WIPO logo
Mobile | Deutsch | English | Español | 日本語 | 한국어 | Português | Русский | 中文 | العربية |
PATENTSCOPE

Recherche dans les collections de brevets nationales et internationales
World Intellectual Property Organization
Recherche
 
Options de navigation
 
Traduction
 
Options
 
Quoi de neuf
 
Connexion
 
Aide
 
maximize
Traduction automatique
1. (WO2009133062) COMPOSITIONS DURCISSABLES À BASE DE POLYURÉTHANES SILYLÉS
Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

Härtbare Zusammensetzungen auf Basis silylierter Polyurethane

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von silanvernetzenden, härtbaren Zusammensetzungen und deren Verwendung in Kleb- und Dichtstoffen und Beschichtungsmitteln.

Polymersysteme, die über reaktive Alkoxysilylgruppen verfügen, sind bekannt. In Gegenwart von Luftfeuchtigkeit sind diese alkoxysilanterminierten Polymere bereits bei Raumtemperatur in der Lage, unter Abspaltung der Alkoxygruppen miteinander zu kondensieren. Je nach Gehalt an Alkoxysilylgruppen und deren Aufbau bilden sich dabei hauptsächlich langkettige Polymere (Thermoplaste), relativ weitmaschige dreidimensionale Netzwerke (Elastomere) oder hochvernetzte Systeme (Duroplaste).

Die Polymere weisen in der Regel ein organisches Grundgerüst auf, das an den Enden Alkoxysilylgruppen trägt. Bei dem organischen Grundgerüst kann es sich beispielsweise um Polyurethane, Polyester, Polyether etc. handeln.

Einkomponentige, feuchtigkeitshärtende Kleb- und Dichtstoffe spielen seit Jahren eine bedeutende Rolle bei zahlreichen technischen Anwendungen. Neben den Polyurethan-Kleb-und Dichtstoffen mit freien Isocyanatgruppen und den traditionellen Silikon- Kleb- und Dichtstoffen auf der Basis von Dimethylpolysiloxanen sind in letzter Zeit auch verstärkt die so genannten modifizierten Silan-Kleb- und Dichtstoffe eingesetzt worden. Bei der letztgenannten Gruppe ist der Hauptbestandteil des Polymerrückgrades ein Polyether und die reaktiven und vernetzungsfähigen Endgruppen sind Alkoxysilylgruppen. Gegenüber den Polyurethan-Kleb-und Dichtstoffen weisen die modifizierten Silan-Kleb- und Dichtstoffe den Vorteil der Freiheit von Isocyanatgruppen, insbesondere von monomeren Diisocyanaten auf, weiterhin zeichnen sie sich durch ein breites Haftspektrum auf einer Vielzahl von Substraten ohne Oberflächenvorbehandlung durch Primer aus.

US 4,222,925 A und US 3,979,344 A beschreiben bereits bei Raumtemperatur härtbare siloxanterminierte organische Dichtstoffzusammensetzungen auf der Basis von Umsetzungsprodukten von Isocyanat-terminierten Polyurethan-Prepolymeren mit 3-Aminopropyltrimethoxysilan beziehungsweise 2-Aminoethyl-, 3-Aminopropylmethoxysilan zu isocyanatfreien siloxanterminierten Prepolymeren. Kleb- und Dichtstoffe auf der Basis dieser Prepolymeren weisen jedoch unbefriedigende mechanische Eigenschaften, insbesondere in Bezug auf ihre Dehnung und Reißfestigkeit, auf.

Für die Herstellung von silanterminierten Prepolymeren auf der Basis von Polyethern sind die nachfolgend aufgeführten Verfahren bereits beschrieben worden:

- Copolymerisation von ungesättigten Monomeren mit solchen, die Alkoxysilylgruppen aufweisen, wie z.B. Vinyltrimethoxysilan.

- Aufpfropfung von ungesättigten Monomeren wie Vinyltrimethoxysilan auf Thermoplaste wie Polyethylen.

Hydroxyfunktionelle Polyether werden mit ungesättigten Chlorverbindungen, z.B. Allylchlorid, in einer Ethersynthese in Polyether mit endständigen olefinischen Doppelbindungen umgesetzt, die ihrerseits mit Hydrosilanverbindungen, die hydrolysierbare Gruppen haben, wie z.B. HSi(OCH ) in einer Hydrosilylierungsreaktion unter dem katalytischen Einfluss von beispielsweise Übergangsmetallverbindungen der 8. Gruppe zu silanterminierten Polyethern umgesetzt werden.

In einem anderen Verfahren werden die olefinisch ungesättigte Gruppen enthaltenden Polyether mit einem Mercaptosilan wie z.B. 3-Mercaptopropyltrialkoxysilan umgesetzt. Bei einem weiteren Verfahren werden zunächst Hydroxylgruppen-haltige Polyether mit Di- oder Polyisocyanaten umgesetzt, die dann ihrerseits mit aminofunktionellen Silanen oder mercaptofunktionellen Silanen zu silanterminierten Prepolymeren umgesetzt werden. Eine weitere Möglichkeit sieht die Umsetzung von hydroxyfunktionellen Polyethern mit isocyanatofunktionellen Silanen wie z.B. 3-lsocyanatopropyltrimethoxysilan vor.

Diese Herstellverfahren und die Verwendung der oben genannten silanterminierten Prepolymeren in Kleb-/Dichtstoffanwendungen sind beispielsweise in den folgenden Patentschriften genannt: US-A-3971751 , EP-A-70475, DE-A-19849817, US-A-6124387, US-A-5990257, US-A-4960844, US-A-3979344, US-A-3632557, DE-A-4029504, EP-A-601021 oder EP-A-370464.

Nach der Lehre der EP-A-397 036 wird ein Polyether erst mit olefinischen Endgruppen, z.B. Allylendgruppen, versehen und dann bevorzugt mit Alkoxyhydridosilanen umgesetzt. Für die Aushärtungsreaktion kann ggf. ein Katalysator verwendet werden, genannt werden beispielsweise Metallsalze von Carbonsäuren wie Alkyltitanate, Zinnoctoate, Dibutylzinndilaurat (DBTL), Aminsalze oder andere saure oder basische Katalysatoren.

EP-A-0931800 beschreibt die Herstellung von silylierten Polyurethanen durch Umsetzung einer Polyolkomponente mit einer endständigen Ungesättigtheit von weniger als 0,02 meq/g mit einem Diisocyanat zu einem Hydroxyl-terminierten Prepolymer, das anschließend mit einem Isocyanatosilan der Formel OCN-R-Si-(X)m(-OR1)3-m verkappt wird, wobei m 0,1 oder 2 ist und jeder R1-Rest eine Alkylgruppe mit 1 bis 4 C-Atomen und R eine difunktionelle organische Gruppe ist. Gemäß der Lehre dieser Schrift soll die Herstellung der silylierten Polyurethane unter wasserfreien Bedingungen, vorzugsweise unter Stickstoffdecker erfolgen, wobei typischerweise Dilalkyzinndicarboxylate als Katalysator verwendet werden.

