Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. JP2020149715 - LEARNING-TYPE CONTOUR LINE IDENTIFICATION SYSTEM USING IMPLANTABLE CONTOUR LINE METRIC DERIVED FROM CONTOUR LINE MAPPING

Document

Description

Title of Invention 等高線マッピングから導き出される移植可能な等高線メトリックを使用する学習型等高線識別システム

Technical Field

0001  

Background Art

0002   0003   0004   0005   0006   0007  

Summary of Invention

Technical Problem

0008  

Technical Solution

0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054  

Brief Description of Drawings

0055  

Description of Embodiments

0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135  

Claims

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25    

Drawings

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15a   15b   16   17   18   19    

Description

等高線マッピングから導き出される移植可能な等高線メトリックを使用する学習型等高線識別システム

Technical Field

[0001]
本発明は、パターン認識解析において使用するためのファイルフォーマットデータタイプ内の等高線検出および識別の技術分野におけるものである。

Background Art

[0002]
本願は、2014年11月18日に出願された米国特許仮出願第62/081513号の「POINT−TO−POINT REPRESENTATIONS OF ENCLOSURES OR LINES REPRESENTING OBJECTS OF GROUPS OF OBJECTS WITH DATA FORMATS」に関連しかつこれに対する優先権を主張するものである。
[0003]
データフォーマット内のオブジェクト(人々、機械的表現、信号波形表現、または任意の物理的性質を有するオブジェクト)を位置特定する画像検出アルゴリズムは、画像内のオブジェクトを追跡することを目的とすることが可能であるオブジェクトを識別する。これらのアルゴリズムは、オブジェクトが静止している(時間または周波数の変化がない画像)か、動的である(時間または周波数の変化がある)かどうかで識別を行い、すなわち、画像オブジェクトを発見するが、ソース外で発見されたオブジェクトをさらに処理しないようにする。この結果、画像処理解析業務における現在の技術に対して、オブジェクト識別を可能にするためのいずれの試みに対しても算出を行う時に元のソースにとどまる計算プロセスが所望されている。
[0004]
現在の技術では、データセットから検索された画像オブジェクトを取り去ることで発見されたオブジェクトが、画像データインスタンスをさらに解析することを望む場合がある他の応用に対して移植可能とすることができるように選定しない。現在の技術では、発見する画像を、典型的であるという意味で関連したオブジェクトではない別の数量ソースに変換する試みは行われない。すなわち、現在の技術ではオブジェクトを等式として論じることはなく、これは、独自のデータフォーマットソースの修正版内で処理された画像を示すことによって処理される識別のことを言っている。現在の技術は、画像の範囲内にとどまっており、このようなシステムのユーザに示される必要があるいずれの識別も、元のデータセット、および識別されたところからのそのデータ値を参照するとして論じられている。
[0005]
むしろ、現在、オブジェクトを識別するために、わずか1画素の認識可能なパターンおよび認識不可能なパターンのメトリックを使用する方法はない。このようなパターンをグループ化することで、1次元のパターンがさらに別の次元でオブジェクトを識別する目的で全く異なる次元のパターンにペアリング可能とされるような方法を使用するシステムはない。最終的に識別されたオブジェクトが人間の視覚的経験または予想によって識別可能であるか否かでオブジェクトを識別するメトリックのコレクションとしてパターンを使用し、かつその表現を他の全く異なるコンピュータシステム設計に移植可能にする方法は現在存在しない。ハードウェアのシステムからの出力が移植可能であり、かつソースと無関係のデータを再利用する必要なく、オブジェクトを定義しかつそれを指紋生成するためにソースから独立したパターングループ化方法を使用する方法は現在存在しない。現在、学習型等高線識別システムとしてここで紹介される新しいタイプのシステムに対して等高線メトリックをもたらすために(典型的には地形の研究に関連付けられた)データセットの等高線マップからもたらされる等高線を使用する方法はない。
[0006]
本明細書におけるこれらの新たなメトリックは等高線メトリックと呼ばれ、等高線マッピングの等高線から導き出される。この場合、このマップのそれぞれの等高線は、学習型等高線識別システムの設計によって使用可能なコンテナ集合として記憶されるメトリックの独自の集合を有する。コンテナ集合のメトリックは、典型的には、統計密度集合、領域集合、座標点集合、および、学習型オブジェクト識別システムを構成するハードウェアコンポーネントのシステムによって作成されかつ判断される他のメトリックである。他のコンテナ集合は、数学的プロセスの出力である可能性が高い同じまたは他の解析集合のサブセット、機械コード命令集合、または、独自のコンテナ集合のサブセットである。コンテナは、オブジェクトまたはオブジェクトのグループを定義するために、および、パターン局所化および最終的なラベリングのためにデータソースとは無関係の情報を本質的に除外するために共にグループ化する。全ての決定および変更、ならびにメモリにおける記憶場所は、パターンの新しい、可能ならば数学的表現を作成することによって学習型等高線識別システムによって判断される。本質的に、コンテナはその後、メモリ場所要素または変数としてのメトリック(個々のコンテナのメトリック)を供給することによって、学習型等高線識別システムを、自律的にも判断する精密なやり方で行われるようにメトリックが学習型等高線識別システムに対するプラグインモジュールであるような機能プロセッサにする。基本的に、システムおよびそのメトリックは、作成した学習型システムハードウェアによってのみ認識可能である同様のデータパターン表現を有するデータケースの集合において再発することが発見されるマイクロパターンを有するデータケースを記述するために独自の暗号化コード集合を作成する。
[0007]
現在の技術は、線上にあるようにオブジェクトが発見された後にオブジェクトから何が学習され得るかについてのさらなる数学または統計解析を目的としたものはほとんどない。現在の技術は、ある線を識別することはできるが、生じた画像と関連性があるその線上のメトリックの検索可能な集合を提供することはない。従って、現在の技術は、検出された情報を使用するアプリケーションに対して完全に異なる変換であるが同じように識別されかつ同じ意味を持つため、ユーザが自分の意のままにあるパターンのソース画像から離れることを可能とすることはできない。現在の技術では、ユーザおよびアプリケーションがソースに近いままでデータを使用することを好み、システムに対して、ソースファイル内で発見されたオブジェクトをユーザに示すこと、またはソースファイルを参考として使用することを必要とする。現在の技術は、データフォーマット環境を離れることができ、かつ依然オブジェクト固有性を有することができるように、オブジェクトを別の量に「変換する」ように試みることはない。現在の技術は、ユーザに、ハードウェアから完全に導き出されたプロセス形式およびそのアプリケーションソフトウェア制御を与えるように試みることはない。このプロセス形式は、形状を識別するだけでなく、パターンのメトリック表現のシーケンスによってパターンの指紋を生成する。

Summary of Invention

Technical Problem

[0008]
本発明は、入力を変換するために学習型等高線識別システムを使用して現在のデータ内の等高線パターンを識別し、次いで、トレーニングケース(過去のデータ)およびテストケース(現在)両方においてこれらのパターンおよび等高線メトリックを管理しかつ作成するために、過去のデータの複数の等高線パターンメトリックを使用する目的で、データを等高線マップに変換し、かつその個々の等高線を等高線メトリック(統合し、かつ線または閉じた形状で1次元または多次元として識別できる多くの多様な要素から成る全体部)に変換するシステムである。

