Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

1. WO1985002503 - MOTEUR ELECTRIQUE A ROTOR AIMANTE EN FORME DE DISQUE

Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

MOTEUR "ELECTRIQUE A ROTOR AIMANTE EN FORME DE DISQUE

La présente invention concerne un moteur électrique comportant un stator et au moins un organe rotatif comprenant une partie de rotor essentiellement en forme de disque annulaire plan monté de façon rotative par rapport au stator par l'intermédiaire d'au moins un roulement à billes comprenant au moins deux bagues de roulement coaxiales formant des chemins de roulement de billes, au moins l'une de ces bagues de roulement présentant une surface annulaire plane perpendiculaire à l'axe de rotation.

.n tel moteur est décrit par exemple dans le brevet US No. 4330727 sous forme d'un moteur synchrone à rotor aimanté .

Dans les moteurs de ce type, il est important que la partie de rotor en forme de disque soit disposée de façon très précise par rapport au stator. Même dans une fabrication en grandes séries la position du disque annulaire doit être définie avec une très grande précision par rapport aux parties du stator avec lesquelles ce disque coopère et ceci notamment en ce qui concerne la position du disque dans le sens axial et en ce qui concerne l'orientation du plan du disque qui doit être rigoureusement perpendiculaire à 1 ' axe de rotation.

Habituellement la partie en forme de disque annulaire de l'organe rotatif est fixée sur celui-ci par l'intermédiaire d'une pièce de support montée sur l'arbre du moteur, de sorte que les tolérances dimensionnelles et de positionnement de cette pièce s'ajoutent aux jeux des roulements à billes. Par ailleurs il est difficile au moyen d'une telle pièce de support d'assurer un plan de rotation exactement perpendiculaire à l'arbre du moteur.

La présente invention vise à fournir un moteur du type susmentionné dont la construction soit simple et économique et qui permette de réaliser une très grande précision dans la définition de la position de la partie de rotor en forme de disque par rapport au stator.

A cet effet, le moteur selon l'invention est caractérisé en ce que la partie de rotor est fixée sur une partie de roulement, directement, de façon que des surfaces annulaires planes respectives soient en contact l'une avec l'autre, ou indirectement, par l'intermédiaire d'une partie de support ayant une surface annulaire plane en contact avec la surface annulaire plane de ladite partie de roulement, et en contact avec ladite partie de rotor, ou par l'intermédiaire d'une partie de support ayant la forme d'une disque annulaire plan dont une ou les surfaces annulaires planes sont en contact avec les surfaces annulaires planes respectives de ladite partie de rotor et de ladite partie de roulement.

L'invention s'applique plus particulièrement à un moteur synchrone à rotor aimanté et, selon une forme d'exécution préférentielle, à un moteur de ce type à deux étages. Dans ce cas, le stator comporte deux parties, formant chacune un circuit magnétique à entrefer, et étant couplée avec au moins une bobine de commande, ainsi que deux organes rotatifs coopérant respectivement avec chacune de ces parties de stator.

Les avantages et les particularités du moteur selon l'invention ressortiront plus clairement de la description suivante, de différents exemples de réalisation donnés à titre non limitatif et illustrés dans le dessin annexé, dans lequel

la figure 1 est une vue en coupe axiale d'un moteur synchrone diphasé à deux étages ,

la figure 2 est une vue en coupe selon la ligne II-II de la
OMPI figure 1 ,

la figure 3 est une vue en coupe axiale partielle d'un moteur similaire à celui de la figure 1 comportant un roulement à billes double, à bague commune,

la figure 4 est une vue en coupe axiale partielle d'une autre variante d'exécution du moteur de la figure 1 comportant deux roulements à billes juxtaposés,

la figure 5 est une vue en coupe axiale partielle d'une variante d'exécution similaire à celle de la figure 4 comportant un roulement à billes à trois bagues et une seule rangée de billes,

la figure 6 est une vue en coupe axiale d'un moteur synchrone diphasé ayant deux organes rotatifs couplés de façon élastique en direction axiale,

la figure 7 est une vue en coupe axiale partielle d' une variante d'exécution du moteur selon la figure 6 ,

la figure 8 est une vue en coupe axiale partielle d'une autre forme d'exécution du moteur de la figure 6, et

la figure 9 est une vue en coupe axiale partielle d'une autre variante d'exécution du moteur selon la figure 6.