Die E P-A- 1535940 beschreibt ein Verfahren zur Herstellung von organyloxysilylterminierten Polymeren, die gegenüber Luftfeuchtigkeit erhöhte Stabilität aufweisen, durch Umsetzung von α,ω-dihydroxyterminierten organischen Polymeren mit isocyanatofunktionellen Silanen in Anwesenheit von mindestens einem Katalysator, ausgewählt aus der Gruppe bestehend aus Bismuth- und Zinkverbindungen, und solche Polymere enthaltenden vernetzbaren Massen, die zur Aushärtung Silan-Kondensationskatalysatoren enthalten, genannt werden Dibutylzinndilaurat, Dibutylzinndiacetat, Tetrabutyldimethoxydistannoxan, Lösungen von Dibutylzinnoxid in Methyltrimethoxysilan oder Tetrethoxysilan, Dioctylzinndilaurat, Dioctylzinndiacetat, Tetraoctyldimethoxydistannoxan, Lösungen von Dioctylzinnoxid in Methyltrimethoxysilan oder Tetraethoxysilan, Dibutylzinn-bis(2,4-pentandionat), Dibutylzinnmaleat, Aminopropyltrimethoxysilan und Aminoethylaminopropyltrimethoxysilan sowie saure Katalysatoren, wie organische Carbonsäuren, Phosphorsäuren bzw. Phosphorsäuerester, Säurechloride oder Hydrochloride.

Es besteht weiterhin das Bedürfnis nach isocyanatfreien Zusammensetzungen zur Herstellung von 1 K- oder 2K- Kleb- und Dichtstoffen oder Beschichtungsmitteln, die eine akzeptable Härtungszeit und nach Aushärtung eine besonders gute Elastizität und Dehnbarkeit aufweisen und die frei von organischen Zinnverbindungen sind.

Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen.

Sie besteht im Wesentlichen in der Bereitstellung eines Verfahrens zur Herstellung vernetzbarer

Zubereitungen, umfassend: in einem ersten Schritt die Umsetzung eines oder mehrerer α, ω- difunktioneller organischer

Polymerer der Formel (1 )

X-A-X (1 ) mit organofunktionellen Silanen der Formel (2)

Y-R-Si-(R1)m(-OR2)3-m (2)

in Anwesenheit von Katalysatoren (A), ausgewählt aus der Gruppe bestehend aus Kalium-,

Eisen-, Indium-, Zink-, Wismut- (Bismuth-) und Kupferverbindungen, zu organyloxysilylterminierten Polymeren P1. Dabei ist R ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoff rest mit 1 bis 12 Kohlenstoffatomen, der mit Heteroatomen unterbrochen sein kann,

R1 und R2 können gleich oder verschieden sein und bedeuten einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die mit Heteroatomen unterbrochen sein können,

A ist ein zweiwertiger, gegebenenfalls substituierter Kohlenwasserstoffrest mit mindestens 6

Kohlenstoffatomen, der mit Heteroatomen unterbrochen sein kann, m ist gleich 0,1 oder 2, und

X ist eine Hydroxylgruppe und Y eine Isocyanatgruppe oder X ist eine Isocyanatgruppe und

Y eine Hydroxylgruppe oder eine primäre oder sekundäre Aminogruppe.

In einem zweiten Schritt werden die im ersten Schritt erhaltenen Polymere P1 mit einem Silan-Kondensationskatalysator (B) ausgewählt aus der Gruppe bestehend aus Verbindungen von Elementen der dritten

Hauptgruppe und / oder vierten Nebengruppe des Periodensystems der Elemente und heterocyclischen organischen Aminen, Aminkomplexen der Elementverbindungen oder deren Mischungen, sowie gegebenenfalls weiteren Stoffen (C) vermischt, wobei die

Zubereitungen frei von organischen Zinnverbindungen sind.

Dabei bedeutet „substituiert", dass mindestens eines der als Hauptkettenglieder in einem Rest vorliegenden Atome mit mindestens einem weiteren Atom, das kein Wasserstoffatom und kein Hauptkettenglied ist, verbunden ist bzw. sein kann. Unter einer „unsubstituierten Kette" ist demzufolge ein Rest zu verstehen, der nur aus einer einzigen Kette besteht und dessen konstituierende Atome nur mit weiteren Kettengliedern und/oder Wasserstoffatomen verbunden sind.

„Mit Heteroatomen unterbrochen" bedeutet, dass die Hauptkette eines Restes mindestens ein von Kohlenstoff verschiedenes Atom als Kettenglied aufweist.

Unter „weiteren Stoffen (C)" sind alle Stoffe zu verstehen, die neben den Polymeren P1 und dem Silan-Kondensationskatalysator (B) noch zur Herstellung einer erfindungsgemäßen vernetzbaren Zubereitung benötigt werden, wobei weder die Anzahl noch die Identität des Stoffes oder der Stoffe (C) einer Beschränkung unterliegen.

Als α, ω- difunktionelle organische Polymere der Formel X-A-X können im Rahmen der vorliegenden Erfindung für X gleich -OH prinzipiell eine Vielzahl von mindestens zwei Hydroxylgruppen tragenden Polymeren eingesetzt werden. Beispielhaft genannt seien Polyesterpolyole, Hydroxylgruppen-haltige Polycaprolactone, Hydroxylgruppen-haltige Polybutadiene, Polyisoprene, Dimerdiole oder OH-terminierte Polydimethylsiloxane sowie deren Hydrierungsprodukte oder auch Hydroxylgruppen-haltige Polyacrylate oder Polymethacrylate.

Bevorzugt handelt es sich bei den organischen Polymeren der Formel (1 ) um Polymerverbindungen auf der Basis von Polyethern oder Polyestern.

Ganz besonders bevorzugt werden jedoch als Polyole Polyalkylenoxide, insbesondere Polyethylenoxide und/oder Polypropylenoxide.

Polyole, die Polyether als Polymergerüst enthalten, besitzen nicht nur an den Endgruppen, sondern auch im Polymerrückgrat eine flexible und elastische Struktur. Damit kann man Zusammensetzungen herstellen, die nochmals verbesserte elastische Eigenschaften aufweisen. Dabei sind Polyether nicht nur in ihrem Grundgerüst flexibel, sondern gleichzeitig beständig. So werden Polyether beispielsweise von Wasser und Bakterien, im Gegensatz zu beispielsweise Polyestern, nicht angegriffen oder zersetzt.

Besonders bevorzugt werden daher Polyethylenoxide und/oder Polypropylenoxide eingesetzt.

Nach einer weiteren bevorzugten Ausführungsform der erfindungsgemäß zu verwendenden Polyolverbindungen X-A-X beträgt das Molekulargewicht Mn zwischen 500 und 20 000 g/mol (Dalton), wobei die terminale Ungesättigtheit kleiner als 0,05 meq/g, bevorzugt kleiner als 0,04 meq/g und besonders bevorzugt kleiner als 0,02 meq/g ist.

Diese Molekulargewichte sind besonders vorteilhaft, da diese Polyole kommerziell leicht verfügbar sind. Besonders bevorzugt sind Molekulargewichte von 4 000 -10000 g/mol (Dalton).