Technical Solution

[0009]
システムおよび方法として、完全な要約にはさらに以下が含まれる。
[0010]
複数の並列の、複数の直列の、または単数のフォーマットのプロセッサシステムにおいて動作可能な1つまたは複数のコンピュータによって行われる方法。単一のもしくは複数の電子または機械測定デバイス、あるいは画像キャプチャデバイスから電子データまたは機械的に生成されたデータを得る手段を含む方法。
[0011]
該手段は、上記データを、データケースの機械的、機械、または電子コンピュータ可読データ表現に構成する。
[0012]
それによって、パターン、等高線、および、背景全体部について、データは境界があるか境界がない全体部を有する、または、フィラーは、ユーザまたは機械に対して所望のエンクロージャ表現を表すために、部分的にまたは部分的に組み合わせて、数的、バイナリ、機械コード、もしくは記号的、またはコンピュータハードウェア可読タイプである。
[0013]
このエンクロージャは、単数の次元形式または複数の次元形式で、単数の次元または複数の次元の信号といった人間の形を区別してまたは区別せずに、上記の全体部、一部、または、単数であるか複数である全体部および一部分の組み合わせの物理的ユニット値ラベル制限事項を有するまたは有さない、自己学習型アルゴリズム、機械的機構、または人間が生み出したリアルタイムのパターン発生器によって、パターン、システム、または等高線形状別に識別されてよい。
[0014]
システムフィードバックを表す全体部を識別可能なシステムを有する全体部が全て、機械的処理方法、コンピュータプロセッサ方法、またはヒューマンインターフェースプロセスのための機械の単数または複数の同システムによって、単数または複数の形式である必要がある。
[0015]
該システムは、出力の向上、入力の安全性、または上記システムの入力の低減を目的として、コンピュータシステムのデータを手動で、および/または、上記コンピュータ、または機械/コンピュータシステムの通信プロセスに再挿入することによって調節する。
[0016]
次元、シリアル、マトリクス、数学的ファイルタイプのフォーマット、または、圧縮されているか圧縮されていないかについての制限なく、測定された上記データを測定機器の機械またはシステムの付属装置に記憶することによってデータ出力を終える。
[0017]
または、コンピュータ、人間、または上記特許製品によって使用可能な機械によって取り出し可能なフォーマットによって読み取り可能なモバイル、オンライン、または転送可能なフォーマットに記憶されるコンピュータファイルタイプのフォーマットにおいてデータ出力を終える。
[0018]
その後、上記機械、コンピュータ、機械または人間による入力の同一の前処理の必要なく、現在のまたは将来のタイムラインで読み取り可能とすることができ、かつ、得られた上記データの処理のために設計された上記機械もしくはコンピュータ処理機械、または人間による入力システムによって読み取り可能である。この場合、処理は、データ、または元のデータ記憶タイプ、データソース、および測定目的から切り離されたデータ記憶域の別のモバイル使用、全てのパターン、人間の視覚的予想に対して所望されるまたは識別不可能である画像に変換して、一部もしくは全体的に、または平面フォーマットにおいて収集されかつトレーニングされる別のファイルフォーマットにする。この平面フォーマットは、多様体表現の処理コードとして収集されかつ記憶されるべきデータの多次元軸フォーマット内の2次元投影の層であってよい。
[0019]
ここで、多様体は、データケースの等高線マッピングの単一の等高線メトリックである。この等高線メトリックは、既知のまたは未知の形状のエンクロージャを、コンピュータ、機械、生物学的実体、または人間の対話によって設定されるメトリックレベルの判断に定義するパターンの数値フォーマットまたは記号フォーマットの隣接境界点の利用可能なまたは操作による挿入(intervention insertion)による厚さを有するパターン、またはこの厚さを有するようにされた線の座標点集合のエンクロージャである。
[0020]
多様体表現とは、全体的に単数であるまたは複数である、コンピュータアルゴリズム、コンピュータもしくは機械ファームウェア、電子コンポーネントハードウェアもしくはファームウェア、ソフトウェアプログラム、または、機械もしくは人間による操作のフィードバックアクションによって決定される、それぞれの多様体グループ化によって記述されるパターンの等高線のデータセットをコード化した表現として記憶される、単数または複数で検出された等高線パターンメトリック集合の多様体記憶域である。
[0021]
これと共に、単一のまたは複数の次元の他の多様体表現コードと組み合わせた、単数または複数の検出されたパターン全体部の表現の単数形の意味の記憶フォーマットにおいて、単数または複数の次元の多様体表現コード要素がある。
[0022]
コンピュータ、人間による操作、機械デバイス、またはコンピュータプロセスによって決定されるように、優先順位なく、新しい開始レベルのまたは始めの多様体の単数または複数の要素の可能である単数または複数の多様体表現のそれぞれの多様体表現コード要素は、より高い次元の層またはグループ化でグループ化または非グループ化する。
[0023]
この場合、単一のまたはより高い次元における単一のまたは複数の量のそれぞれの多様体表現コードは、部分的にまたは全体的に、データ取得計器によって取り出される、単一のまたは複数の測定されたデータ取得の、コンピュータ、人間、もしくは生物学的操作、機械もしくは電子ハードウェア、ファームウェア、またはソフトウェアによる単数または複数のグループ化を識別する。
[0024]
ここで、多様体表現コード全体部は、複数の要素または多次元要素の個々の多様体表現コードによる単数または複数の形式を有する。
[0025]
これは、データ取得したデータセット内で、または、独自の多様体表現コード内で、対象パターンを生成した、本発明のハードウェアプロセッサ、学習済みの、機械、もしくはコンピュータまたは電子コンポーネント、あるいは電子表示部を識別することを目的とする。
[0026]
これらは、プロセッサの限度の人間によって制御される入力および出力パラメータのない、または、この人間によって制御されるパラメータによるコンピュータアルゴリズムによるものである。
[0027]
パラメータは、機械またはコンピュータプロセッサ、およびそれらのアルゴリズムの手動、機械、またはコンピュータファームウェアトレーニングによって、または、反復でまたはフィードバックフォーマットで、同システムによってまたは本明細書における特許製品によって変換されるように、複数の過去のデータ、または単数または複数の現在のデータから、ハードウェアの上記システム内のフィードバックエラー最適化から判断された後、優先順位なく、ハードウェアおよび人間による操作による測定、またはコンピュータアルゴリズムによる測定、および、特許製品による変換の反復が行われる。
[0028]
複数または単数の特許製品のプロセッサハードウェアへのソースデータの入力は、測定データ取得を必要とし、少なくとも、部分的にまたは全体的に、将来のまたは現在のタイムラインにおける、単数または複数の取得および記憶後に、または、人間によるもしくは生物学的操作、コンピュータ、機械もしくは電子表示部、または、電子コンポーネントの操作によるリアルタイムの処理で生じる。
[0029]
これには、部分的にまたは全体的に、開始時のまたは将来の取得物の新たに取得されたデータセット、または、特許製品のハードウェア特性評価装置による最終的な出力パターン識別のために特性評価された特許製品のハードウェアプロセッサとなる、将来のおよび現在の、またはリアルタイムの、特許製品によって処理されたハードウェアのデータ取得の特許製品の変換による取得物が使用される。
[0030]
これは、複数回または単数回繰り返して記憶されかつ取り出されるコンピュータアルゴリズム、電子ハードウェア、表示部出力によってなされる選定によるものである。
[0031]
または、所望されるように、特許製品、または人間もしくは生物(疾病、ゲノム、猫、犬、チンパンジーなど)を含有するまたはこれらと対話するファームウェアによる、または、コンピュータプロセッサもしくは電子ハードウェアコンポーネントによるものである。
[0032]
これは、ラベリングされない特許製品のプロセッサに入力される取得されたデータ内の識別不可能なパターンの生成された出力報告の結果を踏まえたものである。
[0033]
または、人間または生物学的に認識可能なフィードバックがラベリングされる。
[0034]
または、現在使用される多様体または多様体表現コードによって、確率、統計値、変数の数学的表現、信号、またはメトリックの観点から将来のまたは現在のパターン識別が生じることが強調され、この全てまたは組み合わせは、ソフトウェアまたはファームウェアに書き込まれた、または単数または複数の電子コンポーネントによって実施されるアルゴリズムを学習することによって、あらかじめ定められたまたは概算されたラベルでの精密な検出の成功度を定義する。
[0035]
単数のまたは複数の成功した検出によって、ハードウェアシステムは、記憶される多様体表現コードまたは媒体を処理する。
[0036]
すなわち、これらは、コンピュータによって、人間、機械のシステムによって、または、電子コンポーネントもしくは表示デバイスによって、将来のまたは現在の処理に使用するために取り出し可能である。
[0037]
複数または単数の測定データ取得の入力変換、または、学習イベントとして複数形で事前処理されている変換の、過去、現在、または将来の特許製品のパターン識別分類出力最終処理の精度を定義する。
[0038]
これは、アルゴリズムによって処理され、この入力は、単数または複数の組み合わせの、電子機器のシステム、人間による操作、電子表示部、または機械もしくはコンピュータ電子コンポーネントによる出力である。
[0039]
または、将来の精度を決定するメトリックのために、または現在、将来、もしくは過去の精度を決定するメトリックのために、または、検出を決定するメトリックのリアルタイムの精度のために上記特許製品によって作成される多様体表現コードによって処理される。
[0040]
これは、検出の正確性の報告、または解析の判断のために、表示部またはソフトウェアプロセッサ用の出力によって、パターン識別プロセッサハードウェアシステムの特許製品の特性評価出力として使用するためである。
[0041]
この場合、正確性メトリック表現は、単数または複数の組み合わせの電子コンポーネントの定義されたハードウェアシステム内で、または、ファームウェアを有するハードウェアシステム内で、人間、コンピュータ、または機械ハードウェアによって使用可能な、または、ソフトウェアアルゴリズムコード、または電子部品の単数または複数の組み合わせによって制御される、確率または統計メトリックである。
[0042]
または、この表現は、本発明の特許請求の範囲のデータ取得を変換する特許製品またはキャプチャデバイスに渡される、人間の操作による人間が判断した測定正確度のマージンのメトリックであり、特許製品による結果の出力によって、特性評価は、エラーのあるマージンのプロセス特性評価装置の検出された出力パターンラベルの多様体表現コードの近似の精確な検出度をメトリック的に記述する。
[0043]
天災の再現性および再発は、テスト済みのまたは未テストの将来のデータを必要とすることなく、かつ、特許製品の変換を必要とすることなく、または特許製品の変換の再測定および再処理を行うことなく、特許製品の変換および特性評価から判断される、学習された対象のパターンの多様体表現にデータを変換した特許製品において発見される、ミクロレベルの再発の複数の発見を通して記述される。
[0044]
ルックアップテーブルの表現において、人間またはコンピュータハードウェアフォーマットは、トレーニングが、将来、コンフュージョンマトリクスフォーマットまたはその複数形の典型であるトレーニングによって判断される識別の述べられた確率を十分に予測する場合に取り出し可能である。
[0045]
これは、対象の単数のパターンの、人間、コンピュータ、または機械によってラベリングされた単数または複数のシステムである。
[0046]
または、これは、ハードウェアの実現性を有する同システムの対象の生物学的にラベリングされたパターン、人間によってまたは非人間的にラベリングされた対象、単一または複数の次元の信号のラベリングされた対象、単一または複数の次元の人間によるまたは安全性を有さないラベリングされた信号の対象、特性評価装置の多様体表現出力と呼ばれる、識別不可能な人間の対象のラベルを有する既知のまたは未知の情報ソースの検出、アナログ、またはコンピュータによって受信されたデータタイプの、人間によるまたは非人間的なネットワーク通信を使用したラベリングがなされたまたは未使用のラベルである。
[0047]
この場合、単数または複数の出力される多様体表現コード全体部は、対象のトレーニングによって、またはそうでない場合、単数または複数の組み合わせの人間、コンピュータ、または電子コンポーネントによって決定される、パターンの検出された出力をラベリングする、またはさらなる解析のための、単数または複数の形式の出力された識別済みパターン多様体表現コードを表す。
[0048]
過去、現在、またはリアルタイムの処理の対象の出力された多様体表現コードは、機械デバイス、コンピュータプログラム、コンピュータファームウェア、ハードウェアファームウェア、または生物学的入力によって決定される。
[0049]
ここで、データは、データのグループ化に対する人間手動インターフェースによる決定、または、解析されたデータのグループ化のコンピュータフィードバック評価および再入力を使用して、単数または複数のコンピュータ処理によって決定される、数値、バイナリ、記号、単数、または複数のパターンのグループ化である。
[0050]
これは、人間が識別可能なパターン全体部、または、識別可能なパターン全体部のコンピュータ、ハードウェア、機械、表示部、または電子コンポーネントの単数または複数の組み合わせの単数または複数の形式のグループを検出したパターンの、パターン多様体表現コードをキャプチャしたデータによるものである。
[0051]
トレーニング処理、および、単数または複数の入力されたトレーニングデータ取得の反復を1回行う、トレーニング用の多様体表現コード、もしくはテスト用の多様体表現コード、またはこれら2つの組み合わせのトレーニング処理および特性評価処理を単数または複数回繰り返すことによって判断される、特性評価された検出済みパターンの出力を報告する、特許製品のハードウェアの停止プロセスとして、最終的な多様体表現が提供される。
[0052]
最終的な分類を出力するために、定義された複数または単数の多様体、複数または単数のグループ化の多様体表現コード、単数または複数の統計値、または、数字または記号表現のメトリックが生成される。これらは、多様体または多様体表現コードではなく、特許製品のパターン検出プロセスの精度を定義する数値または記号メトリックの同じメトリックを提供するメトリックである。
[0053]
これによって、同パターン検出の精度のメトリックが提供され、これは、単数または複数の形式のラベリングするまたはラベリングされない、最適な画像識別を報告するためのルールではなく学習であるトレーニングアルゴリズム出力の特許製品のハードウェアシステムのプロセスの単数または複数回の繰り返しの終わりにもたらされるトレーニング決定ルールから生じる。
[0054]
この場合、本明細書または特許請求の範囲に特に指定のない限り、「多様体」という用語は、等高線を記述するメトリックのコンテナとして等高線マッピングの単一の等高線と同義であり、「コード」は、多様体に記憶されるメトリックのシーケンス、または複数の他の多様体、コード、メトリック、および等高線マッピングの単一の等高線コンテナと同義である。

