Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2020157203 - SOUCHE MODIFIÉE DE SALMONELLA ENTERICA TYPHI

Note: Texte fondé sur des processus automatiques de reconnaissance optique de caractères. Seule la version PDF a une valeur juridique

[ EN ]

MODIFIED STRAIN OF SALMONELLA ENTERICA TYPHI

Field of Invention

The present invention relates to the modification of an attenuated strain of Salmonella enterica serovar Typhi, such that its natural surface-exposed polysaccharide and flagellin antigens are converted to, or augmented by, those from other strains of Salmonella, including S. enterica serovars Paratyphi, Typhimurium and Enteritidis. Such a modification utilises the long history of safe use of strains of S. Typhi in humans as a typhoid vaccine, to deliver homologous antigens from other members of the genus Salmonella as components of vaccines for enteric fever and Salmonellosis.

Background

Enteric fever is exclusive to humans and is caused by two serovars of Salmonella enterica. Typhi and Paratyphi, the latter comprising serovars A, B and C. Typhoid fever is estimated to have caused 21.7 million illnesses leading to 217,000 deaths in 2000, with 5.4 million cases of paratyphoid fever annually (Crump et al. 2004, Bull. World Health Organ. 82: 346-353). Typhoid and paratyphoid fevers are very similar infections of the reticuloendothelial system, intestinal lymphoid tissue and gallbladder, leading to acute febrile illnesses. Blood culture or serological tests are required to differentiate them. Outbreaks of typhoid fever are frequent in sub-Saharan Africa and Asia, with S. Paratyphi A responsible for up to 50% of enteric fever cases in Asia; enteric fever is also endemic in Latin America (Crump & Mintz 2010, Clin. Infectious Dis. 50: 241-246). S. Paratyphi A is the most abundant strain causing paratyphoid fever globally, with several reports showing it causing an increasing number of the total enteric fever cases (Fangtham & Wilde 2008, Int. J. Travel Med. 15: 344-350).

All licensed injected typhoid vaccines use the Vi capsular polysaccharide antigen purified from S. Typhi, and are single-dose with boosting recommended every 2-3 years (Martin 2012, Curr. Opin. Infect. Dis. 25: 489-499). The main adverse event is pain at the injection site. The only live attenuated typhoid vaccine is S. Typhi Ty21a (Vivotif®), developed by chemical mutagenesis of S. Typhi Ty2 and administered orally in 3-4 doses, with boosting required after 5-7 years (Martin 2012, Curr. Opin. Infect. Dis. 25: 489-499). Ty21a is very safe and well tolerated. In a comparative clinical study of injected vaccine Typherix® versus Vivotif®, only the latter was found to generate immune responses that mimic the natural infection (Kantele et al. 2013, Plos One 8: e60583).

The Vi antigen is not present in S. Paratyphi A or B (but is expressed by S. Paratyphi C), so injected Vi vaccines are ineffective against the two most prevalent S. Paratyphi strains. Ty21a has been proven to confer cross protection against S. Paratyphi B in field studies (Levine et al. 2007, Clin. Infectious Dis. 45: S24-S28). However, field studies using Ty21a showed little or no cross-protection against S. Paratyphi A, despite the generation of cross reactive antibody responses (Wahid et al. 2012, Clin. & Vaccine Immunol. 19: 825-834).

To try to address the short duration of protection and lack of memory response of Vi vaccines, Vi polysaccharide has been conjugated to carrier proteins in a new generation of Vi glycoconjugate vaccines. Carrier proteins include Pseudomonas aeruginosa exotoxin, tetanus and diphtheria toxoids (Martin 2012, Curr. Opin. Infect. Dis. 25: 489-499). Injectable conjugates of O-antigens purified from S. Paratyphi A have also been developed, primarily 02 conjugated to tetanus toxoid (02-TT), to diphtheria toxoid (02-DT) and to a detoxified mutant of the diphtheria toxin (O2-CRM197), co-administered with Vi conjugated to the same carrier protein as enteric fever vaccines targeting S. Typhi and S. Paratyphi A (Martin et al. 2016, Vaccine 34: 2900-2902).

The live attenuated approach to enteric fever vaccine development has significant advantages over injectable Vi vaccines: longer duration of protection, generation of immunological memory, closer immunological profile to the natural infection and elimination of needles. In addition to the licensed chemically mutagenised typhoid vaccine strain Ty21 a, other specifically mutated live vaccine strains of S. Typhi have been evaluated in clinical trials: CVD 906 and CVD 908 ( AaroC , AaroD ); CVD 906-htrA and CVD 908- htrA ( aroC , AaroD, AhtrA)\ CVD 909 {AaroC, AaroD, AhtrA and constitutive expression of Vi);

M01ZH09 ( AaroC , AssaV ); Ty800 ( AphoP , AphoQ ); c3927 ( Acya , Acrp) (Tennant & Levine 2015, Vaccine 33: C36-C41 ) and c4073 {Acya, Acrp, Acdt) (Paterson & Maskell 2010, Hum. Vaccines 6: 379-384). It is reasonable to expect a degree of cross-protection from these specifically mutated S. Typhi strains to S. Paratyphi B as is the case for Ty21 a.

Attenuated strains of S. Paratyphi A have also been produced, including AphoPQ mutants tested pre-clinically (Roland et al. 2010, Vaccine 28: 3679-3687), and CVD 1902 ( AguaBA , AclpX) which has been evaluated in a clinical trial (Tennant & Levine 2015, Vaccine 33: C36-C41 ). A combination of CVD 909 and CVD 1902 is in clinical development as a vaccine targeting S. Typhi and S. Paratyphi A (Martin et al. 2016, Vaccine 34: 2900-2902). However, this strategy requires the clinical evaluation of S. Paratyphi A, which does not have the long history of safe use of S. Typhi.

Non-typhoidal Salmonella (NTS) cause gastroenteritis, with symptoms including diarrhoea and fever. The increase in cases of an invasive form of non-typhoidal Salmonella (iNTS), predominantly in Africa, is an important public health issue. The strains responsible for the vast majority of iNTS cases are S. enterica serovars Typhimurium and Enteritidis, and multidrug resistant isolates are of particular concern (MacLennan & Levine 2013, Expert Rev. Anti Infect. Ther. 11 :443-446). iNTS strains cause a significantly more severe form of the disease, with prolonged symptoms and shedding of bacteria lasting for several weeks. There are currently no vaccines for NTS approved for human use.

The benefits of live attenuated vaccines include the induction of mucosal and cell-mediated immune responses, in addition to systemic antibody responses, and the duration of these responses can be longer than those from injected subunit vaccines as descried above for typhoid. Attenuated S. Typhi strains have been administered to millions of people as experimental and licensed vaccines with an excellent record of safety and immunogenicity. This serovar also lacks the ability to persist in environmental reservoirs due to its exclusivity to humans, thus increasing its biosafety. Therefore, there are several reasons why it is advantageous to use live attenuated S. Typhi as a vector for delivery of homologous antigens from other serovars of S. enterica, rather than attenuating the wild-type strains where the effect of the attenuating mutations may not be predictable. For example, the S. Typhi vaccine candidate ZH9 carrying mutations in the genes aroC and ssaV has been shown to be safe and well tolerated in multiple clinical trials (Lyon et al. 2010, Vaccine 28: 3602-3608), whereas the same mutations introduced into S. Typhimurium resulted in prolonged shedding in stools (Hindle et al. 2002, Infect. Immun. 70: 3457-3467).

The three most important surface antigens of the S. enterica serovars for the induction of protective immunity are lipopolysaccharide O-antigens, flagella (H-antigens) and Vi. The table below summarises the antigenic compositions of the principle enteric fever and iNTS strains following the Kauffmann-White-Le Minor scheme classification scheme (Grimont & Weill 2007, Antigenic formulae of the Salmonella serovars, 9th Edition).


[] indicates antigens exceptionally found in wild-type strains.

Salmonella lipopolysaccharides consists of lipid A linked to the KDO (3-deoxy-D-manno-octulosonic acid) terminus of a conserved core region, which is then linked to a variable, repeated O-antigen trisaccharide. In S. Typhi, S. Paratyphi A, S. Paratyphi B, S. Typhimurium and S. Enteritidis this repeated O-antigen is 012, a triglyceride of mannose (Man), rhamnose (Rha) and galactose (Gal). In S. Paratyphi A, a branch of paratose (Par; 3,6-dideoxy-D-ribo-hexose) from the C-3 of Man confers serogroup specificity: 02 (Figure 1). In S. Paratyphi B and S. Typhimurium the C-3 Man has a diglyceride of abequose (Abe; 3,6-dideoxy-D-xylo-hexose) conferring the specificity 04. S. Typhi and S. Enteritidis have tyvelose (Tyv; 3,6-dideoxy-D-arabino-hexose) on the C-3 Man, conferring the specificity 09. Figure 2 shows the biosynthetic pathway resulting in either Abe, Par or Tyv and representing the O-antigen differences between the serovars. S. Typhi and S. Paratyphi C additionally express the Vi capsular polysaccharide antigen.

Except for the flagella produced by S. Typhi Ty21a, flagellin is not a component of any current licensed vaccine for an S. enterica infection. Flagellin is an important pathogen-associated molecular pattern (PAMP) that is recognised by toll-like receptor 5 (TLR5) and is highly immunogenic, making it an important component of a live vaccine for S. enterica. The flagella filament of S. enterica is composed of approximately 20,000 flagellin (FliC or FljB) proteins with a terminal cap encoded by fliD (Haiko & Westerlund-Wikstrom 2013, Biology 2: 1242-1267). S. Typhi and S. Paratyphi A are generally monotypic for flagellin, expressing only FliC.

There is a particular need in the art for improved vaccines directed toward S. enterica serovars Paratyphi A, B, C, Typhimurium and Enteritidis.

Summary of Invention

In a first aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is modified to express the lipopolysaccharide 02 O-antigens and the flagella proteins of Salmonella enterica serovar Paratyphi A.

In a second aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is modified to express the lipopolysaccharide 04 O-antigens and the flagella proteins of Salmonella enterica serovar Paratyphi B and Salmonella enterica serovar Typhimurium.

In a third aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is further modified to contain a functional fepE gene, such that long O-antigen chains are generated, preferably wherein the O-antigen chains are 100 repeated units of the trisaccharide backbone in length.

In a fourth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is modified to either constitutively express the gtrC gene (encoding rhamnose acetyltransferase), or alternatively, wherein said strain is modified to express the gtrC gene in trans.

In a fifth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain has its native fliC gene (SEQ ID NO: 1 ) substituted with the fliC gene of Salmonella enterica serovar Paratyphi A (SEQ ID NO: 2), Salmonella enterica serovar Paratyphi B (SEQ ID NO: 3), Salmonella enterica serovar Paratyphi C (SEQ ID NO: 5), Salmonella enterica serovar Typhimurium (SEQ ID NO: 7) and Salmonella enterica serovar Enteritidis (SEQ ID NO: 9), such that the conferred serotype is altered from an Hd serotype to a Ha, Hb, He, Hi and Hg,m serotype respectively.

In a sixth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein the fljBA locus, controlling expression of the fljB gene of Salmonella enterica serovar Paratyphi B (SEQ ID NO: 4), Salmonella enterica serovar Paratyphi C (SEQ ID NO: 6) and Salmonella enterica serovar Typhimurium (SEQ ID NO: 8) are inserted into the chromosome of Salmonella enterica serovar Typhi or expressed in trans.

In a seventh aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain expresses the atypical variants of flagellin of Salmonella enterica serovar Paratyphi A, Salmonella enterica serovar Paratyphi B, Salmonella enterica serovar Paratyphi C, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis.

In an eighth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain has inserted a second copy of the tviA gene (SEQ ID NO: 10).

The present invention further includes a vaccine comprising one or more said modified strains for use in enhancing immunogenicity against Salmonella enterica serovar Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium and Enteritidis.

Description of Figures

Figure 1 illustrates the structure of the S. Paratyphi O-antigen chain linked to the core region (Micoli et at. 2012, Plos One 7: e47039). Par (a-D-Par) is replaced by Tyv in S. Typhi and S. Enteritidis, and by Abe in S. Paratyphi B and S. Typhimurium.

Figure 2 illustrates the biosynthetic pathways of O-antigen-related CDP-linked sugars in Salmonella enterica serovars: Typhi and Enteritidis (terminating with CDP-tyvelose); Paratyphi A (terminating with CDP-paratose); Paratyphi B and Typhimurium (terminating with CDP-abequose). Enzymes involved at each step are indicated. Adapted from Reeves et al. 2013 Plos One 8: e69306.

Figure 3 illustrates part of the wild-type O-antigen locus from S. Typhi ZH9 that has been modified by mutation of the wild-type rfbE cistron (SEQ ID NO: 12): either by deletion of the majority of the rfbE cistron to generate S. Typhi ZH9PL2 or replacement of the rfbE cistron with spacer DNA comprising the wbdR cistron (SEQ ID NO: 13) maintaining the original reading frame in S. Typhi ZH9W.

Figure 4 shows micrographs of S. Typhi ZH9 and derivative strains ZH9PL2 and ZH9W probed with A. an anti-S. Typhi LPS mAb, and B. an anti-S. Paratyphi A LPS mAb; left column images are phase contrast and right column images are immuno-fluorescence micrographs.

Figure 5 shows a silver-stained polyacrylamide gel of LPS preparations from S. Typhi ZH9 and derivative strains ZH9PL2 and ZH9W, indicating the short and long O-antigen chains.

Figure 6 illustrates part of the wild-type O-antigen locus from S. Typhi ZH9 modified by replacement of the rfbS (SEQ ID NO: 14) and rfbE cistrons with rfbJ (SEQ ID NO: 15).

Figure 7 illustrates the plasmid pBAD2fepE with the ParaBAD promoter (SEQ ID NO: 17) used to express the fepE cistron.

Figure 8 shows a silver-stained polyacrylamide gel of LPS preparations from S. Typhi ZH9 and ZH9(pBAD2fepE) induced by the addition of arabinose, indicating the short, long and very long O-antigen chains.

Figure 9 shows micrographs of S. Typhi ZH9 and derivative strains ZH9PF probed with A. an anti-S. Typhi flagellin antiserum, and B. an anti-S. Paratyphi A LPS flagellin antiserum; left column images are phase contrast and right column images are immuno-fluorescence micrographs.

Figure 10 illustrates the flagella phase variation in S. enterica (from Bonifield and Hughes 2003, J. Bacteriol. 185: 567-3574).

Figure 11 illustrates the plasmid pBRT4tviA with the PssaG promoter (SEQ ID NO: 16) used to express the tviA cistron.

Figure 12 shows micrographs of S. Typhi ZH9 derivative strain ZH9PA probed with A. anti-S. Typhi and anti-S. Paratyphi A LPS mAbs, and B. anti-S. Typhi and anti-S. Paratyphi A flagellin antisera; left images in each pair are phase contrast and right images are immuno-fluorescence micrographs.

Figure 13 shows endpoint titers of antibodies specific for Typhi LPS (0:9), Paratyphi LPs (0:2), Typhi flagellin (H:d) and Paratyphi flagellin (H:a) in mouse sera following a single subcutaneous immunization of mice with ZH9 alone (1x108 cfu/mouse), ZH9PA alone (1x108 cfu/mouse) or a combination of ZH9 and ZH9PA (0.5x108 cfu + 0.5x108 cfu ZH9PA/mouse).

Detailed Description

The following description is presented to enable any person skilled in the art to make and use the present invention. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art.

In a first aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain may be modified to express the lipopolysaccharide 02 O-antigens and the flagella proteins of Salmonella enterica serovar Paratyphi A.

