFP reporter gene, showing that the F/HN-SIV vector can transduce progenitor basal cells ex vivo.

Example 7: In vivo administration to the mouse nose

C57BL/6N mice (female, 6-8 weeks) were used. Mice were anesthetized, placed horizontally on their backs onto a heated board, and a thin catheter (<0.5 mm outer diameter) was inserted -2.5 mm from the tip of nose into the left nostril. Using a syringe pump (Cole-Parmer, Vernon Hills, IL), vector (100 μΙ) was then slowly perfused onto the nasal epithelium (1.3 μΙ/min) for 75 minutes. Despite perfusion of virus into the left nostril, we routinely observe transfection in both left and right nostrils, which is due to dispersion of the solutions throughout the entire nasal cavity. PBS and VSV-G-SIV transduced mice preconditioned with 1 % lysophosphatidylcholine as described by Limberis et al., 2002, were used as controls. At indicated time points (3-360 days after transduction), mice were culled to visualize GFP expression. As shown in Figure 2, GFP expression was observed for at least 449 days post-transduction, whereas the negative control showed no GFP expression. As shown in Figure 3, transgene expression with the F/NH-SIV vector was consistent, with observable GFP expression at least 360 days post-transduction in 10 independently tested mice.

Similarly, as shown in Figure 13, transduction with an F/HN-SIV vector of the invention comprising an hCEF promoter resulted in long-term expression of a CpG rich reporter gene (luciferase). High levels of expression relative to the control were observed in both the lung and the nose for at least 169 days post-transduction.

In the repeat administration experiments groups of mice were transduced with either one dose of F/HN-SIV-lux (single-dose group), or two doses of F/HN-SIV-GFP (day 0, day 28), followed by F/HN-SIV-lux on day 56 (repeat-dose group). Importantly, mice receiving F/HN-SIV-lux (single-dose group) and F/HN-SIV-lux on day 56 (repeat-dose group) were of similar age and were transduced at the same time. Gene expression was analysed 30 days after F/HN-SIV-lux administration. For comparison, mice were transfected with the cationic lipid GL67A complexed to a luciferase reporter gene as previously described (Griesenbach, U. et al., Methods Mol Biol. 2008; 433:229-42) and luciferase expression was measured 2 days after transfection.

As shown in Figure 6, repeat administration of F/HN-SIV to the mouse nose does not alter gene expression levels. Transgene expression is compared to a leading non-viral gene transfer formulation (CMV-Lux plasmid complexed with GL67A).

Insertion site profiling was conducted on transduced mice, and survival time investigated as set out in the description of Figure 12 above. Transduction using the F/HN-SIV vector of the invention was not observed to have any adverse effect on mouse survival compared with an existing F/HN-SIV vector or negative (buffer only) control (see Figure 12G).

Example 8: Induced regeneration of nasal epithelial cells by polidocanol treatment

Nasal epithelial cells were stripped by polidocanol treatment according to the method described (Borthwick et al., Am J Respir Cell Mol Biol. 2001 Jun; 24(6): 662-70), with some modification. In brief, mice were anesthetized and 10 μΙ polidocanol (2%) was administered to the nose as a bolus by "nasal sniffing". To confirm the stripping and regeneration of nasal epithelial cells, nasal tissue was perfused with 10 μΙ of 2% (vol/vol in PBS) polidocanol (nonaethylene glycol mono-dodecyl ether; SIGMA, St Louis, MO) and histological analysis undertaken 24 hours and 7 days after treatment (n = 3/group).

To analyse transduction of possible progenitor or stem cells, we first administered F/HN-SIV-GFP (4 x 108 TU/mouse) vector to mouse nasal epithelium. Seven days after transduction, nasal tissue was perfused with 10 μΙ of 2% (vol/vol in PBS) polidocanol, and this treatment was repeated again 3 weeks later. Histological sections were analysed 58 days after vector administration (30 days after the last polidocanol treatment).

Example 9: Bioluminescent imaging

Mice were injected intraperitoneal^ with 150 mg/kg of D-luciferin (Xenogen, Alameda, CA) 10 minutes before imaging and were anesthetized with isoflurane. Bioluminescence (photons/s/cm2/sr) from living mice was measured using an IVIS50 system (Xenogen) at a binning of 4 for 10 minutes, using the software programme Living Image (Xenogen). For anatomical localization a pseudocolor image representing light intensity (blue: least intense, red: most intense) was generated using Living Image software and superimposed over the grayscale reference image. To quantify bioluminescence in the nose, photon emission in a defined area (red box) was measured by marking a standardized area for quantification. The size of the red box was kept constant and was placed over the heads of the animals as indicated in the figure. Importantly, the areas were marked using the grayscale reference image to avoid bias.

Example 10: Tissue preparation for histological assessment of GFP expression and/or basal cell detection

Mice were culled and the skin was removed. The head was cut at eye level and skin, jaw, tongue, and the soft tip of the nose were carefully removed. For in situ imaging of GFP expression in the nasal cavity, GFP fluorescence was detected using fluorescence stereoscopic microscopy (Leica, Ernst Leitz Optische Werke, Germany). Subsequently, the tissue was fixed in 4% paraformaldehyde (pH 7.4) overnight at room temperature and was then submerged in 20% EDTA (pH 7.5 for 5 days) for decalcification. The EDTA solution was changed at least every second day. After decalcification, the tissue was incubated in 15% sucrose overnight at room temperature and was then embedded in Tissue Mount (Chiba Medical, Soka, Japan). Ten micrometer sections were cut at six different positions in each mouse head (-0-6 mm from the tip of nasal bone). GFP expression was observed using a fluorescent microscope (Leica). Quantification and identification of cell types were carried out on six levels per mouse using a *40 or *63 objective. Prolonged image exposure was necessary to capture the structure of the

nasal epithelium using fluorescent microscopy. This led to pixel saturation of GFP-positive cells and caused GFP-positive cells to appear almost white rather than the common green appearance that we, and others, observe under higher magnification.

Cellular distribution of F/NH-SIV transgene expression was investigated in histological sections. Specifically, EGFP expression was determined in histological sections of the mouse nasal cavity (2mm from the tip of the nose) at 30 days post treatment. Figure 4 shows the location of EGFP expression (Figure 4, white punctate signal).

Figure 5 shows the cell types transduced by /NH-SIV transgene treatment of the mouse nose. 69% of the cells transduced in the mouse nasal cavity were ciliated respiratory epithelial cells. Other transduced cell types included neuronal cells in the olfactory epithelium (21 %) and squamous cells (7%).

To detect basal cells following polidocanol treatment horseradish peroxidase (HRP)-based immunostaining was performed using the Envision kit (Dako, Glostrup, Denmark). Briefly, slides were treated with 0.6% hydrogen peroxide in methanol for 15 min, washed in tap water and incubated with 1.5% normal goat serum (Abeam) for 30 min. Slides were then incubated with a rabbit polyclonal anti-Cytokeratin 5 antibody (1 :500) (Abeam) for 1 hr following a Goat anti-rabbit IgG conjugated to HRP (provided with the kit) for 30 min. Sections were then washed in PBS and incubated with the peroxidase substrate 3-amino-9-ethylcarbazole (AEC) (provided with the kit) for 5 min. Finally, slides were washed in distilled H20, counterstained with aqueous Harris' hematoxylin (BDH) for 15 seconds, washed in tap water, and then in distilled H20.

Immunofluorescence detection of GFP-positive transduced nasal epithelial cells and Krt5 positive basal cells was performed using the following primary and secondary antibodies: goat polyclonal anti-GFP antibody (1 :250) (Abeam), rabbit monoclonal anti-KRT5 antibody (1 :500) (Abeam), Alexa Fluor 488 donkey anti-Goat IgG (1 :200) (Invitrogen, Paisley, UK) and Alexa Fluor 594 goat anti-rabbit IgG (1 :200) (Invitrogen). To improve antibody performance, sections were subjected to heat-mediated antigen retrieval in citrate buffer (10 mM citric acid, 0.05% Tween20, pH 6.0) for 20 min on a water bath at 100 °C. Stained sections were mounted in ProLong® Gold Antifade Reagent with DAPI (Invitrogen) and analysed with a confocal microscope as before (all Zeiss). GFP-positive basal cells (identification based on morphology and location within the epithelial layer) were quantified on a total of 13 sections/mouse. Sections that displayed putative GFP positive basal cells were selected for double staining with the anti-KRT5 and anti-GFP antibodies to confirm the basal cell phenotype.

Example 11 : Transduction of ALI cultures

Fully differentiated airway epithelial cells grown as ALI cultures were purchased from Epithelix (Geneva, Switzerland). ALIs were transfected with F/HN-SIV-lux at a multiplicity of infection ranging from -25 to -300 TU/cell. After 6 hours, the virus was removed and ALIs were incubated for 10-26 days. The basolateral medium was changed every 48 hours during this incubation period. At specified time points, the ALIs were lysed in 100 μΙ reporter lysis buffer and luciferase expression was quantified using the Luciferase Assay System (Promega, Southampton, UK) according to the manufacturer's instructions. The total protein content of the cultures was quantified using the BioRad protein assay kit (BioRad, Hemel Hempstead, UK). Each sample was assayed in duplicate. Luciferase expression was then presented as relative light units/mg total protein. For bioluminescence imaging 100 g luciferin in PBS were added to the apical membrane.

As shown in Figure 7, cells in ALI cultures were successfully transduced with F/HN-SIV-Lux, as evidenced by luciferase expression. Luciferase expression was greater at MOI 250 compared with MOI 25.

Example 12: Iodide efflux assay

HEK293T cells were transfected with F/HN-SIV-GFP-CFTR or an F/HN-SIV-GFP control virus at a multiplicity of infection of 500 TU/cell and cultured for 2 days. CFTR chloride channel activity was assayed by measuring the rate of 125iodide efflux as previously described (Derand, R., et al., 2003). The 125iodide efflux rates were normalized to the time of forskolin/IBMX addition (time 0). Curves were constructed by plotting rates of 125iodide efflux against time. To reflect the cumulative levels of 125iodide efflux following agonist-stimulation, all comparisons are based on areas under the time-125iodide efflux curves. The area under the curve was calculated by the trapezium rule. Experiments were carried out in duplicate (n = 6 wells/group/experiment).

As shown in Figure 8, F/HN-SIV can direct functional CFTR expression, with a relative 125iodide efflux of 0.65. In contrast, the GL67A plasmid vector achieved a lower 125iodide efflux value of 0.33.

Example 13: Transduction of sheep and human primary lung cells and mouse lung

F/HN-SIV efficiently transduces sheep & human primary lung cells and mouse lung.

F/HN-SIV-CMV-Lux was used to transduce human nasal brushings (MOI 250) and human and sheep lung slices cultured ex vivo (1x107 TU/slice). As shown in Figure 9A, transduction of both the human nasal brushing cells and human and sheep lung slices resulted in substantial luciferase transgene expression (average values in the region of 2x102 RLU/mg protein for the human nasal brushings, 1x107 RLU/mg protein for the human lung slices and 2 x 107 RLU/mg protein for the sheep lung slices) 24-48 hours post-transduction.

Primary human CF lung cells cultured at the air-liquid interface (CF hALIs, -1x105) were transduced with (3 x 107 TU) F/HN-SIV-soCFTR2 vectors containing CMV- and hCEF transgene promoters. Vector copy number (copies of pro-viral DNA per copy of endogenous CFTR DNA) was measured at 6-8 days post-transduction. Both the CMW and hCEF promoters were able to achieve a vector copy number of at least 1 x 10 1 (Figure 9B).

CFTR mRNA expression level (%VE: copies of CFTR mRNA per copy of endogenous CFTR mRNA x 100) at 6-8 days post-transduction was also measured. The horizontal dotted line in Figure 9C represents a target expression level of 5% VE, which is thought to represent the therapeutic threshold. Both the F/HN-SIV-soCFTR-CMV and F/HN-SIV-soCFTR2-hCEF induced expression significantly above this target (in the region of 40583±10687 and 18509±13588 respectively, mean ± SD, n=4).

Following in vivo delivery of F/HN-SIV-EGFPLux vectors containing CMV, EF1a and hCEF promoters in integrase defective (ID) or integrase competent form (IC or no label) airway cells transgene expression was determined in the nasal (Figure 9D) and lung (Figure 9E) murine epithelium (n=6-10/group). The time course of luciferase transgene expression was monitored by repeated in vivo bioluminescence imaging and was normalised to delivered dose. Four of the five vectors tested (vGM012 CMW, vGM014

EF1 a, vGM020 hCEF and vGM076 hCEF ID) achieved expression in the nose above the target level for the whole time course of the experiment. The fifth vector, vGM074 CMV ID, achieved expression in the nose above the accepted expression level for the whole time course of the experiment.

Two of the five vectors tested (vGM014 EF1 a and vGM020 hCEF) achieved expression in the lung above the target level for the whole time course of the experiment. One vector, vGM012 CMW, achieved expression in the lung above the accepted expression level for the whole time course of the experiment.

Bioluminescence was detected following in vivo murine transduction at day 14 post transduction. Representative images are shown in Figure 9F. The vGM020 hCEF vector achieved the highest level of in vivo expression out of the five vectors tested.

Bioluminescence was also detected following in vitro transduction of non-CF hALI at day 5-6 post transduction. Representative images are shown Figure 9G. Again, the vGM020 hCEF vector achieved the highest level of expression out of the five vectors tested.

Figure 9H shows EGFP expression at 14 days post transduction in the murine nasal epithelium following delivery of 1.6 x 10 8 TU of F/HN-SIV-hCEF-EGFPLux (vGM020), as visualised by immunohistochemistry (nuclei stained with DAPI).

The time-course of luciferase transgene expression in non-CF ALIs was monitored by repeated bioluminescence imaging and was normalised to the delivered dose. As shown in Figure 9I, the vGM014 EF1a and vGM020 hCEF vectors achieved the highest level of expression.

F/HN-SIV also efficiently transduces sheep lung in vivo. Acriflavine was instilled (3χ100μΙ_ aliquots over ~5 minutes) to a proximal airway under direct bronchoscopic visualisation. The distribution of the acriflavine can be appreciated by the orange colouration of the dissected airway at postmortem (Figure 10A).

The acriflavine was largely restricted to the conducting airways and absent from the alveolar regions. The arrow in Figure 10A indicates the approximate site of instillation. The numbers on the ruler are in cm.

Figure 10B is a diagrammatic representation of the sheep lung (trachea centre/top). The circle represents the region in (Figure 10A). In Figure 10B, the arrow indicates passage of bronchoscope to deliver 3χ100μΙ_ aliquots of 2.2E9 TU/mL (6.6E8 TU total) F/HN SIV CMV- EGFPLux to n=3 individual sheep (animal codes T121 , T156 & T251 ). At seven days post-delivery, 5-6 tissue sample blocks were taken at post-mortem at ~1 cm intervals from the site of instillation.

The sample blocks were divided into 2-3 approximately equivalent samples and analysed for transgene expression, the results of which are shown in Figure 10C as luciferase assays normalised to protein content; and In Figure 10D as quantitative RT-PCR normalised to endogenous CFTR mRNA levels. The horizontal line in Figure 10C represents the highest luciferase activity noted in any sample treated with a non-viral gene transfer vector, and in Figure 10D the target expression level of 5% VE (thought to represent the therapeutic threshold, see above). For each treatment group the average was higher than the non-viral vector comparison (Figure 10C), and also achieved expression above the target 5% VE threshold.

Example 14: CFTR expression and function measured using human CF intestinal organoids

Human CF intestinal organoids were generated as described by Dekkers JF et al, (Nature Medicine 2013, 19(7): 939-945). Briefly, intestinal biopsies were washed in EDTA containing solutions to dissociate crypt cells. Crypt cells were then transduced with vGM058 (approximately 1x107 transduction units) or a control virus (n=3 wells/condition) and embedded in Matrigel and allowed to form organoids for 3-4 days. CFTR function was assessed by exposing the organoids to forskolin (approximately 5 μΜ forskolin) which increases intracellular cAMP levels and thereby activates CFTR. In response the CFTR activation the organoids increase chloride transport which leads to water uptake and swelling. Organoids (minimum 10/well) were directly analysed by confocal live-cell microscopy (LSM710, Zeiss, *5 objective). Forskolin-stimulated organoid swelling was automatically quantified using Volocity imaging software (Improvision). The total organoid area (xy plane) increase relative to that at t = 0 of forskolin treatment was calculated and averaged. Forskolin induced swelling was significantly (p<0.001 ) increased in vGM058 transduced organoids compared to controls (see Figure 14A). Significant levels of CFTR-mediated iodide efflux (p<0.05) were also detected in vGM058 transduced cells (Figure 14B) using the iodide efflux assay disclosed herein (see Example 12).

Example 15: Generation of lentiviral vectors for A1AT

Lentiviral vectors were prepared using the SIV backbone and 5 plasmid method described above in Examples 2 and 3 (for the CFTR lentivirus) and using the hCEF promoter as described herein. Two separate lentiviral constructs were generated: one with a human alpha-1 -antitrypsin (hAAT) transgene; one with a Gaussia luciferase (Glux) transgene (see Figure 15A and B, SEQ ID NOs: 9 and 10 respectively). The cDNAs contained within these vectors were codon-optimised and CpG-depleted.

Example 16: Air-liquid interface (ALI) culture using lux reporter gene lentiviral vector

Fully differentiated wild-type human ALI cultures (MucilAir) were purchased from Epithelix SARL (Geneva, CH). ALIs were cultured at 37°C and 5% C02 and the basolateral culture medium changed every 2-3 days. The culture medium was stored at -20°C until further analysis.

ALIs were transduced (on day 0) by pipetting 100μΙ of virus (1x107 Tagman transfection units (TTU) onto the apical surface. The virus was removed after 4 hours incubation at 37°C, and the basolateral medium replaced.

At indicated timepoints post-transduction, the apical surface of the ALIs was washed by incubating with sterile PBS for one hour. The washings were removed and stored at -20°C until further analysis.

A Gaussia luciferase assay (New England Biolabs, Ipswich, USA) was performed according to manufacturer's recommendations. 15μΙ of sample was analysed in duplicate, and luminescence determined in an Appliskan plate reader. Glux expression was expressed as RLU/μΙ fluid (RUL = relative light units).

Figure 16 provides the results, with each point representing the mean value of RLU/μΙ in the media from n=6 ALIs at the time point shown (standard error indicated by error bars).

Lentiviral-mediated gene transfer in human air-liquid interfaces resulted in the long-term expression of secreted reporter protein Gaussia luciferase.

Example 17: Transgene expression in lung slice cultures using A1AT and lux reporter gene lentiviral vectors

Precision-cut human lung slices were prepared as described in Moreno L et al, Respir Res 2006 Aug 21 ;7: 1 1 1. Lung slices were placed in 12-well tissue culture plates (1 slice per well) in 1 ml of media and incubated at 37°C and 5% C02. The media was changed daily and stored at -20°C until further analysis.

On day 0 lung slices (n=6 per group) were transduced with SIV hCEF-sogLux (1 x 106 TTU) or SIV1 hCEF-sohAAT (2 x 106 TTU) virus diluted in medium to a final volume of 1000μΙ and incubated for 4 hours. After the incubation, medium was replaced and stored at -20°C until further analysis.

Gaussia luciferase expression was determined as described above (Example 16). As shown in Figure 17A, high levels of expression of secreted reporter protein Gaussia luciferase followed lentiviral-mediated gene transfer in human lung slices. AAT (also referred to herein as A1AT) expression was determined using a sandwich ELISA (Abeam, Cambridge, UK), performed according to the manufacturer's recommendations. 50μΙ of sample was assayed in duplicate, and measured on a microplate reader at 450nm. As shown in Figure 17B, high levels of expression of alpha-1 -antitrypsin (AAT/A1AT) followed lentiviral-mediated gene transfer in human lung slices.

Example 18: In vivo administration of A1AT and lux reporter gene lentiviral vectors to the mouse nose

Mouse lung transduction:

Female C57BL/6 mice (Charles River, UK) were anaesthetised with isoflurane and given 10Oul of virus by nasal instillation as described in Xenariou S et al, Gene Ther 2007 May; 14(9): 768-75. Animals were given between 1 and 5 doses and observed daily for signs of toxicity.

For Gaussia luciferase, female C57BL/6 mice were anaesthetised on day 0 using isoflurane and given a single 100ul dose of the SIV1 hCEF-soGLux virus (1x106 TTU) by nasal instillation . Control animals were treated with DM EM (tissue culture medium), the main constituent of the viral preparation used in the study.

For A1AT, female C57bl/6 mice (n = 5 per group) were treated with 3 doses of SIV1 hCEF-sohAAT at 10-day intervals (100μΙ per dose, 6.8x107 TTU; total dose 2.4x108 TTU). Control animals were instilled with 100ul of sterilised PBS (the main constituent of the lentivirus production batch used in the study) at each dosing point.

10 days after the third dose, animals were sacrificed and lung tissue homogenate, broncho-alveolar lavage fluid and serum analysed for AAT expression.

In addition, long term expression of A1AT was investigated. On days 1 to 5 of the experiment, C57bl/6 mice were treated with 10ΟμΙ of SIV1 hCEF-sohAAT by nasal instillation (5 doses of 4 x 105 TTU, i.e. 2x1 Oe6 TTU per animal in total). Control animals were instilled with 100ul of DM EM (tissue culture medium), the main constituent of the lentivirus production batch used in the study. Animals were sacrificed at various timepoints post-transduction and lung tissue homogenate, broncho-alveolar lavage fluid and serum were analysed for AAT expression.

Mouse tissue collection:

Mice were sacrificed at the indicated time-points post transduction. Blood was collected by puncturing the left ventricle, and centrifuged at 760gav for 10 minutes to prepare serum. Serum was subsequently frozen at -80°C.

A bronco-alveolar lavage (BAL) was performed by dissecting the neck, inserting a cannula into the trachea and securing it in place with suture thread. 500 μΙ of PBS was instilled into the lung, and aspirated three times to obtain thorough washing of the epithelial lining. The sample was immediately snap frozen in liquid nitrogen, and stored at -80°C for further analysis.

Lungs were then dissected and snap-frozen in liquid nitrogen, and subsequently homogenised in lysing matrix D tubes (MP Biomedicals), centrifuged in a FastPrep

machine (ThermoFisher Scientific, Waltham, MA, USA) at 4m/s for 45 seconds, and stored at -80 °C for further analysis.

AAT (A1AT) and Gaussia luciferase (Glux) expression was determined as described in Examples 16 and 17 above. In vivo transduction of mouse airway cells with a single dose of the lux reporter gene lentiviral vector of Example 15 resulted in long-term expression (at least 12 months) of the secreted reporter protein Gaussia luciferase, in lung homogenate (Figure 18A), bronco-alveolar lavage fluid (BAL, Figure 18B) and serum (Figure 18C).

High levels of expression of A1AT were observed in lung homogenate, BAL and serum following lentiviral-mediated transfer of the AAT (A1AT) gene in vivo (Figure 19), with over a 100-fold increase in ATT (A1AT) expression in the lung homogenate and BAL observed compared with the corresponding negative (PBS) controls. A significant increase (at least one order of magnitude) in ATT (A1AT) expression was also observed in the serum.

In addition, long-term expression (at least 90 days) of alpha-1 -antitrypsin was observed in lung homogenate (Figure 20A), BAL (Figure 20B) and serum (Figure 20C) following lentiviral-mediated gene transfer of the AAT (A1 AT) gene in vivo.

Example 19: Urea assay

C57bl/6 mice (n = 5 per group) were treated with 3 doses of SIV1 hCEF-sohAAT at 10-day intervals (100μΙ per dose, 6.8x107 TTU; total dose 2.4x108 TTU). Control animals were instilled with 100ul of sterilised PBS (the main constituent of the lentivirus production batch used in the study) at each dosing point.

10 days after the third dose, animals were sacrificed and lung tissue homogenate, broncho-alveloar lavage fluid and serum analysed for A1 AT expression.

A urea assay (Abeam, Cambridge, UK) was performed according to the manufacturer's instructions.

Firstly, serial dilutions of murine serum and BAL fluid samples were prepared and analysed to determine the appropriate dilution to use in further experiments.

Secondly, corresponding serum and BAL fluid samples from single mice (n =14) were analysed to calculate the fold-difference between urea concentration in serum and BAL fluid, equivalent to the dilutional effect of BAL on epithelial lining fluid (as per Rennard SI et al, J Appl Physiol (1985). 1986 Feb;60(2):532-8). The mean dilution of BAL was 41 -fold (range 24-88).

Taking into account this dilutional effect, the concentration of ATT (A1AT) in the epithelial lining fluid was calculated. Specifically, the concentration of AAT in the broncho-alveolar lavage fluid was multiplied by the dilution factor, to provide an estimate of the 'true' AAT concentration in epithelial lining fluid.

A "protective" target level of ATT (A1AT) in the epithelial lining fluid (ELF, i.e. the fluid lining the airways and airspaces in the lungs) is 70pg/ml (compared with a "normal" target level of ATT (A1AT) in the ELF of 200pg/ml). As shown in Figure 21 , therapeutic levels of alpha-1 -antitrypsin in epithelial lining fluid followed ATT (A1AT) lentiviral-mediated gene transfer in vivo.

Example 20: Generation of lentiviral vectors for FVIII

Four different FVIII lentiviral vectors were prepared using the SIV backbone and 5 plasmid method described above in Examples 2 and 3 (for the CFTR lentivirus) and 15 (for the A1AT lentivirus). The promoter-transgene plasmids have SEQ ID NOs: 1 1 to 14 respectively.

The SIV sequence was identical to the CFTR constructs (Examples 2 and 3) except for the promoter and cDNA. The human cytomegalovirus promotor (CMV) or tissue specific hCEFI promotor/enhancer was used as indicated (Figure 22) to drive expression of FVIII transgenes.

SIV-F/HN-FVIII-N6-CO contained the wild type human FVIII cDNA from which the BDD domain has been deleted and replaced with codon optimised 226 amino acid 6N-glycosylation fragment.

SIV-FVIII-V3 contains the wild type human FVIII cDNA from which the 226 amino acid glycosylation site has been deleted and replaced with 17 amino acid peptide which expresses 6N-glycosylation triples within the B domain (Mcintosh et al., Blood 2013 121 (17); 3335-3344).

Example 21 : Quantification of hFVIII antigen and activity levels in in vivo and in vitro models

Human FVIII antigen levels in a murine model were quantified by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's protocol. Briefly, plasma, BAL and lung were analysed for the presence of FVIII antigen using Asserachrom (FVIII:Ag) Elisa (Stago Diagnostics, France).

Samples were diluted 1 :2 and incubated on a mouse monoclonal anti-human factor VIII fragment-coated 96-well plate for 2 hours at room temperature. Following washing, anti-mouse secondary antibody coupled with peroxidase was added to the plate and incubation was carried out for 2 hours at RT. hFVII l:Ag levels were determined spectrophotometric at 450 nm using TMB substrate (data not shown).

Another ELISA assay was used to evaluate FVIII activity in an in vitro HEK293T model (FVIII:C, Affinity Biological, Canada). Supernatants were collected 48 and 72 hours after HEK293T transduction with SIV-F/HN-FVIII-N6 or SIV-F/HN-FVIII-N3. FVIII activity was evaluated by following the manufacturer's instructions using 50μΙ supernatants assayed in duplicate. As a negative control the supernatant from untreated HEK293T cells was tested. hFVIII activity was calculated from a standard curve generated using a series of dilutions of normal human pooled plasma (13th British Standard for blood coagulation Factor VI 11 concentrate, Human; NIBSC).

HEK293T cells were transduced with two different batches of vGM142 (Batch 1 -5.9x108 TTU/ml and Batch 2 - 2.8x108 TTU/ml). HEK293T cells were transduced with vGM142 Batch 1 vector (Figure 23A) and vGM142 Batch 2 vector (Figure 23B) at 3 different MOIs (MOI 1 ; 10; 100), and collected 48 and 72 hours post-transduction.

As is clear from Figure 23, increasing FVIII activity was observed with increasing MOI for both Batch 1 and Batch 2 of vGM142 at both 48 and 72 hours post-transduction. Furthermore, FVIII activity increased from 48 hours to 72 hours for each MOI tested.

Example 22: In vivo administration of FVIII and lux reporter gene lentiviral vectors to the mouse nose

Mouse lung transduction:

All animal procedures were performed in accordance with the conditions and limitation of the UK Home Office Project and Personal licence regulations under the Animal Scientific Procedure Act (1986).

Wild type C57BL/6 female mice aged 6-8 weeks old (Charles River, UK were anaesthetised using isofluorane and given 10ΟμΙ of virus in Dulbecco's phosphate-buffered saline (D-PBS), as described previously (Griesenbach et al., 2012) and the presence of FVIII antigen was assessed.

In two experiments (Group 1 and 2) mice received 3 doses (every other day) of SIV-F/HN-FVIII-N6 (vGM142) and were culled 10 days after the first dose. Group 1 (n=4) were treated with a total vector dose of 1.4x106 TTU/mouse. Group 2 (n=3) were treated with a total vector dose of 1.57x108 TTU/mouse

In one experiment (Group 3) mice were treated with 12 doses (every other day) of SIV-F/HN-FVIII-N6 (vGM142) and culled 28 days after the first dose. Group 3 (n=4) were treated with a total vector dose of 3.36x108 TTU/mouse)

Plasma, BAL fluid and Lung were collected (as described in Example 14). Briefly, the mice were sacrificed at the indicated time-points post transduction. Blood was then collected from heart into the 3.2 trisodium citrate anticoagulant collection tubes, before being centrifuged at 2000 - 2500 x g to obtain plasma. BAL fluid was collected by applying 3 consecutive installations of PBS (500μΙ) into mouse lung at room temperature. Supernatants were stored at - 80°C. Lungs were collected and stored at -80°C prior to tissue homogenisation.

The presence of FVIII expression was then assessed. FVIII levels were assessed in lung tissue homogenates (Figure 24A), BAL fluid (Figure 24B) and plasma (Figure 24C) collected separately in 3 independent experiments at 10 and/or 28 days post SIV-F/HN-FVIII-N6 treatment. Analysis was performed using One-way Anova (GraphPad Prism) with multiple comparisons between treated groups (**** p<0.0001).

As is clear from Figure 24A, all three treatment groups produced an observable increase in hFVIII levels within the lung tissue compared with the corresponding control (D-PBS). The 28 day treatment of Group 3 resulted in a significant increase in hFVIII expression compared with the 10 day treatments of Groups 1 and 2. Similar results were observed for the BAL fluid samples (Figure 24B), although in these samples there was also a significant increase in hFVIII levels in Group 2 compared with Group 1. Group 3 treatment resulted in a significant increase in hFVIII levels in plasma (Figure 24C).

Example 23: Manufacturing method for lentiviral vectors in accordance with the invention

HEK293 cells are grown in suspension, in Freestyle Expression Media (chemically defined, animal & protein-free), and the cell count is monitored. Glucose concentration is determined and titrated to ~35mM. A transfection mixture of pDNA/PEIPro™ is prepared and the cells are transfected at 0.33mg pDNA/1 E9 cells.

Cell count is monitored again and further Freestyle Expression Media is added. Glucose concentration is again determined and titrated to ~35mM. 5u/mL of Benzonase® can be added and three-stage inline virus clarification is carried out. Benzonase® is added followed by TrypLE Select™. The virus is cooled to 0°C and kept on wet ice for all subsequent steps. After filtering any non-virus particulate matter (mPES 0.45μηι filter), the virus is loaded onto Mustang® Q XT (3mL membrane / L clarified virus) followed by washing with 0.15M NaCI Tris pH7.5 and elution with 1.0M NaCI Tris pH7.5. The virus fraction is collected and diluted to 0.1-0.2 initial volume with Freestyle media. TrypLE Select™ can be added here if not added above and Benzonase® can be also be added at this stage in addition to or instead of above.

Spectrum Tangential flow filtration (TFF) is carried out (UF to -0.1 -0.05 initial volume = HV; DF retentate x5 HV against formulation buffer; UF to -0.001 - 0.002 initial volume) and retentate is collected. A second TFF step may be carried out and a smaller TFF unit for DF and/or final UF can be used. Additional steps can include mixed-mode/SEC and 0.45pm or 0.2pm sterile filtration.

Figure 11 depicts the production and purification of F/HN SIV Vectors. F/HN SIV Vectors were produced by 5 plasmid (pDNA) PEI-mediated transient transfection of 293T cells grown in suspension at 1 L scale in pH controlled WAVE Bioreactors (GE), using scalable methods of the invention. Vectors were clarified by depth/end-filtration (GE/Pall), contaminating nucleic acids were removed with Benzonase® (Merck), vectors were activated with TrypLE Select™ (Life Technology), purified and concentrated by anion exchange membrane chromatography (Pall) and tangential-flow filtration (Spectrum). All process vessels, containers and columns were single-use cGMP compliant. All reagents except plasmid DNA were animal-free cGMP compliant. Data from a variety of vector configurations (transgene promoter, transgene, integrase status) are shown. Physical and functional titres were determined using Q-PCR.

See the results of this exemplary method of the invention are discussed description of Figure 1 1 above.