Brief Description of Drawings

[0055]
[fig. 1] 等高線マップによるトレーニングおよびテストケースの等高線の集合の等高線パターンメトリック集合をグループ化するプロセスの好ましい実施形態の段階的なフロー図である。
[fig. 2] フォーマットデータタイプのマトリクスの一例を示す図である。
[fig. 3] 3つのパターン:19、20、および21のエンクロージャを定義した等高線パターンメトリック集合(多様体はコンテナであり、それによって簡略的に記されるため、等高線メトリック集合を「多様体」と区別なく言及する)の生成された表示部を示す図である。
[fig. 4] 3つのパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部を示す図である。
[fig. 5] 3つのパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部を示す図である。
[fig. 6] 2つのパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部を示す図である。
[fig. 7] マルチパターンの画像におけるあるパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部を示す図である。
[fig. 8] 学習型等高線識別システム(LCIS)のトップレベル記述の図である。
[fig. 9] 図8のハイレベル動作を示す学習型等高線識別システムのプロセスのトップレベル記述の図である。
[fig. 10] トレーニングプロセッサ55および64、ならびに、命令集合マイクロコード56〜61の低レベル記述の図である。
[fig. 11] 分類プロセッサ73と、マイクロコード75〜82および83〜88を設定する命令とを設定するテストケースの等高線パターンメトリックの低レベル記述の図である。
[fig. 12] 等高線パターンメトリックプロセッサの命令マイクロコード集合89〜98の低レベルフロー図である。
[fig. 13] ユーザアプリケーション制御部101、トレーニングモジュール、および、分類器から成る完全な学習型等高線識別システムを示すシステム、ならびに、メトリックが双方で使用される時の結果の高レベル記述の図である。
[fig. 14] 等高線パターンメトリック集合の命令が、どのように設定し、かつ学習型等高線識別システムによってメモリに記憶されるかを記述するメモリハードウェアを示すである。
[fig. 15a] LCISの等高線マッピングマイクロコード命令集合の別の低レベル記述の図である。
[fig. 15b] LCISの等高線マッピングマイクロコード命令集合の別の低レベル記述の図である。
[fig. 16] LCISの等高線マッピングマイクロコード命令集合の別の低レベル記述の図である。
[fig. 17] 2つのパターン画像におけるあるパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部を示す図である。
[fig. 18] 2つのパターン画像におけるあるパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部を示す図である。
[fig. 19] 好ましい実施形態における統計値が、データケースの等高線マッピングの1つの等高線の等高線メトリックを完了するためにどのように使用されることになるのかについての反復プロセスを示すプロセッサ命令集合を示す図である。

