Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

1. CN103370494 - 用于执行井下增产作业的系统和方法

Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique
用于执行井下增产作业的系统和方法


相关申请交的叉引用
本申请要求2011年2月28日提交的美国临时申请No.61/464,134和2010年12月30日提交的美国临时申请No.61/460,372的优先权,两者均题为“综合储层(reservoir)中心完井和增产(stimulation)设计方法(INTEGRATED RESERVOIR CENTRIC COMPLETION ANDSTIMULATION DESIGN METHODS)”;通过引用将上述每一个美国临时申请的全部内容合并于此。
背景技术
本公开涉及用于执行油田作业的技术。更具体地,本公开涉及用于执行增产作业,诸如对其中具有至少一个储层的地下岩层进行射孔(perforating)、注入和/或压裂。这一部分的陈述仅仅提供与本公开有关的背景技术信息,而不构成现有技术。
可以执行油田作业以对诸如碳氢化合物的有价值的井下(downhole)流体进行定位和采集。油田作业可以包括例如勘探、钻井、井下评估、完井、开采、增产和油田分析。勘探可以涉及使用例如地震车来发送和接收井下信号的地震勘探。钻井可以涉及将井下工具推进到土地中以形成井眼。井下评估可以涉及将井下工具部署到井眼中以进行井下测量和/或取回井下样本。完井可以涉及对井眼进行固井和套管,以准备进行开采。开采可以涉及将开采管道部署到井眼中,以将流体从储层传输到地面(surface)。增产可以涉及例如射孔、压裂、注入和/或其它增产作业,以便于从储层开采流体。
油田分析可以涉及例如评估有关井场(wellsite)和各种作业的信息,和/或执行井规划作业。这样的信息可以是例如由岩石学家采集和/或分析的岩石学信息、由地质学家采集和/或分析的地质学信息、或由地球物理学家采集和/或分析的地球物理学信息。岩石学信息、地质学信息、地球物理学信息可以在它们之间的数据流断开的情况下被分别分析。操作人员可以使用多种软件和工具来手动移动和分析数据。可以使用井规划,基于所采集的关于井场的信息,来设计油田作业。
发明内容
提供这个发明内容部分是为了介绍下面在详细的描述中将进一步描述的经过选择的概念。此发明内容部分并不意图确定所要求保护的主题的关键或必要特征,也不意图用来帮助限定所要求保护的主题的范围。
于此公开的技术与涉及使用力学地球模型和综合井场数据(例如,岩石学、地质学、地质力学、以及地球物理学数据)的储层表征的增产作业相关。所述增产作业还可以涉及在反馈环中优化的井规划分级设计、增产设计和产量预测。可以通过在反馈环中执行所述增产设计和产量预测来优化所述增产规划。还可以使用所述反馈环中的分级和井规划来执行所述优化。可以实行所述增产规划,并且实时优化所述增产规划。所述增产设计可以基于对于非常规储层的分级,非常规储层诸如是致密气砂层和页岩储层。
附图说明
参考附图描述用于执行井下增产作业的方法和系统的实施例。为了一致性,相同的附图标记意图表示类似的元件。为了清楚的目的,没有在每一个附图中对每一个部件进行标注。
图1.1-1.4是图解井场处的各种油田作业的示意图。
图2.1-2.4是通过图1.1-1.4的作业收集的数据的示意图。
图3.1是图解各种井下增产作业的井场的示意图。
图3.2-3.4是图3.1的井场的各种裂缝的示意图。
图4.1是图示井下增产作业的示意流程图。
图4.2和4.3是图示井下增产作业的部分的示意图。
图5.1是图解在致密气砂岩地层(tight gas sandstone formation)中对增产作业进行分级的方法的示意图,图5.2是图解在致密气砂岩地层中对增产作业进行分级的方法的流程图。
图6是图示被组合以形成加权复合测井曲线(log)的一组测井曲线的示意图。
图7是图示根据第一和第二测井曲线形成的储层质量指标(indicator)的示意图。
图8是图示根据完井和储层质量指标形成的复合质量指标的示意图。
图9是图示基于应力分布和复合质量指标的级(stage)设计的示意图。
图10是图示用于提高复合质量指标的一致性的级边界调整的示意图。
图11是图示基于复合质量指标分解的级的示意图。
图12是图示基于质量指标的射孔布置的图。
图13是图解对页岩储层的增产作业进行分级的方法的流程图。
图14是图解执行井下增产作业的方法的流程图。
具体实施方式
下面的描述包括具体实施这里的主题的技术的示例性系统、装置、方法和指令序列。然而,应当理解,可以在没有这些具体细节的情况下实施所描述的实施例。
本公开涉及在井场执行的增产作业的设计、实现和反馈。可以使用储层中心、综合方案来执行增产作业。这些增产作业可以涉及基于多学科信息(例如由岩石学家、地质学家、地质力学家、地球物理学家和储层工程师使用的)、多井应用、和/或多级油田作业(例如完井、增产、和开采)的综合增产设计。一些应用可以被调整以适用于非常规井场应用(例如致密气、页岩、碳酸盐、煤等)、复杂井场应用(例如多井)、以及各种裂缝模型(例如,针对砂岩储层的常规平面双翼裂缝模型或针对自然裂缝的低渗透性储层的复杂网络裂缝模型)等。如这里所使用的,非常规储层涉及诸如致密气(tight gas)、砂层、页岩、碳酸盐、煤等的储层,其中地层不均匀,或者被自然裂缝贯穿(所有其它储层被视为常规储层)。
也可以使用针对特定类型的储层(例如致密气、页岩、碳酸盐、煤等)的优化、调整,综合评估标准(例如储层和完井标准),以及综合来自多个源的数据,来执行增产作业。可以使用常规技术分别分析数据流来手动执行增产作业,其中分别分析被断开,和/或涉及操作人员使用多种软件和工具来手动移动数据和综合数据。也可以综合这些增产作业,例如通过以自动或半自动方式使多学科数据最大化来流线化这些增产作业。
油田作业