Key to SEQ ID NOs

SEQ ID NO: 1 Plasmid as defined in Figure 1A (pDNA1 pGM326)

SEQ ID NO: 2 Plasmid as defined in Figure 1 B (pDNA2a pGM297)

SEQ ID NO: 3 Plasmid as defined in Figure 1 C (pDNA2b pGM299)

SEQ ID NO: 4 Plasmid as defined in Figure 1 D (pDNA3a pGM301 )

SEQ ID NO: 5 Plasmid as defined in Figure 1 E (pDNA3b pGM303)

SEQ ID NO: 6 Exemplified hCEF promoter

SEQ ID NO: 7 Exemplified CFTR transgene (soCFTR2)

SEQ ID NO: 8 Exemplified WPRE component (mWPRE)

SEQ ID NO: 9 F/HN-SIV-hCEF-soA1AT plasmid as defined in Figure 15 (pDNA1 pGM407)

SEQ ID NO: 10 F/HN-SIV-hCEF-sogLux plasmid as defined in Figure 15 (pDNA1 pGM358)

SEQ ID NO: 1 1 F/H N -S I V-C M V- H F VI 11 -V3 plasmid as defined in Figure 22C

(pDNA1 pGM41 1 )

SEQ ID NO: 12 F/HN-SIV-hCEF-HFVI II-V3 plasmid as defined in Figure 22D

(pDNA1 pGM413)

SEQ ID NO: 13 F/HN-SIV-CMV-HFVI II-N6-CO plasmid as defined in Figure 22E

(pDNA1 pGM412)

SEQ ID NO: 14 F/HN-SIV-hCEF-HFVII I-N6-co plasmid as defined in Figure 22F

(pDNA1 pGM414)

SEQ ID NO: 15 Exemplified A1AT transgene

SEQ ID NO: 16 Exemplified FVIII transgene (N6)

SEQ ID NO: 17 Exemplified CMV promoter

SEQ ID NO: 18 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 19 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 20 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 21 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 22 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 23 Primer for the construction of pCAGGS-Fct4

SEQ ID NO: 24 Primer for the construction of pCAGGS-SIVct+HN

SEQ ID NO: 25 Primer for the construction of pCAGGS-SIVct+HN

SEQ ID NO: 26 Complementary strand to the exemplified A1AT transgene

SEQ ID NO: 27 Exemplified A1A1 peptide

SEQ ID NO: 28 Complementary strand to the exemplified FVIII transgene (N6) SEQ ID NO: 29 Exemplified FVIII peptide (N6)

SEQ ID NO: 30 Exemplified FVIII transgene (V3)

SEQ ID NO: 31 Complementary strand to the exemplified FVIII transgene (V3) SEQ ID NO: 32 Exemplified FVIII peptide (V3)