The term‘live attenuated strain’ in the context of the present invention refers to the alteration of said strain to reduce its pathogenicity, rendering it harmless to the host, whilst maintaining its viability. This method is commonly used in the development of vaccines due to its ability to elicit a highly specific immune response whilst maintaining an acceptable safety profile. Development of attenuated live bacterial vaccines may involve a number of methods, examples include, but are not limited to; passing the pathogens under in vitro conditions until virulence is lost, chemical mutagenesis and genetic engineering techniques.

It is envisaged that the lipopolysaccharide 09 O-antigens of Salmonella enterica serovar Typhi may be replaced with the 02 O-antigens of Salmonella enterica serovar Paratyphi A.

The S. Paratyphi A O-antigen biosynthetic pathway involves the precursor CDP-4-keto-3,6-dideoxy-D-glucose being converted to CDP-Par by the CDP-paratose synthase, RfbS. In addition to rfbS (previously called prt ), S. Typhi has a functional rfbE gene (previously called tyv) encoding CDP-paratose 2-epimerase, which converts CDP-Par to CDP-Tyv (Figure 2).

The present invention involves the inactivation of the chromosomal rfbE in Salmonella enterica serovar Typhi (Figure 3). It was found, surprisingly, that inactivation of rfbE resulted in the standard long LPS of S. Typhi, known to be highly immunogenic from clinical studies, being altered to instead have the chemical composition of that of S. Paratyphi A. It is a surprising finding that such a biochemical modification should result in the microorganism having the ability to produce long LPS of the S. Paratyphi type. In one embodiment, the inactivation may result from the deletion of rfbE. The deletion may be either a partial or full deletion.

The rfbE inactivation prevents Tyv from being synthesised, resulting in Par being attached to Man. This alteration in the biochemical pathway introduces the Salmonella enterica serovar Paratyphi A 02 O-antigen (Figures 1 and 4).

In a preferred embodiment, the modification to inactivate the rfbE gene retains non-coding DNA without disrupting the expression of downstream ( non-rfbE ) coding sequences.

In a preferred embodiment, the deletion of the rfbE cistron is accompanied by the insertion of a non-coding spacer region intended to maintain the correct reading frame.

The spacer region may be any suitable non-coding DNA sequence which retains the correct reading frame when inserted. Preferably, the spacer region of DNA is the cistron of the Escherichia coli gene wbdR which results in the production of long LPS.

It is a surprising finding that the modifications disclosed herein result in a long LPS with the S. Paratyphi A 02 O-antigen characteristic. This has benefits in vaccine production, allowing live attenuated strains of S. Typhi, and/or derivatives thereof, to be produced, offering additional protection against S. Paratyphi A. The vaccine therefore has benefits over conventional vaccines which protect only against S. Typhi.

The term‘spacer region of DNA’ in the context of the present invention refers to a region of non-coding DNA located between genes. The term‘cistron’ refers to a section of DNA which encodes for a specific polypeptide in protein synthesis. The insertion of a spacer region of DNA may involve the transformation of an electrocompetent plasmid with a replacement cassette. See Example 1 for further details.

Where the methods herein described involve the use of a plasmid, said plasmid will ideally have an origin of replication selected from pMB1 , ColEI, p15A, pSC101 and RK2. The plasmid may contain an antibiotic resistance gene selected from b-lactamase ( bla ), kanamycin phosphotransferase (/can), tetracycline efflux protein {tetA) or chloramphenicol acetyltransferase {cat). Ideally the antibiotic resistance gene will be excised prior to or shortly after transformation into the live bacterial vector strain, for example by a mechanism such as‘X-mark’ (Cranenburgh & Leckenby 2012, WO2012/001352). A plasmid maintenance system may be required to prevent plasmid loss. These may include mechanisms to place a native chromosomal gene under a heterologous promoter such as the Operator-Repressor Titration for Vaccines’ (ORT-VAC; Garmory et al. 2005, Infect. Immun. 73: 2005-2011 ) or ‘oriSELECT’ (Cranenburgh 2005, WO 2005/052167) systems, neither of which require an additional selectable marker gene to be present on the plasmid. Alternatively, a selectable marker gene will be used that is not an antibiotic resistance gene, such as a gene to complement a host cell mutation (Degryse 1991 , Mol. Gen. Genet. 227: 49-51 ).

Preferably, the spacer region of DNA is the cistron of the Escherichia coli gene wbdR. Other non-functional genes of Salmonella enterica serovar Typhi of approximately the same length as the rfbE cistron may also be used for this purpose. It is preferable that the chosen spacer DNA used for this purpose will be approximately 50-2000 base pairs in length as well as lacking a terminator sequence. The use of this spacer region results in the inactivation of rfbE without causing any downstream effects (SEQ ID NO: 20) and effectively changing Salmonella enterica serovar Typhi LPS to Salmonella enterica serovar Paratyphi A.

The inventors have shown that deletion of rfbE whilst maintaining the original reading frame (via the use of a spacer region of DNA) is a crucial requirement of the above process.

Preferably, the resulting lipopolysaccharide 02 O-antigens of Salmonella enterica serovar Paratyphi A are at least equivalent in length to the lipopolysaccharide 09 O-antigens of Salmonella enterica serovar Typhi. It is preferable that the resulting lipopolysaccharide will be 16-35 O-antigen repeat units in length, a range which constitutes a‘long’ lipopolysaccharide species. A person skilled in the art will understand the desirability of the presence of O-antigen repeat units in triggering an immunogenic reaction.

It is envisaged that the present invention may also include the live attenuated strain, according to above, wherein said strain may have its native fliC gene replaced with the fliC gene of Salmonella enterica serovar Paratyphi A, such that the conferred serotype is altered from an Hd serotype to a Ha serotype, where ‘serotype’ refers to a distinct variation within the bacterial species.

The Phase 1 flagellum of S. Typhi is essential for motility and invasion, and confers the serotype Hd. The filament consists of the flagellum protein FliC, with a FliD cap. The inventors have discovered that replacing the fliC on the S. Typhi chromosome with that of S. Paratyphi A results in the conversion from the Hd to the Ha serotype of functional flagella.

Chromosomal replacement may be used to achieve the above substitution. The substitution may be a full or partial replacement. In the context of a partial replacement, it is preferable that the replacement of the amino acids in positions 176-414 is carried out. The latter may involve the transformation of an electrocompetent plasmid with a replacement cassette. See Example 2 for further details. Alternatively, the substituted fliC gene may be expressed in trans from a plasmid or additional chromosomal location.

An additional embodiment of the present invention is the live attenuated strain described above wherein the strain may be further modified to contain a functional fepE gene, such that long O-antigen chains are generated, preferably wherein the O-antigen chains are 100 repeated units of the trisaccharide backbone in length.

The fepE gene encodes the length regulator of very long O-antigen chains, wherein ‘very long’ is taken to mean more than 100 repeated units of the trisaccharide backbone. S. Typhi does not possess these long O-antigen chains due to a mutation introducing a stop codon into the gene (SEQ ID NO: 21). S. Typhi may be manipulated into expressing these long O-antigen chains via a number of methods; the natural promoter of fepE may be replaced with an alternative promoter, for example ParaBAD, the chromosomal mutation of fepE in S. Typhi may be repaired or a functional copy of fepE (SEQ ID NO: 1 1 ) may be inserted elsewhere in the S. Typhi chromosome. For vaccine applications, an in wVo-induced promoter or a constitutive promoter may be utilised, examples of

SUCh promoters include

Ptrc and lambda PJPR.

A ‘promoter’ refers to a DNA regulatory region capable of binding RNA polymerase and initiating transcription of a downstream (3' direction) coding or non-coding sequence. A promoter may also be a regulatory DNA sequence that affects the binding of RNA polymerase at the transcription initiation site. For the purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence may be found a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase.

Promoters can be constitutively active (wherein‘active’ means transcription is ‘on’), spatially restricted or inducible. As used herein‘spatially restricted’ refers to a promoter that is only active in a specific subset of cells or cellular compartment of a multicellular organism. A spatially restricted promoter can thus be used to activate the expression of a nucleic acid in a particular tissue or cell type of a multicellular organism.

As used herein an‘inducible promoter’ refers to a promoter that enables the temporal and/or spatial activation of transcription in response to external

physical or environmental stimuli. Inducible promoters include those activated by the presence of specific small molecules that alleviate transcriptional repression. For example, transcription from such an inducible promoter may be regulated by a‘repressor protein’. As used herein,‘repressor protein’ refers to a polypeptide that binds to and occupies the inducible promoter to prevent transcription initiation. When bound to the promoter, said repressor protein can prevent binding or recruitment of RNA polymerase or associated co-factors to the transcription initiation site to prevent the activation of transcription. However, upon binding its relevant small molecule, or encountering its relevant physical or environmental stimulus, the repressor protein can no longer bind to the promoter sequence, and thus transcriptional repression is relieved. Where the above examples include in wVo-induced promoters for expression of cistrons encoding enzymes involved in O-antigen biosynthesis, or for expression of alternative fliC cistrons or TviA, such promoters include but are not limited to: Ppagc, PnirB PssaG, PsifA PsifB, PsseA, PsseG and PSSej (Dunstan et al. 1999, Infect. Immun. 67: 5133-5141 ; Xu et al. 2010, Infect. Immun. 78: 4828-4838; Kroger et al. 2013, Cell Host & Microbe 14: 683-695). Other promoters of use include lambda PL and PR the temperature-induced lambda repressor cl including its thermo-labile mutant repressor cl857 (Love et al. 1996, Gene 176:49-53; SEQ ID NO: 24 & 25) and promoters that are constitutive in Salmonella in the absence of the Lad repressor such as Piac, Ptac and Ptrc (Terpe 2006, Appl. Microbiol. Biotechnol. 72: 21 1-222). In some embodiments, the functional variants include those having similar or modified sequences to Ppagc, PnirB, PssaG, PsifA, Psm, PsseA, PsseG Pssej and lambda PJPR, and similar or substantially identical promoter activity as the wild-type promoter from which the variant is derived, particularly with respect to its ability to induce expression in vivo. Similar modified sequences may include having at least about 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the wild-type sequence of any of PpagC, PnirB, PssaG, PsifA, PsifB, PsseA, PsseG, Pssej and lambda PJPR.

Preferably, the introduction of these long O-antigen chains may be beneficial in inducing an LPS-specific immune response. There may be an additional benefit where the LPS is naturally very long such as from expression of fepE.

It is further envisaged that the live attenuated strain described above may be modified to constitutively express gtrC or to express gtrC in trans.

Particular S. enterica serovars are acetylated on the rhamnose on the O-antigen, a feature which has been demonstrated as important for 02 O-antigen specificity in S. Paratyphi A. The family 2 gtr operon (SEQ ID NO: 22) encodes the rhamnose acetyltransferase GtrC in S. Typhi and S. Paratyphi A. To achieve a greater and more consistent level of rhamnose acetylation it may be desirable to make gtrC constitutively expressed, for example, either on a plasmid or from an additional chromosomal locus. Alternatively, the native family 2 gtr operon promoter responsible for phase variation can be replaced with a constitutive promoter or one that is conditionally expressed in vivo.

It is further envisaged that the live attenuated strain described above may be further modified to contain an additional copy of the tviA gene under the control of a phagosomally induced promoter.

The Vi capsular polysaccharide antigen contributes to the virulence of S. Typhi but is naturally down-regulated upon invasion of the liver and spleen (Janis et al. 2011 , Infect. Immun. 79: 2481-2488). Regulation of Vi expression is carried out by the positive transcriptional regulator TviA.

The insertion of a second copy of the tviA gene into S. Typhi may induce immune responses against Vi and enhance the anti-flagellin response. The second copy may be inserted into the S. Typhi in trans, either on a plasmid (Figure 1 1 ) or integrated into the S. Typhi chromosome, such that it is under the control of a phagosomally induced promoter. Examples of appropriate phagosomally induced promoters include; Ppagc, P B, PssaG, PSM, Ps , PsseA,

P sseG, P sseJ-

A further embodiment of the present invention may be a vaccine comprising the live attenuated strains herein disclosed, for use in enhancing immunogenicity against S. Paratyphi A and for use in the treatment or prevention of enteric fever and salmonellosis. The vaccine may contain a single live attenuated strain or combine more than one live attenuated strain, for example, the vaccine may contain ZH9 and/or one of its derivative strains; ZH9PA, ZH9PL2, ZH9W or ZH9PF. For example, combinations may include ZH9 + ZH9PL2, ZH9 + ZH9W, ZH9 + ZH9PF, preferably the combination is ZH9 + ZH9PA.

The term ‘immunogenicity’ refers to the ability of a particular substance to provoke an immune response.

The term‘vaccine’ may be taken to comprise a number of additional elements in addition to the attenuated live strain herein disclosed. The attenuated live strain may be present in a composition together with any other suitable adjuvant, diluent or excipient. Examples of suitable adjuvants, diluents or excipients include, but are not limited to; disodium hydrogen phosphate, soya peptone, potassium dihydrogen phosphate, ammonium chloride, sodium chloride, magnesium sulphate, calcium chloride, sucrose, sterile saline and sterile water.

The vaccine may be administered by any appropriate route, preferably orally or intranasal routes; however the former is the preferred route of administration. The vaccine strain or strains will preferentially be lyophilised by a process such as freeze-drying and will be stored in sachets for later rehydration and oral administration to young children. Alternatively, they may be dispensed into enterically coated capsules for oral administration to older children and adults. For the encapsulated formulation, the lyophilised Salmonella will ideally be mixed with a bile-adsorbing resin such as cholestyramine to enhance survival when released from the capsule into the small intestine (Edwards and Slater 2009, Vaccine 27: 3897-3903).

The skilled person will appreciated that the vaccine may contain the aforementioned live attenuated strains (e.g. ZH9 and ZH9PA) of Salmonella entertica serovar Typhi at a density of 108, 109, 1010, 1011 or 1012 colony-forming units per dose. The dosing regime may involve a single dose or multiple doses, ideally the vaccine will be administered in 1 -3 doses.

In a second aspect, the present invention provides for a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is modified to express the lipopolysaccharide 04 O-antigens and the flagella proteins of Salmonella enterica serovar Paratyphi B and Salmonella enterica serovar Typhimurium.

To achieve the above modification, the gene rfbJ (previously called abe), encoding CDP-abequose synthase from S. Paratyphi B or S. Typhimurium, can be inserted to replace rfbS with or without the simultaneous replacement of rfbE (Figure 6), as RfbJ is at the equivalent step in the S. Typhi/Paratyphi A biosynthetic pathway as CDP-paratose synthase and enables the conversion of CDP-4-keto-3,6-dideoxy-D-glucose to CDP-Abequose (Figure 2). This would result in the O-antigen repeats containing Abe instead of Tyv, giving the 04 specificity of S. Paratyphi B and S. Typhimurium. Preferably, rfbS is inactivated via a mutation resulting in a partial or total deletion of the cistron, for example, using Xer-cise wherein a lambda-Red-mediated recombineering approach is used to inactivate the rfbS cistron, followed by Xer recombination to remove the selectable marker gene.

Alternatively to the replacement method described above, and rfbJ may be expressed in trans, either from a plasmid or alternative chromosomal locus, leading to a mixture of 04 and 09 O-antigens, designed to induce antibody responses to S. Typhi, S. Paratyphi B and S. Typhimurium.

The invention further intends the live attenuated strain, according to the second aspect of the present invention, may have its native fliC gene replaced with the fliC gene of Salmonella enterica serovar Paratyphi B and/or Salmonalla enterica serovar Typhimurium, such that the conferred serotype is altered from an Hd serotype to a Hb and Hi serotype respectively.