图1.1-1.4图示了可以在井场执行的各种油田作业,图2.1-2.4图示了可以在井场收集的各种信息。图1.1-1.4图示了代表性油田或井场100的简化示意图,该代表性油田或井场100具有地下地层102,地下地层102中包含例如储层104,并且还图示了对井场100执行的各种油田作业。图1.1图示了由诸如地震车106.1的勘探工具执行以测量地下地层的属性的勘探作业。勘探作业可以是用于产生声振动的地震勘探作业。在图1.1中,由源110生成的一种这样的声振动112在地球地层116中的多个水平层114处反射开。可以由位于地球表面的诸如地震检波器—接收器118的传感器来接收声振动112,并且地震检波器118产生电输出信号,在图1.1中称为所接收的数据120。
响应于代表声振动112的不同参数(诸如幅度和/或频率)的所接收的声振动112,地震检波器118可以产生包含有关地下地层的数据的电输出信号。可以提供所接收的数据120作为对地震车106.1的计算机122.1的输入数据,并且响应于输入数据,计算机122.1可以生成地震和微震数据输出124。可以对地震数据输出124进行存储、发送、或根据期望进行诸如数据简化的进一步处理。
图1.2图示了由钻井工具106.2执行的钻井作业,其中钻井工具106.2由钻机128悬挂,并且被推进到地下地层102中,以形成井眼136或其它通道。可以使用泥浆坑130将钻井泥浆经由管线132抽吸到钻井工具中,以使钻井泥浆循环通过钻井工具,上到井眼136并返回地面。钻井泥浆可以被过滤,然后返回泥浆坑。可以使用循环系统来存储、控制或过滤流动的钻井泥浆。在这个图示中,钻井工具被推进到地下地层以到达储层104。每一个井可以以一个或多个储层为目标。钻井工具可以适于使用随钻测井工具来测量井下属性。随钻测井工具还可以适于如所示地收取岩心样本133,或者被移除以便可以使用其它工具来收取岩心样本。
可以使用地面单元134来与钻井工具和/或场外作业进行通信。地面单元可以与钻井工具通信,以向钻井工具发送命令,并从钻井工具接收数据。地面单元可以具有计算机设备,以接收、存储、处理和/或分析来自作业的数据。地面单元可以收集钻井作业期间生成的数据,并产生可以被存储或发送的数据输出135。计算机设备,例如地面单元中的计算机设备,可以位于井场附近各种位置处和/或位于远距离位置处。
可以在油田附近安置诸如计量器的传感器(S),以收集与先前描述的各种作业有关的数据。如所示,传感器(S)可以安置在钻井工具中一个或多个位置处和/或位于钻机处,以测量钻井参数,诸如钻压、钻头扭矩、压力、温度、流量、成分、旋转速度和/或其它作业参数。传感器(S)还可以位于循环系统中的一个或多个位置中。
可以由地面单元和/或其它数据收集源来收集由传感器采集的数据,以进行分析或其它处理。可以单独使用或与其它数据结合使用由传感器收集的数据。可以将数据收集在一个或多个数据库中和/或对其进行场内或场外发送。可以选择性地使用数据的全部或选择的部分来对当前和/或其它井眼进行分析和/或预测操作。数据可以是历史数据、实时数据或其组合。可以实时使用实时数据,或将其存储以备以后使用。还可以将数据与历史数据或其它输入组合以进行进一步的分析。可以将数据存储在分别的数据库中,或者组合到单个数据库中。
可以使用所收集的数据来执行分析,诸如建模操作。例如,可以使用地震数据输出来执行地质学、地球物理学、和/或储层工程分析。可以使用储层、井眼、地面和/或处理后的数据来执行储层、井眼、地质学、以及地球物理学或其它模拟。来自作业的数据输出可以从传感器直接生成,或在一些预处理或建模之后生成。这些数据输出可以用作其它分析的输入。
数据可以被收集并存储在地面单元134处。一个或多个地面单元可以位于井场处或者在远处连接到井场。地面单元可以是单个单元或多个单元的复杂网络,用于执行整个油田必要的数据管理功能。地面单元可以是手动或自动系统。地面单元134可以由用户操作和/或调整。
地面单元可以具有收发器137,以使得能够在地面单元与当前油井的各个部分或其它位置之间进行通信。地面单元134还可以具有或者功能性地连接到一个或多个控制器,用于致动井场100处的机械装置。然后地面单元134可以响应于所接收的数据向油田发送命令信号。地面单元134可以经由收发器接收命令,或者可以自己实行给控制器的命令。可以提供处理器以分析数据(本地或远程),做出决定和/或致动控制器。以这种方式,可以基于所收集的数据选择性地调整作业。可以基于该信息来优化部分作业,诸如控制钻井、钻压、泵送速率或其它参数。这些调整可以基于计算机协议自动进行,和/或由操作员手动进行。在一些情况下,可以调整井规划以选择最佳作业条件,或者避免问题。
图1.3图示了由钻机128悬挂并进入图1.2的井眼136的电缆测井(wireline)工具106.3执行的电缆测井作业。电缆测井工具106.3可以适于部署到井眼136中,用来产生测井曲线,执行井下测试和/或收集样本。电缆测井工具106.3可以用来提供另一种执行地震勘探作业的方法和设备。图1.3的电缆测井工具106.3可以例如具有爆炸性、放射性、电学或声学能量源144,该能量源144向周围的地下地层102及其中的流体发送电信号和/或从周围的地下地层102及其中的流体接收电信号。
电缆测井工具106.3可以可操作地连接到例如图1.1的地震车106.1的地震检波器118和计算机122.1。电缆测井工具106.3还可以向地面单元134提供数据。地面单元134可以收集在电缆测井作业期间生成的数据,并产生可以被存储或发送的数据输出135。电缆测井工具106.3可以位于井眼中各种深度,以提供勘探结果或与地下地层有关的其它信息。
可以在井场100附近安置诸如计量器的传感器(S),以收集与先前描述的各种作业有关的数据。如所示,传感器(S)安置在电缆测井工具106.3中,以测量涉及例如孔隙率、渗透率、流体成分和/或作业的其它参数的参数。
图1.4图示了由从开采单元或圣诞树129部署并进入图1.3的完成的井眼136中的开采工具106.4执行的开采作业,用于将流体从井下储层抽吸到地面设施142。流体从储层104流过套管(未示出)中的射孔并进入井眼136中的开采工具106.4,并经由采集网络146流到地面设施142。