SEQ ID NO: 33 Complementary strand to the exemplified CMV promoter

Sequences

SEQ ID NO: 1

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC GGCTACCTCA

1201 GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC GAACGGAAAG

1261 AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG CTTCGGCCTC

1321 CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT CCTCTACCCC

1381 CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG CGTGCTATAT

1441 TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC AGTAAGACAA

1501 CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG ACAAAAGAAA

1561 AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC GCAACAACAA

1621 GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG GGTAAAAGCA

1681 GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA AGCCCTATCG

1741 AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT GCAATGGGAG

1801 CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA CTGCAGCAGC

1861 AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG ACCATTTGGG

1921 GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG GATCAGGCAC

1981 GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG GAGTGGCCCT

2041 GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA AGACAAATAG

2101 CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA GAGGAAAAGA

2161 ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG TTCGATTTCT

2221 CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA ATAGGGTTAA

2281 GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT GTTCCTCTAT

2341 CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG GGACAGACTT

2401 CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT TTACAAACCA

2461 AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT TATGGTAAAT

2521 GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT GATGTATGTT

2581 CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT TTATGGTAAC

2641 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA TTGATGTCAA

2701 TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC

2761 TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT AGTGGAGAAG

2821 AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC ACAGTCCCTG

2881 AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG GGCTTGGGTA

2941 AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG GGGAGAACCA

3001 TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT CCTGTGAGTT

3061 TGCTAGCCAC CATGCAGAGA AGCCCTCTGG AGAAGGCCTC TGTGGTGAGC AAGCTGTTCT

3121 TCAGCTGGAC CAGGCCCATC CTGAGGAAGG GCTACAGGCA GAGACTGGAG CTGTCTGACA

3181 TCTACCAGAT CCCCTCTGTG GACTCTGCTG ACAACCTGTC TGAGAAGCTG GAGAGGGAGT

3241 GGGATAGAGA GCTGGCCAGC AAGAAGAACC CCAAGCTGAT CAATGCCCTG AGGAGATGCT

3301 TCTTCTGGAG ATTCATGTTC TATGGCATCT TCCTGTACCT GGGGGAAGTG ACCAAGGCTG

3361 TGCAGCCTCT GCTGCTGGGC AGAATCATTG CCAGCTATGA CCCTGACAAC AAGGAGGAGA

3421 GGAGCATTGC CATCTACCTG GGCATTGGCC TGTGCCTGCT GTTCATTGTG AGGACCCTGC

3481 TGCTGCACCC TGCCATCTTT GGCCTGCACC ACATTGGCAT GCAGATGAGG ATTGCCATGT

3541 TCAGCCTGAT CTACAAGAAA ACCCTGAAGC TGTCCAGCAG AGTGCTGGAC AAGATCAGCA

3601 TTGGCCAGCT GGTGAGCCTG CTGAGCAACA ACCTGAACAA GTTTGATGAG GGCCTGGCCC

3661 TGGCCCACTT TGTGTGGATT GCCCCTCTGC AGGTGGCCCT GCTGATGGGC CTGATTTGGG

3721 AGCTGCTGCA GGCCTCTGCC TTTTGTGGCC TGGGCTTCCT GATTGTGCTG GCCCTGTTTC

3781 AGGCTGGCCT GGGCAGGATG ATGATGAAGT ACAGGGACCA GAGGGCAGGC AAGATCAGTG

3841 AGAGGCTGGT GATCACCTCT GAGATGATTG AGAACATCCA GTCTGTGAAG GCCTACTGTT

3901 GGGAGGAAGC TATGGAGAAG ATGATTGAAA ACCTGAGGCA GACAGAGCTG AAGCTGACCA

3961 GGAAGGCTGC CTATGTGAGA TACTTCAACA GCTCTGCCTT CTTCTTCTCT GGCTTCTTTG

4021 TGGTGTTCCT GTCTGTGCTG CCCTATGCCC TGATCAAGGG GATCATCCTG AGAAAGATTT

4081 TCACCACCAT CAGCTTCTGC ATTGTGCTGA GGATGGCTGT GACCAGACAG TTCCCCTGGG

4141 CTGTGCAGAC CTGGTATGAC AGCCTGGGGG CCATCAACAA GATCCAGGAC TTCCTGCAGA

4201 AGCAGGAGTA CAAGACCCTG GAGTACAACC TGACCACCAC AGAAGTGGTG ATGGAGAATG

4261 TGACAGCCTT CTGGGAGGAG GGCTTTGGGG AGCTGTTTGA GAAGGCCAAG CAGAACAACA

4321 ACAACAGAAA GACCAGCAAT GGGGATGACT CCCTGTTCTT CTCCAACTTC TCCCTGCTGG

4381 GCACACCTGT GCTGAAGGAC ATCAACTTCA AGATTGAGAG GGGGCAGCTG CTGGCTGTGG

4441 CTGGATCTAC AGGGGCTGGC AAGACCAGCC TGCTGATGAT GATCATGGGG GAGCTGGAGC

4501 CTTCTGAGGG CAAGATCAAG CACTCTGGCA GGATCAGCTT TTGCAGCCAG TTCAGCTGGA

4561 TCATGCCTGG CACCATCAAG GAGAACATCA TCTTTGGAGT GAGCTATGAT GAGTACAGAT

4621 ACAGGAGTGT GATCAAGGCC TGCCAGCTGG AGGAGGACAT CAGCAAGTTT GCTGAGAAGG

4681 ACAACATTGT GCTGGGGGAG GGAGGCATTA CACTGTCTGG GGGCCAGAGA GCCAGAATCA

4741 GCCTGGCCAG GGCTGTGTAC AAGGATGCTG ACCTGTACCT GCTGGACTCC CCCTTTGGCT

4801 ACCTGGATGT GCTGACAGAG AAGGAGATTT TTGAGAGCTG TGTGTGCAAG CTGATGGCCA

4861 ACAAGACCAG AATCCTGGTG ACCAGCAAGA TGGAGCACCT GAAGAAGGCT GACAAGATCC

4921 TGATCCTGCA TGAGGGCAGC AGCTACTTCT ATGGGACCTT CTCTGAGCTG CAGAACCTGC

4981 AGCCTGACTT CAGCTCTAAG CTGATGGGCT GTGACAGCTT TGACCAGTTC TCTGCTGAGA

5041 GGAGGAACAG CATCCTGACA GAGACCCTGC ACAGATTCAG CCTGGAGGGA GATGCCCCTG

5101 TGAGCTGGAC AGAGACCAAG AAGCAGAGCT TCAAGCAGAC AGGGGAGTTT GGGGAGAAGA

5161 GGAAGAACTC CATCCTGAAC CCCATCAACA GCATCAGGAA GTTCAGCATT GTGCAGAAAA

5221 CCCCCCTGCA GATGAATGGC ATTGAGGAAG ATTCTGATGA GCCCCTGGAG AGGAGACTGA

5281 GCCTGGTGCC TGATTCTGAG CAGGGAGAGG CCATCCTGCC TAGGATCTCT GTGATCAGCA

5341 CAGGCCCTAC ACTGCAGGCC AGAAGGAGGC AGTCTGTGCT GAACCTGATG ACCCACTCTG

5401 TGAACCAGGG CCAGAACATC CACAGGAAAA CCACAGCCTC CACCAGGAAA GTGAGCCTGG

5461 CCCCTCAGGC CAATCTGACA GAGCTGGACA TCTACAGCAG GAGGCTGTCT CAGGAGACAG

5521 GCCTGGAGAT TTCTGAGGAG ATCAATGAGG AGGACCTGAA AGAGTGCTTC TTTGATGACA

5581 TGGAGAGCAT CCCTGCTGTG ACCACCTGGA ACACCTACCT GAGATACATC ACAGTGCACA

5641 AGAGCCTGAT CTTTGTGCTG ATCTGGTGCC TGGTGATCTT CCTGGCTGAA GTGGCTGCCT

5701 CTCTGGTGGT GCTGTGGCTG CTGGGAAACA CCCCACTGCA GGACAAGGGC AACAGCACCC

5761 ACAGCAGGAA CAACAGCTAT GCTGTGATCA TCACCTCCAC CTCCAGCTAC TATGTGTTCT

5821 ACATCTATGT GGGAGTGGCT GATACCCTGC TGGCTATGGG CTTCTTTAGA GGCCTGCCCC

5881 TGGTGCACAC ACTGATCACA GTGAGCAAGA TCCTCCACCA CAAGATGCTG CACTCTGTGC

5941 TGCAGGCTCC TATGAGCACC CTGAATACCC TGAAGGCTGG GGGCATCCTG AACAGATTCT

6001 CCAAGGATAT TGCCATCCTG GATGACCTGC TGCCTCTCAC CATCTTTGAC TTCATCCAGC

6061 TGCTGCTGAT TGTGATTGGG GCCATTGCTG TGGTGGCAGT GCTGCAGCCC TACATCTTTG

6121 TGGCCACAGT GCCTGTGATT GTGGCCTTCA TCATGCTGAG GGCCTACTTT CTGCAGACCT

6181 CCCAGCAGCT GAAGCAGCTG GAGTCTGAGG GCAGAAGCCC CATCTTCACC CACCTGGTGA

6241 CAAGCCTGAA GGGCCTGTGG ACCCTGAGAG CCTTTGGCAG GCAGCCCTAC TTTGAGACCC

6301 TGTTCCACAA GGCCCTGAAC CTGCACACAG CCAACTGGTT CCTCTACCTG TCCACCCTGA

6361 GATGGTTCCA GATGAGAATT GAGATGATCT TTGTCATCTT CTTCATTGCT GTGACCTTCA

6421 TCAGCATTCT GACCACAGGA GAGGGAGAGG GCAGAGTGGG CATTATCCTG ACCCTGGCCA

6481 TGAACATCAT GAGCACACTG CAGTGGGCAG TGAACAGCAG CATTGATGTG GACAGCCTGA

6541 TGAGGAGTGT GAGCAGAGTG TTCAAGTTCA TTGATATGCC CACAGAGGGC AAGCCTACCA

6601 AGAGCACCAA GCCCTACAAG AATGGCCAGC TGAGCAAAGT GATGATCATT GAGAACAGCC

6661 ATGTGAAGAA GGATGATATC TGGCCCAGTG GAGGCCAGAT GACAGTGAAG GACCTGACAG

6721 CCAAGTACAC AGAGGGGGGC AATGCTATCC TGGAGAACAT CTCCTTCAGC ATCTCCCCTG

6781 GCCAGAGAGT GGGACTGCTG GGAAGAACAG GCTCTGGCAA GTCTACCCTG CTGTCTGCCT

6841 TCCTGAGGCT GCTGAACACA GAGGGAGAGA TCCAGATTGA TGGAGTGTCC TGGGACAGCA

6901 TCACACTGCA GCAGTGGAGG AAGGCCTTTG GTGTGATCCC CCAGAAAGTG TTCATCTTCA

6961 GTGGCACCTT CAGGAAGAAC CTGGACCCCT ATGAGCAGTG GTCTGACCAG GAGATTTGGA

7021 AAGTGGCTGA TGAAGTGGGC CTGAGAAGTG TGATTGAGCA GTTCCCTGGC AAGCTGGACT

7081 TTGTCCTGGT GGATGGGGGC TGTGTGCTGA GCCATGGCCA CAAGCAGCTG ATGTGCCTGG

7141 CCAGATCAGT GCTGAGCAAG GCCAAGATCC TGCTGCTGGA TGAGCCTTCT GCCCACCTGG

7201 ATCCTGTGAC CTACCAGATC ATCAGGAGGA CCCTCAAGCA GGCCTTTGCT GACTGCACAG

7261 TCATCCTGTG TGAGCACAGG ATTGAGGCCA TGCTGGAGTG CCAGCAGTTC CTGGTGATTG

7321 AGGAGAACAA AGTGAGGCAG TATGACAGCA TCCAGAAGCT GCTGAATGAG AGGAGCCTGT

7381 TCAGGCAGGC CATCAGCCCC TCTGATAGAG TGAAGCTGTT CCCCCACAGG AACAGCTCCA

7441 AGTGCAAGAG CAAGCCCCAG ATTGCTGCCC TGAAGGAGGA GACAGAGGAG GAAGTGCAGG

7501 ACACCAGGCT GTGAGGGCCC AATCAACCTC TGGATTACAA AATTTGTGAA AGATTGACTG

7561 GTATTCTTAA CTATGTTGCT CCTTTTACGC TATGTGGATA CGCTGCTTTA ATGCCTTTGT

7621 ATCATGCTAT TGCTTCCCGT ATGGCTTTCA TTTTCTCCTC CTTGTATAAA TCCTGGTTGC

7681 TGTCTCTTTA TGAGGAGTTG TGGCCCGTTG TCAGGCAACG TGGCGTGGTG TGCACTGTGT

7741 TTGCTGACGC AACCCCCACT GGTTGGGGCA TTGCCACCAC CTGTCAGCTC CTTTCCGGGA

7801 CTTTCGCTTT CCCCCTCCCT ATTGCCACGG CGGAACTCAT CGCCGCCTGC CTTGCCCGCT

7861 GCTGGACAGG GGCTCGGCTG TTGGGCACTG ACAATTCCGT GGTGTTGTCG GGGAAATCAT

7921 CGTCCTTTCC TTGGCTGCTC GCCTGTGTTG CCACCTGGAT TCTGCGCGGG ACGTCCTTCT

7981 GCTACGTCCC TTCGGCCCTC AATCCAGCGG ACCTTCCTTC CCGCGGCCTG CTGCCGGCTC

8041 TGCGGCCTCT TCCGCGTCTT CGCCTTCGCC CTCAGACGAG TCGGATCTCC CTTTGGGCCG

8101 CCTCCCCGCA AGCTTCGCAC TTTTTAAAAG AAAAGGGAGG ACTGGATGGG ATTTATTACT

8161 CCGATAGGAC GCTGGCTTGT AACTCAGTCT CTTACTAGGA GACCAGCTTG AGCCTGGGTG

8221 TTCGCTGGTT AGCCTAACCT GGTTGGCCAC CAGGGGTAAG GACTCCTTGG CTTAGAAAGC

8281 TAATAAACTT GCCTGCATTA GAGCTCTTAC GCGTCCCGGG CTCGAGATCC GCATCTCAAT

8341 TAGTCAGCAA CCATAGTCCC GCCCCTAACT CCGCCCATCC CGCCCCTAAC TCCGCCCAGT

8401 TCCGCCCATT CTCCGCCCCA TGGCTGACTA ATTTTTTTTA TTTATGCAGA GGCCGAGGCC

8461 GCCTCGGCCT CTGAGCTATT CCAGAAGTAG TGAGGAGGCT TTTTTGGAGG CCTAGGCTTT

8521 TGCAAAAAGC TAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC AATAGCATCA

8581 CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG TTGTGGTTTG TCCAAACTCA

8641 TCAATGTATC TTATCATGTC TGTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT

8701 TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT CCACAGAATC

8761 AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG CAAAAGGCCA GGAACCGTAA

8821 AAAGGCCGCG TTGCTGGCGT TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA

8881 TCGACGCTCA AGTCAGAGGT GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC

8941 CCCTGGAAGC TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC

9001 CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCATAGC TCACGCTGTA GGTATCTCAG

9061 TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC GAACCCCCCG TTCAGCCCGA

9121 CCGCTGCGCC TTATCCGGTA ACTATCGTCT TGAGTCCAAC CCGGTAAGAC ACGACTTATC

9181 GCCACTGGCA GCAGCCACTG GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC

9241 AGAGTTCTTG AAGTGGTGGC CTAACTACGG CTACACTAGA AGAACAGTAT TTGGTATCTG

9301 CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT CCGGCAAACA

9361 AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG CAGATTACGC GCAGAAAAAA

9421 AGGATCTCAA GAAGATCCTT TGATCTTTTC TACGGGGTCT GACGCTCAGT GGAACGAAAA

9481 CTCACGTTAA GGGATTTTGG TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT

9541 AAATTAAAAA TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG

9601 TTAGAAAAAC TCATCGAGCA TCAAATGAAA CTGCAATTTA TTCATATCAG GATTATCAAT

9661 ACCATATTTT TGAAAAAGCC GTTTCTGTAA TGAAGGAGAA AACTCACCGA GGCAGTTCCA

9721 TAGGATGGCA AGATCCTGGT ATCGGTCTGC GATTCCGACT CGTCCAACAT CAATACAACC

9781 TATTAATTTC CCCTCGTCAA AAATAAGGTT ATCAAGTGAG AAATCACCAT GAGTGACGAC

9841 TGAATCCGGT GAGAATGGCA ACAGCTTATG CATTTCTTTC CAGACTTGTT CAACAGGCCA

9901 GCCATTACGC TCGTCATCAA AATCACTCGC ATCAACCAAA CCGTTATTCA TTCGTGATTG

9961 CGCCTGAGCG AGACGAAATA CGCGATCGCT GTTAAAAGGA CAATTACAAA CAGGAATCGA

10021 ATGCAACCGG CGCAGGAACA CTGCCAGCGC ATCAACAATA TTTTCACCTG AATCAGGATA

10081 TTCTTCTAAT ACCTGGAATG CTGTTTTTCC GGGGATCGCA GTGGTGAGTA ACCATGCATC

10141 ATCAGGAGTA CGGATAAAAT GCTTGATGGT CGGAAGAGGC ATAAATTCCG TCAGCCAGTT

10201 TAGTCTGACC ATCTCATCTG TAACATCATT GGCAACGCTA CCTTTGCCAT GTTTCAGAAA

10261 CAACTCTGGC GCATCGGGCT TCCCATACAA TCGATAGATT GTCGCACCTG ATTGCCCGAC

10321 ATTATCGCGA GCCCATTTAT ACCCATATAA ATCAGCATCC ATGTTGGAAT TTAATCGCGG

10381 CCTAGAGCAA GACGTTTCCC GTTGAATATG GCTCATAACA CCCCTTGTAT TACTGTTTAT

10441 GTAAGCAGAC AGTTTTATTG TTCATGATGA TATATTTTTA TCTTGTGCAA TGTAACATCA

10501 GAGATTTTGA GACACAACAA TTGGTCGACG GATCC

SEQ ID NO: 2

1 GCTCGAGACT AGTGACTTGG TGAGTAGGCT TCGAGCCTAG TTAGAGGACT AGGAGAGGCC

61 GTAGCCGTAA CTACTCTGGG CAAGTAGGGC AGGCGGTGGG TACGCAATGG GGGCGGCTAC

121 CTCAGCACTA AATAGGAGAC AATTAGACCA ATTTGAGAAA ATACGACTTC GCCCGAACGG

181 AAAGAAAAAG TACCAAATTA AACATTTAAT ATGGGCAGGC AAGGAGATGG AGCGCTTCGG

241 CCTCCATGAG AGGTTGTTGG AGACAGAGGA GGGGTGTAAA AGAATCATAG AAGTCCTCTA

301 CCCCCTAGAA CCAACAGGAT CGGAGGGCTT AAAAAGTCTG TTCAATCTTG TGTGCGTACT

361 ATATTGCTTG CACAAGGAAC AGAAAGTGAA AGACACAGAG GAAGCAGTAG CAACAGTAAG

421 ACAACACTGC CATCTAGTGG AAAAAGAAAA AAGTGCAACA GAGACATCTA GTGGACAAAA

481 GAAAAATGAC AAGGGAATAG CAGCGCCACC TGGTGGCAGT CAGAATTTTC CAGCGCAACA

541 ACAAGGAAAT GCCTGGGTAC ATGTACCCTT GTCACCGCGC ACCTTAAATG CGTGGGTAAA

601 AGCAGTAGAG GAGAAAAAAT TTGGAGCAGA AATAGTACCC ATGTTTCAAG CCCTATCAGA

661 AGGCTGCACA CCCTATGACA TTAATCAGAT GCTTAATGTG CTAGGAGATC ATCAAGGGGC

721 ATTACAAATA GTGAAAGAGA TCATTAATGA AGAAGCAGCC CAGTGGGATG TAACACACCC

781 ACTACCCGCA GGACCCCTAC CAGCAGGACA GCTCAGGGAC CCTCGCGGCT CAGATATAGC

841 AGGGACCACC AGCTCAGTAC AAGAACAGTT AGAATGGATC TATACTGCTA ACCCCCGGGT

901 AGATGTAGGT GCCATCTACC GGAGATGGAT TATTCTAGGA CTTCAAAAGT GTGTCAAAAT

961 GTACAACCCA GTATCAGTCC TAGACATTAG GCAGGGACCT AAAGAGCCCT TCAAGGATTA

1021 TGTGGACAGA TTTTACAAGG CAATTAGAGC AGAACAAGCC TCAGGGGAAG TGAAACAATG

1081 GATGACAGAA TCATTACTCA TTCAAAATGC TAATCCAGAT TGTAAGGTCA TCCTGAAGGG

1141 CCTAGGAATG CACCCCACCC TTGAAGAAAT GTTAACGGCT TGTCAGGGGG TAGGAGGCCC

1201 AAGCTACAAA GCAAAAGTAA TGGCAGAAAT GATGCAGACC ATGCAAAATC AAAACATGGT

1261 GCAGCAGGGA GGTCCAAAAA GACAAAGACC CCCACTAAGA TGTTATAATT GTGGAAAATT

1321 TGGCCATATG CAAAGACAAT GTCCGGAACC AAGGAAAACA AAATGTCTAA AGTGTGGAAA

1381 ATTGGGACAC CTAGCAAAAG ACTGCAGGGG ACAGGTGAAT TTTTTAGGGT ATGGACGGTG

1441 GATGGGGGCA AAACCGAGAA ATTTTCCCGC CGCTACTCTT GGAGCGGAAC CGAGTGCGCC

1501 TCCTCCACCG AGCGGCACCA CCCCATACGA CCCAGCAAAG AAGCTCCTGC AGCAATATGC

1561 AGAGAAAGGG AAACAACTGA GGGAGCAAAA GAGGAATCCA CCGGCAATGA ATCCGGATTG

1621 GACCGAGGGA TATTCTTTGA ACTCCCTCTT TGGAGAAGAC CAATAAAGAC AGTGTATATA

1681 GAAGGGGTCC CCATTAAGGC ACTGCTAGAC ACAGGGGCAG ATGACACCAT AATTAAAGAA

1741 AATGATTTAC AATTATCAGG TCCATGGAGA CCCAAAATTA TAGGGGGCAT AGGAGGAGGC

1801 CTTAATGTAA AAGAATATAA CGACAGGGAA GTAAAAATAG AAGATAAAAT TTTGAGAGGA

1861 ACAATATTGT TAGGAGCAAC TCCCATTAAT ATAATAGGTA GAAATTTGCT GGCCCCGGCA

1921 GGTGCCCGGT TAGTAATGGG ACAATTATCA GAAAAAATTC CTGTCACACC TGTCAAATTG

1981 AAGGAAGGGG CTCGGGGACC CTGTGTAAGA CAATGGCCTC TCTCTAAAGA GAAGATTGAA

2041 GCTTTACAGG AAATATGTTC CCAATTAGAG CAGGAAGGAA AAATCAGTAG AGTAGGAGGA

2101 GAAAATGCAT ACAATACCCC AATATTTTGC ATAAAGAAGA AGGACAAATC CCAGTGGAGG

2161 ATGCTAGTAG ACTTTAGAGA GTTAAATAAG GCAACCCAAG ATTTCTTTGA AGTGCAATTA

2221 GGGATACCCC ACCCAGCAGG ATTAAGAAAG ATGAGACAGA TAACAGTTTT AGATGTAGGA

2281 GACGCCTATT ATTCCATACC ATTGGATCCA AATTTTAGGA AATATACTGC TTTTACTATT

2341 CCCACAGTGA ATAATCAGGG ACCCGGGATT AGGTATCAAT TCAACTGTCT CCCGCAAGGG

2401 TGGAAAGGAT CTCCTACAAT CTTCCAAAAT ACAGCAGCAT CCATTTTGGA GGAGATAAAA

2461 AGAAACTTGC CAGCACTAAC CATTGTACAA TACATGGATG ATTTATGGGT AGGTTCTCAA

2521 GAAAATGAAC ACACCCATGA CAAATTAGTA GAACAGTTAA GAACAAAATT ACAAGCCTGG

2581 GGCTTAGAAA CCCCAGAAAA GAAGGTGCAA AAAGAACCAC CTTATGAGTG GATGGGATAC

2641 AAACTTTGGC CTCACAAATG GGAACTAAGC AGAATACAAC TGGAGGAAAA AGATGAATGG

2701 ACTGTCAATG ACATCCAGAA GTTAGTTGGG AAACTAAATT GGGCAGCACA ATTGTATCCA

2761 GGTCTTAGGA CCAAGAATAT ATGCAAGTTA ATTAGAGGAA AGAAAAATCT GTTAGAGCTA

2821 GTGACTTGGA CACCTGAGGC AGAAGCTGAA TATGCAGAAA ATGCAGAGAT TCTTAAAACA

2881 GAACAGGAAG GAACCTATTA CAAACCAGGA ATACCTATTA GGGCAGCAGT ACAGAAATTG

2941 GAAGGAGGAC AGTGGAGTTA CCAATTCAAA CAAGAAGGAC AAGTCTTGAA AGTAGGAAAA

3001 TACACCAAGC AAAAGAACAC CCATACAAAT GAACTTCGCA CATTAGCTGG TTTAGTGCAG

3061 AAGATTTGCA AAGAAGCTCT AGTTATTTGG GGGATATTAC CAGTTCTAGA ACTCCCGATA

3121 GAAAGAGAGG TATGGGAACA ATGGTGGGCG GATTACTGGC AGGTAAGCTG GATTCCCGAA

3181 TGGGATTTTG TCAGCACCCC ACCTTTGCTC AAACTATGGT ACACATTAAC AAAAGAACCC

3241 ATACCCAAGG AGGACGTTTA CTATGTAGAT GGAGCATGCA ACAGAAATTC AAAAGAAGGA

3301 AAAGCAGGAT ACATCTCACA ATACGGAAAA CAGAGAGTAG AAACATTAGA AAACACTACC

3361 AATCAGCAAG CAGAATTAAC AGCTATAAAA ATGGCTTTGG AAGACAGTGG GCCTAATGTG

3421 AACATAGTAA CAGACTCTCA ATATGCAATG GGAATTTTGA CAGCACAACC CACACAAAGT

3481 GATTCACCAT TAGTAGAGCA AATTATAGCC TTAATGATAC AAAAGCAACA AATATATTTG

3541 CAGTGGGTAC CAGCACATAA AGGAATAGGA GGAAATGAGG AGATAGATAA ATTAGTGAGT

3601 AAAGGCATTA GAAGAGTTTT ATTCTTAGAA AAAATAGAAG AAGCTCAAGA AGAGCATGAA

3661 AGATATCATA ATAATTGGAA AAACCTAGCA GATACATATG GGCTTCCACA AATAGTAGCA

3721 AAAGAGATAG TGGCCATGTG TCCAAAATGT CAGATAAAGG GAGAACCAGT GCATGGACAA

3781 GTGGATGCCT CACCTGGAAC ATGGCAGATG GATTGTACTC ATCTAGAAGG AAAAGTAGTC

3841 ATAGTTGCGG TCCATGTAGC CAGTGGATTC ATAGAAGCAG AAGTCATACC TAGGGAAACA

3901 GGAAAAGAAA CGGCAAAGTT TCTATTAAAA ATACTGAGTA GATGGCCTAT AACACAGTTA

3961 CACACAGACA ATGGGCCTAA CTTTACCTCC CAAGAAGTGG CAGCAATATG TTGGTGGGGA

4021 AAAATTGAAC ATACAACAGG TATACCATAT AACCCCCAAT CTCAAGGATC AATAGAAAGC

4081 ATGAACAAAC AATTAAAAGA GATAATTGGG AAAATAAGAG ATGATTGCCA ATATACAGAG

4141 ACAGCAGTAC TGATGGCTTG CCATATTCAC AATTTTAAAA GAAAGGGAGG AATAGGGGGA

4201 CAGACTTCAG CAGAGAGACT AATTAATATA ATAACAACAC AATTAGAAAT ACAACATTTA

4261 CAAACCAAAA TTCAAAAAAT TTTAAATTTT AGAGTCTACT ACAGAGAAGG GAGAGACCCT

4321 GTGTGGAAAG GACCAGCACA ATTAATCTGG AAAGGGGAAG GAGCAGTGGT CCTCAAGGAC

4381 GGAAGTGACC TAAAGGTTGT ACCAAGAAGG AAAGCTAAAA TTATTAAGGA TTATGAACCC

4441 AAACAAAGAG TGGGTAATGA GGGTGACGTG GAAGGTACCA GGGGATCTGA TAACTAAATG

4501 GCAGGGAATA GTCAGATATT GGATGAGACA AAGAAATTTG AAATGGAACT ATTATATGCA

4561 TCAGCTGGCG GCCGCGAATT CACTAGTGAT TCCCGTTTGT GCTAGGGTTC TTAGGCTTCT

4621 TGGGGGCTGC TGGAACTGCA ATGGGAGCAG CGGCGACAGC CCTGACGGTC CAGTCTCAGC

4681 ATTTGCTTGC TGGGATACTG CAGCAGCAGA AGAATCTGCT GGCGGCTGTG GAGGCTCAAC

4741 AGCAGATGTT GAAGCTGACC ATTTGGGGTG TTAAAAACCT CAATGCCCGC GTCACAGCCC

4801 TTGAGAAGTA CCTAGAGGAT CAGGCACGAC TAAACTCCTG GGGGTGCGCA TGGAAACAAG

4861 TATGTCATAC CACAGTGGAG TGGCCCTGGA CAAATCGGAC TCCGGATTGG CAAAATATGA

4921 CTTGGTTGGA GTGGGAAAGA CAAATAGCTG ATTTGGAAAG CAACATTACG AGACAATTAG

4981 TGAAGGCTAG AGAACAAGAG GAAAAGAATC TAGATGCCTA TCAGAAGTTA ACTAGTTGGT

5041 CAGATTTCTG GTCTTGGTTC GATTTCTCAA AATGGCTTAA CATTTTAAAA ATGGGATTTT

5101 TAGTAATAGT AGGAATAATA GGGTTAAGAT TACTTTACAC AGTATATGGA TGTATAGTGA

5161 GGGTTAGGCA GGGATATGTT CCTCTATCTC CACAGATCCA TATCCAATCG AATTCCCGCG

5221 GCCGCAATTC ACTCCTCAGG TGCAGGCTGC CTATCAGAAG GTGGTGGCTG GTGTGGCCAA

5281 TGCCCTGGCT CACAAATACC ACTGAGATCT TTTTCCCTCT GCCAAAAATT ATGGGGACAT

5341 CATGAAGCCC CTTGAGCATC TGACTTCTGG CTAATAAAGG AAATTTATTT TCATTGCAAT

5401 AGTGTGTTGG AATTTTTTGT GTCTCTCACT CGGAAGGACA TATGGGAGGG CAAATCATTT

5461 AAAACATCAG AATGAGTATT TGGTTTAGAG TTTGGCAACA TATGCCCATA TGCTGGCTGC

5521 CATGAACAAA GGTTGGCTAT AAAGAGGTCA TCAGTATATG AAACAGCCCC CTGCTGTCCA

5581 TTCCTTATTC CATAGAAAAG CCTTGACTTG AGGTTAGATT TTTTTTATAT TTTGTTTTGT

5641 GTTATTTTTT TCTTTAACAT CCCTAAAATT TTCCTTACAT GTTTTACTAG CCAGATTTTT

5701 CCTCCTCTCC TGACTACTCC CAGTCATAGC TGTCCCTCTT CTCTTATGGA GATCCCTCGA

5761 CCTGCAGCCC AAGCTTGGCG TAATCATGGT CATAGCTGTT TCCTGTGTGA AATTGTTATC

5821 CGCTCACAAT TCCACACAAC ATACGAGCCG GAAGCATAAA GTGTAAAGCC TGGGGTGCCT

5881 AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACT GCCCGCTTTC CAGTCGGGAA

5941 ACCTGTCGTG CCAGCGGATC CGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCTAAC

6001 TCCGCCCATC CCGCCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC ATGGCTGACT

6061 AATTTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT TCCAGAAGTA

6121 GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTAACTTGTT TATTGCAGCT

6181 TATAATGGTT ACAAATAAAG CAATAGCATC ACAAATTTCA CAAATAAAGC ATTTTTTTCA

6241 CTGCATTCTA GTTGTGGTTT GTCCAAACTC ATCAATGTAT CTTATCATGT CTGTCCGCTT

6301 CCTCGCTCAC TGACTCGCTG CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA TCAGCTCACT

6361 CAAAGGCGGT AATACGGTTA TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG

6421 CAAAAGGCCA GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTTCCATA

6481 GGCTCCGCCC CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC

6541 CGACAGGACT ATAAAGATAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG

6601 TTCCGACCCT GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC

6661 TTTCTCATAG CTCACGCTGT AGGTATCTCA GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG

6721 GCTGTGTGCA CGAACCCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC

6781 TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA

6841 TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG

6901 GCTACACTAG AAGAACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA

6961 AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG

7021 TTTGCAAGCA GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT

7081 CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT

7141 TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT AAATCAATCT

7201 AAAGTATATA TGAGTAAACT TGGTCTGACA GTTAGAAAAA CTCATCGAGC ATCAAATGAA

7261 ACTGCAATTT ATTCATATCA GGATTATCAA TACCATATTT TTGAAAAAGC CGTTTCTGTA

7321 ATGAAGGAGA AAACTCACCG AGGCAGTTCC ATAGGATGGC AAGATCCTGG TATCGGTCTG

7381 CGATTCCGAC TCGTCCAACA TCAATACAAC CTATTAATTT CCCCTCGTCA AAAATAAGGT

7441 TATCAAGTGA GAAATCACCA TGAGTGACGA CTGAATCCGG TGAGAATGGC AACAGCTTAT

7501 GCATTTCTTT CCAGACTTGT TCAACAGGCC AGCCATTACG CTCGTCATCA AAATCACTCG

7561 CATCAACCAA ACCGTTATTC ATTCGTGATT GCGCCTGAGC GAGACGAAAT ACGCGATCGC

7621 TGTTAAAAGG ACAATTACAA ACAGGAATCG AATGCAACCG GCGCAGGAAC ACTGCCAGCG

7681 CATCAACAAT ATTTTCACCT GAATCAGGAT ATTCTTCTAA TACCTGGAAT GCTGTTTTTC

7741 CGGGGATCGC AGTGGTGAGT AACCATGCAT CATCAGGAGT ACGGATAAAA TGCTTGATGG

7801 TCGGAAGAGG CATAAATTCC GTCAGCCAGT TTAGTCTGAC CATCTCATCT GTAACATCAT

7861 TGGCAACGCT ACCTTTGCCA TGTTTCAGAA ACAACTCTGG CGCATCGGGC TTCCCATACA

7921 ATCGATAGAT TGTCGCACCT GATTGCCCGA CATTATCGCG AGCCCATTTA TACCCATATA

7981 AATCAGCATC CATGTTGGAA TTTAATCGCG GCCTAGAGCA AGACGTTTCC CGTTGAATAT

8041 GGCTCATAAC ACCCCTTGTA TTACTGTTTA TGTAAGCAGA CAGTTTTATT GTTCATGATG

8101 ATATATTTTT ATCTTGTGCA ATGTAACATC AGAGATTTTG AGACACAACA ATTGTCGACA