It is further envisaged that the live attenuated strain, according to the second aspect of the present invention, may have the fljBA locus of Salmonella enterica serovar Paratyphi B and Salmonella enterica serovar Typhimurium inserted into the chromosome of Salmonella enterica serovar Typhi or expressed in trans.

Several serovars of S. enterica (including S. Paratyphi B and C, and S. Typhimurium) have an additional antigenically distinct flagellin gene fljB, which is subject to phase variation such that flagella composed of either FliC or FljB is produced (Figure 10). Co-transcribed with fljB is fljA, a flagellum-specific sigma factor that represses the fliC gene (Bonifield and Hughes 2003, J. Bacteriol. 185: 567-3574). The fljBA promoter is flanked by the Hin recombinase recognition sites hixL and hixR. Together with enhancer proteins Fis and HU, Hin mediates a reversible DNA inversion between the hix sites such that in one orientation the fljBA promoter transcribes the fljBA operon (SEQ ID NO: 23) producing FljB flagellin and repressing fliC expression via FljA, thus generating flagella filaments composed of FljB. In the opposite orientation there is no expression of the fljBA operon, enabling the production of flagellin consisting of fliC. S. Typhi does not express Phase 2 flagella due to deletion of fljB and hin, so has flagella comprised of FliC only (McClelland et al. 2004, Nature Genetics 36: 1268-1274).

It is envisaged that the fljBA locus of S. Paratyphi B, S. Paratyphi C or S. Typhimurium may be inserted into the chromosome of S. Typhi or expressed in trans from a plasmid, thus introducing the phase-variable flagella phenotype of the desired serovar. Alternatively, one or both of the hix sites flanking the native promoter of the fljBA operon, or the hin recombinase gene, may be mutated to prevent DNA inversion, leading to constitutive expression such that flagella filaments are comprised of only FljB. The latter approach may be coupled with the pre-described modification of the S. Typhi fliC.

It is further envisaged that the live attenuated strain, according to the second aspect of the present invention, may be further modified to include the additional modifications previously described regarding fepE, gtrC and tviA expression.

A further intended application of the present invention is a vaccine comprising the live attenuated strain, according to the second aspect of the present invention, for use in enhancing immunogenicity against Salmonella enterica serovar Paratyphi B and/or Salmonella enterica serovar Typhimurium.

In a third aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is further modified to contain a functional fepE gene, such that long O-antigen chains are generated, preferably wherein the O-antigen chains are 100 repeated units of the trisaccharide backbone in length. The method by which this effect may be achieved, and further details regarding this aspect of the invention, have been previously outlined on pages 12 and 13 of the present application.

In a fourth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain is modified to either constitutively express the gtrC gene, or alternatively, wherein said strain is modified to express the gtrC gene in trans. The method by which this effect may be achieved, and further details regarding this aspect of the invention, have been previously outlined on page 14 and 15 of the present application.

In a fifth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain has its native fliC gene substituted with the fliC gene of Salmonella enterica serovar Paratyphi A, Salmonella enterica serovar Paratyphi B, Salmonella enterica serovar Paratyphi C, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis, such that the conferred serotype is altered from an Hd serotype to a Ha, Hb, He, Hi and Hg,m serotype respectively. The method by which this effect may be achieved, and further details regarding this aspect of the invention, have been previously outlined on page 12 and 17 of the present application.

In a sixth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein the fljBA locus of Salmonella enterica serovar Paratyphi B, Salmonella enterica serovar Paratyphi C and Salmonella enterica serovar Typhimurium are inserted into the chromosome of Salmonella enterica serovar Typhi or expressed in trans. The method by which this effect may be achieved, and further details regarding this aspect of the invention, have been previously outlined on pages 17 and 18 of the present application.

In a seventh aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain expresses the atypical variants of flagellin of Salmonella enterica serovar Paratyphi A, Salmonella enterica serovar Paratyphi B, Salmonella enterica serovar Paratyphi C, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteritidis.

S. Typhi isolates are subject to phase variation: one such isolate expresses a variant of FljB called Hz66 from a linear plasmid called pBSSBI (Baker et al. 2007, Plos Pathogens 3: e59), another flagella variant is Hj which has a 261 bp in-frame deletion of the central region of the Hd fliC gene (Frankel et al. 1989, EMBO J. 8: 3149-3152).

For Hz66 this can be achieved by the inclusion of the pBSSBI plasmid in the S. Typhi-derived vaccine strain. Alternatively, Flj Bz66 or Hj may be expressed from a chromosomal location which may be the location of the deleted fljB gene, the native chromosomal location of fliC (thereby replacing it with a variant), or expressed on a plasmid from its native promoter or from a phagosomally induced promoter such as PSSaG· The amino acid sequences of the Hz66 and Hj are described in Schreiber et al. 2015, Nature 5: 7947.

In an eighth aspect, the present invention provides a live attenuated strain of Salmonella enterica serovar Typhi wherein said strain has inserted a second copy of the tviA gene. The method by which this effect may be achieved, and further details regarding this aspect of the invention, have been previously outlined on page 15 of the present application.

It is envisaged that the live attenuated strains herein disclosed may be administered in isolation or in combination (e.g. ZH9 and ZH9PA), in the form of a vaccine, to give the subject a broad protection against a variety of S. enterica serovars, specifically, Salmonella enterica serovar Paratyphi A and B, and Salmonella enterica serovar Typhimurium.

The table lists S. Typhi ZH9 and its derivative strains altered for LPS and flagellin:


The invention will now be illustrated in the following examples with reference to the accompanying drawings.

Example 1

To construct S. Typhi ZH9 expressing S. Paratyphi A LPS, the rfbE gene was deleted in two different ways. In one method of deletion, a spacer cistron wbdR was synthesised flanked with -700 bp of DNA homologous to rfbE upstream gene rfbS and downstream gene rfbX to create a deletion cassette. A Notl restriction site at the 3’ end of the spacer cistron was included to clone a dif-flanked antibiotic resistance marker gene cat gene amplified with primers designed with Notl restriction site. The cat gene was amplified from pBRTI N plasmid synthetically generated with 5Notldifcat and 3Notldifcat primers designed with dif sequences. E. coli TOP10 cells were used for cloning operations to generate the pUCpW_difCAT plasmid. Chromosomal replacement of the rfbE gene with the spacer gene was carried out as described in Bloor and Cranenburgh 2006 (Appl. Environ. Microbiol. 72: 2520-2525). Briefly, S. Typhi ZH9 was first transformed with a pLGBEK plasmid coding for l Red gene functions for integration of linear DNA. Electrocompetent ZH9(pLGBEK) was then transformed with the deletion cassette linearised using Sail and Sad

restriction enzymes (SEQ ID NO: 26), and transformants were selected on LB-aro (LB medium containing aromatic amino acids and precursors of aromatic amino acid biosynthesis) agar plates supplemented with 20 pg/ml chloramphenicol. Single colonies were isolated and cultured overnight in LB-aro broth in the absence of antibiotics. Xer recombination deleted the cat gene to generate chloramphenicol-sensitive colonies of ZH9W.

In the other method of deletion, the aW-flanked antibiotic resistance gene cat was amplified with the primers rfbEdelF and rfbEdeIR designed with homologous sequences to rfbS and rfbX genes respectively. The difCAT cassette was amplified from the synthetic pMKtetORTDAP plasmid to generate the PL deletion cassette (SEQ ID NO: 27). Electrocompetent ZH9(pLGBEK) were then transformed with the amplified DNA sequence and transformants were selected on LB-aro agar plates supplemented with 20 pg/ml chloramphenicol. Single colonies were isolated and cultured overnight in LB-aro broth in the absence of antibiotics. Xer recombination deleted the cat gene to generate chloramphenicol-sensitive colonies of ZH9PL2.

Example 2

To construct S. Typhi ZH9 expressing S. Paratyphi A flagellin, the native fliC gene was replaced with the S. Paratyphi A fliC. The replacement cassette was synthesised with S. Paratyphi A fliC flanked with -700 bp of DNA homologous to the gene fliD upstream of fliC, and a pseudogene downstream of fliC. A Notl restriction site at the 3’ end of S. Paratyphi A fliC was included to clone a dif-flanked antibiotic resistance marker gene cat gene amplified with primers designed with Notl restriction site. The cat gene was amplified from pBRTI N plasmid synthetically generated with 5Notldifcat and 3Notldifcat primers designed with dif sequences. TOP10 E. coli cells were used for cloning operations to generate pUCpF_difCAT plasmid. Chromosomal replacement of S. Typhi FliC gene with S. Paratyphi A FliC was carried out as described in Example 1 : electrocompetent ZH9(pLGBEK) was transformed with the pUCpF_difCAT replacement cassette excised using Sail and Sad restriction enzymes (SEQ ID NO: 28), and transformants were selected on LB-aro agar plates supplemented with 20 pg/ml chloramphenicol. Single colonies were

isolated and cultured overnight in LB-aro mix broth in the absence of antibiotic. Xer recombination resulted in the deletion of the cat gene to generate chloramphenicol-sensitive colonies of ZH9PF.

To construct S. Typhi ZH9 expressing both S. Paratyphi A LPS and Flagellin, electrocompetent ZH9PF (pLGBEK) was then transformed with the replacement cassette generated from the pUCpW_difCAT cassette excised using Sail and Sad restriction enzymes, and transformants were selected on LB-aro agar plates supplemented with 20 pg/ml chloramphenicol. Single colonies were isolated and cultured overnight in LB-aro broth in the absence of antibiotic. Xer recombination resulted in the deletion of the cat gene to generate chloramphenicol-sensitive colonies of ZH9PA.

Example 3

To construct the medium copy-number expression plasmid pBRT4tviA (Figure 11 ; SEQ ID NO: 29), primers 5tviANdel and 3tviASall were used to amplify the tviA gene of S. Typhi ZH9 from chromosomal DNA. The PCR product and expression plasmid pBRT4c were digested using Ndel and Sail and ligated to generate the precursor plasmid pBRT4tviAc. An E. coli pepA mutant strain was used for cloning operations. The pBRT4tviAc plasmid was transformed into S. Typhi ZH9, and transformants were selected on LB-aro agar plates supplemented with 20 pg/ml chloramphenicol. Single colonies were isolated and cultured overnight in LB-aro mix broth in the absence of antibiotic. Xer recombination resulted in the deletion of the cat gene to generate chloramphenicol-sensitive colonies of ZH9(pBRT4tviA). pBRT4tviA has tviA under the control of the phagosome-induced SPI-2 promoter PSSaG, which is not active in nutrient broths such as LB or TB. PCN (Phosphate Carbon Nitrogen minimal medium) with a low concentration of inorganic phosphate was used to induce Pssa

Example 4

To construct the medium copy number expression plasmid pBAD2fepE (SEQ ID NO: 30), primers fepE5_pBAD and fepE3_pBAD_pSC were used to amplify the fepE gene of S. Typhimurium WT05 ( aroC , ssaV) from chromosomal DNA. The

PCR product and expression plasmid pBAD2 were digested using Ndel and Sail and ligated to generate the plasmid pBAD2fepE. pBAD2fepE has fepE under the control of arabinose promoter, which is not active in nutrient broths such as LB or TB and require the addition of arabinose at 0.02% to induce the expression of the length regulator of very long (VL) O antigen chains. E. coli NEB5-alpha was used for cloning operations. The pBAD2fepE plasmid was transformed into S. Typhi ZH9, and transformants were selected on LB-aro agar plates supplemented with 50 pg/ml kanamycin. Single colonies of ZH9 (pBAD2fepE) were isolated and cultured overnight in LB-aro broth supplemented with 50 pg/ml kanamycin and 1 :1000 of 20% arabinose to induce expression of LPS with very long (VL) O-antigen chains.

Example 5

For immunofluorescence microscopy, S. Typhi ZH9 and its derivative strains ZH9W, ZH9PL, ZH9PF and ZH9PA were cultured for 18 hours in LB-aro broth at 37°C and 200 r.p.m. A volume of each culture equivalent to an optical density of A600 = 1 was collected and washed in PBS. Pellets were resuspended in 10 pi of PBS with 1 pi of primary antibody and incubated for 10 minutes at ambient temperature. LPS analysis was carried out by staining ZH9, ZH9W, ZH9PL and ZH9PA with one of the following primary antibodies: anti-S. Typhi LPS monoclonal antibody B348M (Genetex), anti-S. Paratyphi A LPS monoclonal antibody (Bio-rad), 0:9 antiserum (SSI) and 0:2 antiserum (SSI). Flagellin analysis was carried out by staining ZH9, ZH9PF and ZH9PA with the following primary antibodies: H:d antiserum (SSI) and H:a antiserum (SSI). Bacterial cells primary stained were then washed in PBS and pellets were resuspended in 10 pi of PBS with 1 pi of secondary antibody conjugated to Dylight 488 fluorochrome. After 10 minutes incubation at room temperature, cells were washed in PBS and a small volume were applied on a microscope slide to be visualised using a fluorescent microscope (Zeiss Axiophot) with attached Zeiss Axiocam camera. Fluorescence imaging demonstrated the conversion of the 09 to the 02 serotype of LPS in ZH9W and ZH9PL (Figure 4), and the conversion of the Hd flagellin serotype to Ha in ZH9PF (Figure 9), with both modifications introduced into ZH9PA (Figure 12).

To analyse LPS O-antigen length, ZH9 and ZH9(pBAD2fepE) pre-cultures were used to inoculate LB-aro broth and grown at 37°C and 200 r.p.m., with

ZH9(pBAD2fepE) supplemented with 50 pg/ml kanamycin and induced by adding 0.02% arabinose. When exponential phase was reached, 4 ml_ of each culture was lysed to prepare LPS using an LPS extraction kit (Intron

Biotechnology). LPS samples were run on an SDS-PAGE gel and silver-stained. Figure 5 shows that the replacement of rfbE gene by the spacer gene wbdR is required to express LPS with long O-antigen chains. ZH9(pBAD2fepE) expressed LPS with the very long O-antigen chains not seen in ZH9 (Figure 8).

Example 6

To assess the immunogenicity of the ZH9PA strain and to confirm retained immunogenicity of both ZH9 and ZH9PA strains when co-administered, an immunogenicity study was conducted in mice. Balb/c animals were immunized via a single subcutaneous immunization with ZH9 alone (1x108 cfu/ mouse), ZH9PA alone (1x108 cfu/mouse) or combination of the two ZH9+ZH9PA (0.5x108 cfu ZH9 + 0.5x108 cfu ZH9PA / mouse). Pre-immune serum samples were collected prior to immunization and terminal serum samples were collected 35 days after immunization. All samples were centrifuged for serum isolation and serum stored at -80°C.