可以在油田附近安置诸如计量器的传感器(S),以收集与先前描述的各种作业有关数据。如所示,传感器(S)可以安置在开采工具106.4或相关设备中,诸如圣诞树129、采集网络、地面设施和/或开采设施中,以测量流体参数,诸如流体成分、流量、压力、温度和/或开采作业的其它参数。
尽管仅示出了简化的井场配置,但是应当理解油田或井场100可以覆盖具有一个或多个井场的陆地、海洋和/或水域的部分。为了增加采收率或存储例如碳氢化合物、二氧化碳或水,开采也可以包括注入井(未示出)。一个或多个采集设备可以可操作地连接到一个或多个井场,以从井场选择性地收集井下流体。
应当理解,图1.2-1.4图示的工具不但可以测量油田属性而且可以测量非油田作业的属性,诸如矿藏、含水层、储藏以及其它地下设施。而且,尽管图示了特定的数据获取工具,但是应当理解,可以使用能够感测诸如地下地层的地震双向行程时间、密度、电阻率、开采率等和/或其地质学信息的参数的各种测量工具(例如电缆测井、随钻测量(MWD)、随钻测井(LWD)、岩心样本等)。可以沿着井眼和/或监测工具在各种位置处设置各种传感器(S),以收集和/或监测所期望的数据。还可以从场外位置处提供其它数据源。
图1.1-1.4的油田配置图示了井场100和通过这里提供的技术可以使用的各种作业的示例。油田的部分或全部可以在陆地上、水上和/或海上。而且尽管图示了在单个位置处测量单个油田的情况,但是可以以一个或多个油田、一个或多个处理设施、以及一个或多个井场的任何组合来利用储层工程。
图2.1-2.4分别是由图1.1-1.4的工具收集的数据的示例的图形表示。图2.1表示由地震车106.1取得的图1.1的地下地层的地震道202。地震道可以用于提供诸如在一段时间中的双向响应的数据。图2.2图示了由钻井工具106.2收取的岩心样本133。岩心样本可以用于提供诸如沿着岩心的长度的岩心样本的密度、孔隙率、渗透率或其它物理属性的图表的数据。可以在变化的压力和温度下对岩心中的流体执行密度和粘度的测试。图2.3图示了由电缆测井工具106.3取得的图1.3的地下地层的测井曲线204。电缆测井可以提供各种深度处地层的电阻率或其它测量结果。图2.4图示了在地面设施142处测量的流过图1.4的地下地层的流体的产量递减曲线或图表206。产量递减曲线可以提供作为时间t的函数的开采率Q。
图2.1、2.3和2.4的各个图表图示了可以描述或提供有关地层和其中所包含的储层的物理特性的信息的静态测量的示例。可以分析这些测量结果以限定地层的属性,确定测量结果的精确度和/或检查错误。可以将各个测量结果中每一个的图进行对齐(align)和缩放(scale),以进行属性的比较与核实。
图2.4图示了通过井眼对流体属性的动态测量的示例。随着流体流过井眼,对流体属性,诸如流量、压力、成分等,进行测量。如下面所描述的,可以对静态和动态测量结果进行分析,并使用它们来生成地下地层的模型,以确定其特性。也可以使用类似的测量来测量地层方面随时间的变化。
增产作业
图3.1图示了在井场300.1和300.2处执行的增产作业。井场300.1包括钻机308.1,钻机308.1具有延伸进入地层302.1的竖直井眼336.1。井场300.2包括钻机308.2和钻机308.3,钻机308.2具有井眼336.2,钻机308.3具有井眼336.3,井眼336.3分别在钻机308.3下面延伸进入地下岩层302.2。尽管示出了井场300.1和300.2具有钻机和井眼的特定配置,但是应当理解,一个或多个钻机和一个或多个井眼可以安置在一个或多个井场处。
井眼336.1从钻机308.1延伸通过非常规储层304.1-304.3。井眼336.2和336.3分别从钻机308.2和308.3延伸到非常规储层304.4。如所示,非常规储层304.1-304.3是致密气砂层储层,而非常规储层304.4是页岩储层。给定地层中可以存在一个或多个非常规储层(诸如致密气、页岩、碳酸盐、煤、重油等)和/或常规储层。
图3.1的增产作业可以单独执行或结合诸如图1.1和1.4的油田作业的其它油田作业来执行。例如,可以如图1.1-1.4中所示地来对井眼336.1-336.3进行测量、钻井、测试和开采。井眼300.1和300.2处执行的增产作业可以涉及例如射孔、压裂、注入等。增产作业可以结合诸如完井和开采作业的其它油田作业(参见例如图1.4)来执行。如图3.1所示,井眼336.1和336.2已被完井,并且具有射孔338.1-338.5以便于开采。
在竖直井眼336.1中邻近致密气砂层储层304.1安置井下工具306.1,以进行井下测量。在井眼336.1中安置封隔器307,以隔离其邻近射孔338.2的部分。一旦在井眼附近形成射孔,就可以通过射孔注入流体到地层中,以创建和/或扩大其中的裂缝,以增进从储层的开采。
已对地层302.2的储层304.4进行了射孔,并且已安置封隔器307以在射孔338.3-338.5附近隔离井眼336.2。如所示,在水平井眼336.2中,在井眼的级SET 1和SET 2处安置了封隔器307。如也图示的,井眼304.3可以是延伸通过地层302.2到达储层304.4的邻井(试验井)。一个或多个井眼可以位于一个或多个井场处。可以按期望设置多个井眼。
裂缝可以延伸进入各种储层304.1-304.4,以便于从中开采流体。图3.2和3.4中在井眼304附近示意性地示出了可以形成的裂缝的示例。如图3.2所示,自然裂缝340在层中在井眼304附近延伸。在井眼304附近可以形成射孔(或射孔簇)342,可以通过射孔342注入流体344和/或混合有支撑剂346的流体。如图3.3所示,可以通过经射孔342进行注入,沿最大应力面σ hmax 创建裂缝,以及打开和扩展自然裂缝来执行水力压裂。
图3.4示出了井眼304附近的压裂作业的另一个视图。在这个视图中,注入裂缝348在井眼304附近径向延伸。可以使用注入裂缝来到达井眼304附近的微震事件包(pocket ofseismic event)351(示意性地示为点)。可以使用压裂作业作为增产作业的一部分,以便提供便于碳氢化合物移动到井眼304以进行开采的通路。
