Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020162789 - SOURCE DE COURANT PRIMAIRE À BASE DE GRAPHÈNE

Document

Описание

Title of Invention 0001  

техническя область

0002  

0003  

Summary of Invention

0004  

Техническя проблема

0005  

Solution to Problem

0006  

Фигура.1

0007   0008   0009   0010  

Description of Embodiments

0011  

Examples

0012   0013  

Промышленная применимость

0014  

Формула

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19  

Чертежи

1   2   3   4  

Описание

Title of Invention : Первичный химический источник тока на основе графена

[0001]

техническя область

[0002]
Изобретение относится к области электротехники, и даёт начало новому классу энергонасыщенных первичных (не перезаряжаемых) химических источников тока (ХИТ) на основе графена.

[0003]
Из уровня техники известно множество типов первичных химических источников тока (таблица 1) (Химические источники тока: Справочник / Под редакцией Н. В. Коровина и А. М. Скундина – М.: Издательство МЭИ, 2003, с. 138), основным недостатком которых является их низкая удельная энергоемкость не более 650 Втч/кг, что сужает область применения данных типов источников тока.
Наиболее близким аналогом заявляемого изобретения является первичный химический источник тока, содержащий углеродсодержащий катодный материал – полимонофторуглерод с общей формулой (CF)n (И. А. Кедринский и др. Литиевые источники тока. М., 1992 г., с. 143).
Недостатком данного первичного химического источника тока системы литий-фторуглерод (CF)n является малая разрядная энергоемкость, не более 400 Втч/кг.

Summary of Invention

[0004]
Первичный химический источник тока представляет собой новый класс энергонасыщенных не перезаряжаемых химических источников тока на основе графена в электрохимической системе металл-окисленный углерод, где в качестве токообразующего компонента катода используют наноструктурный материал на основе графеноподобных материалов, обладающих повышенной разрядной емкостью за счет наличия различных кислородсодержащих функциональных групп, способных образовывать необратимые соединения с ионами активного материала анода (например, лития, натрия, магния, кальция, калия) при протекании токообразующего процесса (разряда).

Техническя проблема

[0005]
Задача изобретения – создание первичного химического источника тока с высокими удельными энергоемкостными характеристиками. Техническим результатом изобретения является повышение энергоемкостных характеристик первичного химического источника тока.

Solution to Problem

[0006]
Указанный технический результат достигается тем, что заявляемый первичный химический источник тока представляет собой новый класс энергонасыщенных не перезаряжаемых химических источников тока, на основе графена в электрохимической системе металл-окисленный углерод, где в качестве токообразующего компонента катода используют наноструктурный материал на основе графеноподобных материалов, обладающих повышенной разрядной емкостью за счет наличия различных кислородсодержащих функциональных групп, способных образовывать необратимые соединения с ионами активного материала анода (например, лития, натрия, магния, кальция, калия) при протекании токообразующего процесса (разряда).
Указанный технический результат достигается тем, что первичный химический источник тока на основе графена состоит из корпуса с установленными в нем, по меньшей мере, одним анодом, по меньшей мере, одним катодом, по меньшей мере, одним электролитом, токосъемниками и сепаратором, в котором согласно изобретения, в качестве токообразующего компонента катода используют наноструктурный материал на основе графеноподобных материалов.
В качестве графеноподобных материалов может быть использован: графен, оксид графена, восстановленный оксид графена, фторид графена, восстановленный фторид графена, хлорид графена, восстановленный хлорид графена, бромид графена, восстановленный бромид графена, нитрат графена, восстановленный нитрат графена, сульфат графена, восстановленный сульфат графена, смесь перечисленных соединений.
В качестве графеноподобных материалов может быть использован композит на основе одного или нескольких из перечисленных выше соединений с углеродными нанотрубками; с продуктами окисления углеродных нанотрубок; с графитом; с продуктами окисления графита; с углеродными квантовыми точками; с продуктами окисления углеродных квантовых точек; с сажей; с продуктами окисления сажи; с активированным углем; с продуктами окисления активированного угля.
В качестве графеноподобных материалов может быть использован композит на основе одного или нескольких из перечисленных выше соединений с микро- и наночастицами металлов, способными образовывать необратимое соединение с ионами активного материала анода.
Наноструктурный материал может использоваться в виде: порошка с размером частиц от 0,05 до 300 мкм; гелей и аэрогелей с пористостостью от 15 до 99,1% или их смеси; пленки толщиной от 0,01 до 500 мкм; волокон длиной от 0,05 до 50 мкм и диаметром от 0,01 до 5 мкм; полых сфер диаметром от 0,02 до 200 мкм и толщиной стенки сферы от 0,002 до 0,04 мкм, или их смеси.

Фигура.1

[0007]
[фиг.1] представлены: а) микрофотография оптической цифровой микроскопии графеновых сфер; б) микрофотография сканирующей электронной микроскопии графеновой сферы.

Фигура.2

[0008]
[фиг.2] представлены: а) внешний вид пленки из восстановленного оксида графена; б) микрофотография сканирующей электронной микроскопии среза пленки из восстановленного оксида графена.