The sera were used to run in house standardized ELISA assays aimed at assessing the titers specific against Salmonella Typhi LPS (0:9) and flagellin (H:d), S. Paratyphi A LPS (0:2) and flagellin (H:a). Briefly, half-area ELISA plates (Corning) were coated with the following specific antigens (all provided by The Native Antigen Company), diluted in 50 mM carbonate/ bicarbonate buffer (pH 9.6):


Plates were incubated at 4°C overnight (~16h). The day after, plates were washed with PBS+0.05 % Tween-20 before blocking with Pierce™ Protein-Free (PBS) blocking buffer for 1 hour at 37°C. After washing plates as before, mouse sera from the oral immunogenicity study were added for 1 additional hour at 37°C. A standard curve was also generated for each antigen by using serovar-specific reagents as follows:


Reacting sera and standard curve for S. Typhi and Paratyphi A LPS were detected using a secondary goat anti-mouse antibody conjugated directly to horse radish peroxidase (HRP), whilst standard curve for S. Typhi and Paratyphi A flagellin with HRP-conjugated goat anti-rabbit antibody. After washing plates as above, secondary antibodies were added at 1 :2000 dilution in Pierce™ Protein-Free (PBS) blocking buffer and incubated at room temperature for 1 hour. Positive sera were revealed using 3,3',5,5'-Tetramethylbenzidine (TMB) substrate and measured using a spectrophotometer at 450nM. Absorbance (OD) was plotted using a 4 parametric logistic curve of the positive control; then end point titers were determined as logarithm of the dilution value at which the serial dilution curve of each mouse serum met OD equal 1.

Figure 13 shows that the endpoint titers of antibodies specific for Typhi LPS (0:9), Paratyphi LPS (0:2), Typhi flagellin (H:d) and Paratyphi A flagellin (H:a) display no significant differences following immunization with ZH9/ZH9PA alone and the combination of the two. Accordingly, this demonstrates that when the strains are co-administered that immunogenicity is retained.

Sequences used throughout the specification and forming part of the description:

SEQ ID NO: 1 (S. Typhi fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtccgcact gggcactgctatcgagcgtttgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggacaggcg attgctaaccgttttaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccattg cgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttcag tctgcgaatggtactaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaaat cgaccgtgtatccggccagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatcca ggttggtgccaacgacggtgaaactatcgatattgatttaaaagaaatcagctctaaaacactgggacttgataa gcttaatgtccaagatgcctacaccccgaaagaaactgctgtaaccgttgataaaactacctataaaaatggta cagatcctattacagcccagagcaatactgatatccaaactgcaattggcggtggtgcaacgggggttactggg gctgatatcaaatttaaagatggtcaatactatttagatgttaaaggcggtgcttctgctggtgtttataaagccactt atgatgaaactacaaagaaagttaatattgatacgactgataaaactccgttggcaactgcggaagctacagct attcggggaacggccactataacccacaaccaaattgctgaagtaacaaaagagggtgttgatacgaccaca gttgcggctcaacttgctgcagcaggggttactggcgccgataaggacaatactagccttgtaaaactatcgtttg aggataaaaacggtaaggttattgatggtggctatgcagtgaaaatgggcgacgatttctatgccgctacatatg atgagaaaacaggtgcaattactgctaaaaccactacttatacagatggtactggcgttgctcaaactggagct gtgaaatttggtggcgcaaatggtaaatctgaagttgttactgctaccgatggtaagacttacttagcaagcgacc ttgacaaacataacttcagaacaggcggtgagcttaaagaggttaatacagataagactgaaaacccactgc agaaaattgatgctgccttggcacaggttgatacacttcgttctgacctgggtgcggttcagaaccgtttcaactcc gctatcaccaacctgggcaataccgtaaataacctgtcttctgcccgtagccgtatcgaagattccgactacgca accgaagtctccaacatgtctcgcgcgcagattctgcagcaggccggtacctccgttctggcgcaggcgaacc aggttccgcaaaacgtcctctctttactgcgttaa

SEQ ID NO: 2 (S. Paratyphi A fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtccgctct gggcaccgctatcgagcgtctgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc aattgctaaccgtttcaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccatt gcgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttca gtctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaa atcgaccgtgtatccggtcagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatcc aggttggtgccaacaacggtgaaaccattgatatcgatctgaaacagatcaactctcagaccctgggtctggat acgctgaatgtgcagaaaaaatatgatgtgaagagcgaagcggtcacgccttcggctacattaagcactactg cacttgatggtgctggcctcaaaaccggaaccggttctacaactgatactggttcaattaaggatggtaaggttta ctataacagcacctctaaaaattattatgttgaagtagaatttaccgatgcgaccgatcaaaccaacaaaggcg gattctataaagttaatgttgctgatgatggtgcagtcacaatgactgcggctaccaccaaagaggctacaactc ctacaggtattactgaagttactcaagtccaaaaacctgtggctgctccagctgctatccaggctcagttgactgc tgcccatgtgaccggcgctgatactgctgaaatggttaagatgtcttatacggataaaaacggtaagactattgat ggcggtttcggtgttaaagttggggctgatatttatgctgcaacaaaaaataaagatggatcgttcagcattaaca ccactgaatataccgataaagacggcaacactaaaactgcactaaaccaactgggtggcgcagacggtaaa actgaagttgtttctatcgacggtaaaacctacaatgccagcaaagccgctggtcacaactttaaagcacagcc agagctggctgaagcggctgctgcaaccaccgaaaacccgctggctaaaattgatgccgcgctggcgcagg ttgatgcgctgcgttctgacttgggtgcggttcagaaccgtttcaactccgctatcaccaacctgggcaataccgta aataacctgtcttctgcccgtagccgtatcgaagattccgactacgcgaccgaagtttccaacatgtctcgcgcg cagatcctgcagcaggccggtacctccgttctggcgcaggcgaaccaggttccgcaaaacgtcctctctttact gcgttaa

SEQ ID NO: 3 (S. Paratyphi B fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtccgctct gggcaccgctatcgagcgtctgtcttctggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggcg attgctaaccgttttaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccattg cgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttcag tctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaaa tcgaccgtgtatccggccagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatcc aggttggcgcgaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctggat actttaagtgtacaggatgcctatacgccaaaaggtaccgctgttaccagagatgttaccacctataaaaatggt ggtactactcttacagcacctaacgcagcagcaattgataccgctttaggtacgactggtgcggcgggtactgc ggctgtgaaatttaaagacggtaactacttcgttgaggtgaccggtacaactaaagatggtctgtatgaagcgac agttgatgcagctggcgcggtgacaatgaccgcaaataaagcaacagtaactggggctagtacagttactga aaaccaaattgtagacgctgttacaccgacgccagttgatacagtcgcagcagctactgcattgaccaatgca ggtgtgacaggtgcgacaggtaataccagcttggttaaaatgtcatttgaagataaaaatggcaaagttactgat gcgggttacgcgcttaaagttggaaatgattattatgccgctgattacgatgaaaaaactggtgagataaaagct aaaactgtaaattatactgacgctactggtgcgacaaaaaccggtgctgtgaaatttggcggtgcgaatggtaa aactgaagttgtgaccaccgttgatggtaatacttatcaggctagtgatgtaaaagggcataatttccagagtggt ggcgctttaagcgaggctgtaaccactaaaactgaaaacccgctggctaaaattgatgccgcgctggcgcaa gttgatgcgctgcgttctgacttgggtgcggttcagaaccgtttcaactccgctatcaccaacctgggcaataccgt aaacaacctgtctgaagcccgtagccgtatcgaagattccgactacgcgaccgaagtctccaacatgtcccgc gcgcagattctgcagcaggccggtacctccgttctggcgcaggcgaaccaggttccgcaaaacgtcctctcttt actgcgttaa

SEQ ID NO: 4 (S. Paratyphi B fljB cistron)

atggcacaagtaatcaacactaacagtctgtcgctgctgacccagaataacctgaacaaatcccagtccgcac tgggcaccgctatcgagcgtctgtcttctggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc aattgctaaccgtttcaccgcgaacatcaaaggcctgactcaggcttcccgtaacgctaacgacggtatctccat tgcgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttc agtctgctaacagcactaactcccagtctgacctcgactctatccaggctgaaattacccagcgtctgaacgaa atcgaccgtgtatccggccagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatc caggttggtgccaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctgga ctcactgaacgtgcagaaagcgtatgatgtgaaagatacagcagtaacaacgaaagcttatgccaataatggt actacactggatgtatcgggtcttgatgatgcagctattaaagcggctacggggggtacgaatggtacggcttct gtaaccggtggtgcggttaaatttgacgcagataataacaagtactttgttactattggtggctttactggtgctgat gccgccaaaaatggcgattatgaagttaacgttgctactgacggtacagtaacccttgcggctggcgcaactaa aaccacaatgcctgctggtgcgacaactaaaacagaagtacaggagttaaaagatacaccggcagttgtttc agcagatgctaaaaatgccttaattgctggcggcgttgacgctaccgatgctaatggcgctgagttggtcaaaat gtcttataccgataaaaatggtaagacaattgaaggcggttatgcgcttaaagctggcgataagtattacgccgc agattacgatgaagcgacaggagcaattaaagctaaaaccacaagttatactgctgctgacggcactaccaa aacagcagctaaccaactgggtggcgtagacggtaaaaccgaagtcgttactatcgacggtaaaacctacaa tgccagcaaagccgctggtcatgatttcaaagcacaaccagagctggcggaagcagccgctaaaaccaccg aaaacccgctgcagaaaattgatgccgcgctggcgcaggtggatgcgctgcgctctgatctgggtgcggtaca aaaccgtttcaactccgctatcaccaacctgggcaataccgtaaacaacctgtctgaagcgcgtagccgtatcg aagattccgactacgcgaccgaagtttccaacatgtctcgcgcgcagattctgcagcaggccggtacttccgttc tggcgcaggctaaccaggtcccgcagaacgtgctgtctctgttacgttaa

SEQ ID NO: 5 (S. Paratyphi C fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtctgctct gggtaccgctatcgagcgtctgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggcg attgctaaccgtttcaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccattg cgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttcag tctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgtctgaacgaaat cgaccgtgtatccggtcagactcagttcaacggcgtgaaagtcctggcgcaggacaacactctgaccatccag gttggtgccaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggcctagatac gctgaatgtgcagaaaaaatatgatgtgagcgatactgctgtagctgcttcctattccgactcgaaacagaatatt gctgttcctgataaaacagctattactgcaaaaattggtgcagcaaccagtggtggtgctggtataaaagcagat attagctttaaagatggcaagtattacgcgactgtcagtggatacgatgatgccgcagatacagataaaaatgg aacctatgaagtcactgttgccgcagatacaggagcagttacttttgcgactacaccaacagtggttgacttacc aactgatgcaaaagcagtttcaaaagttcaacagaatgatactgaaatagcagcaacaaatgcgaaagctgc attaaaagctgcaggagttgcagatgcagaagctgatacagctactttagtgaaaatgtcttatacagataataa tggcaaagttattgatggtgggttcgcatttaagacctccggtggttattatgcagcatctgttgataaatctggcgc agctagcttgaaagttactagctacgttgacgctaccactggtaccgaaaaaactgctgcgaataaattaggtg gcgcagacggtaaaaccgaagttgttactatcgacggtaaaacctacaatgccagcaaagccgctgggcac aacttcaaagcacagccagagctggcggaagcggctgctacaaccactgaaaacccgctgcagaaaattg atgctgctttggcgcaggtggatgcgctgcgttctgacctgggtgcggttcagaaccgtttcaactccgctatcacc aacctgggcaataccgtaaataacctgtcttctgcccgtagccgtatcgaagattccgactacgcgaccgaagtt tccaacatgtctcgcgcgcagattctgcagcaggccggtacctccgttctggcgcaggcgaaccaggttccgc aaaacgtcctctctttactgcgttaa

SEQ ID NO: 6 (S. Paratyphi C fljB cistron)

atggcacaagtaatcaacactaacagtctgtcgctgctgacccagaataacctgaacaaatcccagtccgcac tgggcaccgctatcgagcgtctgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc gattgctaaccgttttaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatttctattg cgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttcag tctgctaacagcactaactcacagtctgacctcgactctatccaggctgaaatcacccagcgtctgaacgaaat cgaccgtgtatccggtcagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatcca ggttggtgccaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctggact cactgaacgtgcagaaagcgtatgatgtgaaagatacagcagtaacaacgaaagcttatgccaataatggta ctacactggatgtatcgggtcttgatgatacagctatcaaagcggctataggtggtacgactggtacggctgctgt aaccggtagtgcggttaaatttgacgcagataataacaagtactttgttactattggtggctttactggtgctgatgc cgccaaaaatggcgattatgaagttaacgttgctactgacggtacagtaacccttgcggctggcgcaactaaaa ccacaatgcctgctggtgcgacaactaaaacagaagtacaggagttaaaagatacaccggcagttgtttcagc agatgctaaaaatgccttaattgctggcggcgttgacgctaccgatgctaatggcgctgagttggtcaaaatgtct tataccgataaaaatggtaagacaattgaaggcggttatgcgcttaaagctggcgataagtattacgccgcaga ttacgatgaagcgacaggagcaattaaagctaaaaccacaagttatactgctgctgacggcactaccaaaac agcagctaaccaactgggtggcgtagacggtaaaaccgaagtcgttactatcgacggtaaaacctacaatgc cagcaaagccgctggtcatgatttcaaagcacaaccagagctggcggaagcagccgctaaaaccaccgaa

aacccgctgcagaaaattgatgccgcgctggcgcaggtggatgcgctgcgctctgatctgggtgcggtacaaa accgtttcaactccgctatcaccaacctgggcaataccgtaaacaacctgtctgaagcgcgtagccgtatcgaa gattccgactacgcgaccgaagtttccaacatgtctcgcgcgcagattctgcagcaggccggtacttccgttctg gcgcaggctaaccaggtcccgcagaacgtgctgtctctgttacgttaa

SEQ ID NO: 7 (S. Typhimurium fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtccgctct gggcaccgctatcgagcgtctgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc gattgctaaccgttttaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccatt gcgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttca gtctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaa atcgaccgtgtatccggccagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatc caggttggtgccaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctgga tacgctgaatgtgcaacaaaaatataaggtcagcgatacggctgcaactgttacaggatatgccgatactacg attgctttagacaatagtacttttaaagcctcggctactggtcttggtggtactgaccagaaaattgatggcgattta aaatttgatgatacgactggaaaatattacgccaaagttaccgttacggggggaactggtaaagatggctattat gaagtttccgttgataagacgaacggtgaggtgactcttgctggcggtgcgacttccccgcttacaggtggacta cctgcgacagcaactgaggatgtgaaaaatgtacaagttgcaaatgctgatttgacagaggctaaagccgcat tgacagcagcaggtgttaccggcacagcatctgttgttaagatgtcttatactgataataacggtaaaactattgat ggtggtttagcagttaaggtaggcgatgattactattctgcaactcaaaataaagatggttccataagtattaatac tacgaaatacactgcagatgacggtacatccaaaactgcactaaacaaactgggtggcgcagacggcaaaa ccgaagttgtttctattggtggtaaaacttacgctgcaagtaaagccgaaggtcacaactttaaagcacagcctg atctggcggaagcggctgctacaaccaccgaaaacccgctgcagaaaattgatgctgctttggcacaggttga cacgttacgttctgacctgggtgcggtacagaaccgtttcaactccgctattaccaacctgggcaacaccgtaaa caacctgacttctgcccgtagccgtatcgaagattccgactacgcgaccgaagtttccaacatgtctcgcgcgc agattctgcagcaggccggtacctccgttctggcgcaggcgaaccaggttccgcaaaacgtcctctctttactgc gttaa