Description of Embodiments

[0056]
図1は、等高線マップによるトレーニングおよびテストケースの等高線の集合の等高線パターンメトリック集合をグループ化するプロセスの好ましい実施形態の段階的なフロー図である。
[0057]
図2は、フォーマットデータタイプのマトリクスの一例である。多くのデータフォーマットがあり、それら全ては、1つのデータフォーマットタイプを別のデータフォーマットタイプに変換するための簡易な方法があるため、この発明で使用可能である。画像およびグラフィックスは、デジタルデータファイルフォーマットにおいて定義され、現在、44以上あるが、頻繁に使用されるのが44あると言われる。それらをタイプ別にグループ化されるように一般化し述べるのがより良いため、本発明は、ラスターフォーマット、画素およびウェブファイルフォーマット、メタ/ベクトルファイルフォーマット、ビットマップファイルフォーマット、圧縮ファイルフォーマット、放射ファイルフォーマット(温度および画像)、GIF画像ファイルフォーマット、アニメーションファイルフォーマット、透過ファイルフォーマット、インターレースおよび非インターレースファイルフォーマット、JPEGファイルフォーマット、ならびに、プログレッシブJPEGファイルフォーマットを包含する。(この発明(図1)は、本発明のプロセスが使用できるものに任意の未知のファイルフォーマットを変えることが可能であるため、既知のフォーマットのみに限定されない。)全ての「タイプ」は、含有する画像およびパターンの大きさを表現するため、この特許出願の目的のために、全ての「タイプ」が使用可能である。データフォーマットにおけるデータタイプは、色合いもしくは濃淡の数値またはビット表現におけるものであってよい、または、1および0(またはそれ自体1および0)の大きさへの変換とすることができる。図2では、大きさ1は、背景の大きさの値1を表し、この場合、任意の他の番号付けされた大きさはある画像の実際のパターンを表すことが可能である。この場合、例では、5の大きさは、必ずしも、1つの画像内の大きさ5の他のパターンと同じというわけではないパターンを表すと言える。所与のこの図は、1単位ごとに他のパターンから分離された画像パターンを表す。1単位の分離がないパターンは、あらゆる面で、グループ化されたパターンと見なされることになる。マトリクス全体は、表すために使用される、データフォーマット画像記憶コンテナの画素ごとの表現全体を表す。例では、次いで、このマトリクスはデータ点の5×8の画像である。(画像およびパターンは同じ意味で使用されることに留意されたい。例えば、ある画像はあるパターンである。または、ある画像はある画像内のあるパターンとすることができる。)
[0058]
図3は、3つのパターン:19、20、および21のエンクロージャを定義した等高線パターンメトリック集合(多様体はコンテナであり、それによって簡略的に記されるため、等高線メトリック集合を「多様体」と区別なく言及する)の生成された表示部である。図1の、組み合わせプロセスまたは等高線グループ化プロセスはこれらの多様体パターンを判断する。本発明では、図3の結果は、図1の選択肢12および14を表し、すなわち、単一の多様体が見出されるものとする。
[0059]
図4は、3つのパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部である。本発明は、図1における選択肢13および15に従って多様体パターンを判断する。選択肢13および15について、囲むパターンを識別するために「2つ」の多様体パターンが選定された。多様体パターンの分割場所は、22に示されるようにパターンの間のスペーシングの量によって判断される。これらは、等しく間隔があけられるが、必ずしも、図1の全ての応用において等しく間隔があけられる必要はない。
[0060]
図5は、3つのパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部である。多様体パターンの分割は、図4の22に示されるように、パターンの間のスペーシングによって判断される。本発明は、図1における選択肢13および15に従って多様体パターンを判断する。これらは、等しく間隔があけられるが、必ずしも、図1の全ての応用において等しく間隔があけられる必要はない。図5では、図1のプロセスを通して、23、24、および25の強度値によってもたらされた形状の多様体の「正しい領域表現」を最大化するように20の分割が示される。
[0061]
図6は、2つのパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部である。この図は、選択肢13および14が図1の発明において使用されることを示す別のマトリクスを使用する。グループ化されたパターン値の範囲は、4.5〜5.22であり、これは、所望される等高線の数によって判断され、かつ、学習型等高線識別システムハードウェア内で設定される。強度26、27、および28によって定義されるような3つの可能なパターン分類があるが、図1によって選択される2つのパターンの多様体がある。
[0062]
図7は、マルチパターンの画像におけるあるパターンのエンクロージャ(多様体)を定義した等高線メトリック集合の生成された表示部であり、図1に示される発明の3つの応用例の実施形態である。この33は、カーペットにランダムに落とされた1/32インチの厚さの18K金のネックレスである。この34は、33におけるネックレスの熱画像34の放射タイプのデジタル画像ファイルフォーマットを表す。このグラフ35は、図1における発明の、12および14によって、12および15によって、ならびに13および14によって生成される点の多くの多様体を表す。多様体の点のグラフ36は、図1を通して処理された35の点の多様体によって作成された数学的表現から再生された、図1の発明の13および14を表す。図1の18の10〜17の4つの技法の好ましい方法は、図7において組み合わせて使用される。
[0063]
図8は、学習型等高線識別システム(LCIS)のトップレベル記述である。これらは、一般の単一のLCISシステムを構成するハードウェアコンポーネントである。項目36は、データパス37および38による学習型システムのマイクロコードを設定する命令を処理するコントローラ34を有する。等高線パターンメトリックは、データパス35を介して39において記憶され、かつ、34によって36内に作成される。
[0064]
図9は、図8のハイレベル動作を示す学習型等高線識別システムのプロセスのトップレベル記述である。この図は、分類プロセッサと通信するトレーニングプロセッサとしてのシステムを導入している。トレーニングプロセッサは、1つまたは複数のデータケースのトレーニングケースデータ40を入手し、41〜44の過去のトレーニングデータから学習し、トレーニングプロセッサによって生成された出力45をパターン識別プロセッサ48に送る。ここで、47は、テストケースを取り出し、LCISが出力54を表示し停止するまで、45から、49〜53によって、41および48の反復を判断する。トレーニング、トレーニングおよび分類、分類のみにおいて等高線を増加させるオプションは、ユーザによって、および、LCISシステムによって処理されるコンフュージョンマトリクスの出力によって判断される。
[0065]
図10は、トレーニングプロセッサ55および64、ならびに、命令集合マイクロコード56〜61の低レベル記述である。トレーニングケースデータは、キャプチャされ56、等高線メトリックに変換され57〜60および62、トレーニングに設定され63、65〜72でトレーニングされる。ここで、トレーニングモジュールは等高線パターン識別子72および62に送られる出力を準備する。
[0066]
図11は、分類プロセッサ73と、マイクロコード75〜82および83〜88を設定する命令とを設定するテストケースの等高線パターンメトリックの低レベル記述である。テストケースデータは、キャプチャされ75、等高線メトリックに変換され75〜78、79において引き付けられるブラックボックスをトレーニングするかルール設定コードをトレーニングし、81において等高線パターン識別を実現する80において等高線メトリックに適用され、82においてコンフュージョンマトリクスのトレーニングと比較される。82で見出された統計値が83、84、および85において低すぎる場合、等高線を増加させるためのトレーニングに戻り、図10を再実行する。しかしながら、依然閾値を満たさない場合、分類器87において等高線の増加のみ行い、分類器を繰り返す。トレーニングプロセスによって発見されるコンフュージョンマトリクスによって定義されるように過去のデータ統計値に対して最適化されるものとしての分類が見出されると、出力はメモリ88に送られ、表示される。
[0067]
図12は、等高線パターンメトリックプロセッサの命令マイクロコード集合89〜98の低レベルフロー図である。ここで、基本的な等高線メトリック、または、等高線メトリック集合全てのコンテナとしての多様体の好ましい実施形態が見られる。この好ましい実施形態について、等高線パターンメトリック集合、または短くすると多様体は、少なくともラベル93、座標点集合94、および統計メトリック95を含有する。LCISは、96〜98において他のメトリックがトレーニングモジュールによって所望されているかどうかを判断する。
[0068]
図13は、ユーザアプリケーション制御部101、トレーニングモジュール、および、分類器から成る完全な学習型等高線識別システムを示すシステム、ならびに、メトリックが双方で使用される時の結果の高レベル記述である。LCISシステムは、99〜110において示されるようなシステムのうちのシステムとすることができる。104〜106のLCISシステムは、等高線パターンメトリックのグループ化対象(grouper)とすることができ、グループ化され、かつグループ化対象104、ならびに104および105両方を通して反復される等高線パターンメトリックの学習対象は、メモリ105と共に機能することができる、または、103のn個のインスタンスを通してプラグインモジュール102と対話することができる。その後、ブラックボックスの学習対象またはルールベースの学習対象107のシステム出力は分類器108に送られることが可能であり、この出力は109において記憶された後、110に表示され、プロセス全体は繰り返される。この全体のシステム100〜110は、同様に、プラグインモジュール102とすることができる別のLCISシステムとすることができる。1つにしてカスタマイズするプロセス全体を制御するために、アプリケーションソフトウェアはモジュール101として展開可能である。これは必要なことであり、さもなければ、オンにして動作させる手立てはない。
[0069]