8161 TTGATTATTG ACTAGTTATT AATAGTAATC AATTACGGGG TCATTAGTTC ATAGCCCATA

8221 TATGGAGTTC CGCGTTACAT AACTTACGGT AAATGGCCCG CCTGGCTGAC CGCCCAACGA

8281 CCCCCGCCCA TTGACGTCAA TAATGACGTA TGTTCCCATA GTAACGCCAA TAGGGACTTT

8341 CCATTGACGT CAATGGGTGG AGTATTTACG GTAAACTGCC CACTTGGCAG TACATCAAGT

8401 GTATCATATG CCAAGTACGC CCCCTATTGA CGTCAATGAC GGTAAATGGC CCGCCTGGCA

8461 TTATGCCCAG TACATGACCT TATGGGACTT TCCTACTTGG CAGTACATCT ACGTATTAGT

8521 CATCGCTATT ACCATGGTCG AGGTGAGCCC CACGTTCTGC TTCACTCTCC CCATCTCCCC

8581 CCCCTCCCCA CCCCCAATTT TGTATTTATT TATTTTTTAA TTATTTTGTG CAGCGATGGG

8641 GGCGGGGGGG GGGGGGGGGC GCGCGCCAGG CGGGGCGGGG CGGGGCGAGG GGCGGGGCGG

8701 GGCGAGGCGG AGAGGTGCGG CGGCAGCCAA TCAGAGCGGC GCGCTCCGAA AGTTTCCTTT

8761 TATGGCGAGG CGGCGGCGGC GGCGGCCCTA TAAAAAGCGA AGCGCGCGGC GGGCGGGAGT

8821 CGCTGCGCGC TGCCTTCGCC CCGTGCCCCG CTCCGCCGCC GCCTCGCGCC GCCCGCCCCG

8881 GCTCTGACTG ACCGCGTTAC TCCCACAGGT GAGCGGGCGG GACGGCCCTT CTCCTCCGGG

8941 CTGTAATTAG CGCTTGGTTT AATGACGGCT TGTTTCTTTT CTGTGGCTGC GTGAAAGCCT

9001 TGAGGGGCTC CGGGAGGGCC CTTTGTGCGG GGGGAGCGGC TCGGGGGGTG CGTGCGTGTG

9061 TGTGTGCGTG GGGAGCGCCG CGTGCGGCTC CGCGCTGCCC GGCGGCTGTG AGCGCTGCGG

9121 GCGCGGCGCG GGGCTTTGTG CGCTCCGCAG TGTGCGCGAG GGGAGCGCGG CCGGGGGCGG

9181 TGCCCCGCGG TGCGGGGGGG GCTGCGAGGG GAACAAAGGC TGCGTGCGGG GTGTGTGCGT

9241 GGGGGGGTGA GCAGGGGGTG TGGGCGCGTC GGTCGGGCTG CAACCCCCCC TGCACCCCCC

9301 TCCCCGAGTT GCTGAGCACG GCCCGGCTTC GGGTGCGGGG CTCCGTACGG GGCGTGGCGC

9361 GGGGCTCGCC GTGCCGGGCG GGGGGTGGCG GCAGGTGGGG GTGCCGGGCG GGGCGGGGCC

9421 GCCTCGGGCC GGGGAGGGCT CGGGGGAGGG GCGCGGCGGC CCCCGGAGCG CCGGCGGCTG

9481 TCGAGGCGCG GCGAGCCGCA GCCATTGCCT TTTATGGTAA TCGTGCGAGA GGGCGCAGGG

9541 ACTTCCTTTG TCCCAAATCT GTGCGGAGCC GAAATCTGGG AGGCGCCGCC GCACCCCCTC

9601 TAGCGGGCGC GGGGCGAAGC GGTGCGGCGC CGGCAGGAAG GAAATGGGCG GGGAGGGCCT

9661 TCGTGCGTCG CCGCGCCGCC GTCCCCTTCT CCCTCTCCAG CCTCGGGGCT GTCCGCGGGG

9721 GGACGGCTGC CTTCGGGGGG GACGGGGCAG GGCGGGGTTC GGCTTCTGGC GTGTGACCGG

9781 CGGCTCTAGA GCCTCTGCTA ACCATGTTCA TGCCTTCTTC TTTTTCCTAC AGCTCCTGGG

9841 CAACGTGCTG GTTATTGTGC TGTCTCATCA TTTTGGCAAA GAATT

SEQ ID NO: 3

1 TCAATATTGG CCATTAGCCA TATTATTCAT TGGTTATATA GCATAAATCA ATATTGGCTA

61 TTGGCCATTG CATACGTTGT ATCTATATCA TAATATGTAC ATTTATATTG GCTCATGTCC

121 AATATGACCG CCATGTTGGC ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG

181 GTCATTAGTT CATAGCCCAT ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC

241 GCCTGGCTGA CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT

301 AGTAACGCCA ATAGGGACTT TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC

361 CCACTTGGCA GTACATCAAG TGTATCATAT GCCAAGTCCG CCCCCTATTG ACGTCAATGA

421 CGGTAAATGG CCCGCCTGGC ATTATGCCCA GTACATGACC TTACGGGACT TTCCTACTTG

481 GCAGTACATC TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAC

541 CAATGGGCGT GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT

601 CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAATAACCC

661 CGCCCCGTTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGAGC

721 TCGTTTAGTG AACCGTCAGA TCACTAGAAG CTTTATTGCG GTAGTTTATC ACAGTTAAAT

781 TGCTAACGCA GTCAGTGCTT CTGACACAAC AGTCTCGAAC TTAAGCTGCA GAAGTTGGTC

841 GTGAGGCACT GGGCAGGTAA GTATCAAGGT TACAAGACAG GTTTAAGGAG ACCAATAGAA

901 ACTGGGCTTG TCGAGACAGA GAAGACTCTT GCGTTTCTGA TAGGCACCTA TTGGTCTTAC

961 TGACATCCAC TTTGCCTTTC TCTCCACAGG TGTCCACTCC CAGTTCAATT ACAGCTCTTA

1021 AGGCTAGAGT ACTTAATACG ACTCACTATA GGCTAGCCTC GAGAATTCGA TTATGCCCCT

1081 AGGACCAGAA GAAAGAAGAT TGCTTCGCTT GATTTGGCTC CTTTACAGCA CCAATCCATA

1141 TCCACCAAGT GGGGAAGGGA CGGCCAGACA ACGCCGACGA GCCAGGAGAA GGTGGAGACA

1201 ACAGCAGGAT CAAATTAGAG TCTTGGTAGA AAGACTCCAA GAGCAGGTGT ATGCAGTTGA

1261 CCGCCTGGCT GACGAGGCTC AACACTTGGC TATACAACAG TTGCCTGACC CTCCTCATTC

1321 AGCTTAGAAT CACTAGTGAA TTCACGCGTG GTACCTCTAG AGTCGACCCG GGCGGCCGCT

1381 TCGAGCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA ACCACAACTA GAATGCAGTG

1441 AAAAAAATGC TTTATTTGTG AAATTTGTGA TGCTATTGCT TTATTTGTAA CCATTATAAG

1501 CTGCAATAAA CAAGTTAACA ACAACAATTG CATTCATTTT ATGTTTCAGG TTCAGGGGGA

1561 GATGTGGGAG GTTTTTTAAA GCAAGTAAAA CCTCTACAAA TGTGGTAAAA TCGATAAGGA

1621 TCCGTCGACC AATTGTTGTG TCTCAAAATC TCTGATGTTA CATTGCACAA GATAAAAATA

1681 TATCATCATG AACAATAAAA CTGTCTGCTT ACATAAACAG TAATACAAGG GGTGTTATGA

1741 GCCATATTCA ACGGGAAACG TCTTGCTCTA GGCCGCGATT AAATTCCAAC ATGGATGCTG

1801 ATTTATATGG GTATAAATGG GCTCGCGATA ATGTCGGGCA ATCAGGTGCG ACAATCTATC

1861 GATTGTATGG GAAGCCCGAT GCGCCAGAGT TGTTTCTGAA ACATGGCAAA GGTAGCGTTG

1921 CCAATGATGT TACAGATGAG ATGGTCAGAC TAAACTGGCT GACGGAATTT ATGCCTCTTC

1981 CGACCATCAA GCATTTTATC CGTACTCCTG ATGATGCATG GTTACTCACC ACTGCGATCC

2041 CCGGAAAAAC AGCATTCCAG GTATTAGAAG AATATCCTGA TTCAGGTGAA AATATTGTTG

2101 ATGCGCTGGC AGTGTTCCTG CGCCGGTTGC ATTCGATTCC TGTTTGTAAT TGTCCTTTTA

2161 ACAGCGATCG CGTATTTCGT CTCGCTCAGG CGCAATCACG AATGAATAAC GGTTTGGTTG

2221 ATGCGAGTGA TTTTGATGAC GAGCGTAATG GCTGGCCTGT TGAACAAGTC TGGAAAGAAA

2281 TGCATAAGCT GTTGCCATTC TCACCGGATT CAGTCGTCAC TCATGGTGAT TTCTCACTTG

2341 ATAACCTTAT TTTTGACGAG GGGAAATTAA TAGGTTGTAT TGATGTTGGA CGAGTCGGAA

2401 TCGCAGACCG ATACCAGGAT CTTGCCATCC TATGGAACTG CCTCGGTGAG TTTTCTCCTT

2461 CATTACAGAA ACGGCTTTTT CAAAAATATG GTATTGATAA TCCTGATATG AATAAATTGC

2521 AGTTTCATTT GATGCTCGAT GAGTTTTTCT AACTGTCAGA CCAAGTTTAC TCATATATAC

2581 TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG

2641 ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG

2701 TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC TGCTGCTTGC

2761 AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC

2821 TTTTTCCGAA GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT CTTCTAGTGT

2881 AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC

2941 TAATCCTGTT ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT

3001 CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC

3061 AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG

3121 AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG

3181 GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG

3241 TCGGGTTTCG CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA

3301 GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT

3361 TTGCTCACAT GGCTCGACAG ATCT

SEQ ID NO: 4

1 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT CATAGCCCAT

61 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA CCGCCCAACG

121 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA ATAGGGACTT

181 TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA GTACATCAAG

241 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG CCCGCCTGGC

301 ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TACGTATTAG

361 TCATCGCTAT TACCATGGTC GAGGTGAGCC CCACGTTCTG CTTCACTCTC CCCATCTCCC

421 CCCCCTCCCC ACCCCCAATT TTGTATTTAT TTATTTTTTA ATTATTTTGT GCAGCGATGG

481 GGGCGGGGGG GGGGGGGGGG CGCGCGCCAG GCGGGGCGGG GCGGGGCAAG GGGCGGGGCG

541 GGGCGAGGCG GAAAGGTGCG GCGGCAGCCA ATCAAAGCGG CGCGCTCCGA AAGTTTCCTT

601 TTATGGCGAG GCGGCGGCGG CGGCGGCCCT ATAAAAAGCG AAGCGCGCGG CGGGCGGGAG

661 TCGCTGCGCG CTGCCTTCGC CCCGTGCCCC GCTCCGCCGC CGCCTCGCGC CGCCCGCCCC

721 GGCTCTGACT GACCGCGTTA CTCCCACAGG TGAGCGGGCG GGACGGCCCT TCTCCTCCGG

781 GCTGTAATTA GCGCTTGGTT TAATGACGGC TTGTTTCTTT TCTGTGGCTG CGTGAAAGCC

841 TTGAGGGGCT CCGGGAGGGC CCTTTGTGCG GGGGGAGCGG CTCGGGGGGT GCGTGCGTGT

901 GTGTGTGCGT GGGGAGCGCC GCGTGCGGCT CCGCGCTGCC CGGCGGCTGT GAGCGCTGCG

961 GGCGCGGCGC GGGGCTTTGT GCGCTCCGCA GTGTGCGCGA GGGGAGCGCG GCCGGGGGCG

1021 GTGCCCCGCG GTGCGGGGGG GGCTGCGAGG GGAACAAAGG CTGCGTGCGG GGTGTGTGCG

1081 TGGGGGGGTG AGCAGGGGGT GTGGGCGCGT CGGTCGGGCT GCAACCCCCC CTGCACCCCC

1141 CTCCCCGAGT TGCTGAGCAC GGCCCGGCTT CGGGTGCGGG GCTCCGTACG GGGCGTGGCG

1201 CGGGGCTCGC CGTGCCGGGC GGGGGGTGGC GGCAGGTGGG GGTGCCGGGC GGGGCGGGGC

1261 CGCCTCGGGC CGGGGAGGGC TCGGGGGAGG GGCGCGGCGG CCCCCGGAGC GCCGGCGGCT

1321 GTCGAGGCGC GGCGAGCCGC AGCCATTGCC TTTTATGGTA ATCGTGCGAG AGGGCGCAGG

1381 GACTTCCTTT GTCCCAAATC TGTGCGGAGC CGAAATCTGG GAGGCGCCGC CGCACCCCCT

1441 CTAGCGGGCG CGGGGCGAAG CGGTGCGGCG CCGGCAGGAA GGAAATGGGC GGGGAGGGCC

1501 TTCGTGCGTC GCCGCGCCGC CGTCCCCTTC TCCCTCTCCA GCCTCGGGGC TGTCCGCGGG

1561 GGGACGGCTG CCTTCGGGGG GGACGGGGCA GGGCGGGGTT CGGCTTCTGG CGTGTGACCG

1621 GCGGCTCTAG AGCCTCTGCT AACCATGTTC ATGCCTTCTT CTTTTTCCTA CAGCTCCTGG

1681 GCAACGTGCT GGTTATTGTG CTGTCTCATC ATTTTGGCAA AGAATTCGAT TGCCATGGCA

1741 ACATATATCC AGAGAGTACA GTGCATCTCA ACATCACTAC TGGTTGTTCT CACCACATTG

1801 GTCTCGTGTC AGATTCCCAG GGATAGGCTC TCTAACATAG GGGTCATAGT CGATGAAGGG

1861 AAATCACTGA AGATAGCTGG ATCCCACGAA TCGAGGTACA TAGTACTGAG TCTAGTTCCG

1921 GGGGTAGACT TTGAGAATGG GTGCGGAACA GCCCAGGTTA TCCAGTACAA GAGCCTACTG

1981 AACAGGCTGT TAATCCCATT GAGGGATGCC TTAGATCTTC AGGAGGCTCT GATAACTGTC

2041 ACCAATGATA CGACACAAAA TGCCGGTGCT CCCCAGTCGA GATTCTTCGG TGCTGTGATT

2101 GGTACTATCG CACTTGGAGT GGCGACATCA GCACAAATCA CCGCAGGGAT TGCACTAGCC

2161 GAAGCGAGGG AGGCCAAAAG AGACATAGCG CTCATCAAAG AATCGATGAC AAAAACACAC

2221 AAGTCTATAG AACTGCTGCA AAACGCTGTG GGGGAACAAA TTCTTGCTCT AAAGACACTC

2281 CAGGATTTCG TGAATGATGA GATCAAACCC GCAATAAGCG AATTAGGCTG TGAGACTGCT

2341 GCCTTAAGAC TGGGTATAAA ATTGACACAG CATTACTCCG AGCTGTTAAC TGCGTTCGGC

2401 TCGAATTTCG GAACCATCGG AGAGAAGAGC CTCACGCTGC AGGCGCTGTC TTCACTTTAC

2461 TCTGCTAACA TTACTGAGAT TATGACCACA ATCAGGACAG GGCAGTCTAA CATCTATGAT

2521 GTCATTTATA CAGAACAGAT CAAAGGAACG GTGATAGATG TGGATCTAGA GAGATACATG

2581 GTCACCCTGT CTGTGAAGAT CCCTATTCTT TCTGAAGTCC CAGGTGTGCT CATACACAAG

2641 GCATCATCTA TTTCTTACAA CATAGACGGG GAGGAATGGT ATGTGACTGT CCCCAGCCAT

2701 ATACTCAGTC GTGCTTCTTT CTTAGGGGGT GCAGACATAA CCGATTGTGT TGAGTCCAGA

2761 TTGACCTATA TATGCCCCAG GGATCCCGCA CAACTGATAC CTGACAGCCA GCAAAAGTGT

2821 ATCCTGGGGG ACACAACAAG GTGTCCTGTC ACAAAAGTTG TGGACAGCCT TATCCCCAAG

2881 TTTGCTTTTG TGAATGGGGG CGTTGTTGCT AACTGCATAG CATCCACATG TACCTGCGGG

2941 ACAGGCCGAA GACCAATCAG TCAGGATCGC TCTAAAGGTG TAGTATTCCT AACCCATGAC

3001 AACTGTGGTC TTATAGGTGT CAATGGGGTA GAATTGTATG CTAACCGGAG AGGGCACGAT

3061 GCCACTTGGG GGGTCCAGAA CTTGACAGTC GGTCCTGCAA TTGCTATCAG ACCCGTTGAT

3121 ATTTCTCTCA ACCTTGCTGA TGCTACGAAT TTCTTGCAAG ACTCTAAGGC TGAGCTTGAG

3181 AAAGCACGGA AAATCCTCTC GGAGGTAGGT AGATGGTACA ACTCAAGAGA GACTGTGATT

3241 ACGATCATAG TAGTTATGGT CGTAATATTG GTGGTCATTA TAGTGATCAT CATCGTGCTT

3301 TATAGACTCA GAAGGTGAAA TCACTAGTGA ATTCACTCCT CAGGTGCAGG CTGCCTATCA

3361 GAAGGTGGTG GCTGGTGTGG CCAATGCCCT GGCTCACAAA TACCACTGAG ATCTTTTTCC

3421 CTCTGCCAAA AATTATGGGG ACATCATGAA GCCCCTTGAG CATCTGACTT CTGGCTAATA

3481 AAGGAAATTT ATTTTCATTG CAATAGTGTG TTGGAATTTT TTGTGTCTCT CACTCGGAAG

3541 GACATATGGG AGGGCAAATC ATTTAAAACA TCAGAATGAG TATTTGGTTT AGAGTTTGGC

3601 AACATATGCC CATATGCTGG CTGCCATGAA CAAAGGTTGG CTATAAAGAG GTCATCAGTA

3661 TATGAAACAG CCCCCTGCTG TCCATTCCTT ATTCCATAGA AAAGCCTTGA CTTGAGGTTA

3721 GATTTTTTTT ATATTTTGTT TTGTGTTATT TTTTTCTTTA ACATCCCTAA AATTTTCCTT

3781 ACATGTTTTA CTAGCCAGAT TTTTCCTCCT CTCCTGACTA CTCCCAGTCA TAGCTGTCCC

3841 TCTTCTCTTA TGGAGATCCC TCGACCTGCA GCCCAAGCTT GGCGTAATCA TGGTCATAGC

3901 TGTTTCCTGT GTGAAATTGT TATCCGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA

3961 TAAAGTGTAA AGCCTGGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCT

4021 CACTGCCCGC TTTCCAGTCG GGAAACCTGT CGTGCCAGCG GATCCGCATC TCAATTAGTC

4081 AGCAACCATA GTCCCGCCCC TAACTCCGCC CATCCCGCCC CTAACTCCGC CCAGTTCCGC

4141 CCATTCTCCG CCCCATGGCT GACTAATTTT TTTTATTTAT GCAGAGGCCG AGGCCGCCTC

4201 GGCCTCTGAG CTATTCCAGA AGTAGTGAGG AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA

4261 AAAGCTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG CATCACAAAT

4321 TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG GTTTGTCCAA ACTCATCAAT

4381 GTATCTTATC ATGTCTGTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG GTCGTTCGGC

4441 TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA GAATCAGGGG

4501 ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG

4561 CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCCTGA CGAGCATCAC AAAAATCGAC

4621 GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG

4681 GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTGTCCGCCT

4741 TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC ATAGCTCACG CTGTAGGTAT CTCAGTTCGG

4801 TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAG CCCGACCGCT

4861 GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATCGCCAC

4921 TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT

4981 TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC AGTATTTGGT ATCTGCGCTC

5041 TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC AAACAAACCA

5101 CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT

5161 CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC

5221 GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT

5281 AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT GACAGTTAGA

5341 AAAACTCATC GAGCATCAAA TGAAACTGCA ATTTATTCAT ATCAGGATTA TCAATACCAT

5401 ATTTTTGAAA AAGCCGTTTC TGTAATGAAG GAGAAAACTC ACCGAGGCAG TTCCATAGGA

5461 TGGCAAGATC CTGGTATCGG TCTGCGATTC CGACTCGTCC AACATCAATA CAACCTATTA

5521 ATTTCCCCTC GTCAAAAATA AGGTTATCAA GTGAGAAATC ACCATGAGTG ACGACTGAAT

5581 CCGGTGAGAA TGGCAACAGC TTATGCATTT CTTTCCAGAC TTGTTCAACA GGCCAGCCAT

5641 TACGCTCGTC ATCAAAATCA CTCGCATCAA CCAAACCGTT ATTCATTCGT GATTGCGCCT

5701 GAGCGAGACG AAATACGCGA TCGCTGTTAA AAGGACAATT ACAAACAGGA ATCGAATGCA

5761 ACCGGCGCAG GAACACTGCC AGCGCATCAA CAATATTTTC ACCTGAATCA GGATATTCTT

5821 CTAATACCTG GAATGCTGTT TTTCCGGGGA TCGCAGTGGT GAGTAACCAT GCATCATCAG

5881 GAGTACGGAT AAAATGCTTG ATGGTCGGAA GAGGCATAAA TTCCGTCAGC CAGTTTAGTC

5941 TGACCATCTC ATCTGTAACA TCATTGGCAA CGCTACCTTT GCCATGTTTC AGAAACAACT

6001 CTGGCGCATC GGGCTTCCCA TACAATCGAT AGATTGTCGC ACCTGATTGC CCGACATTAT

6061 CGCGAGCCCA TTTATACCCA TATAAATCAG CATCCATGTT GGAATTTAAT CGCGGCCTAG

6121 AGCAAGACGT TTCCCGTTGA ATATGGCTCA TAACACCCCT TGTATTACTG TTTATGTAAG

6181 CAGACAGTTT TATTGTTCAT GATGATATAT TTTTATCTTG TGCAATGTAA CATCAGAGAT

6241 TTTGAGACAC AACAATTGGT CGAC

SEQ ID NO: 5

1 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT CATAGCCCAT

61 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA CCGCCCAACG

121 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA ATAGGGACTT

181 TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA GTACATCAAG

241 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG CCCGCCTGGC

301 ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TACGTATTAG

361 TCATCGCTAT TACCATGGTC GAGGTGAGCC CCACGTTCTG CTTCACTCTC CCCATCTCCC

421 CCCCCTCCCC ACCCCCAATT TTGTATTTAT TTATTTTTTA ATTATTTTGT GCAGCGATGG

481 GGGCGGGGGG GGGGGGGGGG CGCGCGCCAG GCGGGGCGGG GCGGGGCGAG GGGCGGGGCG

541 GGGCGAGGCG GAAAGGTGCG GCGGCAGCCA ATCAAAGCGG CGCGCTCCGA AAGTTTCCTT

601 TTATGGCGAG GCGGCGGCGG CGGCGGCCCT ATAAAAAGCG AAGCGCGCGG CGGGCGGGAG

661 TCGCTGCGCG CTGCCTTCGC CCCGTGCCCC GCTCCGCCGC CGCCTCGCGC CGCCCGCCCC

721 GGCTCTGACT GACCGCGTTA CTCCCACAGG TGAGCGGGCG GGACGGCCCT TCTCCTCCGG

781 GCTGTAATTA GCGCTTGGTT TAATGACGGC TTGTTTCTTT TCTGTGGCTG CGTGAAAGCC

841 TTGAGGGGCT CCGGGAGGGC CCTTTGTGCG GGGGGAGCGG CTCGGGGGGT GCGTGCGTGT

901 GTGTGTGCGT GGGGAGCGCC GCGTGCGGCT CCGCGCTGCC CGGCGGCTGT GAGCGCTGCG

961 GGCGCGGCGC GGGGCTTTGT GCGCTCCGCA GTGTGCGCGA GGGGAGCGCG GCCGGGGGCG

1021 GTGCCCCGCG GTGCGGGGGG GGCTGCGAGG GGAACAAAGG CTGCGTGCGG GGTGTGTGCG

1081 TGGGGGGGTG AGCAGGGGGT GTGGGCGCGT CGGTCGGGCT GCAACCCCCC CTGCACCCCC

1141 CTCCCCGAGT TGCTGAGCAC GGCCCGGCTT CGGGTGCGGG GCTCCGTACG GGGCGTGGCG

1201 CGGGGCTCGC CGTGCCGGGC GGGGGGTGGC GGCAGGTGGG GGTGCCGGGC GGGGCGGGGC

1261 CGCCTCGGGC CGGGGAGGGC TCGGGGGAGG GGCGCGGCGG CCCCCGGAGC GCCGGCGGCT

1321 GTCGAGGCGC GGCGAGCCGC AGCCATTGCC TTTTATGGTA ATCGTGCGAG AGGGCGCAGG

1381 GACTTCCTTT GTCCCAAATC TGTGCGGAGC CGAAATCTGG GAGGCGCCGC CGCACCCCCT

1441 CTAGCGGGCG CGGGGCGAAG CGGTGCGGCG CCGGCAGGAA GGAAATGGGC GGGGAGGGCC

1501 TTCGTGCGTC GCCGCGCCGC CGTCCCCTTC TCCCTCTCCA GCCTCGGGGC TGTCCGCGGG

1561 GGGACGGGGC AGGGCGGGGT TCGGCTTCTG GCGTGTGACC GGCGGCTCTA GAGCCTCTGC

1621 TAACCATGTT CATGCCTTCT TCTTTTTCCT ACAGCTCCTG GGCAACGTGC TGGTTATTGT

1681 GCTGTCTCAT CATTTTGGCA AAGAATTCCT CGAGCATGTG GTCTGAGTTA AAAATCAGGA

1741 GCAACGACGG AGGTGAAGGA CCAGAGGACG CCAACGACCC CCGGGGAAAG GGGGTGCAAC

1801 ACATCCATAT CCAGCCATCT CTACCTGTTT ATGGACAGAG GGTTAGGGAT GGTGATAGGG

1861 GCAAACGTGA CTCGTACTGG TCTACTTCTC CTAGTGGTAG CACCACAAAA CCAGCATCAG

1921 GTTGGGAGAG GTCAAGTAAA GCCGACACAT GGTTGCTGAT TCTCTCATTC ACCCAGTGGG

1981 CTTTGTCAAT TGCCACAGTG ATCATCTGTA TCATAATTTC TGCTAGACAA GGGTATAGTA

2041 TGAAAGAGTA CTCAATGACT GTAGAGGCAT TGAACATGAG CAGCAGGGAG GTGAAAGAGT

2101 CACTTACCAG TCTAATAAGG CAAGAGGTTA TAGCAAGGGC TGTCAACATT CAGAGCTCTG

2161 TGCAAACCGG AATCCCAGTC TTGTTGAACA AAAACAGCAG GGATGTCATC CAGATGATTG

2221 ATAAGTCGTG CAGCAGACAA GAGCTCACTC AGCACTGTGA GAGTACGATC GCAGTCCACC

2281 ATGCCGATGG AATTGCCCCA CTTGAGCCAC ATAGTTTCTG GAGATGCCCT GTCGGAGAAC

2341 CGTATCTTAG CTCAGATCCT GAAATCTCAT TGCTGCCTGG TCCGAGCTTG TTATCTGGTT

2401 CTACAACGAT CTCTGGATGT GTTAGGCTCC CTTCACTCTC AATTGGCGAG GCAATCTATG

2461 CCTATTCATC AAATCTCATT ACACAAGGTT GTGCTGACAT AGGGAAATCA TATCAGGTCC

2521 TGCAGCTAGG GTACATATCA CTCAATTCAG ATATGTTCCC TGATCTTAAC CCCGTAGTGT

2581 CCCACACTTA TGACATCAAC GACAATCGGA AATCATGCTC TGTGGTGGCA ACCGGGACTA

2641 GGGGTTATCA GCTTTGCTCC ATGCCGACTG TAGACGAAAG AACCGACTAC TCTAGTGATG

2701 GTATTGAGGA TCTGGTCCTT GATGTCCTGG ATCTCAAAGG GAGAACTAAG TCTCACCGGT

2761 ATCGCAACAG CGAGGTAGAT CTTGATCACC CGTTCTCTGC ACTATACCCC AGTGTAGGCA

2821 ACGGCATTGC AACAGAAGGC TCATTGATAT TTCTTGGGTA TGGTGGACTA ACCACCCCTC

2881 TGCAGGGTGA TACAAAATGT AGGACCCAAG GATGCCAACA GGTGTCGCAA GACACATGCA

2941 ATGAGGCTCT GAAAATTACA TGGCTAGGAG GGAAACAGGT GGTCAGCGTG ATCATCCAGG

3001 TCAATGACTA TCTCTCAGAG AGGCCAAAGA TAAGAGTCAC AACCATTCCA ATCACTCAAA

3061 ACTATCTCGG GGCGGAAGGT AGATTATTAA AATTGGGTGA TCGGGTGTAC ATCTATACAA

3121 GATCATCAGG CTGGCACTCT CAACTGCAGA TAGGAGTACT TGATGTCAGC CACCCTTTGA

3181 CTATCAACTG GACACCTCAT GAAGCCTTGT CTAGACCAGG AAATAAAGAG TGCAATTGGT

3241 ACAATAAGTG TCCGAAGGAA TGCATATCAG GCGTATACAC TGATGCTTAT CCATTGTCCC

3301 CTGATGCAGC TAACGTCGCT ACCGTCACGC TATATGCCAA TACATCGCGT GTCAACCCAA

3361 CAATCATGTA TTCTAACACT ACTAACATTA TAAATATGTT AAGGATAAAG GATGTTCAAT

3421 TAGAGGCTGC ATATACCACG ACATCGTGTA TCACGCATTT TGGTAAAGGC TACTGCTTTC

3481 ACATCATCGA GATCAATCAG AAGAGCCTGA ATACCTTACA GCCGATGCTC TTTAAGACTA

3541 GCATCCCTAA ATTATGCAAG GCCGAGTCTT AAGCGGCCGC GCATGCGAAT TCACTCCTCA

3601 GGTGCAGGCT GCCTATCAGA AGGTGGTGGC TGGTGTGGCC AATGCCCTGG CTCACAAATA

3661 CCACTGAGAT CTTTTTCCCT CTGCCAAAAA TTATGGGGAC ATCATGAAGC CCCTTGAGCA

3721 TCTGACTTCT GGCTAATAAA GGAAATTTAT TTTCATTGCA ATAGTGTGTT GGAATTTTTT

3781 GTGTCTCTCA CTCGGAAGGA CATATGGGAG GGCAAATCAT TTAAAACATC AGAATGAGTA

3841 TTTGGTTTAG AGTTTGGCAA CATATGCCCA TATGCTGGCT GCCATGAACA AAGGTTGGCT

3901 ATAAAGAGGT CATCAGTATA TGAAACAGCC CCCTGCTGTC TATTCCTTAT TCCATAGAAA

3961 AGCCTTGACT TGAGGTTAGA TTTTTTTTAT ATTTTGTTTT GTGTTATTTT TTTCTTTAAC

4021 ATCCCTAAAA TTTTCCTTAC ATGTTTTACT AGCCAGATTT TTCCTCCTCT CCTGACTACT

4081 CCCAGTCATA GCTGTCCCTC TTCTCTTATG GAGATCCCTC GACCTGCAGC CCAAGCTTGG

4141 CGTAATCATG GTCATAGCTG TTTCCTGTGT GAAATTGTTA TCCGCTCACA ATTCCACACA

4201 ACATACGAGC CGGAAGCATA AAGTGTAAAG CCTGGGGTGC CTAATGAGTG AGCTAACTCA

4261 CATTAATTGC GTTGCGCTCA CTGCCCGCTT TCCAGTCGGG AAACCTGTCG TGCCAGCGGA

4321 TCCGCATCTC AATTAGTCAG CAACCATAGT CCCGCCCCTA ACTCCGCCCA TCCCGCCCCT

4381 AACTCCGCCC AGTTCCGCCC ATTCTCCGCC CCATGGCTGA CTAATTTTTT TTATTTATGC

4441 AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT ATTCCAGAAG TAGTGAGGAG GCTTTTTTGG

4501 AGGCCTAGGC TTTTGCAAAA AGCTAACTTG TTTATTGCAG CTTATAATGG TTACAAATAA

4561 AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC TAGTTGTGGT

4621 TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGTCCGC TTCCTCGCTC ACTGACTCGC

4681 TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT

4741 TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG

4801 CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG

4861 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT

4921 ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA

4981 CCGGATACCT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGCTCACGCT

5041 GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC

5101 CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA

5161 GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG

5221 TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGAACAG

5281 TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT

5341 GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA

5401 CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC

5461 AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA

5521 CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA

5581 CTTGGTCTGA CAGTTAGAAA AACTCATCGA GCATCAAATG AAACTGCAAT TTATTCATAT

5641 CAGGATTATC AATACCATAT TTTTGAAAAA GCCGTTTCTG TAATGAAGGA GAAAACTCAC

5701 CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG ACTCGTCCAA

5761 CATCAATACA ACCTATTAAT TTCCCCTCGT CAAAAATAAG GTTATCAAGT GAGAAATCAC

5821 CATGAGTGAC GACTGAATCC GGTGAGAATG GCAACAGCTT ATGCATTTCT TTCCAGACTT

5881 GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC AAACCGTTAT

5941 TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAAA GGACAATTAC

6001 AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACACTGCCAG CGCATCAACA ATATTTTCAC

6061 CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTTT TCCGGGGATC GCAGTGGTGA

6121 GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA GGCATAAATT

6181 CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG CTACCTTTGC

6241 CATGTTTCAG AAACAACTCT GGCGCATCGG GCTTCCCATA CAATCGATAG ATTGTCGCAC

6301 CTGATTGCCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA TCCATGTTGG

6361 AATTTAATCG CGGCCTAGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA ACACCCCTTG