SEQ ID NO: 8 (S. Typhimurium fljB cistron)

atggcacaagtaatcaacactaacagtctgtcgctgctgacccagaataacctgaacaaatcccagtccgcac tgggcaccgctatcgagcgtctgtcttctggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc gattgctaaccgtttcaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccatt gcgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttca gtctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaa atcgaccgtgtatccggccagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatc caggttggcgccaacgacggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctgg actcactgaacgtgcagaaagcgtatgatgtgaaagatacagcagtaacaacgaaagcttatgccaataatg gtactacactggatgtatcgggtcttgatgatgcagctattaaagcggctacgggtggtacgaatggtacggcttc tgtaaccggtggtgcggttaaatttgacgcagataataacaagtactttgttactattggtggctttactggtgctgat gccgccaaaaatggcgattatgaagttaacgttgctactgacggtacagtaacccttgcggctggcgcaactaa aaccacaatgcctgctggtgcgacaactaaaacagaagtacaggagttaaaagatacaccggcagttgtttc agcagatgctaaaaatgccttaattgctggcggcgttgacgctaccgatgctaatggcgctgagttggtcaaaat gtcttataccgataaaaatggtaagacaattgaaggcggttatgcgcttaaagctggcgataagtattacgccgc agattacgatgaagcgacaggagcaattaaagctaaaactacaagttatactgctgctgacggcactaccaa aacagcggctaaccaactgggtggcgtagacggtaaaaccgaagtcgttactatcgacggtaaaacctacaa tgccagcaaagccgctggtcatgatttcaaagcacaaccagagctggcggaagcagccgctaaaaccaccg aaaacccgctgcagaaaattgatgccgcgctggcgcaggtggatgcgctgcgctctgatctgggtgcggtaca aaaccgtttcaactctgctatcaccaacctgggcaataccgtaaacaatctgtctgaagcgcgtagccgtatcga agattccgactacgcgaccgaagtttccaacatgtctcgcgcgcagattctgcagcaggccggtacttccgttct ggcgcaggctaaccaggtcccgcagaacgtgctgtctctgttacgttaa

SEQ ID NO: 9 (S. Enteritidis fliC cistron)

atggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatctcagtcctcact gagttccgctattgagcgtctgtcctctggtctgcgtatcaacagcgcgaaagacgatgcggcaggccaggcg attgctaaccgcttcacttctaatatcaaaggtctgactcaggcttcccgtaacgctaacgacggcatttctattgcg cagaccactgaaggtgcgctgaatgaaatcaacaacaacctgcagcgtgtgcgtgagttgtctgttcaggcca ctaacgggactaactctgattccgatctgaaatctatccaggatgaaattcagcaacgtctggaagaaatcgatc gcgtttctaatcagactcaatttaacggtgttaaagtcctgtctcaggacaaccagatgaaaatccaggttggtgc taacgatggtgaaaccattaccatcgatctgcaaaaaattgatgtgaaaagccttggccttgatgggttcaatgtt aatgggccaaaagaagcgacagtgggtgatctgaaatccagcttcaagaatgttacgggttacgacacctatg cagcgggtgccgataaatatcgtgtagatattaattccggtgctgtagtgactgatgcagcagcaccggataaa gtatatgtaaatgcagcaaacggtcagttaacaactgacgatgcggaaaataacactgcggttgatctctttaag accactaaatctactgctggtaccgctgaagccaaagcgatagctggtgccattaaaggtggtaaggaagga gatacctttgattataaaggcgtgacttttactattgatacaaaaactggtgatgacggtaatggtaaggtttctact accatcaatggtgaaaaagttacgttaactgtcgctgatattgccactggcgcgacggatgttaatgctgctacctt acaatcaagcaaaaatgtttatacatctgtagtgaacggtcagtttacttttgatgataaaaccaaaaacgagag tgcgaaactttctgatttggaagcaaacaatgctgttaagggcgaaagtaaaattacagtaaatggggctgaat atactgctaacgccacgggtgataagatcaccttagctggcaaaaccatgtttattgataaaacagcttctggcgt aagtacattaatcaatgaagacgctgccgcagccaagaaaagtaccgctaacccactggcttcaattgattctg cattgtcaaaagtggacgcagttcgttcttctctgggggcaattcaaaaccgttttgattcagccattaccaaccttg gcaatacggtaaccaatctgaactccgcgcgtagccgtatcgaagatgctgactatgcaacggaagtttctaat atgtctaaagcgcagattctgcagcaggctggtacttccgttctggcgcaggctaaccaggttccgcaaaacgt cctctctttactgcgttaa

SEQ ID NO: 10 (S. Typhi tviA cistron)

Atgaggtttcatcatttctggcctccgaatgatatctatttcggggttggagctgctggcattattgaagaagtgtcac tgataacaaatgacagaaattatttgtttgtgaacctaaatcgctacagcctgttaaatgccctgaattttttcacgc gaatgagtgatattaataaaataatcgttatcatttcaagttcgcgactaatgccccttgcacgtttttggttgacaga gtgcaaaaatgttattgctgttttcgatgcggcaacatcagtccaggatattatcagaaatgtcagtcaacaccaa agtggtgaaaagatcttgacggagcagagagattatcgtttcagaattaaccgtaaggatatagtaaagatgaa atatttcctttcggaaagtggtatggaagagcttcaggatagatttatgaactcatcatcgactatgtatcgctggag aaaagaattggcagtaaaatttggagtacgtgagccgcgctatctgttattgccggattcagttactttactgtaa

SEQ ID NO: 11 (S. Typhimurium fepE)

Atgccatctcttaatgtaaaacaagaaaaaaatcagtcatttgcaggttattcactgccgcccgccaacagtcat gaaatcgatttgtttagccttatagaggtgttatggcaggcgaaacgtcgtattcttgctaccgttttcgcctttgcgtg cgtggggttgcttctgtcctttctgctgccgcaaaaatggaccagccaggcgattgtcacaccggcggagtcggt acagtggcaggggctggagagaacgttgaccgcgctgcgcgtgttggatatggaggtaagcgttgatcgggg cagcgtatttaatctgtttattaaaaagtttagctcgccctcgctgctggaagaatatcttcgttcttctccgtatgtcat ggatcaattaaaaggcgcgcaaatagacgagcaggatcttcaccgggcgattgtcctgctgagcgaaaaaat gaaagcggtggacagtaatgtcggcaagaaaaatgaaacgtcgttattcacgtcgtggacattgagttttaccg cgccgacgcgggaagaagcgcaaaaagtgctggctggctatattcagtacatctccgatatcgtcgtgaaaga gacgctggaaaatattcgtaaccagctggaaatcaaaacccgctatgagcaggaaaagctggcgatggatc gggtgcgtctcaaaaatcagcttgatgccaatattcaacgtcttcattattcgctggaaatcgccaacgccgccg gtattaagagaccggtttacagcaatggtcaggcggtaaaagatgatccggatttttctatttctctcggcgcggat ggtatttcccgcaaactggaaattgaaaaaggggtaacggacgtggccgagatcgacggtgatttgcgtaacc gtcaataccatgttgaacaactggcggcaatgaatgtgagtgacgtgaagtttaccccgtttaaatatcaactgtc gccgtctctgccagtgaaaaaagatggcccgggtaaagccatcattattatcctggcggcgttgattggcggtat gatggcctgcggcggcgtattactgcgtcacgcgatggtctcgcgtaaaatggaaaacgcgctggcgatagat gaacggttagtctga

SEQ ID NO: 12 (S. Typhi rfbE cistron)

Atgaagcttttaattaccggtggatgtggcttccttgggagtaatcttgcctcctttgctttaagtcaagggattgattt aattgtattcgataatctatcacgtaaaggtgcaacagataatttacattggttatcctccttaggaaactttgagtttg tacatggtgatattcgcaacaaaaatgatgttacaagattaataactaagtatatgcctgatagctgttttcatcttgc aggtcaagtggcaatgactacatctattgacaatccttgtatggattttgaaattaatgtaggtggaactttaaattta cttgaggcagtacggcagtataattcaaattgtaatataatttattcatcaacaaataaagtatacggcgatcttga gcaatataaatacaatgaaacagaaactagatacacttgtgtagataagcctaatggatatgatgagagcaca caattagatttccactcaccatatggttgttcaaaaggtgctgcagaccaatacatgcttgattatgcaaggattttt ggtttgaatacagtggtgttcaggcattcatcaatgtatggtgggagacagtttgctacttatgatcaaggctgggt aggttggttttgtcaaaaagcggttgaaattaaaaatggtattaataaacccttcactatttctggtaatggtaagca agttagggatgttttgcatgctgaagatatgatttcgttatatttcactgccttggcaaatgtatcaaaaattaggggg aacgcttttaatattggtggtaccattgtcaacagcctatcattacttgaattattcaaattgcttgaagattattgcaa catagatatgaggttcactaatttacctgtaagggaaagtgatcagcgtgtttttgttgcagatattaaaaaaatca ctaatgcaattgactggagcccgaaagtctcggcaaaagatggtgtccagaaaatgtatgattggactagttcta tatga

SEQ ID NO: 13 (£. coli 0157:H7 wbdR cistron)

Atgaatttgtatggtatttttggtgctggaagttatggtagagaaacaatacccattctaaatcaacaaataaagca agaatgtggttctgactatgctctggtttttgtggatgatgttttggcaggaaagaaagttaatggttttgaagtgctttc aaccaactgctttctaaaagccccttatttaaaaaagtattttaatgttgctattgctaatgataagatacgacagag agtgtctgagtcaatattattacacggggttgaaccaataactataaaacatccaaatagcgttgtttatgatcata ctatgataggtagtggcgctattatttctccctttgttacaatatctactaatactcatatagggaggttttttcatgcaa acatatactcatacgttgcacatgattgtcaaataggagactatgttacatttgctcctggggctaaatgtaatggat atgttgttattgaagacaatgcatatataggctcgggtgcagtaattaagcagggtgttcctaatcgcccacttatta ttggcgcgggagccattataggtatgggggctgttgtcactaaaagtgttcctgccggtataactgtgtgcggaaa tccagcaagagaaatgaaaagatcgccaacatctatttaa

SEQ ID NO: 14 (S. Typhi rfbS cistron)

Atgaaaattctaataatgggagcgtttgggttccttggatcacgacttacatcctacttcgaaagtcgacatactgt gattggcttagcaaggaagaggaacaatgaagctaccataaataatattatttacacgacagaaaataattgg atcgaaaaaatactagaatttgaaccgaatattattattaacactattgcttgctatggaagacataacgaacctg caacagctttaatagaaagcaatattcttatgcctatcagagtattagaatctatctcatcacttgatgcagtattcat aaattgtggaacatcactgccaccaaatacgagtttatatgcatatactaaacaaaaagcaaatgaactcgcc gccgccattatagataaagtttgcggtaaatatatagagttaaaattggagcatttctatggagcttttgatggaga cgataagtttaccagtatggttattagacgttgtttaagtaaccagccagtaaagttaacatctggtttgcaacaga gagatttcttgtatataaaagatctactaacagcgttcgattgtattataagtaatgttaataatttccccaaatttcat agtattgaagttggtagtggagaggcgatatcaattcgtgaatatgtagatactgttaaaaatatcacaaaaagc aattctataattgaatttggcgtggtcaaagaaagagtaaatgaattgatgtatagttgtgctgatatagcagaact tgaaaaaataggatggaaaagagagttctctcttgttgatgcattaactgaaataattgaagaggaagggaaat ga

SEQ ID NO: 15 (S. Typhimurium rfib cistron)

Atgacctttttgaaagaatatgtaattgtcagtggggcttccggctttattggtaagcatttactcgaagcgctaaaa aaatcggggatttcagttgtcgcaatcactcgagatgtaataaaaaataatagtaatgcattagctaatgttagat ggtgcagttgggataatatcgaattattagtcgaggagttatcaattgattctgcattaattggtatcattcatttggca acagaatatgggcataaaacatcatctctcataaatattgaagatgcaaatgttataaaaccattaaagcttcttg atttggcaataaaatatcgggcggatatctttttaaatacagatagtttttttgccaagaaagattttaattatcaacat atgcggccttatataattactaaaagacactttgatgaaattgggcattattatgctaatatgcatgacatttcatttgt aaacatgcgattagagcatgtatatgggcctggggatggtgaaaataaatttattccatacattatcgactgctta aataaaaaacagagttgcgtgaaatgtacaacaggcgaacagataagagactttatttttgtagatgatgtggta aatgcttatttaactatattagaaaatagaaaagaagtaccttcatatactgagtatcaagttggaactggtgctgg ggtaagtttgaaagattttctggtttatttgcaaaatactatgatgccaggttcatcgagtatatttgaatttggtgcgat agagcaaagagataatgaaataatgttctctgtagcaaataataaaaatttaaaagcaatgggctggaaacca aatttcgattataaaaaaggaattgaagaactactgaaacggttatga

SEQ ID NO: 16 (S. Typhimurium PSSaG promoter region)

Tattgccatcgcggatgtcgcctgtcttatctaccatcataaacatcatttgcctatggctcacgacagtataggca atgccgttttttatattgctaattgtttcgccaatcaacgcaaaagtatggcgattgctaaagccgtctccctgggcg gtagattagccttaaccgcgacggtaatgactcattcatactggagtggtagtttgggactacagcctcatttatta gagcgtcttaatgatattacctatggactaatgagttttactcgcttcggtatggatgggatggcaatgaccggtatg caggtcagcagcccattatatcgtttgctggctcaggtaacgccagaacaacgtgcgccggagtaatcgttttca ggtatataccggatgttcattgctttctaaattttgctatgttgccagtatccttacgatgtatttattttaaggaaaagc

SEQ ID NO: 17 (£. coli araC repressor and ParaBAD promoter)

ttatgacaacttgacggctacatcattcactttttcttcacaaccggcacggaactcgctcgggctggccccggtg cattttttaaatacccgcgagaaatagagttgatcgtcaaaaccaacattgcgaccgacggtggcgataggcat ccgggtggtgctcaaaagcagcttcgcctggctgatacgttggtcctcgcgccagcttaagacgctaatccctaa ctgctggcggaaaagatgtgacagacgcgacggcgacaagcaaacatgctgtgcgacgctggcgatatcaa aattgctgtctgccaggtgatcgctgatgtactgacaagcctcgcgtacccgattatccatcggtggatggagcg actcgttaatcgcttccatgcgccgcagtaacaattgctcaagcagatttatcgccagcagctccgaatagcgcc cttccccttgcccggcgttaatgatttgcccaaacaggtcgctgaaatgcggctggtgcgcttcatccgggcgaa agaaccccgtattggcaaatattgacggccagttaagccattcatgccagtaggcgcgcggacgaaagtaaa cccactggtgataccattcgcgagcctccggatgacgaccgtagtgatgaatctctcctggcgggaacagcaa aatatcacccggtcggcaaacaaattctcgtccctgatttttcaccaccccctgaccgcgaatggtgagattgag aatataacctttcattcccagcggtcggtcgataaaaaaatcgagataaccgttggcctcaatcggcgttaaacc cgccaccagatgggcattaaacgagtatcccggcagcaggggatcattttgcgcttcagccatacttttcatactc ccgccattcagagaagaaaccaattgtccatattgcatcagacattgccgtcactgcgtcttttactggctcttctcg ctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgacaaaaac gcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgcc atagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatacccgttttt ttgggctagcgaattgaggaggagatataca

SEQ ID NO: 18 (S. Paratyphi A rfbE pseudogene)