Le moteur représenté à la figure 1 est un moteur à deux étages dont chacun comporte une partie de stator respective 1,2 et un organe rotatif correspondant 3,4. Chaque organe rotatif comporte une partie de rotor respective 5,6 en forme de disque annulaire plan, mince, réalisé en un matériau aimantable tel que le samarium-cobalt. Ces disques sont aimantés parallèlement à leur axe de façon à présenter sur chacune de leurs surfaces planes des pôles magnétiques alternativement positifs et négatifs, répartis régulièrement le long d'une zone annulaire de chaque surface. Ils sont collés ou fixés d'une autre manière adéquate sur une partie de* support correspondante 7,8 ayant également une forme de disque plan annulaire. Les disques de support sont à leur tour fixés, par exemple par soudure, sur les joues de bagues intérieures respectives 9,10 de deux roulements à billes, dont les bagues correspondantes extérieures sont désignées respectivement par 11 et 12, les rangées de billes de chacun des roulements étant désignées par 13 et 14. Les bagues intérieures des deux roulements à billes sont montées sur un axe 15 du moteur de façon à être solidaires de cet axe dans leur position définitive déterminée lors de l'assemblage du moteur.

Les deux parties de stator 1,2 du moteur de la figure 1 comportent chacune une bobine de commande électrique correspondante 16 et 17, de forme annulaire, disposée coaxialement par rapport à l'axe du moteur. Chaque bobine est couplée, avec un circuit magnétique comportant deux parties annulaires désignëe.s par 18,19 et 20,21 respectivement. Ces parties annulaires sont réalisées en un matériau de très bonne perméabilité magnétique, et elles sont en contact deux par deux le long de zones de contact planes périphériques 22 et 23 de telle façon que la résistance magnétique reste également faible à cet endroit. D'autre part, les pièces 18 à 21 présentent chacune une partie annulaire intérieure comportant une série de dents, telles que 24, réparties sur toute la circonférence de manière à former dans chacune des parties de stator un entrefer annulaire variable le long de cette circonférence. Comme le montre la figure 1, la section axiale des circuits magnétiques présente ainsi une forme en C et une zone annulaire de chaque partie de rotor est disposée dans l'entrefer respectif formé par ces circuits magnétiques.

Dans le moteur de la figure 1, les parties extérieures 18 et 21 des circuits magnétiques sont montées sur les bagues extérieures correspondantes 11 et 12 des roulements à billes du moteur. Une plaque de support 25 est également

OMH fixée sur une partie de la surface cylindrique extérieure de la bague 11 de l'un des roulements à billes.

Les parties intérieures 19 et 20 des deux parties de stator 1 et 2 sont en contact le long d'une surface cylindrique annulaire 26 perpendiculaire à l'axe du moteur. Une pièce intermédiaire à surfaces planes parallèles pourrait être disposée, selon une variante d'exécution, entre les parties 19 et 20, de sorte que ces parties seraient espacées tout en conservant le parallélisme de leurs surfaces annulaires planes telles que la surface 26.

Sur la figure 1 on distingue en outre des parties de carcasse telles que 27 dans lesquelles sont logées les bobines de commande, et une pièce de séparation 28, en matière plastique, qui peut être disposée entre les deux parties de rotor pour faciliter le montage du moteur.

La figure 2 montre la configuration de certains éléments du moteur en coupe selon la ligne II-II de la figure 1, et en particulier les dents 24 orientées radialement et disposées essentiellement régulièrement le long de la périphérie intérieure de la pièce annulaire visible 19.