Ganz besonders bevorzugt werden Polyoxyalkylene, insbesondere Polyethylenoxide oder Polypropylenoxide, eingesetzt, die eine Polydispersität PD von weniger als 2, bevorzugt weniger als 1 ,5 aufweisen.

Unter dem Molekulargewicht Mn wird das zahlenmittlere Molekulargewicht des Polymeren verstanden. Dieses kann, ebenso wie das gewichtsmittlere Molekulargewicht Mw, durch Gelpermeationschromatographie (GPC, auch: SEC) bestimmt werden. Dieses Verfahren ist dem Fachmann bekannt. Die Polydispersität leitet sich aus den mittleren Molekulargewichten Mw und Mn ab. Sie wird berechnet als PD = Mw/ Mn.

Besonders vorteilhafte viskoelastische Eigenschaften lassen sich erreichen, wenn man als polymere Grundgerüste Polyoxyalkylenpolymere, welche eine enge Molmassenverteilung und damit niedrige Polydispersität besitzen, einsetzt. Diese sind beispielsweise durch die so genannte Double-Metal-Cyanide-Katalyse (DMC-Katalyse) herstellbar. Diese Polyoxyalkylenpolymere zeichnen sich durch eine besonders enge Molmassenverteilung, durch eine hohe mittlere Molmasse und durch eine sehr niedrige Zahl an Doppelbindungen an den Enden der Polymerketten aus.

Solche Polyoxyalkylenpolymere haben eine Polydispersität PD (Mw/Mn) von höchstens 1 ,7. Besonders bevorzugte organische Grundgerüste sind beispielsweise Polyether mit einer Polydispersität von etwa 1 ,01 bis etwa 1 ,3, insbesondere etwa 1 ,05 bis etwa 1 ,18, beispielsweise etwa 1 ,08 bis etwa 1 ,1 1 oder etwa 1 ,12 bis etwa 1 ,14.

Gegebenenfalls kann die obengenannte Polyolverbindung in einer vorgelagerten Reaktion mit einem Diisocyanat bei einem stöchiometrischen Überschuss der Polyolverbindungen gegenüber der Diisocyanatverbindung zu einem Polyurethan-Prepolymer umgesetzt werden, das Hydroxyl-terminiert ist. Die Gruppierung A in Formel (1 ) enthält in diesem Fall neben den Polyethergruppen Urethangruppierungen in der Polymerkette. Hierdurch stehen für die Folgereaktion besonders hochmolekulare α, ω- difunktionelle Polyole zur Verfügung.

Als α, ω- difunktionelle organische Polymere der Formel X-A-X können für X gleich -NCO α, ω-difunktionelle Polyole der oben genannten Art mit einem Diisocyanat bei einem stöchiometrischen Überschuss der Diisocyanatverbindung gegenüber den Polyolverbindungen bzw. gegenüber den OH-Gruppen der Polyolverbindung(en) zu einem Polyurethan-Prepolymer umgesetzt werden, das Isocyanat-terminiert ist. Die Gruppierung A in Formel (1 ) enthält in diesem Fall in der Regel neben den Polyethergruppen noch Urethangruppierungen in der Polymerkette. Durch die Wahl des stöchiometrischen Überschusses der Diisocyanatverbindung kann das Molekulargewicht des α,ω-diisocyanatotermimierten Polymers X-A-X in weiten Grenzen variiert werden und den Erfordernissen der geplanten Anwendung angepasst werden.

Wie bereits oben ausgeführt, werden die Polyolverbindungen X-A-X mit organofunktionellen Silanen vom Typ Y-R-Si-(R1)m(-OR2)3-m umgesetzt, wobei Y in diesem Fall eine Isocyanatgruppe ist.

Beispiele für den zweiwertigen Rest R sind Alkylenreste, Methylen-, Ethylen-, n-Propylen-, iso-Propylen-, n-Butylen-, iso-Butylen-, tert.-Butylen-, n-Pentylen-, iso-Pentylen-, neo-Pentylen-, tert.-Pentylenrest, n-Hexylenrest, n-Heptylenrest, n-Octylenrest, iso-Octylenreste, 2,2,4-Trimethylpentylenrest, n-Nonylenrest, n-Decylenrest, n-Dodecylenrest; Alkenylenreste, wie der Vinylen- und der Allylenrest; Cycloalkylenreste, wie Cyclopentylen-, Cyclohexylen-, Cycloheptylenreste und Methylcyclohexylenreste; Arylenreste, wie der Phenylen- und derNaphthylenrest; Alkarylenreste, wie o-, m-, p-Tolylenreste, Xylylenreste und Ethylphenylenreste; Aralkylenreste, wie der Benzylenrest, der α- und der ß-Phenylethylenrest.

Besonders bevorzugt sind für R zweiwertige Kohlenwasserstoff reste mit 1 bis 3 Kohlenstoffatomen. Insbesondere Verbindungen mit R = Methylen weisen eine hohe Reaktivität der abschließenden Silylgruppen auf, was zur Verkürzung der Abbinde- und Härtungszeiten beiträgt. Wird für R eine Propylengruppe gewählt, so weisen diese Verbindungen eine besonders hohe Flexibilität auf. Diese Eigenschaft wird der längeren verbindenden Kohlenstoffkette zwischen dem über Y gebundenen polymeren Grundgerüst und abschließender Silylgruppe zugeschrieben, da Alkylengruppen allgemein flexibel und beweglich sind.

Bei den Resten R1 und R2 handelt es sich vorzugsweise jeweils unabhängig voneinander um einen Kohlenwasserstoff rest mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt um einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methylrest oder Ethylrest. Verbindungen mit Alkoxysilylgruppen weisen je nach Natur der Reste R2 unterschiedliche Reaktivitäten bei chemischen Reaktionen auf. Dabei weist innerhalb der Alkoxygruppen die Methoxygruppe die größte Reaktivität auf, höhere aliphatische Reste wie Ethoxy und verzweigte oder zyklische Reste wie Cyklohexyl bewirken eine deutlich geringe Reaktivität der abschließenden Alkoxysilylgruppe. Es können jedoch auch Kohlenwasserstoffreste ausgewählt aus n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pentylrest, Hexylreste, Heptylreste, Octylreste, wie der n-Octylrest und iso-Octyl reste, wie der 2,2,4-Trimethylpentylrest, Nonylreste, Decylreste, Dodecylreste, Alkenylreste, wie der Vinyl-und der Allylrest; Cycloalkylreste, wie Cyclopentyl-, Cyclohexyl-, Cycloheptylreste und Methylcyclohexylreste; Arylreste, wie der Phenyl- und der Naphthylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste; Aralkylreste, wie der Benzylrest, der α- und der ß-Phenylethylrest Verwendung finden.