Ttgaagaggaagagaaatgaagctttaattaccggtggatgtggcttccttgggagtaatcttgcctcctttgcttt aagtcaagggattgatttaattgtattcgataatctatcacgtaaaggtgcaacagataatttacattggttatcctcc ttaggaaactttgagtttgtacatggtgatattcgcaacaaaaatgatgttacaagattaataactaagtatatgcct gatagctgttttcatcttgcaggtcaagtggcaatgactacatctattgacaatccttgtatggattttgaaattaatgt aggtggaactttaaatttacttgaggcagtacggcagtataattcaaattgtaatataatttattcatcaacaaataa agtatacggcgatcttgagcaatataaatacaatgaaacagaaactagatacacttgtgtagataagcctaatg gatatgatgagagcacacaattagatttccactcaccatatggttgttcaaaaggtgctgcagaccaatacatgc ttgattatgcaaggatttttggtttgaatacagtggtgttcaggcattcatcaatgtatggtgggagacagtttgctact tatgatcaaggctgggtaggttggttttgtcaaaaagcggttgaaattaaaaatggtattaataaacccttcactatt tctggtaatggtaagcaagttagggatgttttgcatgctgaagatatgatttcgttatatttcactgccttggcaaatgt atcaaaaattagggggaacgcttttaatattggtggtaccattgtcaacagcctatcattacttgaattattcaaattg cttgaagattattgcaacatagatatgaggttcactaatttacctgtaagggaaagtgatcagcgtgtttttgttgca gatattaaaaaaatcactaatgcaattgactggagcccgaaagtctcggcaaaagatggtgtccagaaaatgt atgattggactagttctatatga

SEQ ID NO: 19 (S. Typhi rfbE locus with a partial deletion of rfbE)

tcacgacttacatcctacttcgaaagtcgacatactgtgattggcttagcaaggaagaggaacaatgaagctac cataaataatattatttacacgacagaaaataattggatcgaaaaaatactagaatttgaaccgaatattattatta acactattgcttgctatggaagacataacgaacctgcaacagctttaatagaaagcaatattcttatgcctatcag agtattagaatctatctcatcacttgatgcagtattcataaattgtggaacatcactgccaccaaatacgagtttata tgcatatactaaacaaaaagcaaatgaactcgccgccgccattatagataaagtttgcggtaaatatatagagtt aaaattggagcatttctatggagcttttgatggagacgataagtttaccagtatggttattagacgttgtttaagtaac cagccagtaaagttaacatctggtttgcaacagagagatttcttgtatataaaagatctactaacagcgttcgattg tattataagtaatgttaataatttccccaaatttcatagtattgaagttggtagtggagaggcgatatcaattcgtgaa tatgtagatactgttaaaaatatcacaaaaagcaattctataattgaatttggcgtggtcaaagaaagagtaaatg aattgatgtatagttgtgctgatatagcagaacttgaaaaaataggatggaaaagagagttctctcttgttgatgca ttaactgaaataattgaagaggaagggaaatgaaaagcttggtaccgagctcggatccactagtaacggccg ccagtgtgctggaattcgccctttaagcggccgcatttaacataatatacattatgcgcaccgcggccgcggaa agggcgaattctgcagatatccatcacactggcggccgctcgagcatgcatctagagtgaggaaactgaggtt ggttagaattccaagacatcttattattgccgcttcctcttggctttcaaagataataattgccggtgttcagttagtaa gtgttaaatttcttttagaaattcttggcgaagaatcatacgctgtatttactcttttaactggattattggtctggtttagc attgcagatattgggattggtagtagtctacaaaattatatatctgagttgaaagctgatagaaaatcatatgatgc atatatcaaggccgcagttcatattctattcgcatccttaatcattttaagctctacattattcttcttatcagataaattat cgtcactatatcttacttcatttagcgatgaattgaaaaacaactcaggaagttatttttttatagcaagtatattattta tattcatcggcgttgggagtgtggtctataaaatattatttgcggaactgttagggtggaaagctaatataattaatg cattatcttatcttttaggttttttagatgtagttgcgatccattatttaatgccagattcgagtattaccttcgctttagtag cattgtatgctccggtagcaatactgcccattatatatatatcgtttcggtatatatatgttcttaaagcgaaagtaaa ctttaacacctataaattattactatcacgttcatcagggtttctgattttttcgtccttatcgataatagttttacaaactg attatattgtgatgtctcagaaattatctgctgcagatattataaaatatactgtaacgatgaaaatatttggtttaatgt tttttatttatactgcggtattacaagcattatggccagtatgtgct

SEQ ID NO: 20 (S. Typhi rfbE locus with rfbE disrupted by wbdR)

aggcttgactacagagcatttagattatgtagttagcaagtttgaagagttctttggtttgaatttctaattttgagggg gggggattcccctctatgatttcatgaaaattctaataatgggagcgtttgggttccttggatcacgacttacatcct acttcgaaagtcgacatactgtgattggcttagcaaggaagaggaacaatgaagctaccataaataatattattt acacgacagaaaataattggatcgaaaaaatactagaatttgaaccgaatattattattaacactattgcttgcta tggaagacataacgaacctgcaacagctttaatagaaagcaatattcttatgcctatcagagtattagaatctatc tcatcacttgatgcagtattcataaattgtggaacatcactgccaccaaatacgagtttatatgcatatactaaaca aaaagcaaatgaactcgccgccgccattatagataaagtttgcggtaaatatatagagttaaaattggagcattt ctatggagcttttgatggagacgataagtttaccagtatggttattagacgttgtttaagtaaccagccagtaaagtt aacatctggtttgcaacagagagatttcttgtatataaaagatctactaacagcgttcgattgtattataagtaatgtt aataatttccccaaatttcatagtattgaagttggtagtggagaggcgatatcaattcgtgaatatgtagatactgtt aaaaatatcacaaaaagcaattctataattgaatttggcgtggtcaaagaaagagtaaatgaattgatgtatagt tgtgctgatatagcagaacttgaaaaaataggatggaaaagagagttctctcttgttgatgcattaactgaaataa

ttgaagaggaagggaaatgaatttgtatggtatttttggtgctggaagttatggtagagaaacaatacccattcta aatcaacaaataaagcaagaatgtggttctgactatgctctggtttttgtggatgatgttttggcaggaaagaaagt taatggttttgaagtgctttcaaccaactgctttctaaaagccccttatttaaaaaagtattttaatgttgctattgctaat gataagatacgacagagagtgtctgagtcaatattattacacggggttgaaccaataactataaaacatccaaa tagcgttgtttatgatcatactatgataggtagtggcgctattatttctccctttgttacaatatctactaatactcatata gggaggttttttcatgcaaacatatactcatacgttgcacatgattgtcaaataggagactatgttacatttgctcctg gggctaaatgtaatggatatgttgttattgaagacaatgcatatataggctcgggtgcagtaattaagcagggtgtt cctaatcgcccacttattattggcgcgggagccattataggtatgggggctgttgtcactaaaagtgttcctgccgg tataactgtgtgcggaaatccagcaagagaaatgaaaagatcgccaacatctatttaatgcggccgcatttaac ataatatacattatgcgcaccgcggccgccagtgtgaggatcctgtttctgcccgcgaaagcgggcataattaa agaatgaaatattttttataattaaaagatgaagctgacgtgaggaaactgaggttggttagaattccaagacatc ttattattgccgcttcctcttggctttcaaagataataattgccggtgttcagttagtaagtgttaaatttcttttagaaatt cttggcgaagaatcatacgctgtatttactcttttaactggattattggtctggtttagcattgcagatattgggattggt agtagtctacaaaattatatatctgagttgaaagctgatagaaaatcatatgatgcatatatcaaggccgcagttc atattctattcgcatccttaatcattttaagctctacattattcttcttatcagataaattatcgtcactatatcttacttcattt agcgatgaattgaaaaacaactcaggaagttatttttttatagcaagtatattatttatattcatcggcgttgggagtg tggtctataaaatattatttgcggaactgttagggtggaaagctaatataattaatgcattatcttatcttttaggtttttta gatgtagttgcgatccattatttaatgccagattcgagtattaccttcgctttagtagcattgtatgctccggtagcaat actgcccattatatatatatcgtttcggtatatatatgttcttaaagcgaaagtaaactttaacacctataaattattact atcacgttcatcagggtttctgattttttcgtccttatcgataatagttttacaaactgattatattgtgatgtctcagaaat tatctgctgcagatattataaaatatactgtaacgatgaaaatatttggtttaatgttttttatttatactgcggtattaca agcattatggccagtatgtgctgaattacgagtgaaaatgcagtggagaaagctgcatagaatcattttcctaaa tattattggtggggtattttttattggtcttggtacgttatttatttatgttttaaaggattatatctatagcataattgctaac ggtatagattataatattagtggggttgtttttgttttactggctgtgtattttagtataagagtttggtgtgatacatttgct atgttacttcaaagtatgaaccaattaaaaattctttggctcatagttccgtgtcaggcattaattggtggtgtgactc aatggtattttgcagagcattatggaatagttggtattttatacggactaattttatcgttctcgctaactgttttttgggg attgccagtgtattatatgtataagagtaaaaggctagcataatatgaaggtatcattttgtatcccaacgtataatc gagtaaaattcattgaagaccttcttgaaagtattaataatcaatcttctcactccttaattgtagaagtatgt

SEQ ID NO: 21 (S. Typhi fepE pseudogene)

Atgccatctcttaatgtaaaacaagagaaaaatcagtcatttgcaggttactcactgccgcccgccaacagtcat gaaatcgatttgtttagccttatagaggtgttatggcaggcgaaacgtcgtattcttgctaccgttttcgcctttgcgtg cgtggggttgcttctgtcctttctgctgccgcaaaaatggaccagccaggcgattgtcacaccggcggagtcggt acagtagcaggggctggagagaacgttgaccgcgctgcgcgtgttggatatggaggtaagcgttgatcgggc

cagcgtatttaatctgtttattaaaaagtttagctcgccctcgctgctggaagaatatcttcgttcttctccgtatgtcat ggatcaattaaaaggcgcgcaaatagacgagcaggatcttcaccgggcgattgtcgtgctgagcgaaaaaat gaaagcggtggacagcaatgccggcaagaaaaatgaaacgtcgttattcacgtcgtggacgctgagttttacc gcgccgacgcgggaagaagcgcaaaaagtgttggctggctatattcagtacatctccgatatcgtcgtgaaag agacgctggaaaatattcgtaaccagctggaaatcaaaacccgctacgagcaggaaaagctggcgatggat cgggtgcgtctcaaaaatcagcttgatgccaatattcaacgtcttcattattcgctggaaatcgccaacgccgctg gcattaagagaccggtttacagtaatggtcaggcggtaaaagatgatccggatttttctatttccctcggcgcgga tggtatttcccgcaaactggaaattgaaaaaggggtaacggacgtggccgagatcgacggtgatttgcgtaac cgtcaatactatgttgaacaactggcggcaatgaatgtgagcgacgtgaagtttaccccgtttaaatatcaactgt cgccgtctctgccagtgaaaaaagatggcccgggtaaagcgatcattattatcctggcggcgttgattggcggta tgatggcctgcggcggcgtattactgcgtcacgcgatggtctcgcgtaaaatggaaaacgcgctggcgatagat gaacggttagtctga

SEQ ID NO: 22 (S. Typhi family 2 gtr operon)

actgcactgacggtggcggttgaaacgctgaaggcataaagatcttcactctcccggccgatgtcctgataact catctccagcgcaaacagtcgaatgatattgcgctcgatctcgtcgtacagggggtctgaagcttcttcaccaatt atggctcaaaagtgccgttacgattgcgcggagttgccagttcaaaactgcctgttggggctttaatggctttttgcc ggaaccatttttacggtttgcctcaacatcctgagccagatgggaatcaagttcagcagacagggtagagtcgg ttaaatacttgattaatggcgttaagatgccatctttgcccgttaatgcctggccggacctgaagggctttaagtgct ttgtcgaaatcgaagggatgggacatgtgccattcttttttattttatgttactaaaattatacagaatttttaacgctcc ccctctccccagcacttccaccctttcaagtacctctctctgaaaaaacatgcaaagccttgtaagacgatgtaa agctttacatgtcccgtttttattccaagacgcttggcaatcagcaataccaattgatcgataacatcgatcaatata ttaaaactcaatagcttaaaactattaaaaatacaattattgatcgcttatatcgatcaaaccaatttgtagtgctac actccagacctttctgaatcggctaattttcataatgttgaagttattcgctaagtacacatcgatcggtgttcttaaca cgctcattcattggggagtatttgctttctgtatgtatgggatgcatacgcatcaggcgctgacgaacttttccgatttt gttatcgctgtatcgttcagcttctatgctaatgcgcgcttcacctttaatgccagcactactgcaattctctacatgat gtatatgggattcatgggaacactgagcgctgttgttggatggatggctgaccaatgttctttgccaccattggttac cctcatcactttctcggcaattagcctggtatgcggctttatctattccagattcattatcttcagggataaaaatgaa aatctctcttgtcgtcctggtttttaacgaagaagacacgataccgattttctatagaacggtacatgagtttaatga acttgaaaaatataaagttgagattatttttattaatgacggaagtaaagatgtgacggagtcaataattaaaata atagccgtatctgatccactcgtcattccgttttcgtttacacgaaacttcgggaatgatgcaagatgcacaaccat tttattaatctttttttaaattgaggtaatttaagttggaacacttaaaatacagacctgatatagatggattacgcgca atagcggttttatctgtggtaatattccattatttcccatcattattgccgggtgggtttgttggagtagatatattctttgt gatatctggataccttataacatcaataatattaaaatctgcatcaaacaaatcattttcataccttgatttctataaa aggagagtgcttagaatatttccagcattatccatagttcttgtatcatgtcttattgttggttggatttatttattccagg atgattacaaattacttggtaagcatgtttttagtggctcattctttatatcaaactttactctttggagtgagtctggctat tttgattcaaaatcataccttaaacctttactacatttgtggtcgctgggaattgaagagcaattttatataatatggcc agtagttatattgctatgctttagaagcaaaaaccataacagaaacatagtattatcatgcgcaactatatttataa ttagctatgcgattagcatttttacaatggcatctgatggcggagctaattactactctcccgcatcaagattttggg agttaatggctggagcgattatatccacattgagatttataggaataaacacttcgttatcaaaattaatgtccctgtt aggaattatactaatcgcattatcaataaccatgatagatgaaaagatgtcatttcctggatatatagcaataatcc caatacttggcgcctctcttataatagcatctaatggtaatgatttagttgtgtcgaaattgcttagtgttaggcctgttg ttttctttggtcttattagctatcctctttatttgtggcattggcctatttattcattctatcgttcaatatttgctggctcaccag actaccatgaattaactcttcttttattattatcgttctttttggcgatattaacttattatttaattgaaaaaccactgaga aattccagaagtaaatatatcacagcaatattattagcattatctgtatttgggacgggtttaattggcgcatttattttt catataaatggagttaaagacagggaaatcaataaatcagcaagtgaatatgcttctgttactgacgtgtacaat tattataaatatggagaactactccgtggagggatatgtcactcagtacaacttactgctgccatatccaatggat gtataaaaaatggcaagcataatatatttatcattggtgattcttatgcggcggctcttttcaatgggctttctcattata tagataataaaggttctgattatataataagccaaatgacagatggtaatgctcctcctctatttgttgacggtaaa gatgatttacagagaagtgtcatcactctaaacaataatagaattaatgaaattaaacgtgttcagcctgaggtg gttctgctgacatggtcagttcgaggaacaaatggagtacatgataaaaagttagcaattgatgcgttatcattaa ccattaaaaaaattaaagaggcatcccctgactcaaggattgttttcattggaccagtcccggaatggaatgca aatttagttaaaataatatctaactacctgagtgagtttaaaaaaactccaccattgtatatgacatatggattaaat agtgaaataagcgagtgggactcttactttagtaacaatgttccaaaaatgggaattgaatatatatcagcatac aaagcattatgtaacgaaagtggatgtcttacaagagttggtaatggtcctgattttatcactgccgttgattgggg acatttaacaaagcctggttctgatttcctttttaataaaattggaaataaaataatcaaatagataggctgttactat tacatataaatccaatatggaacatgccagtcatactgtgtaactgccactatattaacggtgatcgctcaggcgg tcaccgaactcgataataaagcgaa