返回参考图3.1,可以在油井附近安置诸如计量器的传感器(S),以收集与先前描述的各种作业有关的数据。在压裂期间,可以在地层附近安置诸如地震检波器的一些传感器,用来测量微震波,并执行微震映射(mapping)。可以由地面单元334和/或其它数据收集源来收集由传感器采集的数据,以进行先前所描述的分析或其它处理(参见例如地面单元134)。如所示,地面单元334链接到网络352和其它计算机354。
可以提供增产工具350作为地面单元334的部分或井场的其它部分,用于执行增产作业。例如,可以在用于一个或多个井、一个或多个井场和/或一个或多个储层的井规划中,使用在一个或多个增产作业期间生成的信息。增产工具350可以可操作地链接到一个或多个钻机和/或井场,并且用于接收数据、处理数据、发送控制信号等,这将在下文中进一步描述。增产工具350可以包括:储层表征单元363,用来生成力学地球模型(MEM);增产规划单元365,用于生成增产规划;优化器367,用于优化增产规划;实时单元369,用于对优化的增产规划进行实时优化;控制单元368,用于基于实时优化的增产规划来选择性地调整增产作业;更新器370,用于基于实时优化的增产规划和后期评估数据来更新储层表征模型;以及校准仪372,用于如下文中将进一步描述的那样校准优化的增产规划。增产规划单元365可以包括:分级设计工具381,用于执行分级设计;增产设计工具383,用于执行增产设计;产量预测工具(production prediction tool)385,用于预测产量;以及井规划工具387,用于产生井规划。
基于测井曲线到三维地震数据(参见例如图2.1-2.4),增产作业中使用的井场数据的范围可以为从例如岩心样本到岩石学解释。增产设计可以利用例如油田岩石技术专家来进行手动处理,以校勘多条不同的信息。信息的综合可以涉及断开的工作流程(workflow)和输出的手动操作,诸如储层区的勾画、期望的完井区的识别、对给定的完井设备配置期望的水力压裂生长的估计、是否及在何处布置另一个井或多个井以对地层更好地增产的决定等。这一增产设计还可以涉及半自动或自动综合、反馈以及控制,以便于增产作业。
可以基于对储层的了解来执行对常规或非常规储层的增产作业。例如在井规划、识别用于射孔和分级的最佳目标区、多个井的设计(例如间距和取向)以及地质力学模型中,可以使用储层表征。可以基于所得到的产量预测来对增产设计进行优化。这些增产设计可以涉及综合储层中心工作流程,其包括设计、实时(RT)以及处理后评估部件(component)。可以在使用多学科井眼和储层数据的同时执行完井和增产设计。
图4.1是图示诸如图3.1所示的增产作业的增产作业的示意流程图400。流程图400是使用综合信息和分析来设计、实施和更新增产作业的迭代过程。该方法涉及预处理评估445、增产规划447、实时处理优化451、和/或设计/模型更新453。流程图400的部分或全部可以迭代,以在现有的或者附加的井中调整增产作业和/或设计附加的增产作业。
预增产评估445涉及储层表征460和生成三维力学地球模型(MEM)462。可以通过综合信息,诸如在图1.1-1.4中采集的信息,来生成储层表征460,以使用来自历史上的独立技术规范或学科(例如岩石学家、地质学家、地质力学家和地球物理学家,以及先前的裂缝处理结果)的信息的统一组合来执行建模。可以使用综合静态建模技术来生成这样的储层表征460,以生成MEM 462,如在例如美国专利申请No.2009/0187391和2011/0660572中所描述的。作为示例,可以使用诸如从SCHLUMBERGERTM商业可得的诸如PETRELTM、VISAGETM、TECHLOGTM、以及GEOFRAMETM的软件来执行预处理评估445。
储层表征460可以涉及捕获诸如与地下地层关联的数据的各种信息,以及开发一个或多个储层模型。所捕获的信息可以包括例如增产信息,诸如储层(产油)区、地质力学(应力)区、自然裂缝分布。可以执行储层表征460以使得在预增产评估中包括有关增产作业的信息。生成MEM 462可以模拟正在开发的地下岩层(例如生成油田或盆地中给定地层剖面的应力状态和岩石力学属性的数值表示)。
可以使用常规地质力学建模来生成MEM 462。美国专利申请No.2009/0187391中提供了MEM技术的示例。可以通过使用例如图1.1-1.4、2.1-2.4和3的油田作业采集的信息来生成MEM 462。例如,3D MEM可以考虑事先收集的各种储层数据,包括在对地层的早期勘探期间收集的地震数据、以及在开采之前通过对一个或多个勘探井的钻井而收集的测井数据(参见例如图1.1-1.4)。MEM 462可以用于提供例如用于各种油田作业的地质力学信息,诸如套管下入深度选择、套管柱数量的优化、钻出稳定的井眼、设计完井、执行压裂增产等。
所生成的MEM 462可以用作执行增产规划447的输入。可以构建3D MEM以识别潜在的钻井井场。在一个实施例中,当地层基本上均匀,并且基本上没有大的自然裂缝和/或高应力屏障时,可以假定在给定时间段内以给定速率泵送的给定量的压裂流体将在地层中生成基本上相同的裂缝网络。诸如图1.2和2.2中所示的岩心样本可以提供在分析地层的裂缝属性时有用的信息。对于储层中呈现类似属性的区域,可以以彼此基本上相等的距离布置多个井(或分支),并且将对整个地层进行充分增产。
增产规划447可以涉及井规划465、分级设计466、增产设计468以及产量预测470。具体说来,MEM 462可以是对井规划465和/或分级设计466以及增产设计468的输入。一些实施例可以包括半自动化的方法,以识别例如井间距和取向、多级射孔设计以及水力裂缝设计。为了处理碳氢化合物储层中大量不同的特性,一些实施例可以涉及针对目标储层环境的专用方法,目标储层环境诸如是,但不限于,致密气地层、砂岩储层、自然裂缝页岩储层或其它非常规储层。
增产规划447可以涉及用于通过将地下地层划分为多组离散的层段(interval),基于诸如地层的地球物理学属性及其与自然裂缝的邻近的信息对每一个层段进行表征,然后将多个层段重新分组为一个或多个钻井井场,每一个井场容纳井或井的分支,来识别潜在钻井井场的半自动化的方法。可以在优化储层的开采时确定和使用多个井的间距和取向。可以分析每一个井的特性用于级规划和增产规划。在一些情况下,可以提供完井顾问(advisor),例如用于在递归的细化工作流程之后分析致密气砂岩储层中竖直或几乎竖直的井。