図14は、等高線パターンメトリック集合の命令集合が、どのように学習型等高線識別システムによってメモリに記憶されるかを記述するメモリハードウェアである。等高線マッピングからの単一の等高線パターンメトリック集合は、2つのアドレス112および118の間に記憶され、LCISの必要性120にも基づいてアペンドされる。移植性のために外付けのメモリコンテナとして記憶可能である等高線パターンメトリックの基本的な好ましい実施形態の構造は、座標点集合113、フィラー114、ガウス混合モデル出力コンポーネントが記憶される統計値115、行および列の可能な領域出力のようないくつかのより多くの数学的処理の出力116、および、可能な他の次元の等高線マップによってグループ化されている他の等高線パターンメトリックのメトリックから成る。項目117は、次いで、117自体によるメトリックの集合113、または、基本的に、112と118との間にアペンドされる112と118との間のコンテンツの反復である。項目119〜121は、112と118との間のメトリックにより多くの等高線パターンを加える繰り返しのプロセスを表す。その結果、コード、等高線パターンメトリックコード、または多様体表現コードがもたらされる。これによって、1つのパターンのみが定義され、そのパターンを描くために使用でき、メトリック全てはこれらのメトリックを扱うために他のプログラムによって使用可能である。これは、指紋が、集合として記憶される出力のシーケンスにコード化され、それらは全て、等高線から導き出されるため、パターンは、トレーニング環境において、または、それ自体全くトレーニングが行われずに使用可能である。トレーニングによって、ユーザは、将来のデータに存在するパターンを判断するために過去データのメトリックを使用することができる。統計値がガウスである場合、中心極限定理によって、ガウスパターンによって示されるそれらのパターンは、今後繰り返すようになるため、過去のデータのコンフュージョンマトリクスは、将来のデータを強く代表するものとなる。これは、音声は自然なものとして過去のデータが与えられる場合、音声識別は現在のデータにおいて容易に識別されることを意味するため、好ましい実施形態によって非常に重要であり、従って、信号キャプチャ内で発見されるそのマイクロパターンは、今後確実に繰り返すことになる。また、音声は雑音から取り去ることが可能であることを意味する。
[0070]
図15は、LCISの等高線マッピングマイクロコード命令集合の別の低レベル記述である。この図は、等高線がどのように展開可能であるかについての簡易な例示である。この例は、4×4マトリクスの画素強度を構成することで開始する。最小値123および最大値124が分かり、システムが望む等高線の数を読み取り、例えば126および127において、5の等しい間隔でこれらの領域の間の最短距離に分割する。次いで、等高線は、25から25まで、または55から55までのような区分間の点を接続している。さらに詳細な例では、図6において見られた強度の範囲をグループ化可能である。この場合、その範囲は、本質的に4〜6であった。項目136は、139において2つの等高線パターンメトリック点集合がどのように作成されるかについて示す。139におけるコンテンツは、図14における113として記憶されるそのメトリック情報である。
[0071]
図16は、LCISの等高線マッピングマイクロコード命令集合の別の低レベル記述である。この図は、実際のところ、トレーニングがClassification and Regression Treeのルールベースのトレーニングマイクロコード集合である時の等高線パターンメトリックの好ましい実施形態として示される図14における116の一例に過ぎない、統計メトリックの一例を示す。座標点集合の等高線パターンメトリック集合は、149および150によって示される。1のフィラーはそれぞれの等高線に置かれる。これらは重み付け1のフィラーとすることができる。次いで、xおよびy軸に沿った和は、ヒストグラムエンベロープ156および146を有する、152および157のヒストグラムビンを示す。ガウス混合モデルコンポーネントは次いで、場合によっては、154、153、および155、ならびに、147および148、および151になる。平均および分散は、これらのコンポーネントのそれぞれの場所および分散を表す。ガウス混合モデルコンポーネントは、加算または減算可能であり、学習は、分類されるべき等高線パターンをより精密に識別するために、全く異なる等高線メトリックからのコンポーネントの全く異なる集合に加える154ことができる。これは、LCISシステムがマイクロパターンを発見し、かつそれらを今後の使用のために記録し、他の最新のプログラムでは使用できない。そして、この結果は、いかなる時でも、パターンが再び写真を一度も必要とすることなくメトリックから再現できるという意味で移植可能である。
[0072]
図17は、2つのパターン画像におけるあるパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部である。これは、本発明の実際の実装形態の応用例の別の実施形態である。画像161〜163は、Mathwork’s MatLabソフトウェア解析テスト画像ディレクトリによってテスト画像として提供されるサンプル画像として与えられたがん細胞を表す。その画像は全体として、等高線マップに変えられ変換されたTIFのファイルフォーマットから取り出される。この等高線マップの等高線は、学習型等高線識別システムによって多くの等高線パターンメトリックに変換される。162における1つのパターンの境界は、現状技術を使用することによって、オブジェクトをがん細胞がどのような状態であるかを示すものとしてラベリングすることを試みる時、これらの2つのがん細胞(その他161)をラベリング済みオブジェクトとして識別するために暗くした円163内の要素の境界になる。画像165および166は図1の出力を表す。本明細書に記載される等高線学習型識別システムは、そのプロセスの終わりに165および166がもたらされた。これらの2つの画像のみが、学習型システムが現時点で必要としている画像であり、学習はメトリックに対してのみ行われ、もはや、画像キャプチャ内のデータを学習することはない。等高線多様体を使用する学習型等高線識別システムは2つのパターン165および166を発見し、それらを合わせることで、上記のオブジェクトを分類する。161および162の背景情報全ては、現時点で、学習型等高線識別ががんを示すのに必要と考えるものに無関係であると見なされ、すなわち、自律的に、または、ユーザが修正のためにアプリケーションのプラグインモジュールを使用することを所望する場合にユーザの操作によって判断される。そして、等高線パターンメトリックで165および166が記述されると、学習型等高線識別システムによってメトリックが記憶されるファイルフォーマットは、場所が他のメトリックで記憶される際に、画像内のどこにあったかについての情報を失うことなく、画像をその等高線パターン座標点集合メトリックから再形成するための任意のアプリケーションソフトウェアに対して採用可能であり、採用される他のメトリックによって、オブジェクトは固有性を変更することなく、圧力をかけられるまたはモーフィングされることが可能である。
[0073]
図18は、2つのパターン画像におけるあるパターンのエンクロージャ(多様体)を定義する等高線メトリック集合の生成された表示部である。これは、図1に示される発明の2つの応用例の実施形態である。この画像は、デジタル画像ファイルフォーマットタイプのJPEGに記憶されるハードウェアデータセットから採用される、時間領域における通信信号である。図18にも見られる、雑音171の背景の結果は、図1のプロセス選択肢12および14によって生成され、すなわち、単一の多様体エンクロージャである。図における識別子167は、矢印によって指し示されるパターンを追跡しかつ識別するために使用される、図1のプロセス13および15における複数の多様体パターンの選択肢を表す。これは、振幅のピークを検出し、かつ、x軸に沿った168においてこれらのピークの時間内の場所を検出する際に、学習型等高線識別システムにおける図1によるグループ化を表す。167における全てのデータ、および171の背景において取り囲まれるそれらの多様体は、パターンの固有性(固有性は図1の18の多様体表現によって示される)を失うことなく、画像から取り去ることが可能である等高線パターンメトリック集合が記述されている。がん細胞の例の先の実施形態に見られるように、信号全体は現時点でメトリック内にあり、これは、これらのメトリックが信号を符号化でき、その後、関係する情報を設定した画像から、信号を解読するために別のステーションにもたらされるべきメトリックを取り去ることができる。このメトリックはその後、メトリックが画像ではなく識別を示すため、信号送信のいずれのハッキングまたは受信によっても解読不可能である。通信は、学習型識別システムが見たものを定義するメトリックを作成したので任意の手段による遮断によって解読できない。図1の18の10〜17の4つの技法の好ましい方法は、図18において図1と組み合わせて使用される。
[0074]
図19は、好ましい実施形態における統計値が、データケースの等高線マッピングの1つの等高線の等高線メトリックを完了するためにどのように使用されることになるのかについての反復プロセスを示すプロセッサ命令集合である。この1つの等高線は、多様体を発見し、再び等高線パターンメトリック集合を発見するものとして言及され、これは、メトリックの等高線マッピングコンテナのトップレベル記述に過ぎない。項目162は図18における170の引き伸ばし写真印画である。これは、メトリックコンテナ集合内の等高線を増加させることによって、オブジェクトをロックオンする反復プロセスにおいて図1のグループ化を機能させる図10のトレーニングによってもたらされた対象パターンにロックオンするLCISを表す。x軸上の場所154と160との間にピークの振幅が見出されるように位置特定するために使用されることになる、図14の5つの等高線メトリック117が見られる。これは、画像キャプチャが既知のスケールを有する限り、場所は時間要素として使用可能であるため、同様の使用時にフーリエ変換が行われる必要があることを意味する。例えば、その例は、画像プラグインモジュールが、既知である時間勾配を有するオシロスコープに取り付けられる計器となることを意味することになる。それらの勾配は、メトリックが移植可能であるためメトリックに転送されることになる。これは、必要なもの全ては、USBドライブなどの外付けメモリに記憶される等高線パターンメトリックを有することであり、等高線から簡易にグラフ化し、かつ13において記載されるようにLCISモジュールを解析するまたは使用することが自律的に行われることを意味する。さらにまた、パターンを生じさせる過去のファイルを使用することはない。関係する情報は、取り出され、ロックオンされ、精密さが高められ(終了する前にこれを最適化する4つの等高線)、ならびに、表示されおよび記録されている。ピークは対象だけのものであるため、残されたデータ全ては雑音となる可能性があり、これは、当然ではあるが、同様にリンクするために使用可能である別のメトリックである。例えば、スピーカは常にある種の環境にあってよい。その環境が信号に含有される場合、同様にリンク可能であるが、性能値のコンフュージョンマトリクスに対して繰り返し可能ではない場合、自律的にセットアップするLCISは、図13の101によって、ステップまたはプロセスセクションでマイクロコードを停止するように制御された手段でLCISを動作するために自動モードをマニュアルモード設定に設定することをユーザが決定しない限り、これをパターン化することはない。