In einer speziellen Ausführungsform der vorliegenden Erfindung hat m in der Formel (2) den Wert 0 oder 1 , so dass Tri- bzw. Dialkoxysilylgruppen vorliegen. Der besondere Vorteil von Dialkoxysilylgruppen liegt darin, dass die entsprechenden Zusammensetzungen nach der Aushärtung elastischer, weicher sind als Trialkoxysilylgruppen enthaltende Systeme. Sie sind deshalb insbesondere für eine Anwendung als Dichtstoffe geeignet. Darüber hinaus spalten sie bei der Aushärtung weniger Alkohol ab und bieten deshalb auch unter physiologischen Gesichtspunkten einen Anwendungsvorteil. Mit Trialkoxysilylgruppen hingegen lässt sich ein höherer Vernetzungsgrad erreichen, was besonders vorteilhaft ist, wenn nach der Aushärtung eine harte, feste Masse gewünscht wird. Darüber hinaus sind Trialkoxysilylgruppen reaktiver, vernetzen also schneller und senken somit die benötigte Menge an Katalysator, und sie weisen Vorteile beim „kalten Fluss" auf.

Besonders geeignet sind die nachfolgend aufgeführten Isocyanatosilane: Methyldimethoxysilylmethylisocyanat, Ethyldimethoxysilylmethylisocyanat, Methyldiethoxysilylmethylisocyanat, Ethyldiethoxysilylmethylisocyanat, Methyldimethoxysilylethylisocyanat, Ethyldimethoxysilylethylisocyanat, Methyldiethoxysilylethylisocyanat, Ethyldiethoxysilylethylisocyanat, Methyldimethoxysilylpropylisocyanat, Ethyldimethoxysilylpropylisocyanat, Methyldiethoxysilylpropylisocyanat, Ethyldiethoxysilylpropylisocyanat, Methyldimethoxysilylbutylisocyanat, Ethyldimethoxysilylbutylisocyanat, Methyldiethoxysilylbutylisocyanat, Diethylethoxysilylbutylisocyanat, Ethyldiethoxysilylbutylisocyanat, Methyldimethoxysilylpentylisocyanat, Ethyldimethoxysilylpentylisocyanat, Methyldiethoxysilylpentylisocyanat, Ethyldiethoxysilylpentylisocyanat, Methyldimethoxysilylhexylisocyanat, Ethyldimethoxysilylhexylisocyanat, Methyldiethoxysilylhexylisocyanat,

Ethyldiethoxysilylhexylisocyanat, Trimethoxysilylmethylisocyanat, Triethoxysilylmethylisocyanat, Trimethoxysilylethylisocyanat, Triethoxysilylethylisocyanat, Trimethoxysilylpropylisocyanat (z.B. GF 40, Fa. Wacker), Triethoxysilylpropylisocyanat, Trimethoxysilylbutylisocyanat, Triethoxysilylbutylisocyanat, Trimethoxysilylpentylisocyanat, Triethoxysilylpentylisocyanat, Trimethoxysilylhexylisocyanat, Triethoxysilylhexylisocyanat.

Besonders bevorzugt werden Methyldimethoxysilylmethylisocyanat, Methyldiethoxysilylmethylisocyanat, Methyldimethoxysilylpropylisocyanat und Ethyldimethoxysilylpropylisocyanat oder deren Trialkoxyanaloga.

Das oder die Isocyanatosilan(e) werden dabei in mindestens stöchiometrischer Menge zu den Hydroxylgruppen des Polyols eingesetzt, bevorzugt wird jedoch ein geringer stöchiometrischer Überschuss der Isocyanatosilane gegenüber den Hydroxylgruppen des Polyols. Dieser stöchiometrische Überschuss beträgt zwischen 0,5 und 10, vorzugsweise zwischen 1 ,2 und 2 Equivalente Isocyanatgruppen bezogen auf die Hydroxylgruppen.

Zur erfindungsgemäß alternativen Herstellung des organyloxysilylterminierten Polymeren P1 aus einem α,ω-diisocyanatotermimierten Polymer X-A-X mit X gleich -NCO kommen organofunktionelle Silane der Formel Y-R-Si-(R1)m(-OR2)3-m mit Y gleich -OH oder -NR1 zum Einsatz.

Beispiele für aminofunktionelle Silane sind 3-Aminopropyltrimethoxysilan, 3-Aminopropyltriethoxysilan, N-2-Aminoethyl-3-aminopropyltrimethoxysilan, N-2-Aminoethyl-3-aminopropyltriethoxysilan, N-(ß-aminoethyl)aminopropylmethyldiethoxysilan und N-(ß-aminoethyl)aminopropylmethyldimethoxysilan. Beispiele für hydroxyfunktionelle Silane sind Umsetzungsprodukte der vorgenannten aminofunktionellen Silane mit cyclischen Carbonaten, wie sie in der WO96/38453 beschrieben sind oder analoge Umsetzungsprodukte von aminofunktionellen Silanen mit Lactonen. Vorzugsweise werden die hydroxyfunktionellen Silane durch Umsetzung des entsprechenden Aminosilans mit primären oder sekundären Aminogruppen mit einem Carbonat, ausgewählt aus Ethylencarbonat, Propylencarbonat, Butylencarbonat oder einem Lacton, ausgewählt aus Propiolacton, Butyrolacton oder Caprolacton hergestellt.

Es ist notwendig, dass pro Isocyanatgruppe des Prepolymers mit endständigen Isocyanatgruppen mindestens ein Molekül des hydroxy- oder aminofunktionellen Silans verwendet wird, vorzugsweise wird das Silan im geringen stöchiometrischen Überschuss eingesetzt.

Die für den ersten Schritt zur Herstellung des organyloxysilylterminierten Polymeren P1 eingesetzten Kalium-, Eisen-, Indium-, Zink-, Wismut- und Kupferverbindungen als Katalysatoren (A) werden vorzugsweise ausgewählt aus der Gruppe bestehend aus Carboxylaten (Salze aliphatischer Carbonsäuren) oder Acetylacetonaten des Kaliums, Eisens, Indiums, Zinks, Wismuts oder Kupfers.

AIs aliphatische Carbonsäuren können insbesondere C4 bis C36 gesättigte, einfach oder mehfach ungesättigte Monocarbonsäuren Verwendung finden. Beispiele hierfür sind: Arachinsäure (n-Eicosansäure), Arachidonsäure (all-cis-5,8,11 ,14-Eicosatetraensäure), Behensäure (Docosansäure), Buttersäure (Butansäure), Caproleinsäure (9-Decensäure), Caprinsäure (n-Decansäure ), Capronsäure (n-Hexansäure ), Caprylsäure (n-Octansäure), Cerotinsäure (Hexacosansäure), Cetoleinsäure (cis-1 1-Docosensäure), Clupanodonsäure (all-cis-7,10,13,16,19-Dokosapentaensäure), Eleostearinsäure (trans-θ-trans-H-cis-IS-octadeca-9,1 1 ,13-triensäure), Enanthsäure (1 -Hexancarbonsäure), Erucasäure (cis-13-Docosensäure), Gadoleinsäure (9-Eicosensäure), Gondölsäure (cis-1 1-Eicosensäure), Hiragonsäure ( 6,10,14-Hexadecatriensäure), Laurinsäure (Dodecansäure), Lignozerinsäure (Tetracosan säure), Linderasäure (cis-4-Dodecensäure), Linolsäure ((cis,cis)-Octadeca-9,12-diensäure), Linolensäure ((all-cis)-Octadeca-9,12,15-triensäure), Melissinsäure (Triacontansäure), Montansäure (Octacosansäure), Stearidonsäure (cis-6-cis-9-cis-12-cis-15-Octadecatetraensäure), Myristinsäure (Tetradecansäure), Myristoleinsäure (cis-9-Tetradecensäure), Naphtensäure, Neodecansäure, Obtusilinsäure (cis-4-Decensäure), Caprylsäure (n-Octansäure), Neooctansäure, Ölsäure (cis-9-Octadecensäure), Palmitinsäure (n-HexadecansäureJ, Palmitölsäure (cis-9-Hexadecensäure), Parinarsäure (9,11 ,13,15-Octadecatetraensäure), Petroselinsäure (cis-6-Octadecensäure), Physetsäure (5-Tetradecensäure), Punicasäure (cis-9-trans-11-cis-13-Octadeca-9,1 1 ,13-triensäure), Scoliodonsäure (cis-5-cis-11-cis-14-Eicosatriensäure), Selacholeinsäure (15-Tetracosensäre), Stearinsäure (n-Octadecansäure), Tricosansäure, Tsuzuinsäure (cis-4-Tetradecensäure ), trans-Vaccen säure (trans-1 1-Octadecensäure), Palmitoleinsäure (9-Hexadecensäure). Außer den Acetylacetonaten können auch noch Chelate anderer ß-Dicarbonylverbindungen des Kaliums, Eisens, Indiums, Zinks, Wismuts oder Kupfers eingesetzt werden. Konkret genannt seien Acetessigsäuralkylester, Dialkylmalonate, Benzoylessigester, Dibenzoylmethan, Benzoylaceton, Dehydroacetessigsäure.