可以在井场执行这样的油田作业之前,执行井规划465以设计油田作业。可以使用井规划465来限定例如用于执行油田作业的设备和作业参数。一些这样的作业参数可以包括例如射孔位置、作业压力、增产流体、以及在增产中所使用的其它参数。在设计井规划时,可以使用从各种源采集的信息,采集的信息诸如是历史数据、已知数据、油田测量结果(例如在图1.1-1.4中所取得的)。在一些情况下,可以使用建模来分析在形成井规划时使用的数据。在增产规划中生成的井规划可以接收来自分级设计466、增产设计468、以及产量预测(production prediction)470的输入,以便在井规划中评估有关增产和/或影响增产的信息。
还可以使用井规划465和/或MEM 462作为对分级设计466的输入。在分级设计466中可以使用储层和其它数据,以限定用于增产的特定作业参数。例如,分级设计466可以涉及在井眼中限定边界,以执行这里进一步描述的增产作业。美国专利申请No.2011/0247824中描述了分级设计的示例。分级设计可以是用于执行增产设计468的输入。
增产设计限定了用于执行增产作业的各种增产参数(例如射孔布置)。可以使用增产设计468来进行例如裂缝建模。美国专利申请No.2008/0183451、2006/0015310以及PCT公开No.WO2011/077227中描述了裂缝建模的示例。增产设计可以涉及使用各种模型来限定增产规划和/或井规划的增产部分。
增产设计可以综合3D储层模型(地层模型)作为完井设计的起始点(区模型),该3D储层模型可以是地震解释、钻井地质导向解释、地质学或地质力学地球模型的结果。对于一些增产设计,可以使用裂缝建模算法来读取3D MEM,并运行正演建模来预测裂缝生长。可以使用这一过程来使得可以在增产作业中考虑复杂储层的空间异质性。另外,一些方法可以并入数据的空间X-Y-Z集合,以导出指标,然后使用该指标来布置和/或执行井眼作业,以及在一些情况下,布置和/或执行多级井眼作业,如这里将进一步描述的。
增产设计可以使用3D储层模型,用于提供模型中有关自然裂缝的信息。可以使用自然裂缝信息来例如处理某些的情形,诸如水力诱导的裂缝生长并且遇到自然裂缝(参见例如图3.2-3.4)的情况。在这种情况下,裂缝可以继续生长进入相同的方向,并根据入射角和其它储层地质力学属性而沿着自然裂缝面转向或者停止。这个数据可以提供对例如储层尺寸和结构、产油区位置和边界、地层中各个位置处的最大和最小应力水平、以及地层中自然应力的存在与分布的洞悉。作为这一模拟的结果,可以形成非平面的(即网络化的)裂缝或离散的网络裂缝。一些工作流程可以在叠放了微震事件(参见例如图3.4)的单个3D画布中综合这些预测的裂缝模型。这一信息可以用于裂缝设计和/或校准。
在增产设计中也可以使用微震映射来理解复杂裂缝生长。在诸如页岩储层的非常规储层中可能出现复杂裂缝生长。可以分析裂缝复杂度的本质和程度以选择最佳增产设计和完井策略。可以使用裂缝建模来预测可以被校准的裂缝几何结构和基于实时微震映射和评估来优化的设计。可以基于现有水力裂缝模型对裂缝生长进行解释。对于非常规储层(例如致密气砂层和页岩),也可以执行一些复杂水力裂缝传播建模和/或解释,这里将进一步描述。可以基于微震评估来校正储层属性和初始建模假设,并优化裂缝设计。
在SPE论文140185中提供了复杂裂缝建模的示例,通过引用将其全部内容合并于此。这一复杂裂缝建模阐明了两种复杂裂缝建模技术结合微震映射的应用,以表征裂缝复杂度,并评估完井性能。第一种复杂裂缝建模技术是分析模型,用于评估裂缝复杂度和正交裂缝之间的距离。第二种技术使用网格数值模型,该网格数值模型允许复杂地质描述和对复杂裂缝传播的评估。这些示例阐明了可以如何利用实施例来评估裂缝复杂度如何受每一个地质环境中裂缝处理设计的改变的影响。为了使用复杂裂缝模型,而不管MEM和“实际”裂缝生长中的内在不确定性,来量化裂缝设计的改变的影响,可以综合微震映射和复杂裂缝建模以解释微震测量结果,同时还校准复杂增产模型。这样的示例示出裂缝复杂程度可以随地质条件而改变。
产量预测470可以涉及基于井规划465、分级设计466和增产设计468来估计产量。增产设计468的结果(即模拟裂缝模型和输入储层模型)可以留待以后使用,用于产量预测工作流程,其中常规分析或数值储层模拟器可以对该模型进行操作,并且基于动态数据来预测碳氢化合物产量。预产量预测470对于例如定量验证增产规划447过程可以是有用的。
如流程箭头所指示,可以迭代执行增产规划447的部分或全部。如所示,在分级设计466、增产设计468以及产量预测470之后可以提供优化,并且优化可以用作反馈,以优化472井规划465、分级设计466和/或增产设计468。可以选择性地执行优化,以反馈来自增产规划447的部分或全部的结果,并根据需要迭代到增产规划过程的各个部分,并达到优化的结果。可以手动执行增产规划447,或者使用自动优化处理来综合增产规划447,如反馈环473中的优化472所示意性地示出的。
图4.2示意性的图示了增产规划作业447的部分。如此图所示,分级设计446、增产设计468和产量预测470可以在反馈环473中迭代,并且被优化472以生成优化的结果480,诸如优化的增产规划。这一迭代方法使得输入和由分级设计466和增产设计468生成的结果能够‘相互学习’,并且与产量预测迭代以进行它们之间的优化。
可以设计和/或优化增产作业的各个部分。在例如美国专利No.6508307中描述了优化压裂的示例。在另一个示例中,还可以在增产规划447中提供诸如可以影响作业的压裂成本的财务输入。可以通过在考虑财务输入的同时针对产量优化级设计,来执行优化。这样的财务输入可以涉及如图4.3中图示的井眼中各个级处各种增产作业的成本。