[0075]
用語は、本発明の限定パラメータとなるのではなく、細目を指摘する必要がある時に、本発明の方法、手段、および装置の書面による伝達手段となるように定義される。
[0076]
多様体:データケースの等高線マッピングの複数の等高線のうちのある等高線はこれに対する複数のメトリックを有する。該多様体は、本書では、等高線パターンメトリック集合または等高線メトリックコンテナと同じ意味で使用されるメトリックの等高線コンテナであり、単一の等高線のトップレベル記述であることを述べるために多様体表現コードが使用される。
[0077]
多様体コード:コードは、多様体、または等高線パターンメトリック集合コンテナによって定義される単なるメトリックである。これは、識別するパターンの記述をプロセッサがメモリから読み取るシーケンスであり、トレーニングモジュールおよび分類器テストケースで使用されることになるため、コードである。
[0078]
ケース:本発明の応用では、「ケース」という用語は、一般に、データ、トレーニング、またはテストを組み合わせたものであることが分かる。データは、ファイルフォーマット、データフォーマット、およびデータタイプを有することでケースになる。データは、内蔵とすることができ、外付けとすることもでき、従って、ケースはそのようにも使用されると見なされる可能性がある。用語を簡易に使用した場合のケースは、任意のデータフォーマットのデータ(すなわち、アナログ、デジタル、記号など)、または、出力が手段を正当化する限り、特定ではない手段によって特定ではない順序で(内部または外部で)取得されかつ処理される(ファイルフォーマットまたはデータフォーマットのように適切に取り出されて記憶される)任意のデータタイプ(文字型および整数型など)の混合物を表す。一般の例として、データケースは、リアルタイムで受信されたデータケースである可能性がある、通信チャネルで直列に送られる圧縮フォーマットで受信可能である。このデータケースは、使用するシステムによって読み取り可能なフォーマットで記憶される。簡易な例の集合は、MPEGまたはjpegなど、圧縮可能であるデータフォーマット、または、画像、映画、オーディオ、または、ファイルフォーマット、データフォーマット、およびデータタイプの組み合わせを形成するためにリコールされるjpeg、png、eps、gif、または任意のフォーマットもしくはデータタイプといった画像フォーマットを備えることになる。または、HTMLなどのウェブベースのフォーマット、またはさらには、記号などの非数値データタイプもしくはフォーマットとすることができ、これらに対して、任意の他の所望されるフォーマットまたはデータタイプへ、これを行うように設計されるプロセスの方法によって変えることができる。
[0079]
トレーニングケース:過去に生じたデータのケースであり、既知のラベルが施されている。例えば、椅子の100枚の写真を撮るものとする。この写真には、ロッキングチェアおよび非ロッキングチェアの2つのタイプの椅子しかない。そのラベルの例として、使用するシステムによって与えられる、またはキャプチャするシステムによって与えられるようなそれぞれのトレーニングケースに対して、場合によっては、RCおよびNonRC、または同様のものが施されることになる。その要点は、学習モジュールをトレーニングするために使用される過去のデータであることである。
[0080]
テストケース:現時点生じている、または現在実現されているデータのケースであり、ラベルが施されるが不確定のラベリングがなされる。このラベリングの例は、場合によっては、ブランク、NA、推定、またはユーザ供給のものになる。フォーマットは、テストケースが、トレーニングケースの過去のデータで見られるようなロッキングチェアまたは非ロッキングチェアかどうかを決定するために必要になるトレーニングケースに対する学習に対して必要なフォーマットに変えることが可能である。
[0081]
通信チャネル:データが送受信されるパスである。簡単な例は、可能性が尽きたわけではないが、導波管でもあるワイヤーから成ることができるコンピュータバスなどの導波路デバイスを経由することができる、または、チャネルが現時点、送信デバイスと受信デバイスとの間の空隙となる、アンテナを介した送信およびアンテナを介した受信のために無線によるものとすることができる。主要点は、データが受信デバイスによって受信されるのに必要なフォーマットで送られ、これが、ユーザ、機械、またはこれらの組み合わせの間の通信のチャネルによって行われることである。
[0082]
記録またはデータキャプチャデバイス:このデバイスは、情報を入手し、その情報を、即座に処理するための使用に、後にモバイルで使用するために、またはこれらの組み合わせのために、揮発性または不揮発性メモリに記憶される使用可能な記録可能フォーマットに記憶するために使用される。考えられるいくつかの例として、カメラ、スキャナ、音声記録装置、マイクロホン、眼球スキャナ、熱探知カメラ、CATスキャナ、グラフ用紙のスキャンされたプリントアウト、または、等式の従属変数および独立変数をグラフ化するアプリケーションパッケージの出力(例えば、用紙へのプリントアウト後、スキャンされる、またはその後画像が保存される)とすることができる。また、システムに入ってくるデータを処理するアプリケーションとしての役割を果たすリアルタイムオペレーティングシステム(RTOS)とすることができる。
[0083]
データ:ファイルなどのコンテナ内に、またはメモリにおける2つのアドレス場所の間に位置特定される可能な点インスタンスである。コンテナ内のデータは、数値とすることができる、一般的にデジタルファイルタイプ構造と呼ばれるあるデータタイプ構造のファイル内にラップ可能である、または、例えば、RTOS(リアルタイムオペレーティングシステム)性質を有するキャプチャデバイスの出力とすることができる。また、波形とすることができる、または、一般的にグラフ化することで知られているある多次元座標システムによって多次元に定義されることが可能である。このデータは、ベクトルベースとすることができ、定義されるべき、または説明するベクトル空間によって記述可能である。これらは、「データ」の数個の例に過ぎず、それらのフォーマットまたはデータタイプは、数値、バイナリ値、16進値、または、単に、このデータを使用することを所望するあるシステムによって読み取り可能なフォーマットのものとすることができる。要点として、データは、LCISの変換プロセッサによって取り扱われるようなシステムに限定されることはない。
[0084]
等高線:この発明において、特有の形状を有さないデータインスタンスのエンクロージャである。例えば、等高線は椅子のように見える可能性があるが、それを強調させるために他の等高線を組み合わせずに1つとしてラベリングされない場合がある。これは、組み合わせられた等高線が「データ」またはその一部を識別する手段であり、必ずしも、オブジェクトを作るその形状がユーザに識別可能であるというわけではない。明確でないものとして、等高線が、必ずしも、椅子の形を取るわけではなく、例えば、スポットの形を取るが、等高線は椅子の一部、および、等高線を構成するそれぞれの項目のそれぞれのミクロ部分に高い割合で視覚的な注意を払わない限り、必ずしもユーザに対してというわけではなく、システム対してのみ識別可能となる等高線を形成するスポットの一部ととられる可能性がある。生じていることは、椅子をラベリングすることであるジョブを行うのに不要な情報がケースにおけるデータ全ての処理から取り去られるため、ハードウェアシステムに対して、計算複雑性を低減するかなり多くのデータ削減機能が与えられ、複数の「ケース」を考慮する時、高次元空間はより少ない次元の空間に変えることが可能である。
[0085]
メトリック:メトリックは、本明細書に示されるように精密に定義される。「メトリック」という用語は、測定のグループ名を付けるラベルを有する定量化可能な測定のグループの表現を論述する手段である。例えば、用語の極度の複雑さを容易にするために、統計値をメトリックラベルとしてとらえる。統計値は、1つの容量において、例えば、平均および分散のコレクションによって説明できる。この特許製品によって使用されるような「メトリック」は、測定のベクトルとして平均、または複数の平均とすることができる。例えば、テストスコアの平均の10の数値表現を有するとする。それぞれの平均は最終試験のスコアの1年分の使用を表す。この特許製品によって記述されるシステムにおけるメトリックは、それらが処理される順序および寸法サイズを収容するようにメモリに記憶されなければならない。これは、メモリアドレスの開始場所および終了場所が拡張および縮小するというように動的であることを暗示する。また、メトリックおよびそのコンテンツは、追跡可能なシステムであるメモリ内の場所を有することを暗示し、さらに、このことは、処理される順序およびメモリに記憶される順序は、メトリックの一部または全てがメモリから正確に抽出できるようにするために判断されたシステムであることを暗示する。例えば、もし、テストスコアの例における平均のメトリックがもう2年分の追加のテストスコアを含むとどうなるであるかを考える。メトリック場所ラベル「Statistics(統計値)」でサブネームが場合によっては「means(平均)」のメモリは、平均算出の数値表現の、保持している10項目から現時点保持している12項目への「平均」のアドレス変更となる。メトリックは、システム(すなわち、例えば、10項目から12項目までの記憶保守を可能にし、かつ「平均」から「平均および分散」になることが可能であるシステムコントローラ)のメモリ記憶プロセス、およびその取得プロセス(すなわち、例えば、機械言語の数学的命令の実行)によってのみ限定され、このどちらも記憶追跡において複雑になるはずがなく、これらプロセスを使用し、記憶し、アクセスの反復を収容するような効率的なやり方となるようにアクセスするシステムにおける使用のために追跡可能である基準を必要とするだけである。メモリはまた、大きなデータセットを取り扱うために揮発性または不揮発性とすることができる。与えられる方法には可能性が1つだけある。さらに、「メトリック」は、ベクトル、集合、またはラベルなどとして記憶される数値計算の「結果」と考えることができる。または、ここで、サブメトリックと呼ばれるメトリック要素となるように、さらには自身のメトリック内にサブメトリックがある可能性がある。主な要点は、メトリックが、メモリから引き出されかつメモリに記憶される理由および場所の特有の意味を有するデータ値のシーケンスであることである(それぞれのデータ値は例えば平均値として説明される10の値である)。メトリックは、例えば、10年または12年分のテストスコアを表すための特有の「固有性」目的を有するため、例えば、教師を解雇すべきかどうかを決定するための非常に特有の「応用」目的も有する。メトリックは、システムがメトリック平均の個々のコンポーネントのさらなる解析を必要とするという意味で容易にすることもできる。例として、「平均」のメモリ場所10のうちの5つから引き出された5番目の項目は、テストスコアの5「年」目という意味になり、この値は、メトリック「統計値」を使用するシステムによって教師の解雇を決定する場合がある。