Die Katalysatoren (A) werden in Mengen von 0,01 bis 3,0 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polymer P1, eingesetzt. Die Umsetzung erfolgt dabei vorzugsweise bei Temperaturen von 0 bis 1500C, besonders bevorzugt bei 25 bis 100 0C und einem Druck der umgebenden Atmosphäre, also etwa 900 bis 1 100 hPa.

Die so hergestellten organyloxysilylterminierten Polymeren P1 sind stabil gegen Luftfeuchtigkeit und können besonders vorteilhaft zur Herstellung und Verwendung von einkomponentigen, feuchtigkeitshärtenden Klebstoffen, Dichtstoffen oder Beschichtungsmitteln verwendet werden.

Hierzu werden den organyloxysilylterminierten Polymeren P1 in einem zweiten Schritt Silan-Kondensationskatalysatoren (B) zugesetzt. Diese Silan-Kondensationskatalysatoren sind ausgewählt aus der Gruppe bestehend aus Verbindungen von Elementen der dritten Hauptgruppe und/oder vierten Nebengruppe des Periodensystems der Elemente und heterocyclischen organischen Aminen, Aminkomplexen der Elementverbindungen oder deren Mischungen. Im Wesentlichen sind die Silan-Kondensationskatalysatoren (B) also eine Kombination von mindestens einer Verbindung, die mindestens ein Element der dritten Hauptgruppe und/oder vierten Nebengruppe des Periodensystems der Elemente enthält, mit mindestens einem heterocyclischen organischen Amin und/oder mindestens ein Aminkomplex von mindestens einer Verbindung, die mindestens ein Element der dritten Hauptgruppe und/oder vierten Nebengruppe des Periodensystems der Elemente enthält. Unter einer Kombination werden im Sinne der vorliegenden Erfindung sowohl das Nebeneinandervorliegen der jeweiligen Elementverbindung und eines Amins als auch Molekülverbindungen jeglicher Art zwischen Elementverbindung und Amin verstanden, wobei eine Molekülverbindung als Zusammenlagerung von mindestens zwei Molekülen auf der Basis von Nebenvalenzbindungen wie Van-der-Waals-Kräfte, Dipolorientierung, Wasserstoffbrückenbindung und dergleichen zu verstehen ist. Der Begriff „Komplex" kann im Kontext der vorliegenden Erfindung mit „Molekülverbindung" gleichgesetzt werden. Die dritte Hauptgruppe des Periodensystems umfasst im Sinne der vorliegenden Erfindung die Elemente Bor, Aluminium, Gallium, Indium, Thallium. Unter der vierten Nebengruppe des Periodensystems wird die Gruppe umfassend die Elemente Titan, Zirkonium, Hafnium verstanden.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung sind die Silan- Kondensationskatalysatoren (B) i) eine Kombination aus mindestens einer Titanverbindung und/oder Aluminiumverbindung mit mindestens einem heterocyclischen organischen Amin, oder ii) die Silan-Kondensationskatalysatoren (B) sind mindestens eine Komplexverbindung enthaltend Bor und ein Amin, oder die Silan-Kondensationskatalysatoren (B) sind ein Gemisch aus i) und ii).

Als Titan- oder Aluminiumverbindungen kommen vorzugsweise deren Chelate auf der Basis von ß-Dicarbonylverbindungen zum Einsatz. Beispiele für geeignete ß-Dicarbonylverbindungen sind Acetylaceton, Acetessigsäuralkylester, Dialkylmalonate, Benzoylessigester, Dibenzoylmethan, Benzoylaceton, Dehydroacetessigsäure.

Beispiele für einsetzbare heterocyclische organische Amine sind N-Methylpyrrolidin, N-Methylpiperidin, N,N-Dimethylpiperazin, Diaza-bicyclo-octan (DABCO), N-(2- hydroxyethoxyethyl)-2-azanorbornan, 1 ,8-Diazadicyclo(5.4.0)undecen-7 (DBU), N-Dodecyl-2-Methylimidazol, N-Methylimidazol, 2-Ethyl-2-Methylimidazol, N-Methylmorpholin, Bis(2-(2,6-dimethyl-4-morpholino)ethyl)-(2-(4-morpholino)ethyl)amin, Bis(2-(2,6-dimethyl-4-morpholino)ethyl)-(2-(2,6-diethyl-4-morpholino)ethyl)amin, Tris(2-(4-morpholino)ethyl)amin, Tris(2-(4-morpholino)propyl)amin, Tris(2-(4-morpholino)butyl)amin, Tris(2-(2,6-dimethyl-4-morpholino)ethyl)amin, Tris(2-(2,6-diethyl-4-morpholino)ethyl)amin, Tris(2-(2-methyl-4-morpholino)ethyl)amin, Tris(2-(2-ethyl-4-morpholino)ethyl)amin, Dimethylaminopropylmorpholin, Bis-(morpholinopropyl)-methylamin, Diethylaminopropylmorpholin, Bis-(morpholinopropyl)-ethylamin, Bis-(morpholinopropyl)-propylamin, Morpholinopropylpyrrolidon, N-Morpholinopropyl-N'-methyl-piperazin, Dimorpholinodiethylether (DMDEE) oder Di-2,6-dimethylmorpholinoethyl)ether.

Neben den vorgenannten heterocyclischen Aminen sind erfindungsgemäß bevorzugt auch Aminkomplexe aus Borhalogeniden, insbesondere Bortrifluorid, oder Boralkylen als Silan-Kondensationskatalysatoren (B) einsetzbar. Als Aminkomponente eignen sich hierbei sowohl die vorgenannten heterocyclischen Amine als auch einfache niedere Alkylamine oder Diamine, konkret genannt seien hier Ethylamin, Propylamin, Butylamin sowie die an anderer Stelle genannten Aminosilane.