Фигура.3

[0009]
[фиг.3] представлена микрофотография сканирующей электронной микроскопии наночастиц олова на поверхности чешуйки восстановленного оксида графена.

Фигура.4

[0010]
[фиг.4] представлена микрофотография сканирующей электронной микроскопии микрочастиц аэрогеля графена.

Description of Embodiments

[0011]
Практическая осуществимость заявленного изобретения демонстрируется следующими типичными примерами.
Examples
[0012]
Пример 1
В качестве токообразующего компонента катода первичного химического источника тока используется высокодисперсный композиционный материал на основе порошков оксида графена (с размером частиц от 15 до 30 мкм) и сажи (с размером частиц от 25 до 50 мкм) в соотношениях масс.% 2:1, которые перемешивались с поверхностно-активным веществом (додецилсульфат, 0,5 г на 1г смеси) и водой (2 мл) с последующим диспергированием с использованием ультразвуковой установки (УЗ-установки). Полученный токообразующий компонент катода смешивался с связующим – натриевая соль карбоксиметилцеллюлозы (5% масс. к массе токообразующего компонента), после чего полученную пасту наносили слоем толщиной от 100 до 300 мкм на алюминиевую фольгу, с последующей сушкой и прокаткой до толщины от 60 до 180 мкм. Далее, производилась вырубка электрода размером 2,5×1,5 см. Полученный таким путём катод включали в стандартную сборку первичного химического источника тока, в котором в качестве электролита использовался 1М раствор LiPF 6 в этиленкарбонате / диметилкарбонате (1:1), в качестве анода использовался металлический литий, сепаратор представлял собой полипропиленовую пленку пористостью 30% и толщиной 15 мкм, корпус изготовлен из ламинированного алюминия. При разряде током от 0,02 до 0,2 мА в диапазоне рабочих напряжений от 3,5 до 1,5 В элемент показал емкость 6-14 мАч, в пересчете на массу токообразующего компонента катода ХИТ емкость составила от 400 до 5500 мАч/г.
Пример 2
В качестве токообразующего компонента катода первичного химического источника тока использовался порошок из полых графеновых сфер (см. фиг. 1) диаметром от 10 до 100 мкм с толщиной стенок от 0,005 до 0,02 мкм. Для изготовления катода ХИТ полые графеновые сферы смешивались с предварительно растворенным в N-метил-2-пирролидоне связующим – поливинилиденфторидом (5% масс. к массе токообразующего компонента), после чего полученную пасту наносили слоем толщиной от 100 до 300 мкм на алюминиевую фольгу с последующей сушкой и прокаткой до толщины от 60 до 180 мкм. Далее производилась вырубка электрода размером 2,5×1,5 см. Полученный таким путём катод включали в стандартную сборку первичного химического источника тока, в котором в качестве электролита использовался 1М раствор LiPF 6 в этиленкарбонате / диметилкарбонате (1:1), в качестве анода использовался металлический литий, сепаратор представлял собой полипропиленовую пленку, пористостью 30% и толщиной 15 мкм, корпус изготовлен из ламинированного алюминия. При разряде током от 0,02 до 0,2 мА в диапазоне рабочих напряжений от 3,5 до 1,5 В, элемент показал емкость от 7 до 16 мАч, в пересчете на массу токообразующего компонента катода ХИТ емкость составила от 400 до 5500 мАч/г.
Пример 3
В качестве токообразующего компонента катода первичного химического источника тока использовались пленки из восстановленного оксида графена (см. фиг. 2а) толщиной от 0,1 до 1 мкм (см. фиг. 2б). Для изготовления катода ХИТ пленки из восстановленного оксида графена наносились на поверхность алюминиевой фольги, с последующей термообработкой в среде водорода при температуре от 70 до 180°С. При этом, для изготовления катода ХИТ не использовалось связующее. Далее производилась вырубка электрода размером 2,5×1,5 см. Полученный таким путём катод включали в стандартную сборку, первичного химического источника тока, в котором в качестве электролита использовался 1М раствор NaClO 4 в этиленкарбонате / диметилкарбонате (1:1), в качестве анода использовался металлический натрий, сепаратор представлял собой полипропиленовую пленку пористостью 30% и толщиной 15 мкм, корпус изготовлен из ламинированного алюминия. При разряде током от 0,02 до 0,2 мА, в диапазоне рабочих напряжений от 3,5 до 1,5 В элемент показал емкость от 3 до 9 мАч, в пересчете на массу токообразующего компонента катода ХИТ емкость составила от 450 до 4800 мАч/г.
Пример 4
В качестве токообразующего компонента катода первичного химического источника тока использовался высокодисперсный композиционный материал на основе восстановленного оксида графена с наночастицами олова. Порошок с размером частиц от 200 до 250 мкм состоял из чешуек восстановленного оксида графена покрытых наночастицами олова (см. фиг. 3) размером от 0,005 до 0,01 мкм. Для изготовления катода ХИТ токообразующий компонент смешивался с растворенным в N-метил-2-пирролидоне связующим – поливинилиденфторидом (5% масс. к массе токообразующего компонента), после чего, полученную пасту наносили слоем толщиной от 100 до 200 мкм на алюминиевую фольгу с последующей термообработкой в среде водорода при температуре от 70 до 180°С и прокаткой до толщины от 60 до 120 мкм. Далее производилась вырубка электрода размером 2,5×1,5 см. Полученный таким путём катод включали в стандартную сборку первичного химического источника тока, в котором в качестве электролита использовался 1М раствор LiPF 6 в этиленкарбонате / диметилкарбонате (1:1), в качестве анода использовался металлический литий, сепаратор представлял собой полипропиленовую пленку пористостью 30% и толщиной 15 мкм, корпус из ламинированного алюминия. При разряде током от 0,01 до 0,1 мА в диапазоне рабочих напряжений от 3,5 до 1,5 В элемент показал емкость от 4 до 16 мАч, в пересчете на массу токообразующего компонента ХИТ емкость составила от 650 до 5500 мАч/г.
Пример 5
В качестве токообразующего компонента катода первичного химического источника тока использовались микрочастицы аэрогеля графена со средним размером 2 мкм (см. фиг. 4). Для изготовления катода ХИТ токообразующий компонент смешивался с растворенным в N-метил-2-пирролидоне связующим – поливинилиденфторидом (5% масс. к массе токообразующего компонента), после чего, полученную пасту наносили слоем толщиной от 100 до 200 мкм на алюминиевую фольгу с последующей сушкой и прокаткой до толщины от 60 до 120 мкм. Далее производилась вырубка электрода размером 2,5×1,5 см. Полученный таким путём катод включали в стандартную сборку первичного химического источника тока, в котором в качестве электролита использовался 1М раствор LiPF 6 в этиленкарбонате / диметилкарбонате (1:1), в качестве анода использовался металлический литий, сепаратор представлял собой полипропиленовую пленку пористостью 30% и толщиной 15 мкм, корпус изготовлен из ламинированного алюминия. При разряде током от 0,02 до 0,2 мА в диапазоне рабочих напряжений от 3,5 до 1,5 В элемент показал емкость от 9 до 24 мАч, в пересчете на массу токообразующего компонента ХИТ емкость составила от 650 до 5500 мАч/г.
Таким образом, техническим результатом заявленного изобретения является высокая удельная энергоемкость первичного химического источника тока, более 650 Втч/кг.
Проведенный анализ уровня техники показывает, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о соответствии заявленного технического решения условию патентоспособности «новизна».
Сравнительный анализ показал, что в уровне техники не выявлены решения, имеющие признаки, совпадающие с отличительными признаками заявленного изобретения, а также не подтверждена известность влияния этих признаков на технический результат. Таким образом, заявленное техническое решение удовлетворяет условию патентоспособности «изобретательский уровень».
[0013]
[Table 1]