理解するための概念の別の重要な要点は、テストスコア平均が最終的にステップのない数値計算であるため、これが表す数学的ステップのシステムプロセスのメトリック値でもあることである。例えば、平均値全ては、ここで、数学方程式の意味を有する。最終結果は、システムに算出させる関数、およびその関数による実行から構成され、これは、平均として記憶される結果の最終集合であった。「統計値」のメトリック「平均」はここで、平均を見つける等式の計算を行う。別のメトリックは、「統計値」下にも記憶されるこれらの平均を見つけるために使用される値を含有することが可能である。従って、平均のメトリックは、テストスコアの平均を算出するために使用される方法である記憶場所のメトリックで数学的プロセスのメトリックを考慮可能である。次いで、アドレス場所はプロセスになり、パターンを発見する必要があるシステムにおいて再処理するまたは処理するための任意の他の必要性を省く。これによって、トレーニング領域におけるブラックボックス化システムとして知られる非ルールベースシステム、ルールベースまたは不透明な学習型システムも作られる。そのため、これは、複雑な計算のシーケンスがここで、それらを生じさせたパスを再現する必要性を省いて、メトリック自体の要素の数を覚えることなどに有用である他のパラメータを与える代わりに、これら計算のメトリックまで減少させることに起因し、これによって、単に、要素の数をメトリックに追加する頻度によって、パターン尤度を識別することができる。メトリックの要点は、値(または算出もしくは他のサブメトリック)の所望の集合の固有性をこれらの値を使用してシステムによってラベリングするために使用されるプロセスの関連した情報を移植可能にすることである。メトリックコンテナがここで、ファイルに記憶され、かつ、データのケースのさらなる解析のためのアプリケーションに転送されることが可能であるため、メトリックの集合は移植性を有する。これは、ケースデータセットの関連情報全てがメトリックに含有されるため可能である。これは、メトリックがデータ暗号化のためのキーとして使用可能であり、この性質を有するキーはアルゴリズムがそのキーを作成したものではないためアルゴリズムによってクラック不可能であることを意味する。メトリック作成時に生じたのは、関連のあるものはメモリに置かれてあり、関連のあったものはここで、データタイプを異ならせる関数変数に応じて使用可能であることである(関連のないものはまたメトリックとして記憶可能である)。そして、関連のあるものは、システムプロセスによって決定され、これは、決定されるものが学習モジュール内のものとすることができることを暗示する。メトリックがデータケースのデータの変換によってデータケースと関係しているため、ある種の等式となる。メトリックは、発見されたパターンを数学的にかつ本質的に記述するコンテナである。また、メトリックは、そのデータケースのみに対する意味を有し、応用では、システムがデータケースにおいて重要であるとして選ぶデータケースを定義するパターンのみに対する意味を有する。解析は次いで一度だけ行われる必要があり、それぞれのシステムプロセスによってファームウェアによるさらなるインスタンスは行われる必要がなく、これは学習型ハードウェア実装形態にとって理想的なものとなる。例えば、2つの個体間の通信が精密にかつ内密に通信されなければならない場合、(精度改善のために)特有の文を言う主要スピーカの記録は、マイクロコード、PGA、またはFPGAなどによってメトリックの集合に変換される。メトリックは、移植可能であるため基地局では解読されるようにすることができる。さらにまた、データは、何か理解できるものを得るために決してまとめることができない膨大な役に立たない数字のみであると、回線をハッキングする人にとって無意味であるため、メトリックを回線で送ることができる。メトリックを作成するために使用される他のトレーニングデータとして解読を片っ端から試すことができないメトリックが必要となり、トレーニングプロセスは厳密な複製が行われるが、これは大きく捉えても達成されそうにない。そのため、再び、対象パターンをある種の式のシーケンスに変換して、この要素は、これを作成したシステムに対してのみ明らかとなり、トレーニングモジュールとなる。
[0086]
等高線マップ:同様の関連性を有する領域の値のグループ化である等高線のマッピングである。地理的な意味で、xおよびyにおける距離の間の、z軸と呼ばれる、垂直要素であり、高度の等高線マップである。地形の等高線マッピングは、データ点の同様の領域エンクロージャをもたらすことになる。等高線の数を増やすほど、丘陵地帯の細部を高めることになる。値が高度を表しているxおよびyにおける2つの点によって境界されることが見出されるデータの範囲に同じ概念を当てはめることができる。好ましい実施形態では、地形的な方法は、実線をもたらし、ここで、好ましい実施形態は、自身を、実線に変えることできるがより速い処理のために等高線マップへのケースの変換を選ばないマトリクス分離に制限する。等高線は線とすることができるが、システムは対象パターンの境界によってまたは隣接点によってそれらの線を囲んで、対象の座標点集合を取り囲む囲まれた等高線を作成することになる。例えば、地形的な理由のために使用されるべきデータセットにおける点は、高度の点をつなぐ等高線である。この方法論はまた、画素点xおよび画素点yに位置特定される画素強度を囲むために使用される。方法論はまた、点の場所としてx場所およびy場所、またはより高い次元が与えられる値の任意の集合に適用可能である。これは、等高線座標点間表現には形状要件または既知の情報がないため、本発明の非常に重要な一面である。この等高線マッピングにおける等高線が、そのメトリック、グループ化、およびこの実施形態を構成するLCISのトレーニングにわたって、1つの等高線の一部を使用して別の等高線を構成することができるため、メトリックは、単一の次元内で2つの異なる次元の1つの等高線の一部とすることができる。
[0087]
対象等高線または対象パターン:椅子のように見える等高線は、壁上の黒いスポットの等高線が対象の椅子であると述べていない限り、椅子ではないかもしれない。動的に変化する腫瘍は、血栓の等高線の組み合わせがまた、この等高線による形状を変更しないまたは維持しない限り、タイプxの腫瘍ではないかもしれない。別の例は安全性である。例えば、マイクロホンから得られる、スピーカによって表される音声によるピーク等高線、またはさらには、(フォーマットを読み取り可能なシステムにおいて記憶されている)アプリケーションパッケージ内のグラフを切り貼りするソフトウェアは、背景の雑音の等高線がまたピークの一部でない限り、スピーカではないかもしれない。主要点は、等高線がユーザによって識別可能な視覚的に記述された形式を有さない場合があるパターンであることを知ることであり、これは、過去の等高線を使用する学習プロセスによる識別子に意味を持たせたインスタンスのコレクションである。
[0088]
ここで、好ましい実施形態について説明する。多様体、および区別なく同じものを意味する等高線パターンメトリック集合が使用されるが、これについてさらに明確化する。意味を伝えるためにトップレベル記述が所望される場合、多様体はより迅速に記すには一番であると考えられる。等高線マッピングプロセスを直ちに行うなど、細部および点を元に戻すことが所望される場合、「等高線パターンメトリック集合」が一般に使用される。多様体が使用される場合、多様体内のメトリックが、LCIS(学習型等高線識別システム)プロセスによって全体的にまたは一部使用されているため、通常、コードと呼ばれる。最初に方法を示し、その後ハードウェアシステムについて示すこととする。
[0089]
多様体を得るために、再び、図1のステップ10〜17と共に、結果をフォーマットする18のプロセスにおいて、任意のデジタル画像ファイルフォーマット(タイプ:ラスタ画像フォーマット、画素およびウェブファイルフォーマット、メタ/ベクトル画像ファイルフォーマット、ビットマップファイルフォーマット、圧縮ファイルフォーマット、放射ファイルフォーマット(温度および画像)、GIF画像ファイルフォーマット、アニメーションファイルフォーマット、透過ファイルフォーマット、インターレースおよび非インターレースファイルフォーマット、JPEG画像ファイルフォーマット、ならびに、プログレッシブJPEGファイルフォーマット)の等高線パターンメトリック集合が必要とされる。
[0090]
本発明のプロセスの目的は、多様体マルチグループ化(図1の項目13)または単数の多様体(図1の項目12)グループ化の閾値に従って、データフォーマット内のそれぞれの等高線パターンおよび背景の等高線パターンを識別することである。これらは、ルックアッププロセス(それぞれの強度値は独自の多様体であるため、このことは全て固有の強度を検索後囲むことを暗示する)によって判断され、間隔をあける距離(同じ強度、異なる強度による分離、または範囲)によって判断され、ランダムに選ばれた範囲によって判断され(多様体が対象ではないまたは対象であることをトレーニング集合が示す場合、高速の等高線パターン検索によって多様体パターンを取り去ることができるため、ランダムに推定することは、図1の12〜15のどの組み合わせを行うかの選択肢における決定を高度化することができる)、図1において使用される現在のソースファイルに対して、類似のまたは非類似の等高線パターン、また、図1、図10〜17によって識別される多様体の過去のデータフォーマットのトレーニングを通して学習した任意のプロセスによるトレーニングまたはルックアップテーブルによって判断され(例には、機械学習、データマイニング、ニューラルネットワーク、および図1の18に示されるようなものがある)、分類方法(ガウス混合モデル(GMM)といった統計モデルなどの、デシジョンツリー、統計的プロセス解析)によって判断され、図1の18に示されるようなフィードバックまたは適応フィルタプロセスを通して生成された、図1によって生成される多様体の反復および消去によって図1の発明の再利用の再分類によって判断されることが可能である。
[0091]