Beispielsweise werden die eingesetzten Silan- Kondensationskatalysatoren (B) ausgewählt aus der Gruppe Titanium (di-isopropoxid)bis(acetylacetonat), Titan(IV)oxid-acetylacetonat, Aluminiumacetylacetonat, 1 ,4-Diazabicyclo[2,2,2]octan, N,N-Dimethylpiperazin, 1 ,8-Diazabicyclo[5.4.0]undec-7-en, Dimorpholinodimethylether, Borhalogenide oder Boralkyle, Aminkomplexe von Borhalogeniden oder Boralkylen oder Mischungen der vorgenannten Verbindungen und / oder Komplexe.

Die Silan-Kondensationskatalysatoren (B) werden in Mengen von 0,01 bis 3,0 Gewichtsteilen, bezogen auf 100 Gewichtsteile Polymer P1, eingesetzt. Die Umsetzung erfolgt dabei vorzugsweise bei Temperaturen von 0 bis 1500C, bevorzugt bei 10 bis 100 und besonders bevorzugt bei 25 bis 100 0C und einem Druck der umgebenden Atmosphäre, also etwa 900 bis 1 10O hPa.

Die erfindungsgemäßen Kleb- und Dichtstoff-Zubereitungen können neben den vorgenannten organyloxysilylterminierten Polymeren P1 noch weitere Hilfs- und Zusatzstoffe enthalten, die diesen Zubereitungen verbesserte elastische Eigenschaften, verbesserte Rückstellfähigkeit, ausreichend lange Verarbeitungszeit, schnelle Durchhärtungsgeschwindigkeit und geringe Restklebrigkeit verleihen. Zu diesen Hilfs- und Zusatzstoffen gehören beispielsweise Weichmacher, Stabilisatoren, Antioxidantien, Füllstoffe, Reaktivverdünner, Trockenmittel, Haftvermittler und UV-Stabilisatoren, rheologische Hilfsmittel, Farbpigmente oder Farbpasten und/oder gegebenenfalls auch im geringen Umfang Lösungsmittel.

Als Weichmacher geeignet sind beispielsweise Adipinsäureester, Azelainsäureester, Benzoesäureester, Buttersäureester, Essigsäureester, Ester höherer Fettsäuren mit etwa 8 bis etwa 44 C-Atomen, Ester OH-Gruppen tragender oder epoxidierter Fettsäuren, Fettsäureester und Fette, Glykolsäureester, Phosphorsäureester, Phthalsäureester, von 1 bis 12 C-Atomen enthaltenden linearen oder verzweigten Alkoholen, Propionsäureester, Sebacinsäureester, Sulfonsäureester (z.B. „Mesamoll", Alkylsulfonsäurephenylester, Fa. Bayer), Thiobuttersäureester, Trimellithsäureester, Zitronensäureester sowie Ester auf Nitrocellulose- und Polyvinylacetat-Basis, sowie Gemische aus zwei oder mehr davon. Besonders geeignet sind die asymmetrischen Ester von Adipinsäuremonooctylester mit 2-Ethylhexanol (Edenol DOA, Fa. Cognis Deutschland GmbH, Düsseldorf) oder auch Ester der Abietinsäure.

Beispielsweise eignen sich von den Phthalsäureestern Dioctylphthalat (DOP), Dibutylphthalat, Diisoundecylphthalat (DIUP) oder Butylbenzylphthalat (BBP) oder deren abgeleitete hydrierte Derivate, von den Adipaten Dioctyladipat (DOA), Diisodecyladipat, Diisodecylsuccinat, Dibutylsebacat oder Butyloleat.

Ebenfalls als Weichmacher geeignet sind die reinen oder gemischten Ether monofunktioneller, linearer oder verzweigter C4-i6-Alkohole oder Gemische aus zwei oder mehr verschiedenen Ethern solcher Alkohole, beispielsweise Dioctylether (erhältlich als Cetiol OE, Fa. Cognis Deutschland GmbH, Düsseldorf).

Ferner eignen sich als Weichmacher endgruppenverschlossene Polyethylenglykole, beispielsweise Polyethylen- oder Polypropylenglykoldi-C1.4-alkylet.her, insbesondere die Dimethyl- oder Diethylether von Diethylenglykol oder Dipropylenglykol, sowie Gemische aus zwei oder mehr davon.

Unter "Stabilisatoren" im Sinne dieser Erfindung sind Antioxidantien, UV-Stabilisatoren oder Hydrolyse-Stabilisatoren zu verstehen. Beispiele hierfür sind die handelsüblichen sterisch gehinderten Phenole und/oder Thioether und/oder substituierten Benzotriazole wie z.B. Tinuvin 327 (Fa. Ciba Specialty Chemicals) und/oder Amine vom "HALS"-Typ (Hindered Amine Light Stabilizer), wie z.B. Tinuvin 770 (Fa. Ciba Specialty Chemicals). Es ist im Rahmen der vorliegenden Erfindung bevorzugt, wenn ein UV-Stabilisator eingesetzt wird, der eine Silylgruppe trägt und beim Vernetzen bzw. Aushärten in das Endprodukt eingebaut wird. Hierzu besonders geeignet sind die Produkte Lowilite 75, Lowilite 77 (Fa. Great Lakes, USA). Ferner können auch Benzotriazole, Benzophenone, Benzoate, Cyanacrylate, Acrylate, sterisch gehinderte Phenole, Phosphor und / oder Schwefel zugegeben werden. Die erfindungsgemäße Zubereitung kann bis zu etwa 2 Gew.-%, vorzugsweise etwa 1 Gew.-% an Stabilisatoren enthalten. Ferner kann die erfindungsgemäße Zubereitung weiterhin bis zu etwa 7 Gew.-%, insbesondere bis zu etwa 5 Gew.-% Antioxidantien enthalten.

Die erfindungsgemäße Zubereitung kann zusätzlich Füllstoffe enthalten. Hier eignen sich beispielsweise Kreide, Kalkmehl, gefällte und/oder pyrogene Kieselsäure, Zeolithe, Bentonite, Magnesiumcarbonat, Kieselgur, Tonerde, Ton, Talkum, Titanoxid, Eisenoxid, Zinkoxid, Sand, Quarz, Flint, Glimmer, Glaspulver und andere gemahlene Mineral Stoffe. Weiterhin können auch organische Füllstoffe eingesetzt werden, insbesondere Ruß, Graphit, Holzfasern, Holzmehl, Sägespäne, Zellstoff, Baumwolle, Pulpe, Baumwolle, Hackschnitzel, Häcksel, Spreu, gemahlene Walnussschalen und andere Faserkurzschnitte. Ferner können auch Kurzfasern wie Glasfaser, Glasfilament, Polyacrylnitril, Kohlefaser, Kevlarfaser oder auch Polyethylenfasern zugesetzt werden. Aluminiumpulver ist ebenfalls als Füllstoff geeignet.