6421 TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA TGATATATTT TTATCTTGTG

6481 CAATGTAACA TCAGAGATTT TGAGACACAA CAATTGGTCG AC

SEQ ID NO: 6

1 AGATCTGTTA CATAACTTAT GGTAAATGGC CTGCCTGGCT GACTGCCCAA TGACCCCTGC

61 CCAATGATGT CAATAATGAT GTATGTTCCC ATGTAATGCC AATAGGGACT TTCCATTGAT

121 GTCAATGGGT GGAGTATTTA TGGTAACTGC CCACTTGGCA GTACATCAAG TGTATCATAT

181 GCCAAGTATG CCCCCTATTG ATGTCAATGA TGGTAAATGG CCTGCCTGGC ATTATGCCCA

241 GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TATGTATTAG TCATTGCTAT

301 TACCATGGGA ATTCACTAGT GGAGAAGAGC ATGCTTGAGG GCTGAGTGCC CCTCAGTGGG

361 CAGAGAGCAC ATGGCCCACA GTCCCTGAGA AGTTGGGGGG AGGGGTGGGC AATTGAACTG

421 GTGCCTAGAG AAGGTGGGGC TTGGGTAAAC TGGGAAAGTG ATGTGGTGTA CTGGCTCCAC

481 CTTTTTCCCC AGGGTGGGGG AGAACCATAT ATAAGTGCAG TAGTCTCTGT GAACATTCAA

541 GCTTCTGCCT TCTCCCTCCT GTGAGTTTGC TAGC

SEQ ID NO: 7

1 GCTAGCCACC ATGCAGAGAA GCCCTCTGGA GAAGGCCTCT GTGGTGAGCA AGCTGTTCTT

61 CAGCTGGACC AGGCCCATCC TGAGGAAGGG CTACAGGCAG AGACTGGAGC TGTCTGACAT

121 CTACCAGATC CCCTCTGTGG ACTCTGCTGA CAACCTGTCT GAGAAGCTGG AGAGGGAGTG

181 GGATAGAGAG CTGGCCAGCA AGAAGAACCC CAAGCTGATC AATGCCCTGA GGAGATGCTT

241 CTTCTGGAGA TTCATGTTCT ATGGCATCTT CCTGTACCTG GGGGAAGTGA CCAAGGCTGT

301 GCAGCCTCTG CTGCTGGGCA GAATCATTGC CAGCTATGAC CCTGACAACA AGGAGGAGAG

361 GAGCATTGCC ATCTACCTGG GCATTGGCCT GTGCCTGCTG TTCATTGTGA GGACCCTGCT

421 GCTGCACCCT GCCATCTTTG GCCTGCACCA CATTGGCATG CAGATGAGGA TTGCCATGTT

481 CAGCCTGATC TACAAGAAAA CCCTGAAGCT GTCCAGCAGA GTGCTGGACA AGATCAGCAT

541 TGGCCAGCTG GTGAGCCTGC TGAGCAACAA CCTGAACAAG TTTGATGAGG GCCTGGCCCT

601 GGCCCACTTT GTGTGGATTG CCCCTCTGCA GGTGGCCCTG CTGATGGGCC TGATTTGGGA

661 GCTGCTGCAG GCCTCTGCCT TTTGTGGCCT GGGCTTCCTG ATTGTGCTGG CCCTGTTTCA

721 GGCTGGCCTG GGCAGGATGA TGATGAAGTA CAGGGACCAG AGGGCAGGCA AGATCAGTGA

781 GAGGCTGGTG ATCACCTCTG AGATGATTGA GAACATCCAG TCTGTGAAGG CCTACTGTTG

841 GGAGGAAGCT ATGGAGAAGA TGATTGAAAA CCTGAGGCAG ACAGAGCTGA AGCTGACCAG

901 GAAGGCTGCC TATGTGAGAT ACTTCAACAG CTCTGCCTTC TTCTTCTCTG GCTTCTTTGT

961 GGTGTTCCTG TCTGTGCTGC CCTATGCCCT GATCAAGGGG ATCATCCTGA GAAAGATTTT

1021 CACCACCATC AGCTTCTGCA TTGTGCTGAG GATGGCTGTG ACCAGACAGT TCCCCTGGGC

1081 TGTGCAGACC TGGTATGACA GCCTGGGGGC CATCAACAAG ATCCAGGACT TCCTGCAGAA

1141 GCAGGAGTAC AAGACCCTGG AGTACAACCT GACCACCACA GAAGTGGTGA TGGAGAATGT

1201 GACAGCCTTC TGGGAGGAGG GCTTTGGGGA GCTGTTTGAG AAGGCCAAGC AGAACAACAA

1261 CAACAGAAAG ACCAGCAATG GGGATGACTC CCTGTTCTTC TCCAACTTCT CCCTGCTGGG

1321 CACACCTGTG CTGAAGGACA TCAACTTCAA GATTGAGAGG GGGCAGCTGC TGGCTGTGGC

1381 TGGATCTACA GGGGCTGGCA AGACCAGCCT GCTGATGATG ATCATGGGGG AGCTGGAGCC

1441 TTCTGAGGGC AAGATCAAGC ACTCTGGCAG GATCAGCTTT TGCAGCCAGT TCAGCTGGAT

1501 CATGCCTGGC ACCATCAAGG AGAACATCAT CTTTGGAGTG AGCTATGATG AGTACAGATA

1561 CAGGAGTGTG ATCAAGGCCT GCCAGCTGGA GGAGGACATC AGCAAGTTTG CTGAGAAGGA

1621 CAACATTGTG CTGGGGGAGG GAGGCATTAC ACTGTCTGGG GGCCAGAGAG CCAGAATCAG

1681 CCTGGCCAGG GCTGTGTACA AGGATGCTGA CCTGTACCTG CTGGACTCCC CCTTTGGCTA

1741 CCTGGATGTG CTGACAGAGA AGGAGATTTT TGAGAGCTGT GTGTGCAAGC TGATGGCCAA

1801 CAAGACCAGA ATCCTGGTGA CCAGCAAGAT GGAGCACCTG AAGAAGGCTG ACAAGATCCT

1861 GATCCTGCAT GAGGGCAGCA GCTACTTCTA TGGGACCTTC TCTGAGCTGC AGAACCTGCA

1921 GCCTGACTTC AGCTCTAAGC TGATGGGCTG TGACAGCTTT GACCAGTTCT CTGCTGAGAG

1981 GAGGAACAGC ATCCTGACAG AGACCCTGCA CAGATTCAGC CTGGAGGGAG ATGCCCCTGT

2041 GAGCTGGACA GAGACCAAGA AGCAGAGCTT CAAGCAGACA GGGGAGTTTG GGGAGAAGAG

2101 GAAGAACTCC ATCCTGAACC CCATCAACAG CATCAGGAAG TTCAGCATTG TGCAGAAAAC

2161 CCCCCTGCAG ATGAATGGCA TTGAGGAAGA TTCTGATGAG CCCCTGGAGA GGAGACTGAG

2221 CCTGGTGCCT GATTCTGAGC AGGGAGAGGC CATCCTGCCT AGGATCTCTG TGATCAGCAC

2281 AGGCCCTACA CTGCAGGCCA GAAGGAGGCA GTCTGTGCTG AACCTGATGA CCCACTCTGT

2341 GAACCAGGGC CAGAACATCC ACAGGAAAAC CACAGCCTCC ACCAGGAAAG TGAGCCTGGC

2401 CCCTCAGGCC AATCTGACAG AGCTGGACAT CTACAGCAGG AGGCTGTCTC AGGAGACAGG

2461 CCTGGAGATT TCTGAGGAGA TCAATGAGGA GGACCTGAAA GAGTGCTTCT TTGATGACAT

2521 GGAGAGCATC CCTGCTGTGA CCACCTGGAA CACCTACCTG AGATACATCA CAGTGCACAA

2581 GAGCCTGATC TTTGTGCTGA TCTGGTGCCT GGTGATCTTC CTGGCTGAAG TGGCTGCCTC

2641 TCTGGTGGTG CTGTGGCTGC TGGGAAACAC CCCACTGCAG GACAAGGGCA ACAGCACCCA

2701 CAGCAGGAAC AACAGCTATG CTGTGATCAT CACCTCCACC TCCAGCTACT ATGTGTTCTA

2761 CATCTATGTG GGAGTGGCTG ATACCCTGCT GGCTATGGGC TTCTTTAGAG GCCTGCCCCT

2821 GGTGCACACA CTGATCACAG TGAGCAAGAT CCTCCACCAC AAGATGCTGC ACTCTGTGCT

2881 GCAGGCTCCT ATGAGCACCC TGAATACCCT GAAGGCTGGG GGCATCCTGA ACAGATTCTC

2941 CAAGGATATT GCCATCCTGG ATGACCTGCT GCCTCTCACC ATCTTTGACT TCATCCAGCT

3001 GCTGCTGATT GTGATTGGGG CCATTGCTGT GGTGGCAGTG CTGCAGCCCT ACATCTTTGT

3061 GGCCACAGTG CCTGTGATTG TGGCCTTCAT CATGCTGAGG GCCTACTTTC TGCAGACCTC

3121 CCAGCAGCTG AAGCAGCTGG AGTCTGAGGG CAGAAGCCCC ATCTTCACCC ACCTGGTGAC

3181 AAGCCTGAAG GGCCTGTGGA CCCTGAGAGC CTTTGGCAGG CAGCCCTACT TTGAGACCCT

3241 GTTCCACAAG GCCCTGAACC TGCACACAGC CAACTGGTTC CTCTACCTGT CCACCCTGAG

3301 ATGGTTCCAG ATGAGAATTG AGATGATCTT TGTCATCTTC TTCATTGCTG TGACCTTCAT

3361 CAGCATTCTG ACCACAGGAG AGGGAGAGGG CAGAGTGGGC ATTATCCTGA CCCTGGCCAT

3421 GAACATCATG AGCACACTGC AGTGGGCAGT GAACAGCAGC ATTGATGTGG ACAGCCTGAT

3481 GAGGAGTGTG AGCAGAGTGT TCAAGTTCAT TGATATGCCC ACAGAGGGCA AGCCTACCAA

3541 GAGCACCAAG CCCTACAAGA ATGGCCAGCT GAGCAAAGTG ATGATCATTG AGAACAGCCA

3601 TGTGAAGAAG GATGATATCT GGCCCAGTGG AGGCCAGATG ACAGTGAAGG ACCTGACAGC

3661 CAAGTACACA GAGGGGGGCA ATGCTATCCT GGAGAACATC TCCTTCAGCA TCTCCCCTGG

3721 CCAGAGAGTG GGACTGCTGG GAAGAACAGG CTCTGGCAAG TCTACCCTGC TGTCTGCCTT

3781 CCTGAGGCTG CTGAACACAG AGGGAGAGAT CCAGATTGAT GGAGTGTCCT GGGACAGCAT

3841 CACACTGCAG CAGTGGAGGA AGGCCTTTGG TGTGATCCCC CAGAAAGTGT TCATCTTCAG

3901 TGGCACCTTC AGGAAGAACC TGGACCCCTA TGAGCAGTGG TCTGACCAGG AGATTTGGAA

3961 AGTGGCTGAT GAAGTGGGCC TGAGAAGTGT GATTGAGCAG TTCCCTGGCA AGCTGGACTT

4021 TGTCCTGGTG GATGGGGGCT GTGTGCTGAG CCATGGCCAC AAGCAGCTGA TGTGCCTGGC

4081 CAGATCAGTG CTGAGCAAGG CCAAGATCCT GCTGCTGGAT GAGCCTTCTG CCCACCTGGA

4141 TCCTGTGACC TACCAGATCA TCAGGAGGAC CCTCAAGCAG GCCTTTGCTG ACTGCACAGT

4201 CATCCTGTGT GAGCACAGGA TTGAGGCCAT GCTGGAGTGC CAGCAGTTCC TGGTGATTGA

4261 GGAGAACAAA GTGAGGCAGT ATGACAGCAT CCAGAAGCTG CTGAATGAGA GGAGCCTGTT

4321 CAGGCAGGCC ATCAGCCCCT CTGATAGAGT GAAGCTGTTC CCCCACAGGA ACAGCTCCAA

4381 GTGCAAGAGC AAGCCCCAGA TTGCTGCCCT GAAGGAGGAG ACAGAGGAGG AAGTGCAGGA

4441 CACCAGGCTG TGAGGGCCC

SEQ ID NO: 8

1 GGGCCCAATC AACCTCTGGA TTACAAAATT TGTGAAAGAT TGACTGGTAT TCTTAACTAT

61 GTTGCTCCTT TTACGCTATG TGGATACGCT GCTTTAATGC CTTTGTATCA TGCTATTGCT

121 TCCCGTATGG CTTTCATTTT CTCCTCCTTG TATAAATCCT GGTTGCTGTC TCTTTATGAG

181 GAGTTGTGGC CCGTTGTCAG GCAACGTGGC GTGGTGTGCA CTGTGTTTGC TGACGCAACC

241 CCCACTGGTT GGGGCATTGC CACCACCTGT CAGCTCCTTT CCGGGACTTT CGCTTTCCCC

301 CTCCCTATTG CCACGGCGGA ACTCATCGCC GCCTGCCTTG CCCGCTGCTG GACAGGGGCT

361 CGGCTGTTGG GCACTGACAA TTCCGTGGTG TTGTCGGGGA AATCATCGTC CTTTCCTTGG

421 CTGCTCGCCT GTGTTGCCAC CTGGATTCTG CGCGGGACGT CCTTCTGCTA CGTCCCTTCG

481 GCCCTCAATC CAGCGGACCT TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG GCCTCTTCCG

541 CGTCTTCGCC TTCGCCCTCA GACGAGTCGG ATCTCCCTTT GGGCCGCCTC CCCGCAAGCT

SEQ ID NO: 9

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC GGCTACCTCA

1201 GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC GAACGGAAAG

1261 AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG CTTCGGCCTC

1321 CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT CCTCTACCCC

1381 CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG CGTGCTATAT

1441 TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC AGTAAGACAA

1501 CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG ACAAAAGAAA

1561 AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC GCAACAACAA

1621 GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG GGTAAAAGCA

1681 GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA AGCCCTATCG

1741 AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT GCAATGGGAG

1801 CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA CTGCAGCAGC

1861 AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG ACCATTTGGG

1921 GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG GATCAGGCAC

1981 GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG GAGTGGCCCT

2041 GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA AGACAAATAG

2101 CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA GAGGAAAAGA

2161 ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG TTCGATTTCT

2221 CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA ATAGGGTTAA

2281 GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT GTTCCTCTAT

2341 CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG GGACAGACTT

2401 CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT TTACAAACCA

2461 AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT TATGGTAAAT

2521 GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT GATGTATGTT

2581 CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT TTATGGTAAC

2641 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA TTGATGTCAA

2701 TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC

2761 TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT AGTGGAGAAG

2821 AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC ACAGTCCCTG

2881 AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG GGCTTGGGTA

2941 AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG GGGAGAACCA

3001 TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT CCTGTGAGTT

3061 TGCTAGCCAC CATGCCCAGC TCTGTGTCCT GGGGCATTCT GCTGCTGGCT GGCCTGTGCT

3121 GTCTGGTGCC TGTGTCCCTG GCTGAGGACC CTCAGGGGGA TGCTGCCCAG AAAACAGACA

3181 CCTCCCACCA TGACCAGGAC CACCCCACCT TCAACAAGAT CACCCCCAAC CTGGCAGAGT

3241 TTGCCTTCAG CCTGTACAGA CAGCTGGCCC ACCAGAGCAA CAGCACCAAC ATCTTTTTCA

3301 GCCCTGTGTC CATTGCCACA GCCTTTGCCA TGCTGAGCCT GGGCACCAAG GCTGACACCC

3361 ATGATGAGAT CCTGGAAGGC CTGAACTTCA ACCTGACAGA GATCCCTGAG GCCCAGATCC

3421 ATGAGGGCTT CCAGGAACTG CTGAGAACCC TGAACCAGCC AGACAGCCAG CTGCAGCTGA

3481 CAACAGGCAA TGGGCTGTTC CTGTCTGAGG GCCTGAAGCT GGTGGACAAG TTTCTGGAAG

3541 ATGTGAAGAA GCTGTACCAC TCTGAGGCCT TCACAGTGAA CTTTGGGGAC ACAGAAGAGG

3601 CCAAGAAACA GATCAATGAC TATGTGGAAA AGGGCACCCA GGGCAAGATT GTGGACCTTG

3661 TGAAAGAGCT GGACAGGGAC ACTGTGTTTG CCCTTGTGAA CTACATCTTC TTCAAGGGCA

3721 AGTGGGAGAG GCCCTTTGAA GTGAAGGACA CTGAGGAAGA GGACTTCCAT GTGGACCAAG

3781 TGACCACAGT GAAGGTGCCA ATGATGAAGA GACTGGGGAT GTTCAATATC CAGCACTGCA

3841 AGAAACTGAG CAGCTGGGTG CTGCTGATGA AGTACCTGGG CAATGCTACA GCCATATTCT

3901 TTCTGCCTGA TGAGGGCAAG CTGCAGCACC TGGAAAATGA GCTGACCCAT GACATCATCA

3961 CCAAATTTCT GGAAAATGAG GACAGAAGAT CTGCCAGCCT GCATCTGCCC AAGCTGAGCA

4021 TCACAGGCAC ATATGACCTG AAGTCTGTGC TGGGACAGCT GGGAATCACC AAGGTGTTCA

4081 GCAATGGGGC AGACCTGAGT GGAGTGACAG AGGAAGCCCC TCTGAAGCTG TCCAAGGCTG

4141 TGCACAAGGC AGTGCTGACC ATTGATGAGA AGGGCACAGA GGCTGCTGGG GCCATGTTTC

4201 TGGAAGCCAT CCCCATGTCC ATCCCCCCAG AAGTGAAGTT CAACAAGCCC TTTGTGTTCC

4261 TGATGATTGA GCAGAACACC AAGAGCCCCC TGTTCATGGG CAAGGTTGTG AACCCCACCC

4321 AGAAATGAGG GCCCAATCAA CCTCTGGATT ACAAAATTTG TGAAAGATTG ACTGGTATTC

4381 TTAACTATGT TGCTCCTTTT ACGCTATGTG GATACGCTGC TTTAATGCCT TTGTATCATG

4441 CTATTGCTTC CCGTATGGCT TTCATTTTCT CCTCCTTGTA TAAATCCTGG TTGCTGTCTC

4501 TTTATGAGGA GTTGTGGCCC GTTGTCAGGC AACGTGGCGT GGTGTGCACT GTGTTTGCTG

4561 ACGCAACCCC CACTGGTTGG GGCATTGCCA CCACCTGTCA GCTCCTTTCC GGGACTTTCG

4621 CTTTCCCCCT CCCTATTGCC ACGGCGGAAC TCATCGCCGC CTGCCTTGCC CGCTGCTGGA

4681 CAGGGGCTCG GCTGTTGGGC ACTGACAATT CCGTGGTGTT GTCGGGGAAA TCATCGTCCT

4741 TTCCTTGGCT GCTCGCCTGT GTTGCCACCT GGATTCTGCG CGGGACGTCC TTCTGCTACG

4801 TCCCTTCGGC CCTCAATCCA GCGGACCTTC CTTCCCGCGG CCTGCTGCCG GCTCTGCGGC

4861 CTCTTCCGCG TCTTCGCCTT CGCCCTCAGA CGAGTCGGAT CTCCCTTTGG GCCGCCTCCC

4921 CGCAAGCTTC GCACTTTTTA AAAGAAAAGG GAGGACTGGA TGGGATTTAT TACTCCGATA

4981 GGACGCTGGC TTGTAACTCA GTCTCTTACT AGGAGACCAG CTTGAGCCTG GGTGTTCGCT

5041 GGTTAGCCTA ACCTGGTTGG CCACCAGGGG TAAGGACTCC TTGGCTTAGA AAGCTAATAA

5101 ACTTGCCTGC ATTAGAGCTC TTACGCGTCC CGGGCTCGAG ATCCGCATCT CAATTAGTCA

5161 GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC CAGTTCCGCC

5221 CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA GGCCGCCTCG

5281 GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA

5341 AAGCTAACTT GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT

5401 TCACAAATAA AGCATTTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG

5461 TATCTTATCA TGTCTGTCCG CTTCCTCGCT CACTGACTCG CTGCGCTCGG TCGTTCGGCT

5521 GCGGCGAGCG GTATCAGCTC ACTCAAAGGC GGTAATACGG TTATCCACAG AATCAGGGGA

5581 TAACGCAGGA AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC

5641 CGCGTTGCTG GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG

5701 CTCAAGTCAG AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG

5761 AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT

5821 TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT

5881 GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG

5941 CGCCTTATCC GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT

6001 GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT

6061 CTTGAAGTGG TGGCCTAACT ACGGCTACAC TAGAAGAACA GTATTTGGTA TCTGCGCTCT

6121 GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC

6181 CGCTGGTAGC GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC

6241 TCAAGAAGAT CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG

6301 TTAAGGGATT TTGGTCATGA GATTATCAAA AAGGATCTTC ACCTAGATCC TTTTAAATTA

6361 AAAATGAAGT TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG ACAGTTAGAA

6421 AAACTCATCG AGCATCAAAT GAAACTGCAA TTTATTCATA TCAGGATTAT CAATACCATA

6481 TTTTTGAAAA AGCCGTTTCT GTAATGAAGG AGAAAACTCA CCGAGGCAGT TCCATAGGAT

6541 GGCAAGATCC TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA

6601 TTTCCCCTCG TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC

6661 CGGTGAGAAT GGCAACAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT

6721 ACGCTCGTCA TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCGTG ATTGCGCCTG

6781 AGCGAGACGA AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA

6841 CCGGCGCAGG AACACTGCCA GCGCATCAAC AATATTTTCA CCTGAATCAG GATATTCTTC

6901 TAATACCTGG AATGCTGTTT TTCCGGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG

6961 AGTACGGATA AAATGCTTGA TGGTCGGAAG AGGCATAAAT TCCGTCAGCC AGTTTAGTCT

7021 GACCATCTCA TCTGTAACAT CATTGGCAAC GCTACCTTTG CCATGTTTCA GAAACAACTC

7081 TGGCGCATCG GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC

7141 GCGAGCCCAT TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAATC GCGGCCTAGA

7201 GCAAGACGTT TCCCGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC

7261 AGACAGTTTT ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT

7321 TTGAGACACA ACAATTGGTC GACGGATCC

SEQ ID NO: 10

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC GGCTACCTCA

1201 GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC GAACGGAAAG

1261 AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG CTTCGGCCTC

1321 CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT CCTCTACCCC

1381 CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG CGTGCTATAT

1441 TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC AGTAAGACAA

1501 CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG ACAAAAGAAA

1561 AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC GCAACAACAA

1621 GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG GGTAAAAGCA

1681 GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATTT TTTTGTTTCA AGCCCTATCG

1741 AATTCCCGTT TGTGCTAGGG TTCTTAGGCT TCTTGGGGGC TGCTGGAACT GCAATGGGAG

1801 CAGCGGCGAC AGCCCTGACG GTCCAGTCTC AGCATTTGCT TGCTGGGATA CTGCAGCAGC

1861 AGAAGAATCT GCTGGCGGCT GTGGAGGCTC AACAGCAGAT GTTGAAGCTG ACCATTTGGG

1921 GTGTTAAAAA CCTCAATGCC CGCGTCACAG CCCTTGAGAA GTACCTAGAG GATCAGGCAC

1981 GACTAAACTC CTGGGGGTGC GCATGGAAAC AAGTATGTCA TACCACAGTG GAGTGGCCCT

2041 GGACAAATCG GACTCCGGAT TGGCAAAATA TGACTTGGTT GGAGTGGGAA AGACAAATAG

2101 CTGATTTGGA AAGCAACATT ACGAGACAAT TAGTGAAGGC TAGAGAACAA GAGGAAAAGA

2161 ATCTAGATGC CTATCAGAAG TTAACTAGTT GGTCAGATTT CTGGTCTTGG TTCGATTTCT

2221 CAAAATGGCT TAACATTTTA AAAATGGGAT TTTTAGTAAT AGTAGGAATA ATAGGGTTAA

2281 GATTACTTTA CACAGTATAT GGATGTATAG TGAGGGTTAG GCAGGGATAT GTTCCTCTAT

2341 CTCCACAGAT CCATATCCGC GGCAATTTTA AAAGAAAGGG AGGAATAGGG GGACAGACTT

2401 CAGCAGAGAG ACTAATTAAT ATAATAACAA CACAATTAGA AATACAACAT TTACAAACCA

2461 AAATTCAAAA AATTTTAAAT TTTAGAGCCG CGGAGATCTG TTACATAACT TATGGTAAAT

2521 GGCCTGCCTG GCTGACTGCC CAATGACCCC TGCCCAATGA TGTCAATAAT GATGTATGTT

2581 CCCATGTAAT GCCAATAGGG ACTTTCCATT GATGTCAATG GGTGGAGTAT TTATGGTAAC

2641 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ATGCCCCCTA TTGATGTCAA

2701 TGATGGTAAA TGGCCTGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC

2761 TTGGCAGTAC ATCTATGTAT TAGTCATTGC TATTACCATG GGAATTCACT AGTGGAGAAG

2821 AGCATGCTTG AGGGCTGAGT GCCCCTCAGT GGGCAGAGAG CACATGGCCC ACAGTCCCTG

2881 AGAAGTTGGG GGGAGGGGTG GGCAATTGAA CTGGTGCCTA GAGAAGGTGG GGCTTGGGTA

2941 AACTGGGAAA GTGATGTGGT GTACTGGCTC CACCTTTTTC CCCAGGGTGG GGGAGAACCA

3001 TATATAAGTG CAGTAGTCTC TGTGAACATT CAAGCTTCTG CCTTCTCCCT CCTGTGAGTT

3061 TGCTAGCCAC CATGGGAGTG AAGGTGCTGT TTGCCCTGAT CTGCATTGCT GTGGCTGAGG

3121 CCAAGCCCAC AGAGAACAAT GAGGACTTCA ACATTGTGGC TGTGGCCAGC AACTTTGCCA

3181 CCACAGACCT GGATGCTGAC AGGGGCAAGC TGCCTGGCAA GAAGCTGCCC CTGGAAGTCC

3241 TGAAAGAGAT GGAAGCCAAT GCCAGGAAGG CTGGCTGCAC AAGAGGCTGT CTGATCTGCC

3301 TGAGCCACAT CAAGTGCACC CCCAAGATGA AGAAGTTCAT CCCTGGCAGG TGCCACACCT

3361 ATGAAGGGGA CAAAGAGTCT GCCCAGGGGG GAATTGGAGA GGCCATTGTG GACATCCCTG

3421 AGATCCCTGG CTTCAAGGAC CTGGAACCCA TGGAACAGTT CATTGCCCAG GTGGACCTGT

3481 GTGTGGACTG CACTACAGGC TGTCTCAAGG GCCTGGCCAA TGTGCAGTGC TCTGACCTGC

3541 TGAAGAAGTG GCTGCCCCAG AGATGTGCCA CCTTTGCCAG CAAGATCCAG GGCCAGGTGG

3601 ACAAGATCAA GGGAGCTGGG GGAGATTGAT GAGGGCCCAA TCAACCTCTG GATTACAAAA

3661 TTTGTGAAAG ATTGACTGGT ATTCTTAACT ATGTTGCTCC TTTTACGCTA TGTGGATACG

3721 CTGCTTTAAT GCCTTTGTAT CATGCTATTG CTTCCCGTAT GGCTTTCATT TTCTCCTCCT

3781 TGTATAAATC CTGGTTGCTG TCTCTTTATG AGGAGTTGTG GCCCGTTGTC AGGCAACGTG

3841 GCGTGGTGTG CACTGTGTTT GCTGACGCAA CCCCCACTGG TTGGGGCATT GCCACCACCT

3901 GTCAGCTCCT TTCCGGGACT TTCGCTTTCC CCCTCCCTAT TGCCACGGCG GAACTCATCG

3961 CCGCCTGCCT TGCCCGCTGC TGGACAGGGG CTCGGCTGTT GGGCACTGAC AATTCCGTGG

4021 TGTTGTCGGG GAAATCATCG TCCTTTCCTT GGCTGCTCGC CTGTGTTGCC ACCTGGATTC

4081 TGCGCGGGAC GTCCTTCTGC TACGTCCCTT CGGCCCTCAA TCCAGCGGAC CTTCCTTCCC

4141 GCGGCCTGCT GCCGGCTCTG CGGCCTCTTC CGCGTCTTCG CCTTCGCCCT CAGACGAGTC

4201 GGATCTCCCT TTGGGCCGCC TCCCCGCAAG CTTCGCACTT TTTAAAAGAA AAGGGAGGAC

4261 TGGATGGGAT TTATTACTCC GATAGGACGC TGGCTTGTAA CTCAGTCTCT TACTAGGAGA

4321 CCAGCTTGAG CCTGGGTGTT CGCTGGTTAG CCTAACCTGG TTGGCCACCA GGGGTAAGGA

4381 CTCCTTGGCT TAGAAAGCTA ATAAACTTGC CTGCATTAGA GCTCTTACGC GTCCCGGGCT

4441 CGAGATCCGC ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG

4501 CCCCTAACTC CGCCCAGTTC CGCCCATTCT CCGCCCCATG GCTGACTAAT TTTTTTTATT

4561 TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT

4621 TTTGGAGGCC TAGGCTTTTG CAAAAAGCTA ACTTGTTTAT TGCAGCTTAT AATGGTTACA

4681 AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG CATTCTAGTT

4741 GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG TCCGCTTCCT CGCTCACTGA

4801 CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT

4861 ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA

4921 AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC

4981 TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA

5041 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC CGACCCTGCC

5101 GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC GTGGCGCTTT CTCATAGCTC

5161 ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA

5221 ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC

5281 GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG

5341 GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG

5401 AACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG

5461 CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA

5521 GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA

5581 CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT

5641 CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA

5701 GTAAACTTGG TCTGACAGTT AGAAAAACTC ATCGAGCATC AAATGAAACT GCAATTTATT

5761 CATATCAGGA TTATCAATAC CATATTTTTG AAAAAGCCGT TTCTGTAATG AAGGAGAAAA

5821 CTCACCGAGG CAGTTCCATA GGATGGCAAG ATCCTGGTAT CGGTCTGCGA TTCCGACTCG

5881 TCCAACATCA ATACAACCTA TTAATTTCCC CTCGTCAAAA ATAAGGTTAT CAAGTGAGAA

5941 ATCACCATGA GTGACGACTG AATCCGGTGA GAATGGCAAC AGCTTATGCA TTTCTTTCCA

6001 GACTTGTTCA ACAGGCCAGC CATTACGCTC GTCATCAAAA TCACTCGCAT CAACCAAACC

6061 GTTATTCATT CGTGATTGCG CCTGAGCGAG ACGAAATACG CGATCGCTGT TAAAAGGACA

6121 ATTACAAACA GGAATCGAAT GCAACCGGCG CAGGAACACT GCCAGCGCAT CAACAATATT

6181 TTCACCTGAA TCAGGATATT CTTCTAATAC CTGGAATGCT GTTTTTCCGG GGATCGCAGT

6241 GGTGAGTAAC CATGCATCAT CAGGAGTACG GATAAAATGC TTGATGGTCG GAAGAGGCAT

6301 AAATTCCGTC AGCCAGTTTA GTCTGACCAT CTCATCTGTA ACATCATTGG CAACGCTACC

6361 TTTGCCATGT TTCAGAAACA ACTCTGGCGC ATCGGGCTTC CCATACAATC GATAGATTGT

6421 CGCACCTGAT TGCCCGACAT TATCGCGAGC CCATTTATAC CCATATAAAT CAGCATCCAT

6481 GTTGGAATTT AATCGCGGCC TAGAGCAAGA CGTTTCCCGT TGAATATGGC TCATAACACC

6541 CCTTGTATTA CTGTTTATGT AAGCAGACAG TTTTATTGTT CATGATGATA TATTTTTATC

TTGTGCAATG TAACATCAGA GATTTTGAGA CACAACAATT GGTCGACGGA TCC

SEQ ID NO: 11

1 GGTACCTCAA TATTGGCCAT Ί AGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT AT AT C AT AAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG T AC AT C T AC G TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 T AT AT AAG C A GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG G C GAG AG AAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGAC TAGG AG AGGCCGTAGC