图4.3图示了在各个层段处进行的分级作业以及与其相关联的相关净现值(netpresent value)。如图4.3所示,考虑到净现值图457,可以考虑各种分级设计455.1和455.2。净现值图457是绘制平均税后净现值(y轴)与净现值标准差(x轴)的关系的图表。可以基于对净现值图457的财务分析来选择各种分级设计。在例如美国专利No.7908230中描述了涉及诸如净现值的财务信息的用于优化裂缝设计的技术,通过引用将其全部内容合并于此。在该分析中,可以执行各种技术,诸如蒙特卡罗模拟。
返回参考图4.1,在增产规划447中可以包括各种可选特征。例如,可以使用多井规划顾问来确定是否需要在地层中构建多个井。如果要形成多个井,多井规划顾问可以提供多个井的间距和取向,以及在每一个井内对地层进行射孔和处理的最佳位置。如这里所使用的,术语“多井”可以指分别独立地从地球表面钻到地下岩层的多个井;术语“多井”也可以指从单个从地球表面钻出的井起始(kick off)的多个分支(参见例如图3.1)。井和分支的方向可以是竖直的、水平的、或者竖直与水平之间的任何方向。
当规划或钻多个井时,可以对每一个井重复模拟,以使每一个井具有分级规划、射孔规划和/或增产规划。之后,如果需要,可以调整多井规划。例如,如果一个井中的裂缝增产指示增产结果将与具有规划的射孔区的邻近的井重叠,那么可以消除或重新设计该邻近的井和/或该邻近的井中该规划的射孔区。与此相反,如果因为产油区对于第一裂缝井而言只是太远以致于不能对该产油区进行有效增产,或者因为自然裂缝或高应力屏障的存在使得第一裂缝井不能对该产油区进行有效增产,而导致模拟的裂缝处理不能穿透地层的特定区域,那么可以包括第二井/分支或新的射孔区,以提供至未处理的区域的通路。3D储层模型可以考虑模拟模型,并指示钻第二井/分支或增加附加射孔区的候选位置。为了便于油田作业者处理,可以提供空间X’-Y’-Z’位置。
规划后增产作业
实施例还可以包括实时处理优化(或任务后工作流程)451,用来分析增产作业,并在实际增产作业期间更新增产规划。可以在井场实施增产规划(例如执行压裂、注入、或在井场对储层进行其它方式的增产)期间执行实时处理优化451。实时处理优化可以涉及校准测试449、实行448在增产规划447中生成的增产规划、以及实时油田增产455。
可以通过比较增产规划447的结果(即模拟裂缝模型)和观测数据来可选地执行校准测试449。一些实施例可以将校准综合到增产规划过程中,在增产规划之后执行校准,和/或在增产或任何其它处理过程的实时实行中施加校准。在美国专利申请No.2011/0257944中描述了对裂缝或其它增产作业的校准的示例,通过引用将其全部内容合并于此。
基于在增产规划447(以及校准449,如果执行了校准的话)中生成的增产规划,可以实行448油田增产445。油田增产455可以涉及实时测量461、实时解释463、实时增产设计465、实时开采467和实时控制469。实时测量461可以在井场使用例如如图3.1中所示的传感器S来执行。可以使用实时测量结果461来生成观测数据。可以使用来自增产处理井的观测结果,诸如井底和地面压力,来校准模型(传统压力匹配工作流程)。另外,也可以包括微震监测技术。可以将这样的空间/时间观测数据与预测裂缝模型进行比较。
基于所收集的数据,可以在现场内或外执行实时解释463。实时增产设计465和产量预测467的执行可以类似于增产设计468和产量预测470,但是基于在井场执行的实际油田增产455期间生成的附加信息。可以提供优化471,以便随着油田增产进展,对实时增产设计465和产量预测467进行迭代。实时增产455可以涉及例如实时压裂。美国专利申请No.2010/0307755中描述了实时压裂的示例,通过引用将其全部内容合并于此。
可以提供实时控制469,以便随着信息的采集,并且获得对作业条件的了解,来调整井场处的增产作业。实时控制469提供反馈环,以实行448油田增产455。可以例如使用地面单元334和/或井下工具306.1-306.4来实行实时控制469,以变更作业条件,诸如射孔位置、注入压力等。尽管以实时作业描述了油田增产455的特征,但是可以实时或按需要执行实时处理优化451的一个或多个特征。
在实时处理优化451期间生成的信息可以用于更新该过程和对储层表征445的反馈。设计/模型更新453包括处理后评估475和更新模型477。处理后评估涉及分析实时处理优化451的结果以及必要时调整其它井场或井眼应用中使用的输入和规划。
处理后评估475可以用作输入以更新模型477。可选地,从随后的钻井和/或开采收集的数据可以反馈给储层表征445(例如3D地球模型)和/或增产规划447(例如井规划模块465)。可以更新信息,以去除初始建模和模拟中的误差、以校正初始建模中的不足、和/或以证实(substantiate)该模拟。例如,可以调整井的间距和取向来说明新开发的数据。一旦更新477了模型,该过程就可以如期望地重复。可以使用该方法400来执行一个或多个井场、井眼、增产作业或变体。
在给定示例中,可以通过构建地下岩层的3D模型,并执行半自动化的方法来执行增产作业,其中该半自动化的方法涉及将地下岩层分割为多个离散的层段,基于层段处地下岩层的属性对每一个层段进行表征,将层段分组为一个或多个钻井井场,并且在每一个钻井井场中钻井。
致密气砂层(sand)应用
下面提供可用于涉及致密气砂岩的非常规储层(参见例如图3.1的储层304.1-304.3)的示例增产设计和下游工作流程。对于致密气砂岩储层工作流程,可以使用常规增产(即水力压裂)设计方法,诸如单层或多层平面裂缝模型。
图5.1和5.2图示了涉及致密气砂层储层的分级的示例。可以提供多级完井顾问,以针对致密气砂岩储层进行储层规划,其中在邻近井眼(例如336.1)的地层的大部分上可以分散或散布多个富含碳氢化合物的区的薄层(例如图3.1中的储层304.1-304.3)。可以使用模型来开发近井眼区模型,其中可以捕获诸如储层(产油)区和地质力学(应力)区的关键特性。
图5.1示出了井眼(例如图3.1的井眼336.1)的部分的测井曲线500。该测井曲线可以是沿着井眼测井得到的诸如电阻率、渗透率、孔隙率或其它储层参数的测量结果的图表。在一些情况下,如图6所示,多个测井曲线600.1、600.2以及600.3可以组合为组合测井曲线601,以用于方法501中。组合测井曲线601可以基于多个测井曲线的加权线性组合,并且可以对对应的输入截止相应地进行加权。