L'assemblage du moteur, et notamment la fixation des bagues intérieures 9 et 10 des roulements à billes sur l'axe 15 du moteur et la fixation des bagues extérieures 11,12 sur les parties 18 et 21, est réalisée de manière à supprimer le jeu entre les bagues intérieures et extérieures de chaque roulement à billes. La figure 1 montre que les bagues intérieures 9 et 10 sont ainsi légèrement décalées axiale-ment par rapport aux bagues extérieures 11 et 12. L'élasticité dans la chaîne des éléments 15, 9, 13, 11, 18, 19, 20, 21, 12, 14, 10, 15 permet de supprimer le jeu dans les roulements à billes sans augmentation sensible des frottements. On atteint ainsi une précision très élevée dans le positionnement des parties de rotor et de stator l'une par rapport à l'autre, d'une manière relativement simple même dans une fabrication en grandes séries, cette précision se conservan€ pendant la durée de vie du moteur grâce à l'élasticité mentionnée.

La figure 3 montre une variante d'exécution qui utilise, à la place de deux roulements à billes séparés, deux roulements combinés ayant l'une de leurs bagues de roulement en commun. Les parties de stator, désignées respectivement par 31 et 32, présentent une configuration similaire à celle de la figure 1 et sont montées sur la bague commune 33 des roulements à billes combinés. Deux bagues intérieures 34 et 35 coopèrent avec la bague commune par l'intermédiaire de deux rangées de billes 36,37. Les bagues 34 et 35 sont en contact entre elles le long d'une surface annulaire 38 et comportent chacune une partie de support respective 39,40 présentant des surfaces de support planes annulaires perpendiculaires à l'axe de rotation du moteur. Des parties de rotor annulaires 41,42 sont montées sur ces parties de support de manière à être disposées dans les entrefers des deux parties de stator. L'assemblage des bagues 34 et 35 est effectué de façon que les deux roulements à billes combinés ne présentent pratiquement pas de jeu résultant. L'axe du moteur et les parties de support du moteur ne sont plus représentés dans la figure 3 et dans certaines des figures suivantes.

La figure 4 illustre une forme d'exécution qui se distingue essentiellement des exemples des figures 1 et 3 par la présence de deux roulements à billes juxtaposés qui comprennent chacun une première bague de roulement 43,44 et une seconde bague de roulement 45,46 coopérant avec deux rangées de billes respectives 47,48. Les deux roulements sont montés côte à côte de façon que l'ensemble ne présente pas de jeu résultant. Les parties de rotor 49,50 sont fixées sur les joues constituées par les surfaces frontales des bagues 45,46 par l'intermédiaire de disques de support correspondants 51,52.

Les parties de stator représentées à la figure 4 comportent chacune deux parties annulaires en tôle 53,54 et 55,56, formées de façon à présenter un logement pour les bobines de commande 57,58 et des dentures opposées, similaires à celles de la figure 1, tel que la denture désignée par 59. Les parties 54 et 55 sont fixées sur les bagues extérieures 43 et 44 des roulements à billes juxtaposées, par l'intermédiaire d'une pièce de support commune 60 qui peut être soudée aux pièces 54, 55, 44 et 43 de façon à rendre celles-ci solidaires. Un axe 61 peut être monté à l'intérieur des bagues 45 et 46 des roulements à billes, comme le montre la figure.

La figure 5 représente une variante d'exécution du moteur de la figure 4 dans laquelle un roulement unique à une rangée de billes et à trois bagues de roulement est utilisé à la place des deux roulements juxtaposés de la figure 4. Une bague extérieure du roulement désignée par 62 coopère, par l'intermédiaire d'une rangée de billes 63, avec deux bagues intérieures 64,65 juxtaposées axialement, l'ensemble du roulement étant ajusté de façon qu'il ne présente pratiquement pas de jeu. Les parties de rotor et de stator peuvent être fixées, d'une manière similaire à celle des exemples précédents, respectivement aux bagues intérieures et à la bague extérieure de ce roulement. Dans l'exemple représenté à la figure 5, la pièce de support 60 de la figure 4 a été supprimée, mais les autres pièces des parties de rotor et de stator, sont analogues à celles de la figure 4 et ont été désignées par les mêmes chiffres de référence. La figure 5 montre en outre deux pièces de fermeture 66,67 placées sur les parties de stator de manière à protéger l'intérieur du moteur. L'arbre 61 représenté est constitué par un long pignon taillé qui, du fait qu'il est centré par ses -extrémités de dents, assure une très bonne précision du montage par rapport au roulement à billes.