1141 CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG GCTACCTCAG

1201 CACTAAATAG GAGACAATTA GACCAATTTG AG AAAAT AC G ACTTCGCCCG AACGGAAAGA

1261 AAAAGTAC C A AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC TTCGGCCTCC

1321 ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CAT AG AAG T C CTCTACCCCC

1381 TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC GTGCTATATT

1441 GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA GTAAGACAAC

1501 ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA CAAAAGAAAA

1561 ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG CAACAACAAG

1621 GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG GTAAAAGCAG

1681 TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA TCGAATTCCC

1741 GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG GAGCAGCGGC

1801 GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC AGCAGAAGAA

1861 TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT GGGGTGTTAA

1921 AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG CACGACTAAA

1981 CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC CCTGGACAAA

2041 TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA TAGCTGATTT

2101 GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA AGAATCTAGA

2161 TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT TCTCAAAATG

2221 GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT TAAGATTACT

2281 TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC TATCTCCACA

2341 GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA CTTCAGCAGA

2401 GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA CCAAAATTCA

2461 AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTCAATATTG GCCATTAGCC ATATTATTCA

2521 TTGGTTATAT AGCATAAATC AATATTGGCT ATTGGCCATT GCATACGTTG TATCTATATC

2581 ATAATATGTA CATTTATATT GGCTCATGTC CAATATGACC GCCATGTTGG CATTGATTAT

2641 TGACTAGTTA TTAATAGTAA TCAATTACGG GGTCATTAGT TCATAGCCCA TATATGGAGT

2701 TCCGCGTTAC ATAACTTACG GTAAATGGCC CGCCTGGCTG ACCGCCCAAC GACCCCCGCC

2761 CATTGACGTC AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT TTCCATTGAC

2821 GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC AGTACATCAA GTGTATCATA

2881 TGCCAAGTCC GCCCCCTATT GACGTCAATG ACGGTAAATG GCCCGCCTGG CATTATGCCC

2941 AGTACATGAC CTTACGGGAC TTTCCTACTT GGCAGTACAT CTACGTATTA GTCATCGCTA

3001 TTACCATGGT GATGCGGTTT TGGCAGTACA CCAATGGGCG TGGATAGCGG TTTGACTCAC

3061 GGGGATTTCC AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTTGG CACCAAAATC

3121 AACGGGACTT TCCAAAATGT CGTAATAACC CCGCCCCGTT GACGCAAATG GGCGGTAGGC

3181 GTGTACGGTG GGAGGTCTAT ATAAGCAGAG CTCGTTTAGT GAACCGTCAG ATCACTAGAA

3241 GCTTTATTGC GGTAGTTTAT CACAGTTAAA TTGCTAACGC AGTCAGTGCT TCTGACACAA

3301 CAGTCTCGAA CTTAAGCTGC AGAAGTTGGT CGTGAGGCAC TGGGCAGGCT AGCCACCAAT

3361 GCAGATTGAG CTGAGCACCT GCTTCTTCCT GTGCCTGCTG AGGTTCTGCT TCTCTGCCAC

3421 CAGGAGATAC TACCTGGGGG CTGTGGAGCT GAGCTGGGAC TACATGCAGT CTGACCTGGG

3481 GGAGCTGCCT GTGGATGCCA GGTTCCCCCC CAGAGTGCCC AAGAGCTTCC CCTTCAACAC

3541 CTCTGTGGTG TACAAGAAGA CCCTGTTTGT GGAGTTCACT GACCACCTGT TCAACATTGC

3601 CAAGCCCAGG CCCCCCTGGA TGGGCCTGCT GGGCCCCACC ATCCAGGCTG AGGTGTATGA

3661 CACTGTGGTG ATCACCCTGA AGAACATGGC CAGCCACCCT GTGAGCCTGC ATGCTGTGGG

3721 GGTGAGCTAC TGGAAGGCCT CTGAGGGGGC TGAGTATGAT GACCAGACCA GCCAGAGGGA

3781 GAAGGAGGAT GACAAGGTGT TCCCTGGGGG CAGCCACACC TATGTGTGGC AGGTGCTGAA

3841 GGAGAATGGC CCCATGGCCT CTGACCCCCT GTGCCTGACC TACAGCTACC TGAGCCATGT

3901 GGACCTGGTG AAGGACCTGA ACTCTGGCCT GATTGGGGCC CTGCTGGTGT GCAGGGAGGG

3961 CAGCCTGGCC AAGGAGAAGA CCCAGACCCT GCACAAGTTC ATCCTGCTGT TTGCTGTGTT

4021 TGATGAGGGC AAGAGCTGGC ACTCTGAAAC CAAGAACAGC CTGATGCAGG ACAGGGATGC

4081 TGCCTCTGCC AGGGCCTGGC CCAAGATGCA CACTGTGAAT GGCTATGTGA ACAGGAGCCT

4141 GCCTGGCCTG ATTGGCTGCC ACAGGAAGTC TGTGTACTGG CATGTGATTG GCATGGGCAC

4201 CACCCCTGAG GTGCACAGCA TCTTCCTGGA GGGCCACACC TTCCTGGTCA GGAACCACAG

4261 GCAGGCCAGC CTGGAGATCA GCCCCATCAC CTTCCTGACT GCCCAGACCC TGCTGATGGA

4321 CCTGGGCCAG TTCCTGCTGT TCTGCCACAT CAGCAGCCAC CAGCATGATG GCATGGAGGC

4381 CTATGTGAAG GTGGACAGCT GCCCTGAGGA GCCCCAGCTG AGGATGAAGA ACAATGAGGA

4441 GGCTGAGGAC TATGATGATG ACCTGACTGA CTCTGAGATG GATGTGGTGA GGTTTGATGA

4501 TGACAACAGC CCCAGCTTCA TCCAGATCAG GTCTGTGGCC AAGAAGCACC CCAAGACCTG

4561 GGTGCACTAC ATTGCTGCTG AGGAGGAGGA CTGGGACTAT GCCCCCCTGG TGCTGGCCCC

4621 TGATGACAGG AGCTACAAGA GCCAGTACCT GAACAATGGC CCCCAGAGGA TTGGCAGGAA

4681 GTACAAGAAG GTCAGGTTCA TGGCCTACAC TGATGAAACC TTCAAGACCA GGGAGGCCAT

4741 CCAGCATGAG TCTGGCATCC TGGGCCCCCT GCTGTATGGG GAGGTGGGGG ACACCCTGCT

4801 GATCATCTTC AAGAACCAGG CCAGCAGGCC CTACAACATC TACCCCCATG GCATCACTGA

4861 TGTGAGGCCC CTGTACAGCA GGAGGCTGCC CAAGGGGGTG AAGCACCTGA AGGACTTCCC

4921 CATCCTGCCT GGGGAGATCT TCAAGTACAA GTGGACTGTG ACTGTGGAGG ATGGCCCCAC

4981 CAAGTCTGAC CCCAGGTGCC TGACCAGATA CTACAGCAGC TTTGTGAACA TGGAGAGGGA

5041 CCTGGCCTCT GGCCTGATTG GCCCCCTGCT GATCTGCTAC AAGGAGTCTG TGGACCAGAG

5101 GGGCAACCAG ATCATGTCTG ACAAGAGGAA TGTGATCCTG TTCTCTGTGT TTGATGAGAA

5161 CAGGAGCTGG TACCTGACTG AGAACATCCA GAGGTTCCTG CCCAACCCTG CTGGGGTGCA

5221 GCTGGAGGAC CCTGAGTTCC AGGCCAGCAA CATCATGCAC AGCATCAATG GCTATGTGTT

5281 TGACAGCCTG CAGCTGTCTG TGTGCCTGCA TGAGGTGGCC TACTGGTACA TCCTGAGCAT

5341 TGGGGCCCAG ACTGACTTCC TGTCTGTGTT CTTCTCTGGC TACACCTTCA AGCACAAGAT

5401 GGTGTATGAG GACACCCTGA CCCTGTTCCC CTTCTCTGGG GAGACTGTGT TCATGAGCAT

5461 GGAGAACCCT GGCCTGTGGA TTCTGGGCTG CCACAACTCT GACTTCAGGA ACAGGGGCAT

5521 GACTGCCCTG CTGAAAGTCT CCAGCTGTGA CAAGAACACT GGGGACTACT ATGAGGACAG

5581 CTATGAGGAC ATCTCTGCCT ACCTGCTGAG CAAGAACAAT GCCATTGAGC CCAGGAGCTT

5641 CAGCCAGAAT GCCACTAATG TGTCTAACAA CAGCAACACC AGCAATGACA GCAATGTGTC

5701 TCCCCCAGTG CTGAAGAGGC ACCAGAGGGA GATCACCAGG ACCACCCTGC AGTCTGACCA

5761 GGAGGAGATT GACTATGATG ACACCATCTC TGTGGAGATG AAGAAGGAGG ACTTTGACAT

5821 CTACGACGAG GACGAGAACC AGAGCCCCAG GAGCTTCCAG AAGAAGACCA GGCACTACTT

5881 CATTGCTGCT GTGGAGAGGC TGTGGGACTA TGGCATGAGC AGCAGCCCCC ATGTGCTGAG

5941 GAACAGGGCC CAGTCTGGCT CTGTGCCCCA GTTCAAGAAG GTGGTGTTCC AGGAGTTCAC

6001 TGATGGCAGC TTCACCCAGC CCCTGTACAG AGGGGAGCTG AATGAGCACC TGGGCCTGCT

6061 GGGCCCCTAC ATCAGGGCTG AGGTGGAGGA CAACATCATG GTGACCTTCA GGAACCAGGC

6121 CAGCAGGCCC TACAGCTTCT ACAGCAGCCT GATCAGCTAT GAGGAGGACC AGAGGCAGGG

6181 GGCTGAGCCC AGGAAGAACT TTGTGAAGCC CAATGAAACC AAGACCTACT TCTGGAAGGT

6241 GCAGCACCAC ATGGCCCCCA CCAAGGATGA GTTTGACTGC AAGGCCTGGG CCTACTTCTC

6301 TGATGTGGAC CTGGAGAAGG ATGTGCACTC TGGCCTGATT GGCCCCCTGC TGGTGTGCCA

6361 CACCAACACC CTGAACCCTG CCCATGGCAG GCAGGTGACT GTGCAGGAGT TTGCCCTGTT

6421 CTTCACCATC TTTGATGAAA CCAAGAGCTG GTACTTCACT GAGAACATGG AGAGGAACTG

6481 CAGGGCCCCC TGCAACATCC AGATGGAGGA CCCCACCTTC AAGGAGAACT ACAGGTTCCA

6541 TGCCATCAAT GGCTACATCA TGGACACCCT GCCTGGCCTG GTGATGGCCC AGGACCAGAG

6601 GATCAGGTGG TACCTGCTGA GCATGGGCAG CAATGAGAAC ATCCACAGCA TCCACTTCTC

6661 TGGCCATGTG TTCACTGTGA GGAAGAAGGA GGAGTACAAG ATGGCCCTGT ACAACCTGTA

6721 CCCTGGGGTG TTTGAGACTG TGGAGATGCT GCCCAGCAAG GCTGGCATCT GGAGGGTGGA

6781 GTGCCTGATT GGGGAGCACC TGCATGCTGG CATGAGCACC CTGTTCCTGG TGTACAGCAA

6841 CAAGTGCCAG ACCCCCCTGG GCATGGCCTC TGGCCACATC AGGGACTTCC AGATCACTGC

6901 CTCTGGCCAG TATGGCCAGT GGGCCCCCAA GCTGGCCAGG CTGCACTACT CTGGCAGCAT

6961 CAATGCCTGG AGCACCAAGG AGCCCTTCAG CTGGATCAAG GTGGACCTGC TGGCCCCCAT

7021 GATCATCCAT GGCATCAAGA CCCAGGGGGC CAGGCAGAAG TTCAGCAGCC TGTACATCAG

7081 CCAGTTCATC ATCATGTACA GCCTGGATGG CAAGAAGTGG CAGACCTACA GGGGCAACAG

7141 CACTGGCACC CTGATGGTGT TCTTTGGCAA TGTGGACAGC TCTGGCATCA AGCACAACAT

7201 CTTCAACCCC CCCATCATTG CCAGATACAT CAGGCTGCAC CCCACCCACT ACAGCATCAG

7261 GAGCACCCTG AGGATGGAGC TGATGGGCTG TGACCTGAAC AGCTGCAGCA TGCCCCTGGG

7321 CATGGAGAGC AAGGCCATCT CTGATGCCCA GATCACTGCC AGCAGCTACT TCACCAACAT

7381 GTTTGCCACC TGGAGCCCCA GCAAGGCCAG GCTGCACCTG CAGGGCAGGA GCAATGCCTG

7441 GAGGCCCCAG GTCAACAACC CCAAGGAGTG GCTGCAGGTG GACTTCCAGA AGACCATGAA

7501 GGTGACTGGG GTGACCACCC AGGGGGTGAA GAGCCTGCTG ACCAGCATGT ATGTGAAGGA

7561 GTTCCTGATC AGCAGCAGCC AGGATGGCCA CCAGTGGACC CTGTTCTTCC AGAATGGCAA

7621 GGTGAAGGTG TTCCAGGGCA ACCAGGACAG CTTCACCCCT GTGGTGAACA GCCTGGACCC

7681 CCCCCTGCTG ACCAGATACC TGAGGATTCA CCCCCAGAGC TGGGTGCACC AGATTGCCCT

7741 GAGGATGGAG GTGCTGGGCT GTGAGGCCCA GGACCTGTAC TGAGCGGCCG CGGGCCCAAT

7801 CAACCTCTGG ATTACAAAAT TTGTGAAAGA TTGACTGGTA TTCTTAACTA TGTTGCTCCT

7861 TTTACGCTAT GTGGATACGC TGCTTTAATG CCTTTGTATC ATGCTATTGC TTCCCGTATG

7921 GCTTTCATTT TCTCCTCCTT GTATAAATCC TGGTTGCTGT CTCTTTATGA GGAGTTGTGG

7981 CCCGTTGTCA GGCAACGTGG CGTGGTGTGC ACTGTGTTTG CTGACGCAAC CCCCACTGGT

8041 TGGGGCATTG CCACCACCTG TCAGCTCCTT TCCGGGACTT TCGCTTTCCC CCTCCCTATT

8101 GCCACGGCGG AACTCATCGC CGCCTGCCTT GCCCGCTGCT GGACAGGGGC TCGGCTGTTG

8161 GGCACTGACA ATTCCGTGGT GTTGTCGGGG AAATCATCGT CCTTTCCTTG GCTGCTCGCC

8221 TGTGTTGCCA CCTGGATTCT GCGCGGGACG TCCTTCTGCT ACGTCCCTTC GGCCCTCAAT

8281 CCAGCGGACC TTCCTTCCCG CGGCCTGCTG CCGGCTCTGC GGCCTCTTCC GCGTCTTCGC

8341 CTTCGCCCTC AGACGAGTCG GATCTCCCTT TGGGCCGCCT CCCCGCAAGC TTCGCACTTT

8401 TTAAAAGAAA AGGGAGGACT GGATGGGATT TATTACTCCG ATAGGACGCT GGCTTGTAAC

8461 TCAGTCTCTT ACTAGGAGAC CAGCTTGAGC CTGGGTGTTC GCTGGTTAGC CTAACCTGGT

8521 TGGCCACCAG GGGTAAGGAC TCCTTGGCTT AGAAAGCTAA TAAACTTGCC TGCATTAGAG

8581 CTCTTACGCG TCCCGGGCTC GAGATCCGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC

8641 CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC CGCCCCATGG

8701 CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC TCGGCCTCTG AGCTATTCCA

8761 GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT AGGCTTTTGC AAAAAGCTAA CTTGTTTATT

8821 GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA ATTTCACAAA TAAAGCATTT

8881 TTTTCACTGC ATTCTAGTTG TGGTTTGTCC AAACTCATCA ATGTATCTTA TCATGTCTGT

8941 CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA GCGGTATCAG

9001 CTCACTCAAA GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA

9061 TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG CTGGCGTTTT

9121 TCCATAGGCT CCGCCCCCCT GACGAGCATC ACAAAAATCG ACGCTCAAGT CAGAGGTGGC

9181 GAAACCCGAC AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAGCTCC CTCGTGCGCT

9241 CTCCTGTTCC GACCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT TCGGGAAGCG

9301 TGGCGCTTTC TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC GTTCGCTCCA

9361 AGCTGGGCTG TGTGCACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCTTA TCCGGTAACT

9421 ATCGTCTTGA GTCCAACCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA GCCACTGGTA

9481 ACAGGATTAG CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG TGGTGGCCTA

9541 ACTACGGCTA CACTAGAAGA ACAGTATTTG GTATCTGCGC TCTGCTGAAG CCAGTTACCT

9601 TCGGAAAAAG AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT AGCGGTGGTT

9661 TTTTTGTTTG CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA GATCCTTTGA

9721 TCTTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAACTC ACGTTAAGGG ATTTTGGTCA

9781 TGAGATTATC AAAAAGGATC TTCACCTAGA TCCTTTTAAA TTAAAAATGA AGTTTTAAAT

9841 CAATCTAAAG TATATATGAG TAAACTTGGT CTGACAGTTA GAAAAACTCA TCGAGCATCA

9901 AATGAAACTG CAATTTATTC ATATCAGGAT TATCAATACC ATATTTTTGA AAAAGCCGTT

9961 TCTGTAATGA AGGAGAAAAC TCACCGAGGC AGTTCCATAG GATGGCAAGA TCCTGGTATC

10021 GGTCTGCGAT TCCGACTCGT CCAACATCAA TACAACCTAT TAATTTCCCC TCGTCAAAAA

10081 TAAGGTTATC AAGTGAGAAA TCACCATGAG TGACGACTGA ATCCGGTGAG AATGGCAACA

10141 GCTTATGCAT TTCTTTCCAG ACTTGTTCAA CAGGCCAGCC ATTACGCTCG TCATCAAAAT

10201 CACTCGCATC AACCAAACCG TTATTCATTC GTGATTGCGC CTGAGCGAGA CGAAATACGC

10261 GATCGCTGTT AAAAGGACAA TTACAAACAG GAATCGAATG CAACCGGCGC AGGAACACTG

10321 CCAGCGCATC AACAATATTT TCACCTGAAT CAGGATATTC TTCTAATACC TGGAATGCTG

10381 TTTTTCCGGG GATCGCAGTG GTGAGTAACC ATGCATCATC AGGAGTACGG ATAAAATGCT

10441 TGATGGTCGG AAGAGGCATA AATTCCGTCA GCCAGTTTAG TCTGACCATC TCATCTGTAA

10501 CATCATTGGC AACGCTACCT TTGCCATGTT TCAGAAACAA CTCTGGCGCA TCGGGCTTCC

10561 CATACAATCG ATAGATTGTC GCACCTGATT GCCCGACATT ATCGCGAGCC CATTTATACC

10621 CATATAAATC AGCATCCATG TTGGAATTTA ATCGCGGCCT AGAGCAAGAC GTTTCCCGTT

10681 GAATATGGCT CATAACACCC CTTGTATTAC TGTTTATGTA AGCAGACAGT TTTATTGTTC

10741 ATGATGATAT ATTTTTATCT TGTGCAATGT AACATCAGAG ATTTTGAGAC ACAACAATTG

10801 GTCGACGGAT CC

SEQ ID NO: 12

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG GCTACCTCAG

1201 CACTAAATAG GAGACAATTA GACCAATTTG AGAAAATACG ACTTCGCCCG AACGGAAAGA

1261 AAAAGTACCA AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC TTCGGCCTCC

1321 ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CATAGAAGTC CTCTACCCCC

1381 TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC GTGCTATATT

1441 GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA GTAAGACAAC

1501 ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA CAAAAGAAAA

1561 ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG CAACAACAAG

1621 GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG GTAAAAGCAG

1681 TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA TCGAATTCCC

1741 GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG GAGCAGCGGC

1801 GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC AGCAGAAGAA

1861 TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT GGGGTGTTAA

1921 AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG CACGACTAAA

1981 CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC CCTGGACAAA

2041 TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA TAGCTGATTT

2101 GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA AGAATCTAGA

2161 TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT TCTCAAAATG

2221 GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT TAAGATTACT

2281 TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC TATCTCCACA

2341 GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA CTTCAGCAGA

2401 GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA CCAAAATTCA

2461 AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTGTTACATA ACTTATGGTA AATGGCCTGC

2521 CTGGCTGACT GCCCAATGAC CCCTGCCCAA TGATGTCAAT AATGATGTAT GTTCCCATGT

2581 AATGCCAATA GGGACTTTCC ATTGATGTCA ATGGGTGGAG TATTTATGGT AACTGCCCAC

2641 TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTATGCCCC CTATTGATGT CAATGATGGT

2701 AAATGGCCTG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC TACTTGGCAG

2761 TACATCTATG TATTAGTCAT TGCTATTACC ATGGGAATTC ACTAGTGGAG AAGAGCATGC

2821 TTGAGGGCTG AGTGCCCCTC AGTGGGCAGA GAGCACATGG CCCACAGTCC CTGAGAAGTT

2881 GGGGGGAGGG GTGGGCAATT GAACTGGTGC CTAGAGAAGG TGGGGCTTGG GTAAACTGGG

2941 AAAGTGATGT GGTGTACTGG CTCCACCTTT TTCCCCAGGG TGGGGGAGAA CCATATATAA

3001 GTGCAGTAGT CTCTGTGAAC ATTCAAGCTT CTGCCTTCTC CCTCCTGTGA GTTTGCTAGC

3061 CACCAATGCA GATTGAGCTG AGCACCTGCT TCTTCCTGTG CCTGCTGAGG TTCTGCTTCT

3121 CTGCCACCAG GAGATACTAC CTGGGGGCTG TGGAGCTGAG CTGGGACTAC ATGCAGTCTG

3181 ACCTGGGGGA GCTGCCTGTG GATGCCAGGT TCCCCCCCAG AGTGCCCAAG AGCTTCCCCT

3241 TCAACACCTC TGTGGTGTAC AAGAAGACCC TGTTTGTGGA GTTCACTGAC CACCTGTTCA

3301 ACATTGCCAA GCCCAGGCCC CCCTGGATGG GCCTGCTGGG CCCCACCATC CAGGCTGAGG

3361 TGTATGACAC TGTGGTGATC ACCCTGAAGA ACATGGCCAG CCACCCTGTG AGCCTGCATG

3421 CTGTGGGGGT GAGCTACTGG AAGGCCTCTG AGGGGGCTGA GTATGATGAC CAGACCAGCC

3481 AGAGGGAGAA GGAGGATGAC AAGGTGTTCC CTGGGGGCAG CCACACCTAT GTGTGGCAGG

3541 TGCTGAAGGA GAATGGCCCC ATGGCCTCTG ACCCCCTGTG CCTGACCTAC AGCTACCTGA

3601 GCCATGTGGA CCTGGTGAAG GACCTGAACT CTGGCCTGAT TGGGGCCCTG CTGGTGTGCA

3661 GGGAGGGCAG CCTGGCCAAG GAGAAGACCC AGACCCTGCA CAAGTTCATC CTGCTGTTTG

3721 CTGTGTTTGA TGAGGGCAAG AGCTGGCACT CTGAAACCAA GAACAGCCTG ATGCAGGACA

3781 GGGATGCTGC CTCTGCCAGG GCCTGGCCCA AGATGCACAC TGTGAATGGC TATGTGAACA

3841 GGAGCCTGCC TGGCCTGATT GGCTGCCACA GGAAGTCTGT GTACTGGCAT GTGATTGGCA

3901 TGGGCACCAC CCCTGAGGTG CACAGCATCT TCCTGGAGGG CCACACCTTC CTGGTCAGGA

3961 ACCACAGGCA GGCCAGCCTG GAGATCAGCC CCATCACCTT CCTGACTGCC CAGACCCTGC

4021 TGATGGACCT GGGCCAGTTC CTGCTGTTCT GCCACATCAG CAGCCACCAG CATGATGGCA

4081 TGGAGGCCTA TGTGAAGGTG GACAGCTGCC CTGAGGAGCC CCAGCTGAGG ATGAAGAACA

4141 ATGAGGAGGC TGAGGACTAT GATGATGACC TGACTGACTC TGAGATGGAT GTGGTGAGGT

4201 TTGATGATGA CAACAGCCCC AGCTTCATCC AGATCAGGTC TGTGGCCAAG AAGCACCCCA

4261 AGACCTGGGT GCACTACATT GCTGCTGAGG AGGAGGACTG GGACTATGCC CCCCTGGTGC

4321 TGGCCCCTGA TGACAGGAGC TACAAGAGCC AGTACCTGAA CAATGGCCCC CAGAGGATTG

4381 GCAGGAAGTA CAAGAAGGTC AGGTTCATGG CCTACACTGA TGAAACCTTC AAGACCAGGG

4441 AGGCCATCCA GCATGAGTCT GGCATCCTGG GCCCCCTGCT GTATGGGGAG GTGGGGGACA

4501 CCCTGCTGAT CATCTTCAAG AACCAGGCCA GCAGGCCCTA CAACATCTAC CCCCATGGCA

4561 TCACTGATGT GAGGCCCCTG TACAGCAGGA GGCTGCCCAA GGGGGTGAAG CACCTGAAGG

4621 ACTTCCCCAT CCTGCCTGGG GAGATCTTCA AGTACAAGTG GACTGTGACT GTGGAGGATG

4681 GCCCCACCAA GTCTGACCCC AGGTGCCTGA CCAGATACTA CAGCAGCTTT GTGAACATGG

4741 AGAGGGACCT GGCCTCTGGC CTGATTGGCC CCCTGCTGAT CTGCTACAAG GAGTCTGTGG

4801 ACCAGAGGGG CAACCAGATC ATGTCTGACA AGAGGAATGT GATCCTGTTC TCTGTGTTTG

4861 ATGAGAACAG GAGCTGGTAC CTGACTGAGA ACATCCAGAG GTTCCTGCCC AACCCTGCTG

4921 GGGTGCAGCT GGAGGACCCT GAGTTCCAGG CCAGCAACAT CATGCACAGC ATCAATGGCT

4981 ATGTGTTTGA CAGCCTGCAG CTGTCTGTGT GCCTGCATGA GGTGGCCTAC TGGTACATCC

5041 TGAGCATTGG GGCCCAGACT GACTTCCTGT CTGTGTTCTT CTCTGGCTAC ACCTTCAAGC

5101 ACAAGATGGT GTATGAGGAC ACCCTGACCC TGTTCCCCTT CTCTGGGGAG ACTGTGTTCA

5161 TGAGCATGGA GAACCCTGGC CTGTGGATTC TGGGCTGCCA CAACTCTGAC TTCAGGAACA

5221 GGGGCATGAC TGCCCTGCTG AAAGTCTCCA GCTGTGACAA GAACACTGGG GACTACTATG

5281 AGGACAGCTA TGAGGACATC TCTGCCTACC TGCTGAGCAA GAACAATGCC ATTGAGCCCA

5341 GGAGCTTCAG CCAGAATGCC ACTAATGTGT CTAACAACAG CAACACCAGC AATGACAGCA

5401 ATGTGTCTCC CCCAGTGCTG AAGAGGCACC AGAGGGAGAT CACCAGGACC ACCCTGCAGT

5461 CTGACCAGGA GGAGATTGAC TATGATGACA CCATCTCTGT GGAGATGAAG AAGGAGGACT

5521 TTGACATCTA CGACGAGGAC GAGAACCAGA GCCCCAGGAG CTTCCAGAAG AAGACCAGGC

5581 ACTACTTCAT TGCTGCTGTG GAGAGGCTGT GGGACTATGG CATGAGCAGC AGCCCCCATG

5641 TGCTGAGGAA CAGGGCCCAG TCTGGCTCTG TGCCCCAGTT CAAGAAGGTG GTGTTCCAGG

5701 AGTTCACTGA TGGCAGCTTC ACCCAGCCCC TGTACAGAGG GGAGCTGAAT GAGCACCTGG

5761 GCCTGCTGGG CCCCTACATC AGGGCTGAGG TGGAGGACAA CATCATGGTG ACCTTCAGGA

5821 ACCAGGCCAG CAGGCCCTAC AGCTTCTACA GCAGCCTGAT CAGCTATGAG GAGGACCAGA

5881 GGCAGGGGGC TGAGCCCAGG AAGAACTTTG TGAAGCCCAA TGAAACCAAG ACCTACTTCT

5941 GGAAGGTGCA GCACCACATG GCCCCCACCA AGGATGAGTT TGACTGCAAG GCCTGGGCCT

6001 ACTTCTCTGA TGTGGACCTG GAGAAGGATG TGCACTCTGG CCTGATTGGC CCCCTGCTGG

6061 TGTGCCACAC CAACACCCTG AACCCTGCCC ATGGCAGGCA GGTGACTGTG CAGGAGTTTG

6121 CCCTGTTCTT CACCATCTTT GATGAAACCA AGAGCTGGTA CTTCACTGAG AACATGGAGA

6181 GGAACTGCAG GGCCCCCTGC AACATCCAGA TGGAGGACCC CACCTTCAAG GAGAACTACA

6241 GGTTCCATGC CATCAATGGC TACATCATGG ACACCCTGCC TGGCCTGGTG ATGGCCCAGG

6301 ACCAGAGGAT CAGGTGGTAC CTGCTGAGCA TGGGCAGCAA TGAGAACATC CACAGCATCC

6361 ACTTCTCTGG CCATGTGTTC ACTGTGAGGA AGAAGGAGGA GTACAAGATG GCCCTGTACA

6421 ACCTGTACCC TGGGGTGTTT GAGACTGTGG AGATGCTGCC CAGCAAGGCT GGCATCTGGA

6481 GGGTGGAGTG CCTGATTGGG GAGCACCTGC ATGCTGGCAT GAGCACCCTG TTCCTGGTGT

6541 ACAGCAACAA GTGCCAGACC CCCCTGGGCA TGGCCTCTGG CCACATCAGG GACTTCCAGA

6601 TCACTGCCTC TGGCCAGTAT GGCCAGTGGG CCCCCAAGCT GGCCAGGCTG CACTACTCTG

6661 GCAGCATCAA TGCCTGGAGC ACCAAGGAGC CCTTCAGCTG GATCAAGGTG GACCTGCTGG

6721 CCCCCATGAT CATCCATGGC ATCAAGACCC AGGGGGCCAG GCAGAAGTTC AGCAGCCTGT

6781 ACATCAGCCA GTTCATCATC ATGTACAGCC TGGATGGCAA GAAGTGGCAG ACCTACAGGG

6841 GCAACAGCAC TGGCACCCTG ATGGTGTTCT TTGGCAATGT GGACAGCTCT GGCATCAAGC

6901 ACAACATCTT CAACCCCCCC ATCATTGCCA GATACATCAG GCTGCACCCC ACCCACTACA

6961 GCATCAGGAG CACCCTGAGG ATGGAGCTGA TGGGCTGTGA CCTGAACAGC TGCAGCATGC

7021 CCCTGGGCAT GGAGAGCAAG GCCATCTCTG ATGCCCAGAT CACTGCCAGC AGCTACTTCA

7081 CCAACATGTT TGCCACCTGG AGCCCCAGCA AGGCCAGGCT GCACCTGCAG GGCAGGAGCA

7141 ATGCCTGGAG GCCCCAGGTC AACAACCCCA AGGAGTGGCT GCAGGTGGAC TTCCAGAAGA

7201 CCATGAAGGT GACTGGGGTG ACCACCCAGG GGGTGAAGAG CCTGCTGACC AGCATGTATG

7261 TGAAGGAGTT CCTGATCAGC AGCAGCCAGG ATGGCCACCA GTGGACCCTG TTCTTCCAGA

7321 ATGGCAAGGT GAAGGTGTTC CAGGGCAACC AGGACAGCTT CACCCCTGTG GTGAACAGCC

7381 TGGACCCCCC CCTGCTGACC AGATACCTGA GGATTCACCC CCAGAGCTGG GTGCACCAGA

7441 TTGCCCTGAG GATGGAGGTG CTGGGCTGTG AGGCCCAGGA CCTGTACTGA GCGGCCGCGG

7501 GCCCAATCAA CCTCTGGATT ACAAAATTTG TGAAAGATTG ACTGGTATTC TTAACTATGT

7561 TGCTCCTTTT ACGCTATGTG GATACGCTGC TTTAATGCCT TTGTATCATG CTATTGCTTC

7621 CCGTATGGCT TTCATTTTCT CCTCCTTGTA TAAATCCTGG TTGCTGTCTC TTTATGAGGA

7681 GTTGTGGCCC GTTGTCAGGC AACGTGGCGT GGTGTGCACT GTGTTTGCTG ACGCAACCCC

7741 CACTGGTTGG GGCATTGCCA CCACCTGTCA GCTCCTTTCC GGGACTTTCG CTTTCCCCCT

7801 CCCTATTGCC ACGGCGGAAC TCATCGCCGC CTGCCTTGCC CGCTGCTGGA CAGGGGCTCG

7861 GCTGTTGGGC ACTGACAATT CCGTGGTGTT GTCGGGGAAA TCATCGTCCT TTCCTTGGCT

7921 GCTCGCCTGT GTTGCCACCT GGATTCTGCG CGGGACGTCC TTCTGCTACG TCCCTTCGGC

7981 CCTCAATCCA GCGGACCTTC CTTCCCGCGG CCTGCTGCCG GCTCTGCGGC CTCTTCCGCG

8041 TCTTCGCCTT CGCCCTCAGA CGAGTCGGAT CTCCCTTTGG GCCGCCTCCC CGCAAGCTTC

8101 GCACTTTTTA AAAGAAAAGG GAGGACTGGA TGGGATTTAT TACTCCGATA GGACGCTGGC

8161 TTGTAACTCA GTCTCTTACT AGGAGACCAG CTTGAGCCTG GGTGTTCGCT GGTTAGCCTA

8221 ACCTGGTTGG CCACCAGGGG TAAGGACTCC TTGGCTTAGA AAGCTAATAA ACTTGCCTGC

8281 ATTAGAGCTC TTACGCGTCC CGGGCTCGAG ATCCGCATCT CAATTAGTCA GCAACCATAG

8341 TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC CAGTTCCGCC CATTCTCCGC

8401 CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC

8461 TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTAACTT

8521 GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA

8581 AGCATTTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA

8641 TGTCTGTCCG CTTCCTCGCT CACTGACTCG CTGCGCTCGG TCGTTCGGCT GCGGCGAGCG

8701 GTATCAGCTC ACTCAAAGGC GGTAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA

8761 AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC CGCGTTGCTG

8821 GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG

8881 AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC

8941 GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTTCG

9001 GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT

9061 CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG CGCCTTATCC

9121 GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT GGCAGCAGCC

9181 ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG

9241 TGGCCTAACT ACGGCTACAC TAGAAGAACA GTATTTGGTA TCTGCGCTCT GCTGAAGCCA

9301 GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC

9361 GGTGGTTTTT TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC TCAAGAAGAT

9421 CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG TTAAGGGATT

9481 TTGGTCATGA GATTATCAAA AAGGATCTTC ACCTAGATCC TTTTAAATTA AAAATGAAGT

9541 TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG ACAGTTAGAA AAACTCATCG

9601 AGCATCAAAT GAAACTGCAA TTTATTCATA TCAGGATTAT CAATACCATA TTTTTGAAAA

9661 AGCCGTTTCT GTAATGAAGG AGAAAACTCA CCGAGGCAGT TCCATAGGAT GGCAAGATCC

9721 TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA TTTCCCCTCG

9781 TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC CGGTGAGAAT

9841 GGCAACAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT ACGCTCGTCA

9901 TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCGTG ATTGCGCCTG AGCGAGACGA

9961 AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA CCGGCGCAGG

10021 AACACTGCCA GCGCATCAAC AATATTTTCA CCTGAATCAG GATATTCTTC TAATACCTGG

10081 AATGCTGTTT TTCCGGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG AGTACGGATA

10141 AAATGCTTGA TGGTCGGAAG AGGCATAAAT TCCGTCAGCC AGTTTAGTCT GACCATCTCA

10201 TCTGTAACAT CATTGGCAAC GCTACCTTTG CCATGTTTCA GAAACAACTC TGGCGCATCG

10261 GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC GCGAGCCCAT

10321 TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAATC GCGGCCTAGA GCAAGACGTT

10381 TCCCGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC AGACAGTTTT

10441 ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT TTGAGACACA

10501 ACAATTGGTC GACGGATCC

SEQ ID NO: 13

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTGGGCAAGT AGGGCAGGCG GTGGGTACGC AATGGGGGCG GCTACCTCAG

1201 CACTAAATAG GAGACAATTA GACCAATTTG AGAAAATACG ACTTCGCCCG AACGGAAAGA

1261 AAAAGTACCA AATTAAACAT TTAATATGGG CAGGCAAGGA GATGGAGCGC TTCGGCCTCC

1321 ATGAGAGGTT GTTGGAGACA GAGGAGGGGT GTAAAAGAAT CATAGAAGTC CTCTACCCCC

1381 TAGAACCAAC AGGATCGGAG GGCTTAAAAA GTCTGTTCAA TCTTGTGTGC GTGCTATATT

1441 GCTTGCACAA GGAACAGAAA GTGAAAGACA CAGAGGAAGC AGTAGCAACA GTAAGACAAC

1501 ACTGCCATCT AGTGGAAAAA GAAAAAAGTG CAACAGAGAC ATCTAGTGGA CAAAAGAAAA

1561 ATGACAAGGG AATAGCAGCG CCACCTGGTG GCAGTCAGAA TTTTCCAGCG CAACAACAAG

1621 GAAATGCCTG GGTACATGTA CCCTTGTCAC CGCGCACCTT AAATGCGTGG GTAAAAGCAG

1681 TAGAGGAGAA AAAATTTGGA GCAGAAATAG TACCCATGTT TCAAGCCCTA TCGAATTCCC

1741 GTTTGTGCTA GGGTTCTTAG GCTTCTTGGG GGCTGCTGGA ACTGCAATGG GAGCAGCGGC

1801 GACAGCCCTG ACGGTCCAGT CTCAGCATTT GCTTGCTGGG ATACTGCAGC AGCAGAAGAA

1861 TCTGCTGGCG GCTGTGGAGG CTCAACAGCA GATGTTGAAG CTGACCATTT GGGGTGTTAA

1921 AAACCTCAAT GCCCGCGTCA CAGCCCTTGA GAAGTACCTA GAGGATCAGG CACGACTAAA

1981 CTCCTGGGGG TGCGCATGGA AACAAGTATG TCATACCACA GTGGAGTGGC CCTGGACAAA

2041 TCGGACTCCG GATTGGCAAA ATATGACTTG GTTGGAGTGG GAAAGACAAA TAGCTGATTT

2101 GGAAAGCAAC ATTACGAGAC AATTAGTGAA GGCTAGAGAA CAAGAGGAAA AGAATCTAGA

2161 TGCCTATCAG AAGTTAACTA GTTGGTCAGA TTTCTGGTCT TGGTTCGATT TCTCAAAATG

2221 GCTTAACATT TTAAAAATGG GATTTTTAGT AATAGTAGGA ATAATAGGGT TAAGATTACT

2281 TTACACAGTA TATGGATGTA TAGTGAGGGT TAGGCAGGGA TATGTTCCTC TATCTCCACA

2341 GATCCATATC CGCGGCAATT TTAAAAGAAA GGGAGGAATA GGGGGACAGA CTTCAGCAGA

2401 GAGACTAATT AATATAATAA CAACACAATT AGAAATACAA CATTTACAAA CCAAAATTCA

2461 AAAAATTTTA AATTTTAGAG CCGCGGAGAT CTCAATATTG GCCATTAGCC ATATTATTCA

2521 TTGGTTATAT AGCATAAATC AATATTGGCT ATTGGCCATT GCATACGTTG TATCTATATC

2581 ATAATATGTA CATTTATATT GGCTCATGTC CAATATGACC GCCATGTTGG CATTGATTAT

2641 TGACTAGTTA TTAATAGTAA TCAATTACGG GGTCATTAGT TCATAGCCCA TATATGGAGT

2701 TCCGCGTTAC ATAACTTACG GTAAATGGCC CGCCTGGCTG ACCGCCCAAC GACCCCCGCC

2761 CATTGACGTC AATAATGACG TATGTTCCCA TAGTAACGCC AATAGGGACT TTCCATTGAC

2821 GTCAATGGGT GGAGTATTTA CGGTAAACTG CCCACTTGGC AGTACATCAA GTGTATCATA

2881 TGCCAAGTCC GCCCCCTATT GACGTCAATG ACGGTAAATG GCCCGCCTGG CATTATGCCC

2941 AGTACATGAC CTTACGGGAC TTTCCTACTT GGCAGTACAT CTACGTATTA GTCATCGCTA

3001 TTACCATGGT GATGCGGTTT TGGCAGTACA CCAATGGGCG TGGATAGCGG TTTGACTCAC

3061 GGGGATTTCC AAGTCTCCAC CCCATTGACG TCAATGGGAG TTTGTTTTGG CACCAAAATC

3121 AACGGGACTT TCCAAAATGT CGTAATAACC CCGCCCCGTT GACGCAAATG GGCGGTAGGC

3181 GTGTACGGTG GGAGGTCTAT ATAAGCAGAG CTCGTTTAGT GAACCGTCAG ATCACTAGAA

3241 GCTTTATTGC GGTAGTTTAT CACAGTTAAA TTGCTAACGC AGTCAGTGCT TCTGACACAA

3301 CAGTCTCGAA CTTAAGCTGC AGAAGTTGGT CGTGAGGCAC TGGGCAGGCT AGCCACCAAT

3361 GCAGATTGAG CTGAGCACCT GCTTCTTCCT GTGCCTGCTG AGGTTCTGCT TCTCTGCCAC

3421 CAGGAGATAC TACCTGGGGG CTGTGGAGCT GAGCTGGGAC TACATGCAGT CTGACCTGGG

3481 GGAGCTGCCT GTGGATGCCA GGTTCCCCCC CAGAGTGCCC AAGAGCTTCC CCTTCAACAC

3541 CTCTGTGGTG TACAAGAAGA CCCTGTTTGT GGAGTTCACT GACCACCTGT TCAACATTGC

3601 CAAGCCCAGG CCCCCCTGGA TGGGCCTGCT GGGCCCCACC ATCCAGGCTG AGGTGTATGA

3661 CACTGTGGTG ATCACCCTGA AGAACATGGC CAGCCACCCT GTGAGCCTGC ATGCTGTGGG

3721 GGTGAGCTAC TGGAAGGCCT CTGAGGGGGC TGAGTATGAT GACCAGACCA GCCAGAGGGA

3781 GAAGGAGGAT GACAAGGTGT TCCCTGGGGG CAGCCACACC TATGTGTGGC AGGTGCTGAA

3841 GGAGAATGGC CCCATGGCCT CTGACCCCCT GTGCCTGACC TACAGCTACC TGAGCCATGT

3901 GGACCTGGTG AAGGACCTGA ACTCTGGCCT GATTGGGGCC CTGCTGGTGT GCAGGGAGGG

3961 CAGCCTGGCC AAGGAGAAGA CCCAGACCCT GCACAAGTTC ATCCTGCTGT TTGCTGTGTT

4021 TGATGAGGGC AAGAGCTGGC ACTCTGAAAC CAAGAACAGC CTGATGCAGG ACAGGGATGC

4081 TGCCTCTGCC AGGGCCTGGC CCAAGATGCA CACTGTGAAT GGCTATGTGA ACAGGAGCCT

4141 GCCTGGCCTG ATTGGCTGCC ACAGGAAGTC TGTGTACTGG CATGTGATTG GCATGGGCAC

4201 CACCCCTGAG GTGCACAGCA TCTTCCTGGA GGGCCACACC TTCCTGGTCA GGAACCACAG

4261 GCAGGCCAGC CTGGAGATCA GCCCCATCAC CTTCCTGACT GCCCAGACCC TGCTGATGGA

4321 CCTGGGCCAG TTCCTGCTGT TCTGCCACAT CAGCAGCCAC CAGCATGATG GCATGGAGGC

4381 CTATGTGAAG GTGGACAGCT GCCCTGAGGA GCCCCAGCTG AGGATGAAGA ACAATGAGGA

4441 GGCTGAGGAC TATGATGATG ACCTGACTGA CTCTGAGATG GATGTGGTGA GGTTTGATGA

4501 TGACAACAGC CCCAGCTTCA TCCAGATCAG GTCTGTGGCC AAGAAGCACC CCAAGACCTG

4561 GGTGCACTAC ATTGCTGCTG AGGAGGAGGA CTGGGACTAT GCCCCCCTGG TGCTGGCCCC

4621 TGATGACAGG AGCTACAAGA GCCAGTACCT GAACAATGGC CCCCAGAGGA TTGGCAGGAA

4681 GTACAAGAAG GTCAGGTTCA TGGCCTACAC TGATGAAACC TTCAAGACCA GGGAGGCCAT

4741 CCAGCATGAG TCTGGCATCC TGGGCCCCCT GCTGTATGGG GAGGTGGGGG ACACCCTGCT

4801 GATCATCTTC AAGAACCAGG CCAGCAGGCC CTACAACATC TACCCCCATG GCATCACTGA

4861 TGTGAGGCCC CTGTACAGCA GGAGGCTGCC CAAGGGGGTG AAGCACCTGA AGGACTTCCC

4921 CATCCTGCCT GGGGAGATCT TCAAGTACAA GTGGACTGTG ACTGTGGAGG ATGGCCCCAC

4981 CAAGTCTGAC CCCAGGTGCC TGACCAGATA CTACAGCAGC TTTGTGAACA TGGAGAGGGA

5041 CCTGGCCTCT GGCCTGATTG GCCCCCTGCT GATCTGCTAC AAGGAGTCTG TGGACCAGAG

5101 GGGCAACCAG ATCATGTCTG ACAAGAGGAA TGTGATCCTG TTCTCTGTGT TTGATGAGAA

5161 CAGGAGCTGG TACCTGACTG AGAACATCCA GAGGTTCCTG CCCAACCCTG CTGGGGTGCA

5221 GCTGGAGGAC CCTGAGTTCC AGGCCAGCAA CATCATGCAC AGCATCAATG GCTATGTGTT

5281 TGACAGCCTG CAGCTGTCTG TGTGCCTGCA TGAGGTGGCC TACTGGTACA TCCTGAGCAT

5341 TGGGGCCCAG ACTGACTTCC TGTCTGTGTT CTTCTCTGGC TACACCTTCA AGCACAAGAT

5401 GGTGTATGAG GACACCCTGA CCCTGTTCCC CTTCTCTGGG GAGACTGTGT TCATGAGCAT

5461 GGAGAACCCT GGCCTGTGGA TTCTGGGCTG CCACAACTCT GACTTCAGGA ACAGGGGCAT

5521 GACTGCCCTG CTGAAAGTCT CCAGCTGTGA CAAGAACACT GGGGACTACT ATGAGGACAG

5581 CTATGAGGAC ATCTCTGCCT ACCTGCTGAG CAAGAACAAT GCCATTGAGC CCAGGAGCTT

5641 CAGCCAGAAC AGCAGGCACC CCAGCACCAG GCAGAAGCAG TTCAATGCCA CCACCATCCC

5701 TGAGAATGAC ATAGAGAAGA CAGACCCATG GTTTGCCCAC CGGACCCCCA TGCCCAAGAT

5761 CCAGAATGTG AGCAGCTCTG ACCTGCTGAT GCTGCTGAGG CAGAGCCCCA CCCCCCATGG

5821 CCTGAGCCTG TCTGACCTGC AGGAGGCCAA GTATGAAACC TTCTCTGATG ACCCCAGCCC

5881 TGGGGCCATT GACAGCAACA ACAGCCTGTC TGAGATGACC CACTTCAGGC CCCAGCTGCA

5941 CCACTCTGGG GACATGGTGT TCACCCCTGA GTCTGGCCTG CAGCTGAGGC TGAATGAGAA

6001 GCTGGGCACC ACTGCTGCCA CTGAGCTGAA GAAGCTGGAC TTCAAAGTCT CCAGCACCAG