SEQ ID NO: 23 (S. Typhimurium hin-fljBA locus)

tgttgtaatttttattttaattcattcgtttttttatgcggcttgccggaaaatatctgtataaggtagatacgccaatacca aaaataatagctagttgctgccgaggatggcctttctctaatagccgactaatctgttcctgttcatgtttgttgatcgc ccgagggcgccctcccagtcgtccttgcgctctggcggcagccagtccggcaagggttcgctcgacaattaatt ctcgctccatctcggccagtgctgacattacatgaaaaaagaatcgccccatcgcgctactggtatcaatactat cggttaaagaatggaagtgagctccacgttcatgtaattctgatattaacgccaccaggtttttcacgctgcggcc cagtctgtctaatttccagacgacaagagtatcgcctttatttacatactttaacgctcgtttcaggccggggcggttt gcaatcttgccactgatacggtcctcaaaaatgcggtcacaatttgcactagtaagcgcattacgctgtaaatcg atattttggtcaattgttgacacccgaatatacccaatagtagccatgattttctcctttacatcagataaggaagaa

ttttagtcgcttttctcatggaggattgctttatcaaaaaccttccaaaaggaaaattttatggcacaagtaatcaac actaacagtctgtcgctgctgacccagaataacctgaacaaatcccagtccgcactgggcaccgctatcgagc gtctgtcttctggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggcgattgctaaccgtttcaccg cgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccattgcgcagaccactgaagg cgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttcagtctgctaacagcaccaa ctcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaaatcgaccgtgtatccggc cagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatccaggttggcgccaacga cggtgaaactatcgatatcgatctgaagcagatcaactctcagaccctgggtctggactcactgaacgtgcaga aagcgtatgatgtgaaagatacagcagtaacaacgaaagcttatgccaataatggtactacactggatgtatcg ggtcttgatgatgcagctattaaagcggctacgggtggtacgaatggtacggcttctgtaaccggtggtgcggtta aatttgacgcagataataacaagtactttgttactattggtggctttactggtgctgatgccgccaaaaatggcgatt atgaagttaacgttgctactgacggtacagtaacccttgcggctggcgcaactaaaaccacaatgcctgctggt gcgacaactaaaacagaagtacaggagttaaaagatacaccggcagttgtttcagcagatgctaaaaatgcc ttaattgctggcggcgttgacgctaccgatgctaatggcgctgagttggtcaaaatgtcttataccgataaaaatg gtaagacaattgaaggcggttatgcgcttaaagctggcgataagtattacgccgcagattacgatgaagcgac aggagcaattaaagctaaaactacaagttatactgctgctgacggcactaccaaaacagcggctaaccaact gggtggcgtagacggtaaaaccgaagtcgttactatcgacggtaaaacctacaatgccagcaaagccgctgg tcatgatttcaaagcacaaccagagctggcggaagcagccgctaaaaccaccgaaaacccgctgcagaaa attgatgccgcgctggcgcaggtggatgcgctgcgctctgatctgggtgcggtacaaaaccgtttcaactctgct atcaccaacctgggcaataccgtaaacaatctgtctgaagcgcgtagccgtatcgaagattccgactacgcga ccgaagtttccaacatgtctcgcgcgcagattctgcagcaggccggtacttccgttctggcgcaggctaaccag gtcccgcagaacgtgctgtctctgttacgttaatttatttcgttttattcagccccgtgaattcggggctttttcatttagc atagatgaatatatatttatggaatgtatggctgtaaatgatatttcctacgggcgagaagctgaaatatggccgc gggattattctatgcttgctcgtcgagttcaatttctacgttttaatgatatccctgttcgattggtgagtaataatgccc ggataatcacaggctacattgcgaagtttaatccgaaggaaaatttgattctggcttcggataaacctaaaggaa ataagcgcattgaagttaaactagagtctctggcaattcttgaagaattatcaggtaatgacgcttttaatctttcgct ggtgccggctgacggatttaatcttcagcaatatactccatcaagaagagattatttctcgatttgcaataagtgct ataaacagggagtcggtatcaaaatctatatgaagtatggacaggttttgactggcaaaacgacaggcgtaaa tgcgtgtcaggttggtgtgaggacatccaatggcaatcatatgcaagttatgtttgactgggtgagcaggatcacg tcttcggactacgctgaataacgcctacggtaataaaaaattccgtgagaaaagtaaaacttagggggctacc ggaggggacctaatgaacggaggtcatggaaggtattcatcgtgccagactcttgctcttgtcagaagaaggta aaagta

SEQ ID NO: 24 (Bacteriophage lambda tandem PR and PL promoters)

Acgttaaatctatcaccgcaagggataaatatctaacaccgtgcgtgttgactattttacctctggcggtgataatg gttgcatgtactaaggaggttgtatggaacaacgcataaccctgaaagattatgcaatgcgctttgggcaaacc aagacagctaaagatctctcacctaccaaacaatgcccccctgcaaaaaataaattcatataaaaaacatac agataaccatctgcggtgataaattatctctggcggtgttgacataaataccactggcggtgatactgagcacat cagcaggacgcactgaccaccatgaaggtgacgctcttaaaaattaagccctgaagaagggcagcattcaa agcagaaggctttggggtgtgtgatacgaaacgaagcattgggatctatcgatgcatgccatggtacccggga gctcgaattaattctagaaataattttgtttaactttaagaaggagatata

SEQ ID NO: 25 (Bacteriophage lambda thermo-labile repressor cl857 cistron)

Atgagcacaaaaaagaaaccattaacacaagagcagcttgaggacgcacgtcgccttaaagcaatttatga aaaaaagaaaaatgaacttggcttatcccaggaatctgtcgcagacaagatggggatggggcagtcaggcgt tggtgctttatttaatggcatcaatgcattaaatgcttataacgccgcattgcttgcaaaaattctcaaagttagcgtt gaagaatttagcccttcaatcgccagagaaatctacgagatgtatgaagcggttagtatgcagccgtcacttag aagtgagtatgagtaccctgttttttctcatgttcaggcagggatgttctcacctaagcttagaacctttaccaaagg tgatgcggagagatgggtaagcacaaccaaaaaagccagtgattctgcattctggcttgaggttgaaggtaatt ccatgaccgcaccaacaggctccaagccaagctttcctgacggaatgttaattctcgttgaccctgagcaggct gttgagccaggtgatttctgcatagccagacttgggggtgatgagtttaccttcaagaaactgatcagggatagc ggtcaggtgtttttacaaccactaaacccacagtacccaatgatcccatgcaatgagagttgttccgttgtgggga aagttatcgctagtcagtggcctgaagagacgtttggctaa

SEQ ID NO: 26 (pUCpW_difCAT rfbE deletion cassette)

tcgacatactgtgattggcttagcaaggaagaggaacaatgaagctaccataaataatattatttacacgacag aaaataattggatcgaaaaaatactagaatttgaaccgaatattattattaacactattgcttgctatggaagacat aacgaacctgcaacagctttaatagaaagcaatattcttatgcctatcagagtattagaatctatctcatcacttga tgcagtattcataaattgtggaacatcactgccaccaaatacgagtttatatgcatatactaaacaaaaagcaaa tgaactcgccgccgccattatagataaagtttgcggtaaatatatagagttaaaattggagcatttctatggagcttt tgatggagacgataagtttaccagtatggttattagacgttgtttaagtaaccagccagtaaagttaacatctggttt gcaacagagagatttcttgtatataaaagatctactaacagcgttcgattgtattataagtaatgttaataatttcccc aaatttcatagtattgaagttggtagtggagaggcgatatcaattcgtgaatatgtagatactgttaaaaatatcac aaaaagcaattctataattgaatttggcgtggtcaaagaaagagtaaatgaattgatgtatagttgtgctgatata gcagaacttgaaaaaataggatggaaaagagagttctctcttgttgatgcattaactgaaataattgaagagga agggaaatgaatttgtatggtatttttggtgctggaagttatggtagagaaacaatacccattctaaatcaacaaat aaagcaagaatgtggttctgactatgctctggtttttgtggatgatgttttggcaggaaagaaagttaatggttttga agtgctttcaaccaactgctttctaaaagccccttatttaaaaaagtattttaatgttgctattgctaatgataagatac gacagagagtgtctgagtcaatattattacacggggttgaaccaataactataaaacatccaaatagcgttgttta tgatcatactatgataggtagtggcgctattatttctccctttgttacaatatctactaatactcatatagggaggtttttt catgcaaacatatactcatacgttgcacatgattgtcaaataggagactatgttacatttgctcctggggctaaatg taatggatatgttgttattgaagacaatgcatatataggctcgggtgcagtaattaagcagggtgttcctaatcgcc cacttattattggcgcgggagccattataggtatgggggctgttgtcactaaaagtgttcctgccggtataactgtgt gcggaaatccagcaagagaaatgaaaagatcgccaacatctatttaatgcggccgcatttaacataatataca ttatgcgcaccgcccgaacaccactcgccacaaaaaaccgccggaacgtccaaaagtacgggttttgctgcc cgcaaacgggctgttctggtgttgctagtttgttatcagaatcgcagatccggcttcagccggtttgccggctgaaa gcgctatttcttccagaattgccatgattttttccccacgggaggcgtcactggctcccgtgttgtcggcagctttgatt cgataagcagcatcgcctgtttcaggctgtctatgggccggccaaatcagtaagttggcagcatcacccgacgc actttgcgccgaataaatacctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgatacc gggaagccctgggccaacttttggcgaaaatgagacgttgatcggcacgtaagaggttccaactttcaccataa tgaaataagatcactaccgggcgtattttttgagttatcgagattttcaggagctaaggaagctaaaatggagaa aaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagtt gctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcac aagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccggaattccgtatggcaatgaaagac ggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctct ggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacc tggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgattt aaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattatacgcaaggcgacaagg tgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattac aacagtactgcgatgagtggcagggcggggcgtaatttttttaaggcagttattggtgcccttaaacgcctggttg ctacgcctgaataagtgataataagcggatcctaggatggtgttaagcgggcggttttgagatgtaaactcgccc atttaacataatatacattatgcgcaccgcggccgccagtgtgaggatcctgtttctgcccgcgaaagcgggcat aattaaagaatgaaatattttttataattaaaagatgaagctgacgtgaggaaactgaggttggttagaattccaa gacatcttattattgccgcttcctcttggctttcaaagataataattgccggtgttcagttagtaagtgttaaatttctttta gaaattcttggcgaagaatcatacgctgtatttactcttttaactggattattggtctggtttagcattgcagatattgg gattggtagtagtctacaaaattatatatctgagttgaaagctgatagaaaatcatatgatgcatatatcaaggcc gcagttcatattctattcgcatccttaatcattttaagctctacattattcttcttatcagataaattatcgtcactatatctt acttcatttagcgatgaattgaaaaacaactcaggaagttatttttttatagcaagtatattatttatattcatcggcgtt gggagtgtggtctataaaatattatttgcggaactgttagggtggaaagctaatataattaatgcattatcttatctttt aggttttttagatgtagttgcgatccattatttaatgccagattcgagtattaccttcgctttagtagcattgtatgctccg gtagcaatactgcccattatatatatatcgtttcggtatatatatgttcttaaagcgaaagtaaactttaacacctata aattattactatcacgttcatcagggtttctgattttttcgtccttatcgataatagttttacaaactgattatattgtgatgt ctcagaaattatctggagct

SEQ ID NO: 27 (PL rfbE deletion cassette)

aataggatggaaaagagagttctctcttgttgatgcattaactgaaataattgaagaggaagggaaatgaaaa gcttggtaccgagctcggatccactagtaacggccgccagtgtgctggaattcgccctttaagcggccgcattta acataatatacattatgcgcaccatccgcttattatcacttattcaggcgtagcaccaggcgtttaagggcaccaa taactgccttaaaaaaattacgccccgccctgccactcatcgcagtactgttgtaattcattaagcattctgccgac atggaagccatcacaaacggcatgatgaacctgaatcgccagcggcatcagcaccttgtcgccttgcgtataa tatttgcccatggtgaaaacgggggcgaagaagttgtccatattggccacgtttaaatcaaaactggtgaaactc acccagggattggctgagacgaaaaacatattctcaataaaccctttagggaaataggccaggttttcaccgta acacgccacatcttgcgaatatatgtgtagaaactgccggaaatcgtcgtggtattcactccagagcgatgaaa acgtttcagtttgctcatggaaaacggtgtaacaagggtgaacactatcccatatcaccagctcaccgtctttcatt gccatacggaattccggatgagcattcatcaggcgggcaagaatgtgaataaaggccggataaaacttgtgct tatttttctttacggtctttaaaaaggccgtaatatccagctgaacggtctggttataggtacattgagcaactgactg aaatgcctcaaaatgttctttacgatgccattgggatatatcaacggtggtatatccagtgatttttttctccattttagc ttccttagctcctgaaaatctcgataactcaaaaaatacgcccggtagtgatcttatttcattatggtgaaagttgga acctcttacgtgccgatcaacgtctcattttcgccaaaagttggcccagggcttcccggtatcaacagggacacc aggatttatttattctgcgaagtgatcttccgtcacaggtatttattcgaagacgaaagggatgcaggagtcgcata agggatttaacataatatacattatgcgcaccgcggccgcggaaagggcgaattctgcagatatccatcacact ggcggccgctcgagcatgcatctagagtgaggaaactgaggttggttagaattccaagacatcttattattgccg cttcctcttggctttcaaa