Die pyrogenen und/oder gefällten Kieselsäuren weisen vorteilhaft eine BET-Oberfläche von 10 bis 90 m2/g auf. Bei Ihrer Verwendung bewirken sie keine zusätzliche Erhöhung der Viskosität der erfindungsgemäßen Zubereitung, tragen aber zu einer Verstärkung der gehärteten Zubereitung bei.

Es ist ebenso denkbar, pyrogene und/oder gefällte Kieselsäuren mit einer höheren BET-Oberfläche, vorteilhafterweise mit 100 - 250 m2/g, insbesondere 1 10 - 170 m2/g, als Füllstoff einzusetzen. Aufgrund der höheren BET-Oberfläche, kann man den gleichen Effekt, z.B. Verstärkung der gehärteten Zubereitung, bei einem geringeren Gewichtsanteil Kieselsäure erzielen. Somit kann man weitere Stoffe einsetzen, um die erfindungsgemäße Zubereitung hinsichtlich anderer Anforderungen zu verbessern.

Ferner eignen sich als Füllstoffe Hohlkugeln mit einer mineralischen Hülle oder einer Kunststoffhülle. Dies können beispielsweise Glashohlkugeln sein, die unter den Handelsbezeichnungen Glass Bubbles® kommerziell erhältlich sind. Hohlkugeln auf Kunststoffbasis, z.B. Expancel® oder Dualite®, werden beispielsweise in der EP 0 520 426 B1 beschrieben. Diese sind aus anorganischen oder organischen Stoffen zusammengesetzt, jede mit einem Durchmesser von 1 mm oder weniger, bevorzugt von 500 μm oder weniger.

Für manche Anwendungen sind Füllstoffe bevorzugt, die den Zubereitungen Thixotropie verleihen. Solche Füllstoffe werden auch als rheologische Hilfsmittel beschrieben, z. B. hydriertes Rizinusöl, Fettsäureamide oder quellbare Kunststoffe wie PVC. Um gut aus einer geeigneten Dosiervorrichtung (z. B. Tube) auspressbar zu sein, besitzen solche Zubereitungen eine Viskosität von 3.000 bis 15.000, vorzugsweise 40.000 bis 80.000 mPas oder auch 50.000 bis 60.000 mPas.

Die Füllstoffe werden vorzugsweise in einer Menge von 1 bis 80 Gew.-%, vorzugsweise von 5 bis 60 Gew.%, bezogen auf das Gesamtgewicht der Zubereitung eingesetzt.

Beispiele für geeignete Pigmente sind Titandioxid, Eisenoxide oder Ruß.

Häufig ist es sinnvoll, die erfindungsgemäßen Zubereitungen durch Trockenmittel weiter gegenüber eindringender Feuchtigkeit zu stabilisieren, um die Lagerbarkeit (shelf-life) noch weiter zu erhöhen. Es besteht gelegentlich auch Bedarf, die Viskosität des erfindungsgemäßen Kleb- oder Dichtstoffs für bestimmte Anwendungen durch Verwendung eines Reaktivverdünners zu erniedrigen. Als Reaktivverdünner kann man alle Verbindungen, die mit dem Kleb- oder Dichtstoff unter Verringerung der Viskosität mischbar sind und über mindestens eine mit dem Bindemittel reaktive Gruppe verfügen, einsetzen.

Als Reaktivverdünner kann man z.B. folgende Stoffe einsetzen: mit Isocyanatosilanen umgesetzte Polyalkylenglykole (z.B. Synalox 100-50B, DOW), Carbamatopropyltrimethoxysilan, Alkyltrimethoxysilan, Alkyltriethoxysilan, Methyltrimethoxysilan, Methyltriethoxysilan sowie Vinyltrimethoxysilan (Dynasylan VTMO, Fa. Evonik oder Geniosil XL 10, Fa. Wacker), Vinyltriethoxysilan, Phenyltrimethoxysilan, Phenyltriethoxysilan, Octyltrimethoxysilan, Tetraethoxysilan, Vinyldimethoxymethylsilan (XL12, Wacker), Vinyltriethoxysilan (GF56, Wacker), Vinyltriacetoxysilan (GF62, Wacker), Isooctyltrimethoxysilan (IO Trimethoxy), Isooctyltriethoxysilan (IO Triethoxy, Wacker), N-Trimethoxysilylmethyl-O-methylcarbamat (XL63, Wacker), N-Dimethoxy(methyl)silylmethyl-O-methyl-carbamat (XL65, Wacker), Hexadecyltrimethoxysilan, 3-Octanoylthio-1-propyltriethoxysilan, Aminosilane wie z.B. 3-Aminopropyltrimethoxysilan (Dynasylan AMMO, Fa. Evonik oder Geniosil GF96, Fa. Wacker), Bis(trimethoxysilylpropyl)amin (Silquest® A1 170, GE Silicones) und Teilhydrolysate der vorgenannten Verbindungen.

Eine Vielzahl der vorgenannten silanfunktionellen Reaktivverdünner haben gleichzeitig eine trocknende und / oder haftvermittelnde Wirkung in der Zubereitung. Diese Reaktivverdünner werden in Mengen zwischen 0,1 und 15 Gew.%, vorzugsweise zwischen 1 und 5 Gew.%, bezogen auf die Gesamtzusammensetzung der Zubereitung eingesetzt.

Als Haftvermittler eignen sich aber auch so genannte Klebrigmacher wie Kohlenwasserstoffharze, Phenolharze, Terpen-Phenolharze, Resorcinharze oder deren Derivate, modifizierte oder unmodifizierte Harzsäuren bzw. -ester (Abietinsäurederivate), Polyamine, Polyaminoamide, Anhydride und Anhydrid-enthaltende Copolymere. Auch der Zusatz von Polyepoxidharzen in geringen Mengen kann bei manchen Substraten die Haftung verbessern. Hierfür werden dann vorzugsweise die festen Epoxidharze mit einem Molekulargewicht von über 700 in fein gemahlener Form eingesetzt. Falls Klebrigmacher als Haftvermittler eingesetzt werden, hängt deren Art und Menge von der Kleb- / Dichtstoffzusammensetzung ab sowie von dem Substrat, auf welches dieser appliziert wird. Typische klebrigmachende Harze (Tackifier) wie z.B. Terpenphenolharze oder Harzsäurederivate werden in Konzentrationen zwischen 5 und 20 Gew.% verwendet, typische Haftvermittler wie Polyamine, Polyaminoamide oder Phenolharze oder Resorcinderivate werden im Bereich zwischen 0,1 und 10 Gew.%, bezogen auf die Gesamtzusammensetzung der Zubereitung verwendet.

Die Herstellung der erfindungsgemäßen Zubereitung erfolgt nach bekannten Verfahren durch inniges Vermischen der Bestandteile in geeigneten Dispergieraggregaten, z. B. Schnellmischer, Kneter, Planetenmischer, Planetendissolver, Innenmischer, so genannte „Bsnburymischer", Doppelschneckenextruder und ähnliche dem Fachmann bekannte Mischaggregate.