6061 CAACAACCTG ATCAGCACCA TCCCCTCTGA CAACCTGGCT GCTGGCACTG ACAACACCAG

6121 CAGCCTGGGC CCCCCCAGCA TGCCTGTGCA CTATGACAGC CAGCTGGACA CCACCCTGTT

6181 TGGCAAGAAG AGCAGCCCCC TGACTGAGTC TGGGGGCCCC CTGAGCCTGT CTGAGGAGAA

6241 CAATGACAGC AAGCTGCTGG AGTCTGGCCT GATGAACAGC CAGGAGAGCA GCTGGGGCAA

6301 GAATGTGAGC AGCAGGGAGA TCACCAGGAC CACCCTGCAG TCTGACCAGG AGGAGATTGA

6361 CTATGATGAC ACCATCTCTG TGGAGATGAA GAAGGAGGAC TTTGACATCT ACGACGAGGA

6421 CGAGAACCAG AGCCCCAGGA GCTTCCAGAA GAAGACCAGG CACTACTTCA TTGCTGCTGT

6481 GGAGAGGCTG TGGGACTATG GCATGAGCAG CAGCCCCCAT GTGCTGAGGA ACAGGGCCCA

6541 GTCTGGCTCT GTGCCCCAGT TCAAGAAGGT GGTGTTCCAG GAGTTCACTG ATGGCAGCTT

6601 CACCCAGCCC CTGTACAGAG GGGAGCTGAA TGAGCACCTG GGCCTGCTGG GCCCCTACAT

6661 CAGGGCTGAG GTGGAGGACA ACATCATGGT GACCTTCAGG AACCAGGCCA GCAGGCCCTA

6721 CAGCTTCTAC AGCAGCCTGA TCAGCTATGA GGAGGACCAG AGGCAGGGGG CTGAGCCCAG

6781 GAAGAACTTT GTGAAGCCCA ATGAAACCAA GACCTACTTC TGGAAGGTGC AGCACCACAT

6841 GGCCCCCACC AAGGATGAGT TTGACTGCAA GGCCTGGGCC TACTTCTCTG ATGTGGACCT

6901 GGAGAAGGAT GTGCACTCTG GCCTGATTGG CCCCCTGCTG GTGTGCCACA CCAACACCCT

6961 GAACCCTGCC CATGGCAGGC AGGTGACTGT GCAGGAGTTT GCCCTGTTCT TCACCATCTT

7021 TGATGAAACC AAGAGCTGGT ACTTCACTGA GAACATGGAG AGGAACTGCA GGGCCCCCTG

7081 CAACATCCAG ATGGAGGACC CCACCTTCAA GGAGAACTAC AGGTTCCATG CCATCAATGG

7141 CTACATCATG GACACCCTGC CTGGCCTGGT GATGGCCCAG GACCAGAGGA TCAGGTGGTA

7201 CCTGCTGAGC ATGGGCAGCA ATGAGAACAT CCACAGCATC CACTTCTCTG GCCATGTGTT

7261 CACTGTGAGG AAGAAGGAGG AGTACAAGAT GGCCCTGTAC AACCTGTACC CTGGGGTGTT

7321 TGAGACTGTG GAGATGCTGC CCAGCAAGGC TGGCATCTGG AGGGTGGAGT GCCTGATTGG

7381 GGAGCACCTG CATGCTGGCA TGAGCACCCT GTTCCTGGTG TACAGCAACA AGTGCCAGAC

7441 CCCCCTGGGC ATGGCCTCTG GCCACATCAG GGACTTCCAG ATCACTGCCT CTGGCCAGTA

7501 TGGCCAGTGG GCCCCCAAGC TGGCCAGGCT GCACTACTCT GGCAGCATCA ATGCCTGGAG

7561 CACCAAGGAG CCCTTCAGCT GGATCAAGGT GGACCTGCTG GCCCCCATGA TCATCCATGG

7621 CATCAAGACC CAGGGGGCCA GGCAGAAGTT CAGCAGCCTG TACATCAGCC AGTTCATCAT

7681 CATGTACAGC CTGGATGGCA AGAAGTGGCA GACCTACAGG GGCAACAGCA CTGGCACCCT

7741 GATGGTGTTC TTTGGCAATG TGGACAGCTC TGGCATCAAG CACAACATCT TCAACCCCCC

7801 CATCATTGCC AGATACATCA GGCTGCACCC CACCCACTAC AGCATCAGGA GCACCCTGAG

7861 GATGGAGCTG ATGGGCTGTG ACCTGAACAG CTGCAGCATG CCCCTGGGCA TGGAGAGCAA

7921 GGCCATCTCT GATGCCCAGA TCACTGCCAG CAGCTACTTC ACCAACATGT TTGCCACCTG

7981 GAGCCCCAGC AAGGCCAGGC TGCACCTGCA GGGCAGGAGC AATGCCTGGA GGCCCCAGGT

8041 CAACAACCCC AAGGAGTGGC TGCAGGTGGA CTTCCAGAAG ACCATGAAGG TGACTGGGGT

8101 GACCACCCAG GGGGTGAAGA GCCTGCTGAC CAGCATGTAT GTGAAGGAGT TCCTGATCAG

8161 CAGCAGCCAG GATGGCCACC AGTGGACCCT GTTCTTCCAG AATGGCAAGG TGAAGGTGTT

8221 CCAGGGCAAC CAGGACAGCT TCACCCCTGT GGTGAACAGC CTGGACCCCC CCCTGCTGAC

8281 CAGATACCTG AGGATTCACC CCCAGAGCTG GGTGCACCAG ATTGCCCTGA GGATGGAGGT

8341 GCTGGGCTGT GAGGCCCAGG ACCTGTACTG AGCGGCCGCG GGCCCAATCA ACCTCTGGAT

8401 TACAAAATTT GTGAAAGATT GACTGGTATT CTTAACTATG TTGCTCCTTT TACGCTATGT

8461 GGATACGCTG CTTTAATGCC TTTGTATCAT GCTATTGCTT CCCGTATGGC TTTCATTTTC

8521 TCCTCCTTGT ATAAATCCTG GTTGCTGTCT CTTTATGAGG AGTTGTGGCC CGTTGTCAGG

8581 CAACGTGGCG TGGTGTGCAC TGTGTTTGCT GACGCAACCC CCACTGGTTG GGGCATTGCC

8641 ACCACCTGTC AGCTCCTTTC CGGGACTTTC GCTTTCCCCC TCCCTATTGC CACGGCGGAA

8701 CTCATCGCCG CCTGCCTTGC CCGCTGCTGG ACAGGGGCTC GGCTGTTGGG CACTGACAAT

8761 TCCGTGGTGT TGTCGGGGAA ATCATCGTCC TTTCCTTGGC TGCTCGCCTG TGTTGCCACC

8821 TGGATTCTGC GCGGGACGTC CTTCTGCTAC GTCCCTTCGG CCCTCAATCC AGCGGACCTT

8881 CCTTCCCGCG GCCTGCTGCC GGCTCTGCGG CCTCTTCCGC GTCTTCGCCT TCGCCCTCAG

8941 ACGAGTCGGA TCTCCCTTTG GGCCGCCTCC CCGCAAGCTT CGCACTTTTT AAAAGAAAAG

9001 GGAGGACTGG ATGGGATTTA TTACTCCGAT AGGACGCTGG CTTGTAACTC AGTCTCTTAC

9061 TAGGAGACCA GCTTGAGCCT GGGTGTTCGC TGGTTAGCCT AACCTGGTTG GCCACCAGGG

9121 GTAAGGACTC CTTGGCTTAG AAAGCTAATA AACTTGCCTG CATTAGAGCT CTTACGCGTC

9181 CCGGGCTCGA GATCCGCATC TCAATTAGTC AGCAACCATA GTCCCGCCCC TAACTCCGCC

9241 CATCCCGCCC CTAACTCCGC CCAGTTCCGC CCATTCTCCG CCCCATGGCT GACTAATTTT

9301 TTTTATTTAT GCAGAGGCCG AGGCCGCCTC GGCCTCTGAG CTATTCCAGA AGTAGTGAGG

9361 AGGCTTTTTT GGAGGCCTAG GCTTTTGCAA AAAGCTAACT TGTTTATTGC AGCTTATAAT

9421 GGTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT

9481 TCTAGTTGTG GTTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGTCC GCTTCCTCGC

9541 TCACTGACTC GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG

9601 CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG

9661 GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC

9721 GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG

9781 GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA

9841 CCCTGCCGCT TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC

9901 ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG

9961 TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT

10021 CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA

10081 GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA

10141 CTAGAAGAAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG

10201 TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA

10261 AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG

10321 GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA

10381 AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA

10441 TATATGAGTA AACTTGGTCT GACAGTTAGA AAAACTCATC GAGCATCAAA TGAAACTGCA

10501 ATTTATTCAT ATCAGGATTA TCAATACCAT ATTTTTGAAA AAGCCGTTTC TGTAATGAAG

10561 GAGAAAACTC ACCGAGGCAG TTCCATAGGA TGGCAAGATC CTGGTATCGG TCTGCGATTC

10621 CGACTCGTCC AACATCAATA CAACCTATTA ATTTCCCCTC GTCAAAAATA AGGTTATCAA

10681 GTGAGAAATC ACCATGAGTG ACGACTGAAT CCGGTGAGAA TGGCAACAGC TTATGCATTT

10741 CTTTCCAGAC TTGTTCAACA GGCCAGCCAT TACGCTCGTC ATCAAAATCA CTCGCATCAA

10801 CCAAACCGTT ATTCATTCGT GATTGCGCCT GAGCGAGACG AAATACGCGA TCGCTGTTAA

10861 AAGGACAATT ACAAACAGGA ATCGAATGCA ACCGGCGCAG GAACACTGCC AGCGCATCAA

10921 CAATATTTTC ACCTGAATCA GGATATTCTT CTAATACCTG GAATGCTGTT TTTCCGGGGA

10981 TCGCAGTGGT GAGTAACCAT GCATCATCAG GAGTACGGAT AAAATGCTTG ATGGTCGGAA

11041 GAGGCATAAA TTCCGTCAGC CAGTTTAGTC TGACCATCTC ATCTGTAACA TCATTGGCAA

11101 CGCTACCTTT GCCATGTTTC AGAAACAACT CTGGCGCATC GGGCTTCCCA TACAATCGAT

11161 AGATTGTCGC ACCTGATTGC CCGACATTAT CGCGAGCCCA TTTATACCCA TATAAATCAG

11221 CATCCATGTT GGAATTTAAT CGCGGCCTAG AGCAAGACGT TTCCCGTTGA ATATGGCTCA

11281 TAACACCCCT TGTATTACTG TTTATGTAAG CAGACAGTTT TATTGTTCAT GATGATATAT

11341 TTTTATCTTG TGCAATGTAA CATCAGAGAT TTTGAGACAC AACAATTGGT CGACGGATCC

SEQ ID NO: 14

1 GGTACCTCAA TATTGGCCAT TAGCCATATT ATTCATTGGT TATATAGCAT AAATCAATAT

61 TGGCTATTGG CCATTGCATA CGTTGTATCT ATATCATAAT ATGTACATTT ATATTGGCTC

121 ATGTCCAATA TGACCGCCAT GTTGGCATTG ATTATTGACT AGTTATTAAT AGTAATCAAT

181 TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGTTCCGC GTTACATAAC TTACGGTAAA

241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG ACGTCAATAA TGACGTATGT

301 TCCCATAGTA ACGCCAATAG GGACTTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA

361 AACTGCCCAC TTGGCAGTAC ATCAAGTGTA TCATATGCCA AGTCCGCCCC CTATTGACGT

421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAC GGGACTTTCC

481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC GGTTTTGGCA

541 GTACACCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA TTTCCAAGTC TCCACCCCAT

601 TGACGTCAAT GGGAGTTTGT TTTGGCACCA AAATCAACGG GACTTTCCAA AATGTCGTAA

661 CAACTGCGAT CGCCCGCCCC GTTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC

721 TATATAAGCA GAGCTCGCTG GCTTGTAACT CAGTCTCTTA CTAGGAGACC AGCTTGAGCC

781 TGGGTGTTCG CTGGTTAGCC TAACCTGGTT GGCCACCAGG GGTAAGGACT CCTTGGCTTA

841 GAAAGCTAAT AAACTTGCCT GCATTAGAGC TTATCTGAGT CAAGTGTCCT CATTGACGCC

901 TCACTCTCTT GAACGGGAAT CTTCCTTACT GGGTTCTCTC TCTGACCCAG GCGAGAGAAA

961 CTCCAGCAGT GGCGCCCGAA CAGGGACTTG AGTGAGAGTG TAGGCACGTA CAGCTGAGAA

1021 GGCGTCGGAC GCGAAGGAAG CGCGGGGTGC GACGCGACCA AGAAGGAGAC TTGGTGAGTA

1081 GGCTTCTCGA GTGCCGGGAA AAAGCTCGAG CCTAGTTAGA GGACTAGGAG AGGCCGTAGC

1141 CGTAACTACT CTTGGGCAAG TAGGGCAGGC GGTGGGTACG CAATGGGGGC GGCTACCTCA

1201 GCACTAAATA GGAGACAATT AGACCAATTT GAGAAAATAC GACTTCGCCC GAACGGAAAG

1261 AAAAAGTACC AAATTAAACA TTTAATATGG GCAGGCAAGG AGATGGAGCG CTTCGGCCTC

1321 CATGAGAGGT TGTTGGAGAC AGAGGAGGGG TGTAAAAGAA TCATAGAAGT CCTCTACCCC

1381 CTAGAACCAA CAGGATCGGA GGGCTTAAAA AGTCTGTTCA ATCTTGTGTG CGTGCTATAT

1441 TGCTTGCACA AGGAACAGAA AGTGAAAGAC ACAGAGGAAG CAGTAGCAAC AGTAAGACAA

1501 CACTGCCATC TAGTGGAAAA AGAAAAAAGT GCAACAGAGA CATCTAGTGG ACAAAAGAAA

1561 AATGACAAGG GAATAGCAGC GCCACCTGGT GGCAGTCAGA ATTTTCCAGC GCAACAACAA

1621 GGAAATGCCT GGGTACATGT ACCCTTGTCA CCGCGCACCT TAAATGCGTG GGTAAAAGCA

1681 GTAGAGGAGA AAAAATTTGG AGCAGAAATA GTACCCATGT TTCAAGCCCT ATCGAATTCC

1741 CGTTTGTGCT AGGGTTCTTA GGCTTCTTGG GGGCTGCTGG AACTGCAATG GGAGCAGCGG

1801 CGACAGCCCT GACGGTCCAG TCTCAGCATT TGCTTGCTGG GATACTGCAG CAGCAGAAGA

1861 ATCTGCTGGC GGCTGTGGAG GCTCAACAGC AGATGTTGAA GCTGACCATT TGGGGTGTTA

1921 AAAACCTCAA TGCCCGCGTC ACAGCCCTTG AGAAGTACCT AGAGGATCAG GCACGACTAA

1981 ACTCCTGGGG GTGCGCATGG AAACAAGTAT GTCATACCAC AGTGGAGTGG CCCTGGACAA

2041 ATCGGACTCC GGATTGGCAA AATATGACTT GGTTGGAGTG GGAAAGACAA ATAGCTGATT

2101 TGGAAAGCAA CATTACGAGA CAATTAGTGA AGGCTAGAGA ACAAGAGGAA AAGAATCTAG

2161 ATGCCTATCA GAAGTTAACT AGTTGGTCAG ATTTCTGGTC TTGGTTCGAT TTCTCAAAAT

2221 GGCTTAACAT TTTAAAAATG GGATTTTTAG TAATAGTAGG AATAATAGGG TTAAGATTAC

2281 TTTACACAGT ATATGGATGT ATAGTGAGGG TTAGGCAGGG ATATGTTCCT CTATCTCCAC

2341 AGATCCATAT CCGCGGCAAT TTTAAAAGAA AGGGAGGAAT AGGGGGACAG ACTTCAGCAG

2401 AGAGACTAAT TAATATAATA ACAACACAAT TAGAAATACA ACATTTACAA ACCAAAATTC

2461 AAAAAATTTT AAATTTTAGA GCCGCGGAGA TCTGTTACAT AACTTATGGT AAATGGCCTG

2521 CCTGGCTGAC TGCCCAATGA CCCCTGCCCA ATGATGTCAA TAATGATGTA TGTTCCCATG

2581 TAATGCCAAT AGGGACTTTC CATTGATGTC AATGGGTGGA GTATTTATGG TAACTGCCCA

2641 CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTATGCCC CCTATTGATG TCAATGATGG

2701 TAAATGGCCT GCCTGGCATT ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA

2761 GTACATCTAT GTATTAGTCA TTGCTATTAC CATGGGAATT CACTAGTGGA GAAGAGCATG

2821 CTTGAGGGCT GAGTGCCCCT CAGTGGGCAG AGAGCACATG GCCCACAGTC CCTGAGAAGT

2881 TGGGGGGAGG GGTGGGCAAT TGAACTGGTG CCTAGAGAAG GTGGGGCTTG GGTAAACTGG

2941 GAAAGTGATG TGGTGTACTG GCTCCACCTT TTTCCCCAGG GTGGGGGAGA ACCATATATA

3001 AGTGCAGTAG TCTCTGTGAA CATTCAAGCT TCTGCCTTCT CCCTCCTGTG AGTTTGCTAG

3061 CCACCAATGC AGATTGAGCT GAGCACCTGC TTCTTCCTGT GCCTGCTGAG GTTCTGCTTC

3121 TCTGCCACCA GGAGATACTA CCTGGGGGCT GTGGAGCTGA GCTGGGACTA CATGCAGTCT

3181 GACCTGGGGG AGCTGCCTGT GGATGCCAGG TTCCCCCCCA GAGTGCCCAA GAGCTTCCCC

3241 TTCAACACCT CTGTGGTGTA CAAGAAGACC CTGTTTGTGG AGTTCACTGA CCACCTGTTC

3301 AACATTGCCA AGCCCAGGCC CCCCTGGATG GGCCTGCTGG GCCCCACCAT CCAGGCTGAG

3361 GTGTATGACA CTGTGGTGAT CACCCTGAAG AACATGGCCA GCCACCCTGT GAGCCTGCAT

3421 GCTGTGGGGG TGAGCTACTG GAAGGCCTCT GAGGGGGCTG AGTATGATGA CCAGACCAGC

3481 CAGAGGGAGA AGGAGGATGA CAAGGTGTTC CCTGGGGGCA GCCACACCTA TGTGTGGCAG

3541 GTGCTGAAGG AGAATGGCCC CATGGCCTCT GACCCCCTGT GCCTGACCTA CAGCTACCTG

3601 AGCCATGTGG ACCTGGTGAA GGACCTGAAC TCTGGCCTGA TTGGGGCCCT GCTGGTGTGC

3661 AGGGAGGGCA GCCTGGCCAA GGAGAAGACC CAGACCCTGC ACAAGTTCAT CCTGCTGTTT

3721 GCTGTGTTTG ATGAGGGCAA GAGCTGGCAC TCTGAAACCA AGAACAGCCT GATGCAGGAC

3781 AGGGATGCTG CCTCTGCCAG GGCCTGGCCC AAGATGCACA CTGTGAATGG CTATGTGAAC

3841 AGGAGCCTGC CTGGCCTGAT TGGCTGCCAC AGGAAGTCTG TGTACTGGCA TGTGATTGGC

3901 ATGGGCACCA CCCCTGAGGT GCACAGCATC TTCCTGGAGG GCCACACCTT CCTGGTCAGG

3961 AACCACAGGC AGGCCAGCCT GGAGATCAGC CCCATCACCT TCCTGACTGC CCAGACCCTG

4021 CTGATGGACC TGGGCCAGTT CCTGCTGTTC TGCCACATCA GCAGCCACCA GCATGATGGC

4081 ATGGAGGCCT ATGTGAAGGT GGACAGCTGC CCTGAGGAGC CCCAGCTGAG GATGAAGAAC

4141 AATGAGGAGG CTGAGGACTA TGATGATGAC CTGACTGACT CTGAGATGGA TGTGGTGAGG

4201 TTTGATGATG ACAACAGCCC CAGCTTCATC CAGATCAGGT CTGTGGCCAA GAAGCACCCC

4261 AAGACCTGGG TGCACTACAT TGCTGCTGAG GAGGAGGACT GGGACTATGC CCCCCTGGTG

4321 CTGGCCCCTG ATGACAGGAG CTACAAGAGC CAGTACCTGA ACAATGGCCC CCAGAGGATT

4381 GGCAGGAAGT ACAAGAAGGT CAGGTTCATG GCCTACACTG ATGAAACCTT CAAGACCAGG

4441 GAGGCCATCC AGCATGAGTC TGGCATCCTG GGCCCCCTGC TGTATGGGGA GGTGGGGGAC

4501 ACCCTGCTGA TCATCTTCAA GAACCAGGCC AGCAGGCCCT ACAACATCTA CCCCCATGGC

4561 ATCACTGATG TGAGGCCCCT GTACAGCAGG AGGCTGCCCA AGGGGGTGAA GCACCTGAAG

4621 GACTTCCCCA TCCTGCCTGG GGAGATCTTC AAGTACAAGT GGACTGTGAC TGTGGAGGAT

4681 GGCCCCACCA AGTCTGACCC CAGGTGCCTG ACCAGATACT ACAGCAGCTT TGTGAACATG

4741 GAGAGGGACC TGGCCTCTGG CCTGATTGGC CCCCTGCTGA TCTGCTACAA GGAGTCTGTG

4801 GACCAGAGGG GCAACCAGAT CATGTCTGAC AAGAGGAATG TGATCCTGTT CTCTGTGTTT

4861 GATGAGAACA GGAGCTGGTA CCTGACTGAG AACATCCAGA GGTTCCTGCC CAACCCTGCT

4921 GGGGTGCAGC TGGAGGACCC TGAGTTCCAG GCCAGCAACA TCATGCACAG CATCAATGGC

4981 TATGTGTTTG ACAGCCTGCA GCTGTCTGTG TGCCTGCATG AGGTGGCCTA CTGGTACATC

5041 CTGAGCATTG GGGCCCAGAC TGACTTCCTG TCTGTGTTCT TCTCTGGCTA CACCTTCAAG

5101 CACAAGATGG TGTATGAGGA CACCCTGACC CTGTTCCCCT TCTCTGGGGA GACTGTGTTC

5161 ATGAGCATGG AGAACCCTGG CCTGTGGATT CTGGGCTGCC ACAACTCTGA CTTCAGGAAC

5221 AGGGGCATGA CTGCCCTGCT GAAAGTCTCC AGCTGTGACA AGAACACTGG GGACTACTAT

5281 GAGGACAGCT ATGAGGACAT CTCTGCCTAC CTGCTGAGCA AGAACAATGC CATTGAGCCC

5341 AGGAGCTTCA GCCAGAACAG CAGGCACCCC AGCACCAGGC AGAAGCAGTT CAATGCCACC

5401 ACCATCCCTG AGAATGACAT AGAGAAGACA GACCCATGGT TTGCCCACCG GACCCCCATG

5461 CCCAAGATCC AGAATGTGAG CAGCTCTGAC CTGCTGATGC TGCTGAGGCA GAGCCCCACC

5521 CCCCATGGCC TGAGCCTGTC TGACCTGCAG GAGGCCAAGT ATGAAACCTT CTCTGATGAC

5581 CCCAGCCCTG GGGCCATTGA CAGCAACAAC AGCCTGTCTG AGATGACCCA CTTCAGGCCC

5641 CAGCTGCACC ACTCTGGGGA CATGGTGTTC ACCCCTGAGT CTGGCCTGCA GCTGAGGCTG

5701 AATGAGAAGC TGGGCACCAC TGCTGCCACT GAGCTGAAGA AGCTGGACTT CAAAGTCTCC

5761 AGCACCAGCA ACAACCTGAT CAGCACCATC CCCTCTGACA ACCTGGCTGC TGGCACTGAC

5821 AACACCAGCA GCCTGGGCCC CCCCAGCATG CCTGTGCACT ATGACAGCCA GCTGGACACC

5881 ACCCTGTTTG GCAAGAAGAG CAGCCCCCTG ACTGAGTCTG GGGGCCCCCT GAGCCTGTCT

5941 GAGGAGAACA ATGACAGCAA GCTGCTGGAG TCTGGCCTGA TGAACAGCCA GGAGAGCAGC

6001 TGGGGCAAGA ATGTGAGCAG CAGGGAGATC ACCAGGACCA CCCTGCAGTC TGACCAGGAG

6061 GAGATTGACT ATGATGACAC CATCTCTGTG GAGATGAAGA AGGAGGACTT TGACATCTAC

6121 GACGAGGACG AGAACCAGAG CCCCAGGAGC TTCCAGAAGA AGACCAGGCA CTACTTCATT

6181 GCTGCTGTGG AGAGGCTGTG GGACTATGGC ATGAGCAGCA GCCCCCATGT GCTGAGGAAC

6241 AGGGCCCAGT CTGGCTCTGT GCCCCAGTTC AAGAAGGTGG TGTTCCAGGA GTTCACTGAT

6301 GGCAGCTTCA CCCAGCCCCT GTACAGAGGG GAGCTGAATG AGCACCTGGG CCTGCTGGGC

6361 CCCTACATCA GGGCTGAGGT GGAGGACAAC ATCATGGTGA CCTTCAGGAA CCAGGCCAGC

6421 AGGCCCTACA GCTTCTACAG CAGCCTGATC AGCTATGAGG AGGACCAGAG GCAGGGGGCT

6481 GAGCCCAGGA AGAACTTTGT GAAGCCCAAT GAAACCAAGA CCTACTTCTG GAAGGTGCAG

6541 CACCACATGG CCCCCACCAA GGATGAGTTT GACTGCAAGG CCTGGGCCTA CTTCTCTGAT

6601 GTGGACCTGG AGAAGGATGT GCACTCTGGC CTGATTGGCC CCCTGCTGGT GTGCCACACC

6661 AACACCCTGA ACCCTGCCCA TGGCAGGCAG GTGACTGTGC AGGAGTTTGC CCTGTTCTTC

6721 ACCATCTTTG ATGAAACCAA GAGCTGGTAC TTCACTGAGA ACATGGAGAG GAACTGCAGG

6781 GCCCCCTGCA ACATCCAGAT GGAGGACCCC ACCTTCAAGG AGAACTACAG GTTCCATGCC

6841 ATCAATGGCT ACATCATGGA CACCCTGCCT GGCCTGGTGA TGGCCCAGGA CCAGAGGATC

6901 AGGTGGTACC TGCTGAGCAT GGGCAGCAAT GAGAACATCC ACAGCATCCA CTTCTCTGGC

6961 CATGTGTTCA CTGTGAGGAA GAAGGAGGAG TACAAGATGG CCCTGTACAA CCTGTACCCT

7021 GGGGTGTTTG AGACTGTGGA GATGCTGCCC AGCAAGGCTG GCATCTGGAG GGTGGAGTGC

7081 CTGATTGGGG AGCACCTGCA TGCTGGCATG AGCACCCTGT TCCTGGTGTA CAGCAACAAG

7141 TGCCAGACCC CCCTGGGCAT GGCCTCTGGC CACATCAGGG ACTTCCAGAT CACTGCCTCT

7201 GGCCAGTATG GCCAGTGGGC CCCCAAGCTG GCCAGGCTGC ACTACTCTGG CAGCATCAAT

7261 GCCTGGAGCA CCAAGGAGCC CTTCAGCTGG ATCAAGGTGG ACCTGCTGGC CCCCATGATC

7321 ATCCATGGCA TCAAGACCCA GGGGGCCAGG CAGAAGTTCA GCAGCCTGTA CATCAGCCAG

7381 TTCATCATCA TGTACAGCCT GGATGGCAAG AAGTGGCAGA CCTACAGGGG CAACAGCACT

7441 GGCACCCTGA TGGTGTTCTT TGGCAATGTG GACAGCTCTG GCATCAAGCA CAACATCTTC

7501 AACCCCCCCA TCATTGCCAG ATACATCAGG CTGCACCCCA CCCACTACAG CATCAGGAGC

7561 ACCCTGAGGA TGGAGCTGAT GGGCTGTGAC CTGAACAGCT GCAGCATGCC CCTGGGCATG

7621 GAGAGCAAGG CCATCTCTGA TGCCCAGATC ACTGCCAGCA GCTACTTCAC CAACATGTTT

7681 GCCACCTGGA GCCCCAGCAA GGCCAGGCTG CACCTGCAGG GCAGGAGCAA TGCCTGGAGG

7741 CCCCAGGTCA ACAACCCCAA GGAGTGGCTG CAGGTGGACT TCCAGAAGAC CATGAAGGTG

7801 ACTGGGGTGA CCACCCAGGG GGTGAAGAGC CTGCTGACCA GCATGTATGT GAAGGAGTTC

7861 CTGATCAGCA GCAGCCAGGA TGGCCACCAG TGGACCCTGT TCTTCCAGAA TGGCAAGGTG

7921 AAGGTGTTCC AGGGCAACCA GGACAGCTTC ACCCCTGTGG TGAACAGCCT GGACCCCCCC

7981 CTGCTGACCA GATACCTGAG GATTCACCCC CAGAGCTGGG TGCACCAGAT TGCCCTGAGG

8041 ATGGAGGTGC TGGGCTGTGA GGCCCAGGAC CTGTACTGAG CGGCCGCGGG CCCAATCAAC

8101 CTCTGGATTA CAAAATTTGT GAAAGATTGA CTGGTATTCT TAACTATGTT GCTCCTTTTA

8161 CGCTATGTGG ATACGCTGCT TTAATGCCTT TGTATCATGC TATTGCTTCC CGTATGGCTT

8221 TCATTTTCTC CTCCTTGTAT AAATCCTGGT TGCTGTCTCT TTATGAGGAG TTGTGGCCCG

8281 TTGTCAGGCA ACGTGGCGTG GTGTGCACTG TGTTTGCTGA CGCAACCCCC ACTGGTTGGG

8341 GCATTGCCAC CACCTGTCAG CTCCTTTCCG GGACTTTCGC TTTCCCCCTC CCTATTGCCA

8401 CGGCGGAACT CATCGCCGCC TGCCTTGCCC GCTGCTGGAC AGGGGCTCGG CTGTTGGGCA

8461 CTGACAATTC CGTGGTGTTG TCGGGGAAAT CATCGTCCTT TCCTTGGCTG CTCGCCTGTG

8521 TTGCCACCTG GATTCTGCGC GGGACGTCCT TCTGCTACGT CCCTTCGGCC CTCAATCCAG

8581 CGGACCTTCC TTCCCGCGGC CTGCTGCCGG CTCTGCGGCC TCTTCCGCGT CTTCGCCTTC

8641 GCCCTCAGAC GAGTCGGATC TCCCTTTGGG CCGCCTCCCC GCAAGCTTCG CACTTTTTAA

8701 AAGAAAAGGG AGGACTGGAT GGGATTTATT ACTCCGATAG GACGCTGGCT TGTAACTCAG

8761 TCTCTTACTA GGAGACCAGC TTGAGCCTGG GTGTTCGCTG GTTAGCCTAA CCTGGTTGGC

8821 CACCAGGGGT AAGGACTCCT TGGCTTAGAA AGCTAATAAA CTTGCCTGCA TTAGAGCTCT

8881 TACGCGTCCC GGGCTCGAGA TCCGCATCTC AATTAGTCAG CAACCATAGT CCCGCCCCTA

8941 ACTCCGCCCA TCCCGCCCCT AACTCCGCCC AGTTCCGCCC ATTCTCCGCC CCATGGCTGA

9001 CTAATTTTTT TTATTTATGC AGAGGCCGAG GCCGCCTCGG CCTCTGAGCT ATTCCAGAAG

9061 TAGTGAGGAG GCTTTTTTGG AGGCCTAGGC TTTTGCAAAA AGCTAACTTG TTTATTGCAG

9121 CTTATAATGG TTACAAATAA AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT

9181 CACTGCATTC TAGTTGTGGT TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGTCCGC

9241 TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG TATCAGCTCA

9301 CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG

9361 AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA

9421 TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA

9481 CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC

9541 TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC

9601 GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT

9661 GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG

9721 TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG

9781 GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA

9841 CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG

9901 AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT

9961 TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT

10021 TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG

10081 ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT

10141 CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTAGAAA AACTCATCGA GCATCAAATG

10201 AAACTGCAAT TTATTCATAT CAGGATTATC AATACCATAT TTTTGAAAAA GCCGTTTCTG

10261 TAATGAAGGA GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC

10321 TGCGATTCCG ACTCGTCCAA CATCAATACA ACCTATTAAT TTCCCCTCGT CAAAAATAAG

10381 GTTATCAAGT GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAACAGCTT

10441 ATGCATTTCT TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT

10501 CGCATCAACC AAACCGTTAT TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC

10561 GCTGTTAAAA GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACACTGCCAG

10621 CGCATCAACA ATATTTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTTT

10681 TCCGGGGATC GCAGTGGTGA GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT

10741 GGTCGGAAGA GGCATAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC

10801 ATTGGCAACG CTACCTTTGC CATGTTTCAG AAACAACTCT GGCGCATCGG GCTTCCCATA

10861 CAATCGATAG ATTGTCGCAC CTGATTGCCC GACATTATCG CGAGCCCATT TATACCCATA

10921 TAAATCAGCA TCCATGTTGG AATTTAATCG CGGCCTAGAG CAAGACGTTT CCCGTTGAAT

10981 ATGGCTCATA ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA

11041 TGATATATTT TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CAATTGGTCG

11101 ACGGATCC

SEQ ID NO: 15

ATGCCCAGCTCTGTGTCCTGGGGCATTCTGCTGCTGGCTGGCCTGTGCTGTCTGGTGCCTGTGTCCCTGG CTGAGGACCCTCAGGGGGATGCTGCCCAGAAAACAGACACCTCCCACCATGACCAGGACCACCCCACCTT CAACAAGATCACCCCCAACCTGGCAGAGTTTGCCTTCAGCCTGTACAGACAGCTGGCCCACCAGAGCAAC AGCACCAACATCTTTTTCAGCCCTGTGTCCATTGCCACAGCCTTTGCCATGCTGAGCCTGGGCACCAAGG CTGACACCCATGATGAGATCCTGGAAGGCCTGAACTTCAACCTGACAGAGATCCCTGAGGCCCAGATCCA TGAGGGCTTCCAGGAACTGCTGAGAACCCTGAACCAGCCAGACAGCCAGCTGCAGCTGACAACAGGCAAT GGGCTGTTCCTGTCTGAGGGCCTGAAGCTGGTGGACAAGTTTCTGGAAGATGTGAAGAAGCTGTACCACT CTGAGGCCTTCACAGTGAACTTTGGGGACACAGAAGAGGCCAAGAAACAGATCAATGACTATGTGGAAAA GGGCACCCAGGGCAAGATTGTGGACCTTGTGAAAGAGCTGGACAGGGACACTGTGTTTGCCCTTGTGAAC TACATCTTCTTCAAGGGCAAGTGGGAGAGGCCCTTTGAAGTGAAGGACACTGAGGAAGAGGACTTCCATG TGGACCAAGTGACCACAGTGAAGGTGCCAATGATGAAGAGACTGGGGATGTTCAATATCCAGCACTGCAA GAAACTGAGCAGCTGGGTGCTGCTGATGAAGTACCTGGGCAATGCTACAGCCATATTCTTTCTGCCTGAT GAGGGCAAGCTGCAGCACCTGGAAAATGAGCTGACCCATGACATCATCACCAAATTTCTGGAAAATGAGG ACAGAAGATCTGCCAGCCTGCATCTGCCCAAGCTGAGCATCACAGGCACATATGACCTGAAGTCTGTGCT GGGACAGCTGGGAATCACCAAGGTGTTCAGCAATGGGGCAGACCTGAGTGGAGTGACAGAGGAAGCCCCT CTGAAGCTGTCCAAGGCTGTGCACAAGGCAGTGCTGACCATTGATGAGAAGGGCACAGAGGCTGCTGGGG CCATGTTTCTGGAAGCCATCCCCATGTCCATCCCCCCAGAAGTGAAGTTCAACAAGCCCTTTGTGTTCCT GATGATTGAGCAGAACACCAAGAGCCCCCTGTTCATGGGCAAGGTTGTGAACCCCACCCAGAAATGA

SEQ ID NO: 16

ATGCAGATTGAGCTGAGCACCTGCTTCTTCCTGTGCCTGCTGAGGTTCTGCTTCTCTGCCACCAGGAGAT ACTACCTGGGGGCTGTGGAGCTGAGCTGGGACTACATGCAGTCTGACCTGGGGGAGCTGCCTGTGGATGC CAGGTTCCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCTCTGTGGTGTACAAGAAGACCCTGTTT GTGGAGTTCACTGACCACCTGTTCAACATTGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCTGGGCCCCA CCATCCAGGCTGAGGTGTATGACACTGTGGTGATCACCCTGAAGAACATGGCCAGCCACCCTGTGAGCCT GCATGCTGTGGGGGTGAGCTACTGGAAGGCCTCTGAGGGGGCTGAGTATGATGACCAGACCAGCCAGAGG GAGAAGGAGGATGACAAGGTGTTCCCTGGGGGCAGCCACACCTATGTGTGGCAGGTGCTGAAGGAGAATG GCCCCATGGCCTCTGACCCCCTGTGCCTGACCTACAGCTACCTGAGCCATGTGGACCTGGTGAAGGACCT GAACTCTGGCCTGATTGGGGCCCTGCTGGTGTGCAGGGAGGGCAGCCTGGCCAAGGAGAAGACCCAGACC CTGCACAAGTTCATCCTGCTGTTTGCTGTGTTTGATGAGGGCAAGAGCTGGCACTCTGAAACCAAGAACA GCCTGATGCAGGACAGGGATGCTGCCTCTGCCAGGGCCTGGCCCAAGATGCACACTGTGAATGGCTATGT GAACAGGAGCCTGCCTGGCCTGATTGGCTGCCACAGGAAGTCTGTGTACTGGCATGTGATTGGCATGGGC ACCACCCCTGAGGTGCACAGCATCTTCCTGGAGGGCCACACCTTCCTGGTCAGGAACCACAGGCAGGCCA GCCTGGAGATCAGCCCCATCACCTTCCTGACTGCCCAGACCCTGCTGATGGACCTGGGCCAGTTCCTGCT GTTCTGCCACATCAGCAGCCACCAGCATGATGGCATGGAGGCCTATGTGAAGGTGGACAGCTGCCCTGAG GAGCCCCAGCTGAGGATGAAGAACAATGAGGAGGCTGAGGACTATGATGATGACCTGACTGACTCTGAGA TGGATGTGGTGAGGTTTGATGATGACAACAGCCCCAGCTTCATCCAGATCAGGTCTGTGGCCAAGAAGCA CCCCAAGACCTGGGTGCACTACATTGCTGCTGAGGAGGAGGACTGGGACTATGCCCCCCTGGTGCTGGCC CCTGATGACAGGAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGAGGATTGGCAGGAAGTACAAGA AGGTCAGGTTCATGGCCTACACTGATGAAACCTTCAAGACCAGGGAGGCCATCCAGCATGAGTCTGGCAT CCTGGGCCCCCTGCTGTATGGGGAGGTGGGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGG CCCTACAACATCTACCCCCATGGCATCACTGATGTGAGGCCCCTGTACAGCAGGAGGCTGCCCAAGGGGG TGAAGCACCTGAAGGACTTCCCCATCCTGCCTGGGGAGATCTTCAAGTACAAGTGGACTGTGACTGTGGA GGATGGCCCCACCAAGTCTGACCCCAGGTGCCTGACCAGATACTACAGCAGCTTTGTGAACATGGAGAGG GACCTGGCCTCTGGCCTGATTGGCCCCCTGCTGATCTGCTACAAGGAGTCTGTGGACCAGAGGGGCAACC AGATCATGTCTGACAAGAGGAATGTGATCCTGTTCTCTGTGTTTGATGAGAACAGGAGCTGGTACCTGAC TGAGAACATCCAGAGGTTCCTGCCCAACCCTGCTGGGGTGCAGCTGGAGGACCCTGAGTTCCAGGCCAGC AACATCATGCACAGCATCAATGGCTATGTGTTTGACAGCCTGCAGCTGTCTGTGTGCCTGCATGAGGTGG CCTACTGGTACATCCTGAGCATTGGGGCCCAGACTGACTTCCTGTCTGTGTTCTTCTCTGGCTACACCTT CAAGCACAAGATGGTGTATGAGGACACCCTGACCCTGTTCCCCTTCTCTGGGGAGACTGTGTTCATGAGC ATGGAGAACCCTGGCCTGTGGATTCTGGGCTGCCACAACTCTGACTTCAGGAACAGGGGCATGACTGCCC TGCTGAAAGTCTCCAGCTGTGACAAGAACACTGGGGACTACTATGAGGACAGCTATGAGGACATCTCTGC CTACCTGCTGAGCAAGAACAATGCCATTGAGCCCAGGAGCTTCAGCCAGAACAGCAGGCACCCCAGCACC AGGCAGAAGCAGTTCAATGCCACCACCATCCCTGAGAATGACATAGAGAAGACAGACCCATGGTTTGCCC ACCGGACCCCCATGCCCAAGATCCAGAATGTGAGCAGCTCTGACCTGCTGATGCTGCTGAGGCAGAGCCC CACCCCCCATGGCCTGAGCCTGTCTGACCTGCAGGAGGCCAAGTATGAAACCTTCTCTGATGACCCCAGC CCTGGGGCCATTGACAGCAACAACAGCCTGTCTGAGATGACCCACTTCAGGCCCCAGCTGCACCACTCTG GGGACATGGTGTTCACCCCTGAGTCTGGCCTGCAGCTGAGGCTGAATGAGAAGCTGGGCACCACTGCTGC CACTGAGCTGAAGAAGCTGGACTTCAAAGTCTCCAGCACCAGCAACAACCTGATCAGCACCATCCCCTCT GACAACCTGGCTGCTGGCACTGACAACACCAGCAGCCTGGGCCCCCCCAGCATGCCTGTGCACTATGACA GCCAGCTGGACACCACCCTGTTTGGCAAGAAGAGCAGCCCCCTGACTGAGTCTGGGGGCCCCCTGAGCCT GTCTGAGGAGAACAATGACAGCAAGCTGCTGGAGTCTGGCCTGATGAACAGCCAGGAGAGCAGCTGGGGC AAGAATGTGAGCAGCAGGGAGATCACCAGGACCACCCTGCAGTCTGACCAGGAGGAGATTGACTATGATG ACACCATCTCTGTGGAGATGAAGAAGGAGGACTTTGACATCTACGACGAGGACGAGAACCAGAGCCCCAG GAGCTTCCAGAAGAAGACCAGGCACTACTTCATTGCTGCTGTGGAGAGGCTGTGGGACTATGGCATGAGC AGCAGCCCCCATGTGCTGAGGAACAGGGCCCAGTCTGGCTCTGTGCCCCAGTTCAAGAAGGTGGTGTTCC AGGAGTTCACTGATGGCAGCTTCACCCAGCCCCTGTACAGAGGGGAGCTGAATGAGCACCTGGGCCTGCT GGGCCCCTACATCAGGGCTGAGGTGGAGGACAACATCATGGTGACCTTCAGGAACCAGGCCAGCAGGCCC TACAGCTTCTACAGCAGCCTGATCAGCTATGAGGAGGACCAGAGGCAGGGGGCTGAGCCCAGGAAGAACT TTGTGAAGCCCAATGAAACCAAGACCTACTTCTGGAAGGTGCAGCACCACATGGCCCCCACCAAGGATGA GTTTGACTGCAAGGCCTGGGCCTACTTCTCTGATGTGGACCTGGAGAAGGATGTGCACTCTGGCCTGATT GGCCCCCTGCTGGTGTGCCACACCAACACCCTGAACCCTGCCCATGGCAGGCAGGTGACTGTGCAGGAGT TTGCCCTGTTCTTCACCATCTTTGATGAAACCAAGAGCTGGTACTTCACTGAGAACATGGAGAGGAACTG CAGGGCCCCCTGCAACATCCAGATGGAGGACCCCACCTTCAAGGAGAACTACAGGTTCCATGCCATCAAT GGCTACATCATGGACACCCTGCCTGGCCTGGTGATGGCCCAGGACCAGAGGATCAGGTGGTACCTGCTGA GCATGGGCAGCAATGAGAACATCCACAGCATCCACTTCTCTGGCCATGTGTTCACTGTGAGGAAGAAGGA GGAGTACAAGATGGCCCTGTACAACCTGTACCCTGGGGTGTTTGAGACTGTGGAGATGCTGCCCAGCAAG GCTGGCATCTGGAGGGTGGAGTGCCTGATTGGGGAGCACCTGCATGCTGGCATGAGCACCCTGTTCCTGG TGTACAGCAACAAGTGCCAGACCCCCCTGGGCATGGCCTCTGGCCACATCAGGGACTTCCAGATCACTGC CTCTGGCCAGTATGGCCAGTGGGCCCCCAAGCTGGCCAGGCTGCACTACTCTGGCAGCATCAATGCCTGG AGCACCAAGGAGCCCTTCAGCTGGATCAAGGTGGACCTGCTGGCCCCCATGATCATCCATGGCATCAAGA CCCAGGGGGCCAGGCAGAAGTTCAGCAGCCTGTACATCAGCCAGTTCATCATCATGTACAGCCTGGATGG CAAGAAGTGGCAGACCTACAGGGGCAACAGCACTGGCACCCTGATGGTGTTCTTTGGCAATGTGGACAGC TCTGGCATCAAGCACAACATCTTCAACCCCCCCATCATTGCCAGATACATCAGGCTGCACCCCACCCACT ACAGCATCAGGAGCACCCTGAGGATGGAGCTGATGGGCTGTGACCTGAACAGCTGCAGCATGCCCCTGGG CATGGAGAGCAAGGCCATCTCTGATGCCCAGATCACTGCCAGCAGCTACTTCACCAACATGTTTGCCACC TGGAGCCCCAGCAAGGCCAGGCTGCACCTGCAGGGCAGGAGCAATGCCTGGAGGCCCCAGGTCAACAACC CCAAGGAGTGGCTGCAGGTGGACTTCCAGAAGACCATGAAGGTGACTGGGGTGACCACCCAGGGGGTGAA GAGCCTGCTGACCAGCATGTATGTGAAGGAGTTCCTGATCAGCAGCAGCCAGGATGGCCACCAGTGGACC CTGTTCTTCCAGAATGGCAAGGTGAAGGTGTTCCAGGGCAACCAGGACAGCTTCACCCCTGTGGTGAACA GCCTGGACCCCCCCCTGCTGACCAGATACCTGAGGATTCACCCCCAGAGCTGGGTGCACCAGATTGCCCT GAGGATGGAGGTGCTGGGCTGTGAGGCCCAGGACCTGTACTGA

SEQ ID NO: 17

CCGCGGAGATCTCAATATTGGCCATTAGCCATATTATTCATTGGTTATATAGCATAAATCAATATTGGCT ATTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTTATATTGGCTCATGTCCAATATGACC GCCATGTTGGCATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCA TATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCC CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGT GGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATT GACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTT GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCG TGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGG CACCAAAATCAACGGGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTTGACGCAAATGGGCGGTAGGC GTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCACTAGAAGCTTTATTGC GGTAGTTTATCACAGTTAAATTGCTAACGCAGTCAGTGCTTCTGACACAACAGTCTCGAACTTAAGCTGC AGAAGTTGGTCGTGAGGCACTGGGCAGGCTAGC

SEQ ID NO: 18

TCGAGATGTGGTCTGAGTTAAAAATCAGGAGCAACGACGGAGGTGAAGGACCAGACGCCAACGACCC

SEQ ID NO: 19

CCGGGGGTCGTTGGCGTCTGGTCCTTCACCTCCGTCGTTGCTCCTGATTTTTAACTCAGACCACATC

SEQ ID NO: 20

CCGGGGAAAGGGGGTGCAACACATCCATATCCAGCCATCTCTACCTGTTTATGGACA

SEQ ID NO: 21

ACCCTCTGTCCATAAACAGGTAGAGATGGCTGGATATGGATGTGTTGCACCCCTTTCC

SEQ ID NO: 22

GGGTTAGGTGGTTGCTGATTCTCTCATTCACCCAGTGGG

SEQ ID NO: 23

GATCCCCACTGGGTGAATGAGAGAATCAGCAACCACCTA

SEQ ID NO: 24

GAGACTCGAGATGTGGTCTGAGTTAAAAATCAGG

SEQ ID NO: 25

AGAGGTAGACCAGTACGAGTCACGTTTGCCCCTATCACCATCCCTAACCCTCTGTCATAAAC

SEQ ID NO: 26

TACGGGTCGAGACACAGGACCCCGTAAGACGACGACCGACCGGACACGACAGACCACGGACACAGGGACC GACTCCTGGGAGTCCCCCTACGACGGGTCTTTTGTCTGTGGAGGGTGGTACTGGTCCTGGTGGGGTGGAA GTTGTTCTAGTGGGGGTTGGACCGTCTCAAACGGAAGTCGGACATGTCTGTCGACCGGGTGGTCTCGTTG TCGTGGTTGTAGAAAAAGTCGGGACACAGGTAACGGTGTCGGAAACGGTACGACTCGGACCCGTGGTTCC GACTGTGGGTACTACTCTAGGACCTTCCGGACTTGAAGTTGGACTGTCTCTAGGGACTCCGGGTCTAGGT ACTCCCGAAGGTCCTTGACGACTCTTGGGACTTGGTCGGTCTGTCGGTCGACGTCGACTGTTGTCCGTTA CCCGACAAGGACAGACTCCCGGACTTCGACCACCTGTTCAAAGACCTTCTACACTTCTTCGACATGGTGA GACTCCGGAAGTGTCACTTGAAACCCCTGTGTCTTCTCCGGTTCTTTGTCTAGTTACTGATACACCTTTT CCCGTGGGTCCCGTTCTAACACCTGGAACACTTTCTCGACCTGTCCCTGTGACACAAACGGGAACACTTG ATGTAGAAGAAGTTCCCGTTCACCCTCTCCGGGAAACTTCACTTCCTGTGACTCCTTCTCCTGAAGGTAC ACCTGGTTCACTGGTGTCACTTCCACGGTTACTACTTCTCTGACCCCTACAAGTTATAGGTCGTGACGTT CTTTGACTCGTCGACCCACGACGACTACTTCATGGACCCGTTACGATGTCGGTATAAGAAAGACGGACTA CTCCCGTTCGACGTCGTGGACCTTTTACTCGACTGGGTACTGTAGTAGTGGTTTAAAGACCTTTTACTCC TGTCTTCTAGACGGTCGGACGTAGACGGGTTCGACTCGTAGTGTCCGTGTATACTGGACTTCAGACACGA CCCTGTCGACCCTTAGTGGTTCCACAAGTCGTTACCCCGTCTGGACTCACCTCACTGTCTCCTTCGGGGA GACTTCGACAGGTTCCGACACGTGTTCCGTCACGACTGGTAACTACTCTTCCCGTGTCTCCGACGACCCC GGTACAAAGACCTTCGGTAGGGGTACAGGTAGGGGGGTCTTCACTTCAAGTTGTTCGGGAAACACAAGGA CTACTAACTCGTCTTGTGGTTCTCGGGGGACAAGTACCCGTTCCAACACTTGGGGTGGGTCTTTACT

SEQ ID NO: 27

AEDPQGDAAQKTDTSHHDQDHPTFAEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSN STNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNG LFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYI FFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGK LQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLS KAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK

SEQ ID NO: 28

TACGTCTAACTCGACTCGTGGACGAAGAAGGACACGGACGACTCCAAGACGAAGAGACGGTGGTCCTCTA TGATGGACCCCCGACACCTCGACTCGACCCTGATGTACGTCAGACTGGACCCCCTCGACGGACACCTACG GTCCAAGGGGGGGTCTCACGGGTTCTCGAAGGGGAAGTTGTGGAGACACCACATGTTCTTCTGGGACAAA CACCTCAAGTGACTGGTGGACAAGTTGTAACGGTTCGGGTCCGGGGGGACCTACCCGGACGACCCGGGGT GGTAGGTCCGACTCCACATACTGTGACACCACTAGTGGGACTTCTTGTACCGGTCGGTGGGACACTCGGA CGTACGACACCCCCACTCGATGACCTTCCGGAGACTCCCCCGACTCATACTACTGGTCTGGTCGGTCTCC CTCTTCCTCCTACTGTTCCACAAGGGACCCCCGTCGGTGTGGATACACACCGTCCACGACTTCCTCTTAC CGGGGTACCGGAGACTGGGGGACACGGACTGGATGTCGATGGACTCGGTACACCTGGACCACTTCCTGGA CTTGAGACCGGACTAACCCCGGGACGACCACACGTCCCTCCCGTCGGACCGGTTCCTCTTCTGGGTCTGG GACGTGTTCAAGTAGGACGACAAACGACACAAACTACTCCCGTTCTCGACCGTGAGACTTTGGTTCTTGT CGGACTACGTCCTGTCCCTACGACGGAGACGGTCCCGGACCGGGTTCTACGTGTGACACTTACCGATACA CTTGTCCTCGGACGGACCGGACTAACCGACGGTGTCCTTCAGACACATGACCGTACACTAACCGTACCCG TGGTGGGGACTCCACGTGTCGTAGAAGGACCTCCCGGTGTGGAAGGACCAGTCCTTGGTGTCCGTCCGGT CGGACCTCTAGTCGGGGTAGTGGAAGGACTGACGGGTCTGGGACGACTACCTGGACCCGGTCAAGGACGA CAAGACGGTGTAGTCGTCGGTGGTCGTACTACCGTACCTCCGGATACACTTCCACCTGTCGACGGGACTC CTCGGGGTCGACTCCTACTTCTTGTTACTCCTCCGACTCCTGATACTACTACTGGACTGACTGAGACTCT ACCTACACCACTCCAAACTACTACTGTTGTCGGGGTCGAAGTAGGTCTAGTCCAGACACCGGTTCTTCGT GGGGTTCTGGACCCACGTGATGTAACGACGACTCCTCCTCCTGACCCTGATACGGGGGGACCACGACCGG GGACTACTGTCCTCGATGTTCTCGGTCATGGACTTGTTACCGGGGGTCTCCTAACCGTCCTTCATGTTCT TCCAGTCCAAGTACCGGATGTGACTACTTTGGAAGTTCTGGTCCCTCCGGTAGGTCGTACTCAGACCGTA GGACCCGGGGGACGACATACCCCTCCACCCCCTGTGGGACGACTAGTAGAAGTTCTTGGTCCGGTCGTCC GGGATGTTGTAGATGGGGGTACCGTAGTGACTACACTCCGGGGACATGTCGTCCTCCGACGGGTTCCCCC ACTTCGTGGACTTCCTGAAGGGGTAGGACGGACCCCTCTAGAAGTTCATGTTCACCTGACACTGACACCT CCTACCGGGGTGGTTCAGACTGGGGTCCACGGACTGGTCTATGATGTCGTCGAAACACTTGTACCTCTCC CTGGACCGGAGACCGGACTAACCGGGGGACGACTAGACGATGTTCCTCAGACACCTGGTCTCCCCGTTGG TCTAGTACAGACTGTTCTCCTTACACTAGGACAAGAGACACAAACTACTCTTGTCCTCGACCATGGACTG ACTCTTGTAGGTCTCCAAGGACGGGTTGGGACGACCCCACGTCGACCTCCTGGGACTCAAGGTCCGGTCG TTGTAGTACGTGTCGTAGTTACCGATACACAAACTGTCGGACGTCGACAGACACACGGACGTACTCCACC GGATGACCATGTAGGACTCGTAACCCCGGGTCTGACTGAAGGACAGACACAAGAAGAGACCGATGTGGAA GTTCGTGTTCTACCACATACTCCTGTGGGACTGGGACAAGGGGAAGAGACCCCTCTGACACAAGTACTCG TACCTCTTGGGACCGGACACCTAAGACCCGACGGTGTTGAGACTGAAGTCCTTGTCCCCGTACTGACGGG ACGACTTTCAGAGGTCGACACTGTTCTTGTGACCCCTGATGATACTCCTGTCGATACTCCTGTAGAGACG GATGGACGACTCGTTCTTGTTACGGTAACTCGGGTCCTCGAAGTCGGTCTTGTCGTCCGTGGGGTCGTGG TCCGTCTTCGTCAAGTTACGGTGGTGGTAGGGACTCTTACTGTATCTCTTCTGTCTGGGTACCAAACGGG TGGCCTGGGGGTACGGGTTCTAGGTCTTACACTCGTCGAGACTGGACGACTACGACGACTCCGTCTCGGG GTGGGGGGTACCGGACTCGGACAGACTGGACGTCCTCCGGTTCATACTTTGGAAGAGACTACTGGGGTCG GGACCCCGGTAACTGTCGTTGTTGTCGGACAGACTCTACTGGGTGAAGTCCGGGGTCGACGTGGTGAGAC CCCTGTACCACAAGTGGGGACTCAGACCGGACGTCGACTCCGACTTACTCTTCGACCCGTGGTGACGACG GTGACTCGACTTCTTCGACCTGAAGTTTCAGAGGTCGTGGTCGTTGTTGGACTAGTCGTGGTAGGGGAGA CTGTTGGACCGACGACCGTGACTGTTGTGGTCGTCGGACCCGGGGGGGTCGTACGGACACGTGATACTGT CGGTCGACCTGTGGTGGGACAAACCGTTCTTCTCGTCGGGGGACTGACTCAGACCCCCGGGGGACTCGGA CAGACTCCTCTTGTTACTGTCGTTCGACGACCTCAGACCGGACTACTTGTCGGTCCTCTCGTCGACCCCG TTCTTACACTCGTCGTCCCTCTAGTGGTCCTGGTGGGACGTCAGACTGGTCCTCCTCTAACTGATACTAC TGTGGTAGAGACACCTCTACTTCTTCCTCCTGAAACTGTAGATGCTGCTCCTGCTCTTGGTCTCGGGGTC CTCGAAGGTCTTCTTCTGGTCCGTGATGAAGTAACGACGACACCTCTCCGACACCCTGATACCGTACTCG TCGTCGGGGGTACACGACTCCTTGTCCCGGGTCAGACCGAGACACGGGGTCAAGTTCTTCCACCACAAGG TCCTCAAGTGACTACCGTCGAAGTGGGTCGGGGACATGTCTCCCCTCGACTTACTCGTGGACCCGGACGA CCCGGGGATGTAGTCCCGACTCCACCTCCTGTTGTAGTACCACTGGAAGTCCTTGGTCCGGTCGTCCGGG ATGTCGAAGATGTCGTCGGACTAGTCGATACTCCTCCTGGTCTCCGTCCCCCGACTCGGGTCCTTCTTGA AACACTTCGGGTTACTTTGGTTCTGGATGAAGACCTTCCACGTCGTGGTGTACCGGGGGTGGTTCCTACT CAAACTGACGTTCCGGACCCGGATGAAGAGACTACACCTGGACCTCTTCCTACACGTGAGACCGGACTAA CCGGGGGACGACCACACGGTGTGGTTGTGGGACTTGGGACGGGTACCGTCCGTCCACTGACACGTCCTCA AACGGGACAAGAAGTGGTAGAAACTACTTTGGTTCTCGACCATGAAGTGACTCTTGTACCTCTCCTTGAC GTCCCGGGGGACGTTGTAGGTCTACCTCCTGGGGTGGAAGTTCCTCTTGATGTCCAAGGTACGGTAGTTA CCGATGTAGTACCTGTGGGACGGACCGGACCACTACCGGGTCCTGGTCTCCTAGTCCACCATGGACGACT CGTACCCGTCGTTACTCTTGTAGGTGTCGTAGGTGAAGAGACCGGTACACAAGTGACACTCCTTCTTCCT CCTCATGTTCTACCGGGACATGTTGGACATGGGACCCCACAAACTCTGACACCTCTACGACGGGTCGTTC CGACCGTAGACCTCCCACCTCACGGACTAACCCCTCGTGGACGTACGACCGTACTCGTGGGACAAGGACC ACATGTCGTTGTTCACGGTCTGGGGGGACCCGTACCGGAGACCGGTGTAGTCCCTGAAGGTCTAGTGACG GAGACCGGTCATACCGGTCACCCGGGGGTTCGACCGGTCCGACGTGATGAGACCGTCGTAGTTACGGACC TCGTGGTTCCTCGGGAAGTCGACCTAGTTCCACCTGGACGACCGGGGGTACTAGTAGGTACCGTAGTTCT GGGTCCCCCGGTCCGTCTTCAAGTCGTCGGACATGTAGTCGGTCAAGTAGTAGTACATGTCGGACCTACC GTTCTTCACCGTCTGGATGTCCCCGTTGTCGTGACCGTGGGACTACCACAAGAAACCGTTACACCTGTCG AGACCGTAGTTCGTGTTGTAGAAGTTGGGGGGGTAGTAACGGTCTATGTAGTCCGACGTGGGGTGGGTGA TGTCGTAGTCCTCGTGGGACTCCTACCTCGACTACCCGACACTGGACTTGTCGACGTCGTACGGGGACCC GTACCTCTCGTTCCGGTAGAGACTACGGGTCTAGTGACGGTCGTCGATGAAGTGGTTGTACAAACGGTGG ACCTCGGGGTCGTTCCGGTCCGACGTGGACGTCCCGTCCTCGTTACGGACCTCCGGGGTCCAGTTGTTGG GGTTCCTCACCGACGTCCACCTGAAGGTCTTCTGGTACTTCCACTGACCCCACTGGTGGGTCCCCCACTT CTCGGACGACTGGTCGTACATACACTTCCTCAAGGACTAGTCGTCGTCGGTCCTACCGGTGGTCACCTGG GACAAGAAGGTCTTACCGTTCCACTTCCACAAGGTCCCGTTGGTCCTGTCGAAGTGGGGACACCACTTGT CGGACCTGGGGGGGGACGACTGGTCTATGGACTCCTAAGTGGGGGTCTCGACCCACGTGGTCTAACGGGA CTCCTACCTCCACGACCCGACACTCCGGGTCCTGGACATGACT

SEQ ID NO: 29

MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSWYKKTLFV EFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTWITLK MASHPVSLHAVGVSYWKASEGAEYDDQTSQREK EDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHK FILLFAVFDEGKSWHSETK SLMQDRDAASARAWPK HTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPE VHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLR MKNNEEAEDYDDDLTDSEMDWRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSY KSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEVGDTLLIIFK QASRPYNIYPH GITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMERDLASGLIG PLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQASNIMHSINGY VFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHK VYEDTLTLFPFSGETVFMSMENPGLWILG CHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNSRHPSTRQKQFNATTIP ENDIEKTDPWFAHRTPMPKIQNVSSSDLLMLLRQSPTPHGLSLSDLQEAKYETFSDDPSPGAIDSNNSLSE MTHFRPQLHHSGDMVFTPESGLQLRLNEKLGTTAATELKKLDFKVSSTSNNLISTIPSDNLAAGTDNTSSL GPPSMPVHYDSQLDTTLFGKKSSPLTESGGPLSLSEENNDSKLLESGLMNSQESSWGKNVSSREITRTTLQ SDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSV PQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQ GAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGR QVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRI RWYLLSMGSNENIHSIHFSGHVFTVRKKEEYK ALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMS TLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIH GIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPI IARYIRLHP THYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVN NPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPWN SLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY

SEQ ID NO: 30

ATGCAGATTGAGCTGAGCACCTGCTTCTTCCTGTGCCTGCTGAGGTTCTGCTTCTCTGCCACCAGGAGAT ACTACCTGGGGGCTGTGGAGCTGAGCTGGGACTACATGCAGTCTGACCTGGGGGAGCTGCCTGTGGATGC CAGGTTCCCCCCCAGAGTGCCCAAGAGCTTCCCCTTCAACACCTCTGTGGTGTACAAGAAGACCCTGTTT GTGGAGTTCACTGACCACCTGTTCAACATTGCCAAGCCCAGGCCCCCCTGGATGGGCCTGCTGGGCCCCA CCATCCAGGCTGAGGTGTATGACACTGTGGTGATCACCCTGAAGAACATGGCCAGCCACCCTGTGAGCCT GCATGCTGTGGGGGTGAGCTACTGGAAGGCCTCTGAGGGGGCTGAGTATGATGACCAGACCAGCCAGAGG GAGAAGGAGGATGACAAGGTGTTCCCTGGGGGCAGCCACACCTATGTGTGGCAGGTGCTGAAGGAGAATG GCCCCATGGCCTCTGACCCCCTGTGCCTGACCTACAGCTACCTGAGCCATGTGGACCTGGTGAAGGACCT GAACTCTGGCCTGATTGGGGCCCTGCTGGTGTGCAGGGAGGGCAGCCTGGCCAAGGAGAAGACCCAGACC CTGCACAAGTTCATCCTGCTGTTTGCTGTGTTTGATGAGGGCAAGAGCTGGCACTCTGAAACCAAGAACA GCCTGATGCAGGACAGGGATGCTGCCTCTGCCAGGGCCTGGCCCAAGATGCACACTGTGAATGGCTATGT GAACAGGAGCCTGCCTGGCCTGATTGGCTGCCACAGGAAGTCTGTGTACTGGCATGTGATTGGCATGGGC ACCACCCCTGAGGTGCACAGCATCTTCCTGGAGGGCCACACCTTCCTGGTCAGGAACCACAGGCAGGCCA GCCTGGAGATCAGCCCCATCACCTTCCTGACTGCCCAGACCCTGCTGATGGACCTGGGCCAGTTCCTGCT GTTCTGCCACATCAGCAGCCACCAGCATGATGGCATGGAGGCCTATGTGAAGGTGGACAGCTGCCCTGAG GAGCCCCAGCTGAGGATGAAGAACAATGAGGAGGCTGAGGACTATGATGATGACCTGACTGACTCTGAGA TGGATGTGGTGAGGTTTGATGATGACAACAGCCCCAGCTTCATCCAGATCAGGTCTGTGGCCAAGAAGCA CCCCAAGACCTGGGTGCACTACATTGCTGCTGAGGAGGAGGACTGGGACTATGCCCCCCTGGTGCTGGCC CCTGATGACAGGAGCTACAAGAGCCAGTACCTGAACAATGGCCCCCAGAGGATTGGCAGGAAGTACAAGA AGGTCAGGTTCATGGCCTACACTGATGAAACCTTCAAGACCAGGGAGGCCATCCAGCATGAGTCTGGCAT CCTGGGCCCCCTGCTGTATGGGGAGGTGGGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGG CCCTACAACATCTACCCCCATGGCATCACTGATGTGAGGCCCCTGTACAGCAGGAGGCTGCCCAAGGGGG TGAAGCACCTGAAGGACTTCCCCATCCTGCCTGGGGAGATCTTCAAGTACAAGTGGACTGTGACTGTGGA GGATGGCCCCACCAAGTCTGACCCCAGGTGCCTGACCAGATACTACAGCAGCTTTGTGAACATGGAGAGG GACCTGGCCTCTGGCCTGATTGGCCCCCTGCTGATCTGCTACAAGGAGTCTGTGGACCAGAGGGGCAACC AGATCATGTCTGACAAGAGGAATGTGATCCTGTTCTCTGTGTTTGATGAGAACAGGAGCTGGTACCTGAC TGAGAACATCCAGAGGTTCCTGCCCAACCCTGCTGGGGTGCAGCTGGAGGACCCTGAGTTCCAGGCCAGC AACATCATGCACAGCATCAATGGCTATGTGTTTGACAGCCTGCAGCTGTCTGTGTGCCTGCATGAGGTGG CCTACTGGTACATCCTGAGCATTGGGGCCCAGACTGACTTCCTGTCTGTGTTCTTCTCTGGCTACACCTT CAAGCACAAGATGGTGTATGAGGACACCCTGACCCTGTTCCCCTTCTCTGGGGAGACTGTGTTCATGAGC ATGGAGAACCCTGGCCTGTGGATTCTGGGCTGCCACAACTCTGACTTCAGGAACAGGGGCATGACTGCCC TGCTGAAAGTCTCCAGCTGTGACAAGAACACTGGGGACTACTATGAGGACAGCTATGAGGACATCTCTGC CTACCTGCTGAGCAAGAACAATGCCATTGAGCCCAGGAGCTTCAGCCAGAATGCCACTAATGTGTCTAAC AACAGCAACACCAGCAATGACAGCAATGTGTCTCCCCCAGTGCTGAAGAGGCACCAGAGGGAGATCACCA GGACCACCCTGCAGTCTGACCAGGAGGAGATTGACTATGATGACACCATCTCTGTGGAGATGAAGAAGGA GGACTTTGACATCTACGACGAGGACGAGAACCAGAGCCCCAGGAGCTTCCAGAAGAAGACCAGGCACTAC TTCATTGCTGCTGTGGAGAGGCTGTGGGACTATGGCATGAGCAGCAGCCCCCATGTGCTGAGGAACAGGG CCCAGTCTGGCTCTGTGCCCCAGTTCAAGAAGGTGGTGTTCCAGGAGTTCACTGATGGCAGCTTCACCCA GCCCCTGTACAGAGGGGAGCTGAATGAGCACCTGGGCCTGCTGGGCCCCTACATCAGGGCTGAGGTGGAG GACAACATCATGGTGACCTTCAGGAACCAGGCCAGCAGGCCCTACAGCTTCTACAGCAGCCTGATCAGCT ATGAGGAGGACCAGAGGCAGGGGGCTGAGCCCAGGAAGAACTTTGTGAAGCCCAATGAAACCAAGACCTA CTTCTGGAAGGTGCAGCACCACATGGCCCCCACCAAGGATGAGTTTGACTGCAAGGCCTGGGCCTACTTC TCTGATGTGGACCTGGAGAAGGATGTGCACTCTGGCCTGATTGGCCCCCTGCTGGTGTGCCACACCAACA CCCTGAACCCTGCCCATGGCAGGCAGGTGACTGTGCAGGAGTTTGCCCTGTTCTTCACCATCTTTGATGA AACCAAGAGCTGGTACTTCACTGAGAACATGGAGAGGAACTGCAGGGCCCCCTGCAACATCCAGATGGAG GACCCCACCTTCAAGGAGAACTACAGGTTCCATGCCATCAATGGCTACATCATGGACACCCTGCCTGGCC TGGTGATGGCCCAGGACCAGAGGATCAGGTGGTACCTGCTGAGCATGGGCAGCAATGAGAACATCCACAG CATCCACTTCTCTGGCCATGTGTTCACTGTGAGGAAGAAGGAGGAGTACAAGATGGCCCTGTACAACCTG TACCCTGGGGTGTTTGAGACTGTGGAGATGCTGCCCAGCAAGGCTGGCATCTGGAGGGTGGAGTGCCTGA TTGGGGAGCACCTGCATGCTGGCATGAGCACCCTGTTCCTGGTGTACAGCAACAAGTGCCAGACCCCCCT GGGCATGGCCTCTGGCCACATCAGGGACTTCCAGATCACTGCCTCTGGCCAGTATGGCCAGTGGGCCCCC AAGCTGGCCAGGCTGCACTACTCTGGCAGCATCAATGCCTGGAGCACCAAGGAGCCCTTCAGCTGGATCA AGGTGGACCTGCTGGCCCCCATGATCATCCATGGCATCAAGACCCAGGGGGCCAGGCAGAAGTTCAGCAG CCTGTACATCAGCCAGTTCATCATCATGTACAGCCTGGATGGCAAGAAGTGGCAGACCTACAGGGGCAAC AGCACTGGCACCCTGATGGTGTTCTTTGGCAATGTGGACAGCTCTGGCATCAAGCACAACATCTTCAACC CCCCCATCATTGCCAGATACATCAGGCTGCACCCCACCCACTACAGCATCAGGAGCACCCTGAGGATGGA GCTGATGGGCTGTGACCTGAACAGCTGCAGCATGCCCCTGGGCATGGAGAGCAAGGCCATCTCTGATGCC CAGATCACTGCCAGCAGCTACTTCACCAACATGTTTGCCACCTGGAGCCCCAGCAAGGCCAGGCTGCACC TGCAGGGCAGGAGCAATGCCTGGAGGCCCCAGGTCAACAACCCCAAGGAGTGGCTGCAGGTGGACTTCCA GAAGACCATGAAGGTGACTGGGGTGACCACCCAGGGGGTGAAGAGCCTGCTGACCAGCATGTATGTGAAG GAGTTCCTGATCAGCAGCAGCCAGGATGGCCACCAGTGGACCCTGTTCTTCCAGAATGGCAAGGTGAAGG TGTTCCAGGGCAACCAGGACAGCTTCACCCCTGTGGTGAACAGCCTGGACCCCCCCCTGCTGACCAGATA CCTGAGGATTCACCCCCAGAGCTGGGTGCACCAGATTGCCCTGAGGATGGAGGTGCTGGGCTGTGAGGCC CAGGAC CTGTACTGA

SEQ ID NO: 31

TACGTCTAACTCGACTCGTGGACGAAGAAGGACACGGACGACTCCAAGACGAAGAGACGGTGGTCCTCTA TGATGGACCCCCGACACCTCGACTCGACCCTGATGTACGTCAGACTGGACCCCCTCGACGGACACCTACG GTCCAAGGGGGGGTCTCACGGGTTCTCGAAGGGGAAGTTGTGGAGACACCACATGTTCTTCTGGGACAAA CACCTCAAGTGACTGGTGGACAAGTTGTAACGGTTCGGGTCCGGGGGGACCTACCCGGACGACCCGGGGT GGTAGGTCCGACTCCACATACTGTGACACCACTAGTGGGACTTCTTGTACCGGTCGGTGGGACACTCGGA CGTACGACACCCCCACTCGATGACCTTCCGGAGACTCCCCCGACTCATACTACTGGTCTGGTCGGTCTCC CTCTTCCTCCTACTGTTCCACAAGGGACCCCCGTCGGTGTGGATACACACCGTCCACGACTTCCTCTTAC CGGGGTACCGGAGACTGGGGGACACGGACTGGATGTCGATGGACTCGGTACACCTGGACCACTTCCTGGA CTTGAGACCGGACTAACCCCGGGACGACCACACGTCCCTCCCGTCGGACCGGTTCCTCTTCTGGGTCTGG GACGTGTTCAAGTAGGACGACAAACGACACAAACTACTCCCGTTCTCGACCGTGAGACTTTGGTTCTTGT CGGACTACGTCCTGTCCCTACGACGGAGACGGTCCCGGACCGGGTTCTACGTGTGACACTTACCGATACA CTTGTCCTCGGACGGACCGGACTAACCGACGGTGTCCTTCAGACACATGACCGTACACTAACCGTACCCG TGGTGGGGACTCCACGTGTCGTAGAAGGACCTCCCGGTGTGGAAGGACCAGTCCTTGGTGTCCGTCCGGT CGGACCTCTAGTCGGGGTAGTGGAAGGACTGACGGGTCTGGGACGACTACCTGGACCCGGTCAAGGACGA CAAGACGGTGTAGTCGTCGGTGGTCGTACTACCGTACCTCCGGATACACTTCCACCTGTCGACGGGACTC CTCGGGGTCGACTCCTACTTCTTGTTACTCCTCCGACTCCTGATACTACTACTGGACTGACTGAGACTCT ACCTACACCACTCCAAACTACTACTGTTGTCGGGGTCGAAGTAGGTCTAGTCCAGACACCGGTTCTTCGT GGGGTTCTGGACCCACGTGATGTAACGACGACTCCTCCTCCTGACCCTGATACGGGGGGACCACGACCGG GGACTACTGTCCTCGATGTTCTCGGTCATGGACTTGTTACCGGGGGTCTCCTAACCGTCCTTCATGTTCT TCCAGTCCAAGTACCGGATGTGACTACTTTGGAAGTTCTGGTCCCTCCGGTAGGTCGTACTCAGACCGTA GGACCCGGGGGACGACATACCCCTCCACCCCCTGTGGGACGACTAGTAGAAGTTCTTGGTCCGGTCGTCC GGGATGTTGTAGATGGGGGTACCGTAGTGACTACACTCCGGGGACATGTCGTCCTCCGACGGGTTCCCCC ACTTCGTGGACTTCCTGAAGGGGTAGGACGGACCCCTCTAGAAGTTCATGTTCACCTGACACTGACACCT CCTACCGGGGTGGTTCAGACTGGGGTCCACGGACTGGTCTATGATGTCGTCGAAACACTTGTACCTCTCC CTGGACCGGAGACCGGACTAACCGGGGGACGACTAGACGATGTTCCTCAGACACCTGGTCTCCCCGTTGG TCTAGTACAGACTGTTCTCCTTACACTAGGACAAGAGACACAAACTACTCTTGTCCTCGACCATGGACTG ACTCTTGTAGGTCTCCAAGGACGGGTTGGGACGACCCCACGTCGACCTCCTGGGACTCAAGGTCCGGTCG TTGTAGTACGTGTCGTAGTTACCGATACACAAACTGTCGGACGTCGACAGACACACGGACGTACTCCACC GGATGACCATGTAGGACTCGTAACCCCGGGTCTGACTGAAGGACAGACACAAGAAGAGACCGATGTGGAA GTTCGTGTTCTACCACATACTCCTGTGGGACTGGGACAAGGGGAAGAGACCCCTCTGACACAAGTACTCG TACCTCTTGGGACCGGACACCTAAGACCCGACGGTGTTGAGACTGAAGTCCTTGTCCCCGTACTGACGGG ACGACTTTCAGAGGTCGACACTGTTCTTGTGACCCCTGATGATACTCCTGTCGATACTCCTGTAGAGACG GATGGACGACTCGTTCTTGTTACGGTAACTCGGGTCCTCGAAGTCGGTCTTACGGTGATTACACAGATTG TTGTCGTTGTGGTCGTTACTGTCGTTACACAGAGGGGGTCACGACTTCTCCGTGGTCTCCCTCTAGTGGT CCTGGTGGGACGTCAGACTGGTCCTCCTCTAACTGATACTACTGTGGTAGAGACACCTCTACTTCTTCCT CCTGAAACTGTAGATGCTGCTCCTGCTCTTGGTCTCGGGGTCCTCGAAGGTCTTCTTCTGGTCCGTGATG AAGTAACGACGACACCTCTCCGACACCCTGATACCGTACTCGTCGTCGGGGGTACACGACTCCTTGTCCC GGGTCAGACCGAGACACGGGGTCAAGTTCTTCCACCACAAGGTCCTCAAGTGACTACCGTCGAAGTGGGT CGGGGACATGTCTCCCCTCGACTTACTCGTGGACCCGGACGACCCGGGGATGTAGTCCCGACTCCACCTC CTGTTGTAGTACCACTGGAAGTCCTTGGTCCGGTCGTCCGGGATGTCGAAGATGTCGTCGGACTAGTCGA TACTCCTCCTGGTCTCCGTCCCCCGACTCGGGTCCTTCTTGAAACACTTCGGGTTACTTTGGTTCTGGAT GAAGACCTTCCACGTCGTGGTGTACCGGGGGTGGTTCCTACTCAAACTGACGTTCCGGACCCGGATGAAG AGACTACACCTGGACCTCTTCCTACACGTGAGACCGGACTAACCGGGGGACGACCACACGGTGTGGTTGT GGGACTTGGGACGGGTACCGTCCGTCCACTGACACGTCCTCAAACGGGACAAGAAGTGGTAGAAACTACT TTGGTTCTCGACCATGAAGTGACTCTTGTACCTCTCCTTGACGTCCCGGGGGACGTTGTAGGTCTACCTC CTGGGGTGGAAGTTCCTCTTGATGTCCAAGGTACGGTAGTTACCGATGTAGTACCTGTGGGACGGACCGG ACCACTACCGGGTCCTGGTCTCCTAGTCCACCATGGACGACTCGTACCCGTCGTTACTCTTGTAGGTGTC GTAGGTGAAGAGACCGGTACACAAGTGACACTCCTTCTTCCTCCTCATGTTCTACCGGGACATGTTGGAC ATGGGACCCCACAAACTCTGACACCTCTACGACGGGTCGTTCCGACCGTAGACCTCCCACCTCACGGACT AACCCCTCGTGGACGTACGACCGTACTCGTGGGACAAGGACCACATGTCGTTGTTCACGGTCTGGGGGGA CCCGTACCGGAGACCGGTGTAGTCCCTGAAGGTCTAGTGACGGAGACCGGTCATACCGGTCACCCGGGGG TTCGACCGGTCCGACGTGATGAGACCGTCGTAGTTACGGACCTCGTGGTTCCTCGGGAAGTCGACCTAGT TCCACCTGGACGACCGGGGGTACTAGTAGGTACCGTAGTTCTGGGTCCCCCGGTCCGTCTTCAAGTCGTC GGACATGTAGTCGGTCAAGTAGTAGTACATGTCGGACCTACCGTTCTTCACCGTCTGGATGTCCCCGTTG TCGTGACCGTGGGACTACCACAAGAAACCGTTACACCTGTCGAGACCGTAGTTCGTGTTGTAGAAGTTGG GGGGGTAGTAACGGTCTATGTAGTCCGACGTGGGGTGGGTGATGTCGTAGTCCTCGTGGGACTCCTACCT CGACTACCCGACACTGGACTTGTCGACGTCGTACGGGGACCCGTACCTCTCGTTCCGGTAGAGACTACGG GTCTAGTGACGGTCGTCGATGAAGTGGTTGTACAAACGGTGGACCTCGGGGTCGTTCCGGTCCGACGTGG ACGTCCCGTCCTCGTTACGGACCTCCGGGGTCCAGTTGTTGGGGTTCCTCACCGACGTCCACCTGAAGGT CTTCTGGTACTTCCACTGACCCCACTGGTGGGTCCCCCACTTCTCGGACGACTGGTCGTACATACACTTC CTCAAGGACTAGTCGTCGTCGGTCCTACCGGTGGTCACCTGGGACAAGAAGGTCTTACCGTTCCACTTCC ACAAGGTCCCGTTGGTCCTGTCGAAGTGGGGACACCACTTGTCGGACCTGGGGGGGGACGACTGGTCTAT GGACTCCTAAGTGGGGGTCTCGACCCACGTGGTCTAACGGGACTCCTACCTCCACGACCCGACACTCCGG GTCCTGGACATGACT

SEQ ID NO: 32

MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSWYKKTLF VEFTDHLFNIAKPRPPWMGLLGPTIQAEVYDTWITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQR EKEDDKVFPGGSHTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQT LHKFILLFAVFDEGKSWHSETKNSLMQDRDAASARAWPK HTVNGYVNRSLPGLIGCHRKSVYWHVIGMG TTPEVHSIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPE EPQLRMK NEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKT VHYIAAEEEDWDYAPLVLA PDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGILGPLLYGEVGDTLLI IFK QASR PYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPRCLTRYYSSFVNMER DLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLEDPEFQAS NIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMS MENPGLWILGCHNSDFRNRGMTALLKVSSCDK TGDYYEDSYEDISAYLLSK NAIEPRSFSQNATNVSN NSNTSNDSNVSPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHY FIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKWFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVE DNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRK FVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYF SDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQME DPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYK ALYNL YPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAP KLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFI IMYSLDGKKWQTYRGN STGTLMVFFGNVDSSGIKHNIFNPPI IARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDA QITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVK EFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPWNSLDPPLLTRYLRIHPQS VHQIALRMEVLGCEA QDLY

SEQ ID NO: 33

GGCGCCTCTAGAGTTATAACCGGTAATCGGTATAATAAGTAACCAATATATCGTATTTAGTTATAACCGA TAACCGGTAACGTATGCAACATAGATATAGTATTATACATGTAAATATAACCGAGTACAGGTTATACTGG CGGTACAACCGTAACTAATAACTGATCAATAATTATCATTAGTTAATGCCCCAGTAATCAAGTATCGGGT ATATACCTCAAGGCGCAATGTATTGAATGCCATTTACCGGGCGGACCGACTGGCGGGTTGCTGGGGGCGG GTAACTGCAGTTATTACTGCATACAAGGGTATCATTGCGGTTATCCCTGAAAGGTAACTGCAGTTACCCA CCTCATAAATGCCATTTGACGGGTGAACCGTCATGTAGTTCACATAGTATACGGTTCAGGCGGGGGATAA CTGCAGTTACTGCCATTTACCGGGCGGACCGTAATACGGGTCATGTACTGGAATGCCCTGAAAGGATGAA CCGTCATGTAGATGCATAATCAGTAGCGATAATGGTACCACTACGCCAAAACCGTCATGTGGTTACCCGC ACCTATCGCCAAACTGAGTGCCCCTAAAGGTTCAGAGGTGGGGTAACTGCAGTTACCCTCAAACAAAACC GTGGTTTTAGTTGCCCTGAAAGGTTTTACAGCATTATTGGGGCGGGGCAACTGCGTTTACCCGCCATCCG CACATGCCACCCTCCAGATATATTCGTCTCGAGCAAATCACTTGGCAGTCTAGTGATCTTCGAAATAACG CCATCAAATAGTGTCAATTTAACGATTGCGTCAGTCACGAAGACTGTGTTGTCAGAGCTTGAATTCGACG TCTTCAACCAGCACTCCGTGACCCGTCCGATCG