测井曲线500(或601)可以与方法501相关联,方法501涉及基于所提供的数据来分析测井曲线500以沿着测井曲线500有间隔地限定(569)边界568。边界568可以用于沿着井眼识别(571)产油区570。可以沿着井眼指定(573)裂缝单元572。可以执行(575)分级设计,以沿着井眼限定级574。最终,可以沿着级574中的位置来设计(577)射孔576。
可以基于这些输入,使用半自动化的方法来识别处理层段到多组离散的层段(多级)的划分,并且计算射孔布置的配置。可以将储层(岩石学)信息和完井(地质力学)信息同时作为因素引入模型。可以基于输入测井曲线来确定区边界。可以使用应力测井曲线来限定区。可以选择任何其它输入测井曲线或代表储层地层的测井曲线的组合。
可以从外部(例如岩石学解释)工作流程引入储层产油区。该工作流程可以基于多个测井曲线截止提供产油区识别方法。在后一种情况下,每一个输入测井曲线值(即缺省测井曲线)可以包括含水饱和度(SW)、孔隙率(Phi)、本征渗透率(Kint)以及粘土体积(Vcl),但是也可以使用其它合适的测井曲线。测井曲线值可以通过它们的截止值来区分。如果满足所有截止条件,则可以将对应的深度标记为产油区。可以应用产油区的最小厚度、KH(渗透率乘以区厚度)和PPGR(孔隙压力梯度)截止条件来最终消除贫瘠的产油区。可以将这些产油区插入基于应力的区模型。可以检查最小厚度条件,以避免产生微小的区。还可以选择产油区,并且其中合并基于应力的边界。在另一个实施例中,可以使用通过储层建模过程提供的3D区模型,并且可以插入基础边界和输出区、精细区。
对于每一个所识别的产油区,可以执行基于净压力或井底处理压力的简单的裂缝高度生长估计计算,并且重叠的产油区组合以形成裂缝单元(FracUnit)。可以基于一个或多个下述条件来限定增产级:最小净高度、最大总高度以及级之间的最小距离。
可以扫描FracUnit组,并且检查连续的FracUnit的可能组合。可以选择性地消除违反特定条件的特定组合。所识别的有效组合可以用作分级场景。最大总高度(=级长度)可以变化,并且对于每种变化重复进行组合检查。可以根据所有输出的集合中对频繁出现的分级场景进行计数,以确定最终答案。在一些情况下,因为没有单个分级设计可以被确定满足所有条件,所以不能找到‘输出’。在这种情况下,用户可以在输入条件中指定优先级。例如,最大总高度可以满足,而可以忽略级之间的最小距离,以找到最佳解决方案。
如果级中的应力变化显著,则可以基于产油区的质量来限定射孔位置、射点密度和射点数量。如果应力变化大,那么可以进行限流法,以确定射点在裂缝单元间的分布。如果需要,用户可以可选地选择使用限流法(例如逐级地)。在每一个FracUnit内,可以通过所选择的KH(渗透率乘以射孔长度)来确定射孔位置。
可以使用多级完井顾问,以对页岩气储层(gas shale reservoir)进行储层规划。在大多数开采中的井是基本上水平地钻出(或者从竖直井眼偏离钻出)的情况下,井眼的整个横向部分可以位于目标储层地层(参见例如图1中的储层304.4)中。在这样的情况下,可以分别地评估储层属性和完井属性的可变性。处理层段可以划分为一组毗邻的层段(多级)。可以进行划分,以使得在每一个级内储层属性和完井属性都类似,以确保结果(完井设计)提供对储层接触的最大覆盖。
在给定的示例中,可以利用部分自动化的方法以最佳地识别井眼中的多级射孔设计来执行增产作业。可以基于关键特性,诸如储层产油区和地质力学应力区,来开发近井眼区模型。可以将处理层段划分为多组离散的层段,并且可以计算井眼中射孔布置的配置。可以利用包括单层或多层平面裂缝模型的增产设计工作流程。
页岩应用
图7-12图示了对涉及页岩气储层(例如图3.1中的储层304.4)的非常规应用的分级。图13图示了用于对页岩储层的增产进行分级的对应方法1300。对于页岩气储层,可以利用对自然裂缝的储层的描述。自然裂缝可以被建模为一组平面几何对象,称为“离散裂缝网络”(参见例如图3.2-3.4)。输入自然裂缝数据可以与3D储层模型组合,以说明(accountfor)页岩储层和网络裂缝模型的异质性(与平面裂缝模型截然相反)。可以应用这一信息来预测水力裂缝进展。
图7至12图解了针对穿透页岩储层的地层的水平井的完井顾问。完井顾问可以生成多级增产设计,包括一组毗邻的(contiguous)分级层段和一组连贯的(consecutive)分级。增产设计中还可以包括诸如缺省区或任何其它层段信息的附加输入,以避免布置级。
图7-9图示了页岩储层的复合质量指标的产生。可以评估沿着井眼的横向段的储层质量和完井质量。储层质量指标可以包括例如各种要求或规范,诸如总有机碳(TOC)大于或等于大约3%,气体地质储量(GIP)大于大约100scf/ft3,油母岩质大于高,页岩孔隙率大于大约4%,以及气体相对渗透率(Kgas)大于大约100nD。完井质量指标可以包括例如各种要求或规范,诸如应力为‘-低’,电阻率大于大约15欧姆·米,粘土少于40%,杨氏模量(YM)大于大约2×106psi(),泊松比(PR)小于大约.2,中子孔隙率小于大约35%,以及密度孔隙率大于大约8%。
图7示意性地图示了测井曲线700.1和700.2的组合。可以组合测井曲线700.1和700.2来生成储层质量指标701。测井曲线可以是储层测井曲线,诸如来自井眼的渗透率、电阻率、孔隙率测井曲线。测井曲线已被调整为方形用于评估。可以基于对测井曲线700.1和700.2的比较来将质量指标分离(1344)为区域,并且根据二进制测井曲线分类为好(G)和差(B)层段。对于考虑中的井眼,可以将满足所有储层质量条件的任何层段标记为好,而将其它层段标记为差。
可以使用可应用的测井曲线(例如杨氏模量、泊松比等,用于完井测井曲线),以类似的方式形成其它质量指标,诸如是完井质量指标。可以组合(1346)诸如储层质量802和完井质量801的质量指标来形成复合质量指标803,如图8所示。