Eine bevorzugte Ausführungsform der erfindungsgemäßen Zubereitung kann enthalten:

- 5 bis 50 Gew.-%, bevorzugt 10 bis 40 Gew.-% einer oder mehrerer Verbindungen der erfindungsgemäßen organyloxysilylterminierten Polymeren P1,

- jeweils 0,01 bis 3,0 Gewichtsteile, bezogen auf 100 Gewichtsteile Polymer P1, des Katalysators (A) und des Silan-Kondensationskatalysators (B),

- 0 bis 30 Gew.-%, bevorzugt weniger als 20 Gew.-%, besonders bevorzugt weniger als 10 Gew.-% Weichmacher,

- 0 bis 80 Gew.-%, bevorzugt 20 bis 60 Gew.-%, besonders bevorzugt 30 bis 55 Gew.-% Füllstoffe.

Ferner kann die Zubereitung weitere Hilfs- und Zusatzstoffe enthalten.

Die Gesamtheit aller Bestandteile summiert sich zu 100 Gew.-%, wobei sich die Summe der oben aufgeführten Hauptbestandteile allein nicht zu 100 Gew.-% addieren muss.

Die erfindungsgemäßen Zubereitungen härten mit der umgebenden Luftfeuchtigkeit zu niedermoduligen polymeren Massen aus, so dass sich diese als niedermodulige, feuchtigkeitshärtende Kleb- und Dichtstoffzubereitungen und Beschichtungsmittel eignen, die frei von organischen Zinnverbindungen sind. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer Zubereitung, enthaltend ein oder mehrere silanfunktionelle Polymere P1 und herstellbar nach einem erfindungsgemäßen Verfahren, als Klebstoff, Dichtstoff oder Beschichtungsmittel.

In dem nachfolgenden Ausführungsbeispiel soll die Erfindung näher erläutert werden, wobei die Auswahl des Beispiels keine Beschränkung des Umfangs des Erfindungsgegenstandes darstellen soll.

Beispiele

Herstellung der Polymeren

282 g (15 mmol) Polypropylenglykol 18000 (OHZ=6,0) wurden in einem 500 ml Dreihalskolben bei 1000C im Vakuum getrocknet. Unter Stickstoffatmosphäre wurde bei 800C 0,1 g Bismutcarboxylat (Borchi Kat 24, FA. Borchers) hinzugegeben und anschließend mit 7,2 g (32 mmol) 3-lsocyanatopropyltrimethoxysilan (%NCO=18,4) versetzt. Nach einstündigem Rühren bei 80°C wurde das entstandene Polymer abgekühlt und mit 6 g Vinyltrimethoxysilan versetzt.

Eigenschaften der Polymerfilme

In einer Aluschale mit einem Durchmesser von 50 mm wurden 5g Prepolymer mit 0,05g AMMO und 0,05g A1 170 sowie 0,025g des jeweiligen Katalysators vermischt. Von diesen Mischungen wurden Hautbildungszeit (Skin over time / SOT) und die Zeit zur Ausbildung einer klebfreien Schicht (Tack free time / TFT) (jeweils bei 23°C, 50% relative Luftfeuchtigkeit) ermittelt. Weiterhin wurden die oben genannten Mischungen mit einer Schichtstärke von 2 mm auf mit Polyetherfolie bespannte Glasplatten aufgetragen. Aus diesen Filmen wurden nach 7 Tagen Lagerung (23°C, 50% relative Luftfeuchtigkeit) Probenkörper (S2-Prüfkörper) ausgestanzt und die mechanischen Daten (E-Module bei 50% Dehnung, Bruchdehnung und Zugfestigkeit („Bruchkraft") in Anlehnung an DIN EN 27389 und DIN EN 28339 bestimmt. Wie aus den in der nachfolgenden Tabelle 1 zusammengestellten Ergebnissen ersichtlich ist, lässt sich mit den erfindungsgemäßen Polymerzusammensetzungen SOT/ TFT in weiten Grenzen den Erfordernissen anpassen, die mechanischen Eigenschaften der zinnfreien erfindungsgemäß hergestellten Polymerfilme sind den zinnhaltigen gemäß dem Stand der Technik zumindest ebenbürtig. Tabelle 1

Anmerkungen:

1 ) Als Ti-Verbindung wurde Titanium(di-i-propoxide)bis(acetylacetonate) verwendet.

2) Als AI-Verbindung wurde Aluminiumtris(acetylacetonate) verwendet.

Allgemeine Vorschrift zur Herstellung der erfindungsgemäßen härtbaren Kleb-/Dichtstoff-Zubereitungen:

27,40 Gewichtsteile der Polymermischung wurden in einem Rührkessel mit 15 Gewichtsteilen

Mesamoll mittels eines Speedmixers 30 s innig vermengt.

In die so erhaltene Mischung wurden nacheinander 45,05 Gewichtsteile Calciumcarbonat

(Omya 302, „ultrafine ground calcium carbonate"), 1 ,5 Teile Vinyltrimethoxysilan („VTMO",

Wacker Geniosil XL10), 1 ,0 Gewichtsteile 3-Aminopropyltrimethoxisilan („AMMO", Wacker

Geniosil GF96) sowie 0,05 Gewichtsteile Katalysator eingebracht und das so entstandene

Gemenge für 30 s in einem Speedmixer innig vermischt.

Als Katalysatoren wurden verwendet:

Katalysator 1 : DBTL (Vergleich)

Katalysator 2: Ti/DBU je 1% (siehe Anmerkung 1 bei Tabelle 1 )

Katalysator 3: Bortrifluorid / Ethylamin Komplex 95%

Katalysator 4: Bortrifluorid / GF96 Komplex

Katalysator 5: Mischung2' aus AI/DBU je 1 % (siehe Anmerkung 2 bei Tabelle 1 )

Prüfbedingungen

Von diesen Mischungen wurden Zugscherfestigkeiten an Holz/Holz-, Holz/Aluminium- und

Holz/PMMA- Verklebungen ermittelt („Festigkeiten"). Die verklebten Prüfkörper wurden vor dem

Zugversuch 7 Tage im Normklima (23°C, 50% relative Luftfeuchtigkeit) gelagert.

Weiterhin wurden die oben genannten Mischungen mit einer Schichtstärke von 2 mm auf mit

Polyetherfolie bespannte Glasplatten aufgetragen. Aus diesen Filmen wurden nach 7 Tagen

Lagerung (23°C, 50% relative Luftfeuchtigkeit) Probenkörper (S2-Prüfkörper) ausgestanzt und die mechanischen Daten (E-Module bei 50 und 100% Dehnung, Bruchdehnung, Zugfestigkeit und Rückstellvermögen) in Anlehnung an DIN EN 27389 und DIN EN 28339 bestimmt.

Tabelle 2 Montagekleberformulierungen


Die erfindungsgemäßen Zusammensetzungen weisen zwar gegenüber DBTL-haltigen Zubereitungen zum Teil eine geringfügig verlängerte SOT auf, in Bezug auf die wichtigen Eigenschaften TFT, Dehnung sowie Zugscherfestigkeiten bei Verklebungen weisen sie mindestens ebenbürtige, z. T. verbesserte mechanische Eigenschaften auf. Wesentlicher Vorteil der erfindungsgemäßen Zusammensetzungen gegenüber den Zubereitungen nach Stand der Technik (BeispieH ) ist die Abwesenheit von organischen Zinnverbindungen.