SEQ ID NO: 28 (pUCpF_difCAT fliC replacement cassette)

cattccctgaggggcgtcggttacggtattgctctgacgctcaatgtcgatgccgtttacgttcagcttcgcgttttct gctttcaccagctcttgcatattgccggtattggtggtgctgtcataagcgagtagatcgttaagttttgtatcgccttc caccgtgatcttcatcgtattgtcggtaccgctattggcggtaagcaccaactggaattcgttctctttgaccttaac gatactggcggcgataccgctgtcggcgtcattaatggcgtcacggatcgcctccatggaggtgtcgcctttatcc agcttaatttccagcggctctttacgtcccggctgttcaattttaattgtccgggatgtgaccgacgtatcgcccaact gctctttggtggttgcgaaggtggtttttgtcgccagcgactgcgcggcggcaagctgggttacgctaatcttataa gtccctgcggcagcgcctgcggtagtactgactttgaggtcctctgtcgtgctggacgccacggtagacttaaat aaatccgctttatttaacgcggtatttgccgtctggaatttttctaatgcgcttttcaatgtgccataggcggttagcttt gccgaattcgcgctctgctgtttggtaattggcgttaagcgtcctttttcgttctttgtcaggtctgtcaacaactggtct aacggtaagtttgatcccacacctaatgatgaaattgaagccatgccttcttcctttttgattgcaaacagtagttaa gcgcgttatcggcaatctggaggcaaagtttaatgataattttgcaaaaataatgcgcggaataatgatgcataa agcggctatttcgccgcctaagaaaaagatcgggggaagtgaaaaattttctaaagttcgaaattcaggtgccg atacaagggttacggtgagaaaccgtgggcaacagcccaataacatcaagttgtaattgataaggaaaagat catggcacaagtcattaatacaaacagcctgtcgctgttgacccagaataacctgaacaaatcccagtccgctc tgggcaccgctatcgagcgtctgtcttccggtctgcgtatcaacagcgcgaaagacgatgcggcaggtcaggc aattgctaaccgtttcaccgcgaacatcaaaggtctgactcaggcttcccgtaacgctaacgacggtatctccatt gcgcagaccactgaaggcgcgctgaacgaaatcaacaacaacctgcagcgtgtgcgtgaactggcggttca gtctgctaacagcaccaactcccagtctgacctcgactccatccaggctgaaatcacccagcgcctgaacgaa atcgaccgtgtatccggtcagactcagttcaacggcgtgaaagtcctggcgcaggacaacaccctgaccatcc aggttggtgccaacaacggtgaaaccattgatatcgatctgaaacagatcaactctcagaccctgggtctggat acgctgaatgtgcagaaaaaatatgatgtgaagagcgaagcggtcacgccttcggctacattaagcactactg cacttgatggtgctggcctcaaaaccggaaccggttctacaactgatactggttcaattaaggatggtaaggttta ctataacagcacctctaaaaattattatgttgaagtagaatttaccgatgcgaccgatcaaaccaacaaaggcg gattctataaagttaatgttgctgatgatggtgcagtcacaatgactgcggctaccaccaaagaggctacaactc ctacaggtattactgaagttactcaagtccaaaaacctgtggctgctccagctgctatccaggctcagttgactgc tgcccatgtgaccggcgctgatactgctgaaatggttaagatgtcttatacggataaaaacggtaagactattgat ggcggtttcggtgttaaagttggggctgatatttatgctgcaacaaaaaataaagatggatcgttcagcattaaca ccactgaatataccgataaagacggcaacactaaaactgcactaaaccaactgggtggcgcagacggtaaa actgaagttgtttctatcgacggtaaaacctacaatgccagcaaagccgctggtcacaactttaaagcacagcc agagctggctgaagcggctgctgcaaccaccgaaaacccgctggctaaaattgatgccgcgctggcgcagg ttgatgcgctgcgttctgacttgggtgcggttcagaaccgtttcaactccgctatcaccaacctgggcaataccgta aataacctgtcttctgcccgtagccgtatcgaagattccgactacgcgaccgaagtttccaacatgtctcgcgcg cagatcctgcagcaggccggtacctccgttctggcgcaggcgaaccaggttccgcaaaacgtcctctctttact gcgttaatgcggccgcatttaacataatatacattatgcgcaccgcccgaacaccactcgccacaaaaaaccg ccggaacgtccaaaagtacgggttttgctgcccgcaaacgggctgttctggtgttgctagtttgttatcagaatcgc agatccggcttcagccggtttgccggctgaaagcgctatttcttccagaattgccatgattttttccccacgggagg cgtcactggctcccgtgttgtcggcagctttgattcgataagcagcatcgcctgtttcaggctgtctatgggccggc caaatcagtaagttggcagcatcacccgacgcactttgcgccgaataaatacctgtgacggaagatcacttcg cagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgtt gatcggcacgtaagaggttccaactttcaccataatgaaataagatcactaccgggcgtattttttgagttatcga gattttcaggagctaaggaagctaaaatggagaaaaaaatcactggatataccaccgttgatatatcccaatgg catcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattac ggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatga atgctcatccggaattccgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacac cgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacaca tatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgtttttcgtc tcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttca ccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtg atggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggggcgtaattttt ttaaggcagttattggtgcccttaaacgcctggttgctacgcctgaataagtgataataagcggatcctaggatgg tgttaagcgggcggttttgagatgtaaactcgcccatttaacataatatacattatgcgcaccgcggccgccagtg tgaggatccccggcgattgattcaccgacacgtggtacacaatcaaggcagcgaaagctgccttttttaattccg gagcctgtgtaatgaaagaaatcaccgtcactgaacctgcctttgtcacccgcttttcctgttctggctcggcctgtc gcgaccattgttgtaagggctggaaaatcacgctggataagacgacggttaaaaagtatctcgccagtaaaga cacgacgattcgtaccatcgcgcaagaccatattattctgctgaaaaagaacaataatcattggggggaaatta aactgccttcggcgctgggaagttgcccttatctggatgaggaccgtttgtgccgggtacaaaaacgttaggcgc aaaggcattaagtcatacctgttcctctttcccacgggcgcaccatacctataaaaatgaggtacgtaactccctg agtcttgcctgtccggaggtaacgtcccgcattttaaacgatcctgacgcaatggcgctcggcgaaaaaacaat cattcagcagacattcaatactgcgccgttattctcaccgcagcaaaagttactcaatctgttttgcctgagtctgat caaccatgccaacagcagtacggaaacggcgctctatgggttgattaaattcgtcatgtatgcacataaatttgc caaaattgatgatgccgcgctgggtgaactggaacaggtgtatgccgcgttacttgagcagttgcagaccggc gtgctggcgcaggaattgatgaatatcgcgccggacagcaaggtaaaaacctcgctggtattgcagatgcag aactatttccgctcgctcccgcttagtcgtggcagtgttatcctcgatcactatatccagtgtcttctgcgggtgctga cggcggaagagggcgtttcaatggagcagaaggttagcgatattgagtcctcattagcgcgctgtttacaggcg gatgagcagcagaagaactgggctttcagaaatttaattctctataaaatttgggaaaataatttccccaaccag ccgaatg

SEQ ID NO: 29 ( tviA expression plasmid pBRT4tviA)

aacatcgatattgccatcgcggatgtcgcctgtcttatctaccatcataaacatcatttgcctatggctcacgacagt ataggcaatgccgttttttatattgctaattgtttcgccaatcaacgcaaaagtatggcgattgctaaagccgtctcc ctgggcggtagattagccttaaccgcgacggtaatgactcattcatactggagtggtagtttgggactacagcctc atttattagagcgtcttaatgatattacctatggactaatgagttttactcgcttcggtatggatgggatggcaatgac cggtatgcaggtcagcagcccattatatcgtttgctggctcaggtaacgccagaacaacgtgcgccggagtaat cgttttcaggtatataccggatgttcattgctttctaaattttgctatgttgccagtatccttacgatgtatttattttaagga aaagccatatgaggtttcatcatttctggcctccgaatgatatctatttcggggttggagctgctggcattattgaag aagtgtcactgataacaaatgacagaaattatttgtttgtgaacctaaatcgctacagcctgttaaatgccctgaat tttttcacgcgaatgagtgatattaataaaataatcgttatcatttcaagttcgcgactaatgccccttgcacgtttttg gttgacagagtgcaaaaatgttattgctgttttcgatgcggcaacatcagtccaggatattatcagaaatgtcagtc aacaccaaagtggtgaaaagatcttgacggagcagagagattatcgtttcagaattaaccgtaaggatatagt aaagatgaaatatttcctttcggaaagtggtatggaagagcttcaggatagatttatgaactcatcatcgactatgt atcgctggagaaaagaattggcagtaaaatttggagtacgtgagccgcgctatctgttattgccggattcagttac tttactgtaatgtcgacataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaa cgctctcctgagtaggacaaatccgccgggagcggatttgaacgttgcgaagcaacggcccggagggtggc gggcaggacgcccgccataaactgccaggcatcaaattaagcagaaggccatcctgacggatggccttttct gcagataaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttcca ctgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgca aacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaa ctggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaact ctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtctt accgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcac acagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgcc acgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcac gagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcga tttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggcct tttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagct gataccgctttttcgtgacattcagttcgctgcgctcacggctctggcagtgaatgggggtaaatggcactacagg cgccttttatggattcatgcaaggaaactacccataatacaagaaaagcccgtcacgggcttctcagggcgtttt atggcgggtctgctatgtggtgctatctgactttttgctgttcagcagttcctgccctctgattttccagtctgaccacttc ggattatcccgtgacaggtcattcagactggctaatgcacccagtaaggcagcggtatcatcaacaggcttacc cgtcttactgtcaaccagacccgccaggataagcaatccggcagactggtacagagcatggtcacgggcttta cgggcggctctggcttcggctcgcttttctgcctgtatcaggttcatgagcggccgcggcgcgccagcttatcattg ataagcttcttgaactctttatcactgataaagacgcgtcatagacagcctgaaacaggcgatgctgcttatcgaa tcaaagctgccgacaacacgggagccagtgacgcctcccgtggggaaaaaatcatggcaattctggaagaa atagcgctttcagccggcaaaccggctgaagccggatctgcgattctgataacaaactagcaacaccagaac agcccgtttgcgggcagcaaaacccgtacttttggacgttccggcggttttttgtggcgagtggtgttcgggcggtg cgcgcaagatccattatgttaaacgggcgagtttacatctcaaaaccgcccgcttaacaccattcatgagcggc cgccagtgtgctggaattcggcttcatgattttttattcaacgaagagtt

SEQ ID NO: 30 ( fepE expression plasmid pBAD2fepE)

gtgcctgtcaaatggacgaagcagggattctgcaaaccctatgctactccgtcaagccgtcaattgtctgattcgt taccaattatgacaacttgacggctacatcattcactttttcttcacaaccggcacggaactcgctcgggctggcc

ccggtgcattttttaaatacccgcgagaaatagagttgatcgtcaaaaccaacattgcgaccgacggtggcgat aggcatccgggtggtgctcaaaagcagcttcgcctggctgatacgttggtcctcgcgccagcttaagacgctaa tccctaactgctggcggaaaagatgtgacagacgcgacggcgacaagcaaacatgctgtgcgacgctggcg atatcaaaattgctgtctgccaggtgatcgctgatgtactgacaagcctcgcgtacccgattatccatcggtggat ggagcgactcgttaatcgcttccatgcgccgcagtaacaattgctcaagcagatttatcgccagcagctccgaat agcgcccttccccttgcccggcgttaatgatttgcccaaacaggtcgctgaaatgcggctggtgcgcttcatccg ggcgaaagaaccccgtattggcaaatattgacggccagttaagccattcatgccagtaggcgcgcggacgaa agtaaacccactggtgataccattcgcgagcctccggatgacgaccgtagtgatgaatctctcctggcgggaa cagcaaaatatcacccggtcggcaaacaaattctcgtccctgatttttcaccaccccctgaccgcgaatggtga gattgagaatataacctttcattcccagcggtcggtcgataaaaaaatcgagataaccgttggcctcaatcggcg ttaaacccgccaccagatgggcattaaacgagtatcccggcagcaggggatcattttgcgcttcagccatacttt tcatactcccgccattcagagaagaaaccaattgtccatattgcatcagacattgccgtcactgcgtcttttactgg ctcttctcgctaaccaaaccggtaaccccgcttattaaaagcattctgtaacaaagcgggaccaaagccatgac aaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacacttt gctatgccatagcatttttatccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttctccat acccgtttttttgggctagcgaattgaggaggagatatacaTatgccatctcttaatgtaaaacaagaaaaaaat cagtcatttgcaggttattcactgccgcccgccaacagtcatgaaatcgatttgtttagccttatagaggtgttatgg caggcgaaacgtcgtattcttgctaccgttttcgcctttgcgtgcgtggggttgcttctgtcctttctgctgccgcaaaa atggaccagccaggcgattgtcacaccggcggagtcggtacagtggcaggggctggagagaacgttgaccg cgctgcgcgtgttggatatggaggtaagcgttgatcggggcagcgtatttaatctgtttattaaaaagtttagctcgc cctcgctgctggaagaatatcttcgttcttctccgtatgtcatggatcaattaaaaggcgcgcaaatagacgagca ggatcttcaccgggcgattgtcctgctgagcgaaaaaatgaaagcggtggacagtaatgtcggcaagaaaaa tgaaacgtcgttattcacgtcgtggacattgagttttaccgcgccgacgcgggaagaagcgcaaaaagtgctg gctggctatattcagtacatctccgatatcgtcgtgaaagagacgctggaaaatattcgtaaccagctggaaatc aaaacccgctatgagcaggaaaagctggcgatggatcgggtgcgtctcaaaaatcagcttgatgccaatattc aacgtcttcattattcgctggaaatcgccaacgccgccggtattaagagaccggtttacagcaatggtcaggcg gtaaaagatgatccggatttttctatttctctcggcgcggatggtatttcccgcaaactggaaattgaaaaaggggt aacggacgtggccgagatcgacggtgatttgcgtaaccgtcaataccatgttgaacaactggcggcaatgaat gtgagtgacgtgaagtttaccccgtttaaatatcaactgtcgccgtctctgccagtgaaaaaagatggcccgggt aaagccatcattattatcctggcggcgttgattggcggtatgatggcctgcggcggcgtattactgcgtcacgcga tggtctcgcgtaaaatggaaaacgcgctggcgatagatgaacggttagtctgaGtcgacctgcaggcatgca agcttggctgttttggcggatgagagaagattttcagcctgatacagattaaatcagaacgcagaagcggtctga taaaacagaatttgcctggcggcagtagcgcggtggtcccacctgaccccatgccgaactcagaagtgaaac gccgtagcgccgatggtagtgtggggtctccccatgcgagagtagggaactgccaggcatcaaataaaacga

aaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctcctgagtaggacaaatccg ccgggagcggatttgaacgttgcgaagcaacggcccggagggtggcgggcaggacgcccgccataaactg ccaggcatcaaattaagcagaaggccatcctgacggatggcctttttgcgtttctacaaactctttttgtttatttttcta aatacattcaaatatgtatccgctcatgtggccggcccggcctaggaaagccacgttgtgtctcaaaatctctgat gttacattgcacaagataaaaatatatcatcatgaacaataaaactgtctgcttacataaacagtaatacaaggg gtgttatgagccatattcaacgggaaacgtcttgctcgaggccgcgattaaattccaacatggatgctgatttatat gggtataaatgggctcgcgataatgtcgggcaatcaggtgcgacaatctatcgattgtatgggaagcccgatgc gccagagttgtttctgaaacatggcaaaggtagcgttgccaatgatgttacagatgagatggtcagactaaactg gctgacggaatttatgcctcttccgaccatcaagcattttatccgtactcctgatgatgcatggttactcaccactgc gatccccgggaaaacagcattccaggtattagaagaatatcctgattcaggtgaaaatattgttgatgcgctggc agtgttcctgcgccggttgcattcgattcctgtttgtaattgtccttttaacagcgatcgcgtatttcgtctcgctcaggc gcaatcacgaatgaataacggtttggttgatgcgagtgattttgatgacgagcgtaatggctggcctgttgaaca agtctggaaagaaatgcataagcttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttgataa ccttatttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggat cttgccatcctatggaactgcctcggtgagttttctccttcattacagaaacggctttttcaaaaatatggtattgataa tcctgatatgaataaattgcagtttcatttgatgctcgatgagtttttctaatcagaattggttaattggttgtaacactg gcagagcattacgctgacttgacgggacggcggctttgttgaataaatcgaacttttcctaggccgggccggcc acatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatctt cttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgc cggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttc tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgtta ccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggc gcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactg agatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggt aagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtc ctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaa cgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacttttacggttcctggccttttgctgg ccttttgctcacatgtatggtgttaagcgggcggttttgagatgtaaactcgcccgtttaacataatggatcttgcgc gcaccgcccgaacaccactcgccacaaaaaaccgccggaacgtccaaaagtacgggttttgctgcccgcaa acgggctgttctggtgttgctagtttgttatcagaatcgcagatccggcttcagccggtttgccggctgaaagcgct atttcttccagaattgccatgattttttccccacgggaggcgtcactggctcccgtgttgtcggcagctttgattcgat aagcagcatcgcctgtttcaggctgtctatgacatgttctttcctgcgttatccccaattgtgagcgctcacaatttgct gcggtaagtcgcataaaaaccattcttcataattcaatccatttactatgttatgttctgag