图9-11图示了页岩储层的级限定。将复合质量指标901(可以是图8的复合质量指标803)与按应力梯度差分段为应力块的应力测井曲线903组合(1348)。结果是分成有间隔的GB、GG、BB、和BG分类的组合应力&复合质量指标904。可以通过使用应力梯度测井曲线903来沿着质量指标904限定级,以确定边界。在应力梯度差大于某一值(例如,缺省值可以是0.15psi/ft)的位置处确定一组初步的级边界907。这一过程可以沿着组合应力与质量指标产生一组均匀的应力块。
可以将应力块调整为期望尺寸的块。例如,在层段小于最小级长度的地方,可以通过将其与邻近的块合并以形成细化复合质量指标902,来消除小应力块。可以使用两个相邻的块中具有较小应力梯度差的一个块作为合并目标。在另一个示例中,在层段大于最大级长度的情况下,可以将大应力块分解开,以形成另一个细化复合质量指标905。
如图10所示,在层段大于最大级长度的地方,可以将大块1010分解(1354)为多个块1012,以形成级A和B。在分解之后,可以形成细化复合质量指标1017,然后以级A和B将细化复合质量指标1017分解为非BB复合质量指标1019。在图10所示的一些情况下,可以避免将大的‘BB’块和诸如‘GG’块的非‘BB’块分组到相同的级中。
如果如同在质量指标1021中一样,‘BB’块足够大,那么质量指标可以变换(1356)到其自己的级,如变换后的质量指标1023中所示。可以检查附加的约束,诸如井斜、自然和/或诱生裂缝的存在,来使得级特性均匀。
如图11所示,可以应用图10中的过程来生成质量指标1017,并分解为示为级A和B的块1012。可以在质量指标1117中识别BB块,并将其分解成具有三个级A、B和C的变换质量指标1119。如图10和11所示,可以如期望地生成各种数量的级。
如图12所示,可以基于级分类结果和复合质量指标1233来安置(1358)射孔簇(或射孔)1231。在页岩完井设计中,可以均匀地(等距,例如每75英尺(22.86m))布置射孔。可以避免接近级边界的射孔(例如50英尺(15.24m))。可以在每一个射孔位置处检查复合质量指标。如水平箭头所指示,可以将‘BB’块中的射孔移动至邻近的最接近的‘GG’、‘GB’或‘BG’块。如果射孔落在‘BG’块中,则可以进行进一步的细粒度GG、GB、BG、BB重新分类,并且射孔布置在不包含BB的层段中。
可以执行应力平衡,以定位级内哪里的应力梯度值是类似的(例如在0.05psi/ft之内)。例如,如果用户输入是每一个级3个射孔,那么可以搜索满足条件(例如,射孔之间的间距以及在应力梯度的范围之内)的最佳(即,最低应力梯度)位置。如果没有定位,则搜索可以对下一个最佳位置继续并重复,直到其找到例如三个用来放置三个射孔的位置。
如果地层不均匀,或者被大的自然裂缝和/或高应力屏障横切,则可能需要附加的井规划。在一个实施例中,可以将地下地层分割为多组离散的体积,可以基于诸如地层的地球物理学属性及其与自然裂缝的邻近的信息来表征每一个体积。对于每一个因素,可以给体积指定诸如“G”(好)、“B”(差)、或“N”(中等)的指标。然后可以将多个因素综合在一起,以形成复合指标,诸如“GG”、“GB”、“GN”等。具有多个“B”的体积指示不大可能通过裂缝增产来穿透的位置。具有一个或多个“G”的体积可以指示更有可能可通过裂缝增产来处理的位置。可以将多个体积分组为一个或多个钻井井场,其中每一个井场表示用于容纳井或分支的潜在位置。可以优化多个井的间距和取向,以提供被充分增产的完整地层。可以如期望地重复该过程。
尽管图5.1-6和图7-12均图示了用于分级的特定技术,但是可以可选地组合分级的各个部分。取决于井场,可以应用分级设计的变化形式。
图14是图解执行增产作业的方法(1400)的流程图。该方法涉及:获得(1460)有关井场的岩石学、地质学以及地球物理学数据;基于综合的岩石学、地质学以及地球物理学数据,使用储层表征模型来执行(1462)储层表征,生成力学(mechanical)地球模型(参见例如,预增产规划445)。该方法还涉及:基于所生成的力学地球模型来生成(1466)增产规划。生成(1466)可以涉及,例如,图4的增产规划447中的井规划465、分级设计466、增产设计468、产量预测470以及优化472。然后,通过在连续的反馈环中进行重复(1462),来优化(1464)增产规划,直到生成优化的增产规划。
该方法还可以涉及执行(1468)对优化的增产规划的校准(例如图4中的449)。该方法还可以涉及:实行(1470)增产规划;在实行增产规划期间测量(1472)实时数据;基于实时数据执行实时增产设计和产量预测(1474);通过重复实时增产设计和产量预测,来实时优化(1475)优化的增产规划,直到产生实时优化的增产规划;基于实时优化的增产规划来控制(1476)增产作业。该方法还可以涉及:在完成增产规划之后评估(1478)增产规划;以及更新(1480)储层表征模型(参见例如,图4的设计/模型更新453)。可以以各种顺序执行这些步骤,并且如期望地进行重复。
尽管上面仅详细描述了几个示例性实施例,但是本领域技术人员将容易地理解到,在示例性实施例内可能有许多修改而不实质上脱离本发明。相应地,所有这样的修改都意图包括在本公开的如在所附权利要求书中所限定的范围之内。在权利要求书中,装置加功能的条款意图覆盖这里描述的执行所阐述的功能的结构,并且不但包括结构等同物,而且包括等同结构。因此,在将木头部件固定到一起的场境中,尽管钉子和螺丝钉可能不是结构等同物,因为钉子采用圆柱表面来将木头部件固定在一起,而螺丝采用螺旋表面,但是钉子和螺丝可以是等同结构。除了权利要求明确使用表述‘装置,用于’和相关联的功能一起做出的限制,申请人明确表示不希望引用35U.S.C§112第6款来对这里的任何权利要求做出任何限制。
在给定示例中,可以执行增产作业,涉及:对于穿透地下岩层的井眼中的处理层段,分别地评估储层属性和完井属性的可变性;将处理层段划分为一组毗邻的层段(在每一个所划分的处理层段中,储层属性和完井属性都可以类似);通过使用一组平面几何对象(离散裂缝网络)来设计增产处理场景,以开发3D储层模型;以及将自然裂缝数据与3D储层模型组合,以考虑地层的异质性,并预测水力裂缝进展。