La figure 6 montre, en coupe selon un plan axial, un autre moteur synchrone diphasé, comportant deux organes rotatifs séparés 71 et 72, disposés coaxialement en regard l'un de l'autre. Chacun de ces organes rotatifs comporte un disque annulaire aimanté respectif 73, 74, fixé par une de ses surfaces planes sur une surface plane annulaire, telle que 75, d'une partie de roulement correspondante 76, 77, faisant partie d'un roulement à billes axial respectif 78, 79.

Les deux parties de roulement 76 et 77 sont couplées au moyen d'un dispositif de couplage, constitué, dans le présent exemple, par deux rondelles-ressort 80 et 81, qui sont logées dans une creusure correspondante de chaque partie de roulement, de manière à tendre à écarter ces deux parties en direction axiale. Les deux parties de roulement extérieures, désignées par 82, 83 forment des butées axiales, par l'intermédiaire des billes des roulements, pour les parties de roulement intérieures 76 et 77, de sorte que la position des deux parties de rotor par rapport au stator est définie, sans jeu, par les. deux roulements à billes. Le couplage dans le sens circonférentiel, c'est-à-dire dans le sens de la rotation, peut être assuré par un soudage des deux rondelles l'une avec l'autre lors de leur montage, et par un soudage de chacune d'elles sur la partie de roulement correspondante. Dans certains cas, la friction des rondelles-ressort et/ou un crantage de celles-ci peuvent être suffisants pour assurer que les deux parties de roulement soient solidaires dans leur rotation.

Le stator 84 du moteur comporte deux bobines électriques annulaires 85 et 86, qui sont chacune couplées avec un circuit magnétique correspondant 87 et 88. Chaque circuit magnétique est formé par deux pièces 89, 90 et 91, 92 réalisées, par exemple, en un matériau fritte magnétiquement perméable. Ces pièces ont une forme annulaire et sont en contact le long d'une zone annulaire plane respective 93, 94 à faible résistance magnétique. Les pièces 89 à 92 comportent, d'autre part, chacune une partie annulaire munie d'une série de dents telles que 95, réparties sur toute la circonférence, de manière à former un entrefer variable coopérant avec les zones aimantées du disque correspondant 73 ou 74.

La position des disques aimantés 73 et 74 dans les entrefers des circuits magnétiques 87 et 88 est définie par les dimensions des deux roulements à billes 78 et 79, et par les surfaces de contact planes des pièces 89 à 92. Les dimensions correspondantes peuvent être réalisées avec toute la précision voulue .et d'une façon très économique, de sorte que la disposition décrite permet d'obtenir d'une manière extrêmement avantageuse un excellent centrage en direction axiale et un très bon parallélisme des parties de rotor par rapport aux entrefers.

Les figures 7, 8 et 9 montrent des variantes d'exécution du moteur de la figure 6. . ' .

Dans la forme d'exécution de la figure 7, les circuits magnétiques correspondant aux circuits 87 et 88 de la figure 6 sont réalisés en plusieurs pièces. Une première partie de stator comporte une partie polaire 96, en un matériau fritte, ayant une forme annulaire et formant la denture 95, et une partie polaire 97, formant la denture opposée. Ces deux parties polaires sont reliées magnétiquement entre elles par des parties de connexion annulaires 98 et 99, formées selon la vue en coupe de la figure 7, par exemple par emboutissage, et réunies entre elles et aux parties 96 et 97, par exemple par soudage. Dans ce cas, comme dans le cas des figures précédentes, la bobine électrique, désignée ici par 100, est entourée étroitement par le circuit magnétique correspondant, de manière à réduire les pertes et à utiliser de façon optimale le volume disponible. Une deuxième partie de stator 101 est réalisée de façon analogue à la première. Les organes rotatifs 71, 72 sont similaires à ceux de la figure 6, et sont désignés par les mêmes chiffres de référence.