Промышленная применимость

[0014]
Приведенные сведения подтверждают возможность применения заявленных первичных химических источников тока на основе графена, изобретение может быть использовано в области электротехники, и поэтому соответствует условию патентоспособности «промышленная применимость».

Формула

[Пункт 1]
Первичный химический источник тока, состоящий из корпуса с установленными в нем по меньшей мере одним анодом, по меньшей мере одним катодом, по меньшей мере одним электролитом, токосъемниками и сепаратором, отличающийся тем, что в качестве токообразующего компонента катода используют наноструктурный материал на основе графеноподобных материалов.
[Пункт 2]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют оксид графена.
[Пункт 3]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют фторид графена.
[Пункт 4]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют хлорид графена.
[Пункт 5]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют бромид графена.
[Пункт 6]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют нитрат графена.
[Пункт 7]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют сульфат графена.
[Пункт 8]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют смесь перечисленных по пп. 2-7 соединений.
[Пункт 9]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с углеродными нанотрубками.
[Пункт 10]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с продуктами окисления углеродных нанотрубок.
[Пункт 11]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с графитом.
[Пункт 12]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с продуктами окисления графита.
[Пункт 13]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с углеродными квантовыми точками.
[Пункт 14]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с продуктами окисления углеродных квантовых точек.
[Пункт 15]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с сажей.
[Пункт 16]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с продуктами окисления сажи.
[Пункт 17]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с активированным углем.
[Пункт 18]
Первичный химический источник тока по п. 1, отличающийся тем, что в качестве графеноподобных материалов используют композит на основе одного или нескольких из перечисленных по пп. 2-7 соединений с продуктами окисления активированного угля.
[Пункт 19]
Первичный химический источник тока по п. 1, отличающийся тем, что наноструктурный материал используют в виде: порошка с размером частиц от 0,05 до 300 мкм; гелей и аэрогелей с пористостостью от 15 до 99,1% или их смеси; пленки толщиной от 0,01 до 500 мкм; волокон длиной от 0,05 до 50 мкм и диаметром от 0,01 до 5 мкм; полых сфер диаметром от 0,02 до 200 мкм и толщиной стенки сферы от 0,002 до 0,04 мкм, или их смеси.

Чертежи

[ Fig. 1]
[ Fig. 2]
[ Fig. 3]
[ Fig. 4]