La variante d'exécution selon la figure 8 comporte des roulements à billes radiaux démontables 102, 103. Comme dans les figures 6 et 7, une des parties de roulement 104 ou 105 de chaque organe rotatif 106, 107 porte un disque aimanté correspondant 108, 109, ce disque étant fixé sur une surface perpendiculaire à l'axe de rotation. Le dispositif de couplage des deux organes rotatifs et les deux parties de stator sont réalisés de manière analogue à la figure 7, et les parties correspondantes sont désignées par les mêmes chiffres de référence que dans cette figure.

La figure 9 montre une autre variante d'exécution du moteur de la figure 6, dans laquelle des parties de support 110, 111 sont utilisées pour la fixation des parties de rotor aimantées 112, 113 sur les parties de roulement correspondantes 114, 115. Les parties de roulement présentent chacune une surface plane annulaire en contact avec une première zone d'une surface plane annulaire 116, 117 de la partie de support respective 110, 111, et une deuxième zone de ces mêmes surfaces 116, 117 est en contact avec une des surfaces planes des disques annulaires 112, 113.

Le couplage entre les deux organes rotatifs est réalisé dans le sens axial par deux rondelles-ressorts 80, 81, comme dans les exemples des figures 6 à 8, alors qu'une goupille 118 est prévue dans l'exemple de la figure 9 pour assurer le couplage dans la direction circonférentielle. Cette goupille est agencée de façon à ne pas gêner l'ëcar-tement des deux organes rotatifs sous l'effet des ressorts 80, 81.

Les circuits magnétiques du moteur de la figure 9 comportent chacun des parties polaires annulaires, dentées, similaires aux parties 96, 97 de la figure 7, et des parties de connexion annulaires 119, 120, formées et assemblées selon la vue en coupe de la figure 9, de manière à assurer" une très faible résistance magnétique et une bonne précision des dimensions dans le sens axial.

Le présent moteur peut être réalisé sous forme d'un ensemble extrêmement plat et de faibles dimensions, dont les parties utiles occupent un volume minimal. En même temps, étant donné la configuration des circuits magnétiques et la précision du montage, le rendement atteint une valeur optimale, d'autant plus que, dans les versions diphasées représentées, la totalité de la circonférence du disque aimanté coopère avec des parties polaires du stator. Les deux organes rotatifs ou les deux parties de stator peuvent d'ailleurs être facilement ajustés dans leur position angulaire mutuelle avant leur immobilisation définitive, par soudage ou collage par exemple.

Dans toutes les différentes formes d'exécution du présent moteur, l'excellente définition de la position de la partie magnétiquement active du rotor par rapport aux parties de stator avec lesquelles elles coopèrent, est un avantage décisif, obtenu d'une façon relativement simple et économique. En effet, la précision des roulements à billes se retrouve, grâce aux surfaces planes de contact entre la partie de roulement, l'éventuelle pièce de support et la partie de rotor aimantée correspondantes, au niveau des entrefers des parties de stator.

Bien entendu, un moteur dont un seul organe rotatif porte un disque aimanté peut être conçu de façon similaire au moteur représenté, et diverses formes de réalisation d'organes rotatifs, notamment d'organes rotatifs axialement déplaçables l'un par rapport à l'autre et munis de dispositifs de couplage, ainsi que des variantes de réalisation des parties de stator et des roulements à billes, peuvent être envisagées par l'homme de métier. Il est à noter, d'autre part, que le présent principe de montage de l'organe rotatif, bien qu'il soit particulièrement

_CMPI intéressant pour les moteurs du type décrit dans les exemples, "est également très utile dans d'autres configurations et pour d'autres types de moteurs électriques, où la précision du centrage du rotor par rapport au stator est importante.

C...PI