図1の発明によって、多様体のサイズ、形状、または多様体間の距離の選定は、統計的解析ルーチン(1つの例として、ガウス混合モデル)、分類ルーチン(1つの例として、Classification and Regression Trees(CART))、将来の予測のための過去のデータの過去のトレーニング(過去のデータまたは既知のデータフォーマットのデータに対する機械学習トレーニング)、およびフィードバック(1つの例として、データの適応フィルタ処理)のうちの1つまたは組み合わせによって判断される。例えば、図7、図8、および図9の全ては、図1の18に示される、GMM、ツリー、機械学習、および適応プロセスハイブリッドアルゴリズム(必要な場合、図1と同じ発明者による特許出願が適用される)において図1の10〜17のプロセスを使用する。図1を使用することによって、図1の応用実施形態は、図7〜図9において「現在機能している」ことの証明とすることができる。1つのプロセスによる、熱的データ、信号データ、および画像データの異なるファイルフォーマットタイプの例は、それぞれの多様体が図1による点の独自の集合によって表されるため可能である。従って、等高線パターンは、デジタル画像ファイルフォーマットから取り去ること、および、メトリックの名称の固有性および形状閉鎖繰り返し精度を有する個々の等高線パターンとしてソースファイルから識別されることが可能である。分類ツリーによって、それぞれの等高線パターンは、次いで、フィードバックプロセスにおいて、ツリーが作成されたトレーニング集合に従って、他の多様体等高線パターンと組み合わせ可能である。ツリーが等高線パターンを分類できない場合、適応プロセス(図1の18)は12〜15における図1の選択肢を変更し、GMMおよびツリー分類によって等高線パターンを分類することを再試行する。また、このメトリックが多様体を定義するため、「それぞれの」多様体は、密度を表すために、多様体において使用できる値を1で重み付けして充填することによって領域を示すために扱われるメトリックとすることができる。例えば、多様体を1で充填する場合、y軸によって定義される列における全ての1は、密度表現がこのビン状のヒストグラムのx軸において発見できるようにx軸に沿って合計される。y軸において同様に行われる場合、列がx軸のものである場合、等高線パターンの密度または固有性の確率は、図1の18のツリーフィードバックセクションにおける統計的固有性比較のためにもたらされ得る。次いでこのアクションを行うことで、図1の18の分類プロセスを簡略化することができるが、これは、密度(多様体を充填しかつx軸およびy軸に沿って合計することによってもたらされる確率分布)がガウスである場合、これらの多様体またはそれらの単一の多様体のそれぞれの組み合わせを表すことができる平均および分散の2つの集合があるからである。そして、ガウス分布は平均および分散の線形加算としての取り扱いが可能であるため、それぞれのガウス分布はガウス分布の和とすることができ、よって、ガウス分布である多くの多様体は組み合わせて合計可能である、または、トレーニングシステムプロセスにおけるそれらの和から取り去られる可能性がある。他の統計モデルは、線形統計組み合わせ特性を有するが、ガウス分布は中心極度定理によって述べられるように本来はより頻繁に生じるが、依然それらはまた、フィードバックプロセスにおいてガウス分布に沿って使用可能である。これは、xおよびy両方における多くの平均および分散の集合が使用可能であり、かつ、複合識別のためにツリー分類器に送信可能であり、多様体から算出された領域の追加の使用、および多様体の座標点集合識別から生成された行の等式には触れない。
[0092]
例えば、図18において、雑音エンベロープにおいて囲まれる間の信号の検出は、さらになお発見された。これは、本質的に、他のパターン識別方法または他の画像検出方法では不可能である。また、スケーリングされたまたはスケーリングされずに残された、生成された多様体の(図1の18における密度および領域表現に対する)この多様体充填は、等高線パターンの密度の値、領域の値、大きさの値、および、場所の値(ならびに、所望のレベルの識別に対して作成する多様体の数によって、同じフォーマットの多くのサブレベルの等式)を作成するため、信号はここで指紋記述を定義した非常に詳細なメトリックを呈する。実験によるデータを採用し(ランダムなシミュレーションデータはグラフィカルソフトウェアによってグラフ化されるのと同じように使用可能であるが、この画像は次いで、デジタルファイルに記憶されかつ図1を通して送られる)、このように識別することで、現在フーリエ解析を必要としている信号についてのかなり多くの情報をオペレータに与える。このフーリエ解析タイプの解析はここで回避でき、これは、図1が、フーリエ解析が図18が実証するような雑音において信号を検出する同じ結果を実現できないため、多くのやり方で、フーリエ解析よりも精度良く任意の電気信号タイプなどを評価するためのメトリック符号化プロセスを行う新しい形式であることを意味する。図1の10〜18のこのプロセスは、多数のレベルの{密度、領域、座標点集合エンクロージャ、および行の等式}を、図7、図17、および図18において実証される、図1のようなありとあらゆるデータ点またはクラスタに割り当てることが可能な数学的プロセスがないため、データが解析時にどのように使用されることになるかを明確に変更するものである。
[0093]
図7、図17、および図18は、データファイルフォーマットに関係なく、図1の多様体によって示される点の数を増加させる(平滑化)ためにスプラインが作成可能であるだけでなく、多様体の点による線の等式は図1によって生成可能であり、そのためのメトリックが作成され、また、密度の値でも同じように行う(確率分布等式)ことを示す。
[0094]
図18によって、いくつかの妨害されたチャネルにおける通信の検出によって、複数話者の環境におけるスピーカが、検出されかつ識別されることが可能であること(例えば、既知のスピーカの、GMM、多様体、ツリー、および適用フィードバック機械学習を組み合わせて、図1はスピーカ音声をスピーカ画像等高線パターンに適合させるために使用可能である)、記録されるまたはリアルタイムの議論が暗号化データセットにおいて復号可能であること、水中の等高線パターンの画像が超音波エコーから検出可能であること、等高線パターンがMRI、超音波、および他の画像検出プロセスなどの健康管理システムハードウェアの電磁波イメージングにおいて識別されかつ検出されることが可能であること、信号および等高線パターンの検出および分類が、通信時に、画像キャプチャシステム(熱、電磁、超音波、およびレーザなど)において、軍事システム(および、全てが動的に、およびアルゴリズムに対する変更なく追跡可能である)において行われることが可能であること、および、脳卒中、心臓麻痺、または生物学的疾病が生体において位置特定可能であることが検出可能であることを示す。そして、これらの全てに対して、行われる前後である場合、過去のデータから学習するように、図1の18の好ましい実施形態によって識別可能である。
[0095]
図1のプロセスは、全てのデータが強度画像集合に変換できるように独立したデータフォーマットである。1つの例として、図7は、等高線パターンの熱画像である。熱放射ファイルタイプは、コンテナが、図7の画像30も含有するJPEGファイルフォーマットコンテナ内に混合される(図7の31の右側に表示されるように)ただの温度変化の集合を含むため、データの全く異なる表現である。図1のプロセスを通して、および、図1の18を使用して、図1のシミュレーションは、(多様体のフィラーの)任意の統計解析、(統計解析によって生成された統計値の)分類器、機械学習(履歴トレーニング)、適応プロセス(フィードバックまたは適応フィルタ)において、等高線パターン識別を行うことが可能である。結果として、完全にユーザ限定の限定されたレベルの指紋生成機能がもたらされる。そして、メトリック表現を定義する多様体のレベルで、等高線パターンはリアルタイム(ビデオ)で追跡可能である。
[0096]
単にデータのフレームであるようなビデオは、任意の他のファイルフォーマットタイプと同様に図1では難しいものではない。
[0097]
図7、図17、および図18は、図18の好ましい実施形態において、図1の発明およびLCISシステムを使用する実際の結果である。また、精度はデータフォーマットタイプによって限定されず、巧みな人であれば実際にはその精度を高めることができる。
[0098]
ファイルタイプにおいて使用され、次いで多様体に変換するために図1によって使用される表示デバイスの解像度を大きくするほど、密度および多様体形状に関して等高線パターンの記述を高めることになる。従って、圧縮ルーチンを選ぶと、検出の精度および精密さを大きくするか小さくする可能性があるため、図1の18における等高線パターン分類におけるゼロ設定の別の手段として使用可能である。これは、データフォーマットタイプが、(図1の該当する暗示全てにおいて、増加するようにまたは減少するように)等高線パターン形状において、(図1において発見される多様体の重み付け充填または同一の数値の充填による)密度において、その点のデータセットにおいて、もしくはその領域において、および/または、図8〜図16によって記載されるLCISの図1の単一または複数の反復によって図1がユーザにメトリック解析を提供する第1のレベルのサブメトリック表現全てにおいて、多様体を調節する別の手段であることを暗示する。
[0099]
検出されかつ変換された等高線パターンの精度を変更する別の例は、画像内、またはハードウェアによってキャプチャされるデータのウィンドウ内で処理された等高線パターンフレームをウィンドウ生成することである。例えば、信号、または過密な密度のクラスタにおいて(図1は、弱から強までのクラスタ化密度の多様体をもたらすことができるため、カテゴリデータは同様に図1の発明によって解析可能である)、時間窓を10秒から1秒に拡張することで、その結果、画素密度をより広い領域に広げた後、多様体メトリック表現をより大きい多様体に、またはより小さい多様体の集合に(必要に応じて、全て1つの多様体下に)変更することが所望される場合がある。これらの新しい多様体の読み取りは、全て、図1、および図8〜図16の反復によって判断かつ算出可能であり、これはまた、拡張前に作成された過去の多様体の数学的表現の次に高いレベルにリンク可能である。例えば、図18において、矢印によって示される170における明るいスポットを生じさせる、山および谷で発見される電気的応答の鳴り響く音は、図19において拡大される中央リング167の周りの多様体パターンによって視覚的に識別されかつ示される。この場合、170における一つの場所のピーク点におけるx軸の時間は、時間(x軸)および振幅(y軸)両方において拡張されて、精査されたピークおよびタイムスタンプにのみ焦点を合わせることが可能である。すなわち、図18における162によって表される170の画像点に対するズームは拡大され、かつ図1および図8〜図16によって再評価されている。このアクションは、同様に多次元(2Dおよび3Dなど)レベルにおいて行われる可能性がある。このアクションは、多様体形状を変更することになり、それによって多様体は一つの単一の点だけに対する複数のメトリック表現を有することになる。利点となる等高線のパターン化は、識別する等高線パターンの指紋をさらに取ることができる多様体の異なる集合を判断するために実験による結果としての密度を希薄にすることである。これによって、18(図1)の実施形態の、特有の等高線パターンを探しながら雑音を画像から取り去る能力を高める。しかしながら、密度パッケージをタイトに保つことによって、等高線パターンメトリック集合内で頻繁に衝突する実験による結果の不必要な計算を低減することができることは理解されるべきである。これは、点が多様体内にあるか否かを検証するチェックルーチンが外側にあるものだけを処理するのではなく多様体内で点の評価のプロセスを取り去るために使用可能である(逆もまた同様)ことを意味する。これによって、多様体内の再現性算出(点が1スポットまたは領域において連続的に衝突する)に対して行われる算出を低減することができる、または図1の多様体の処理された座標点集合のエッジによって境界を確立することによって実験によるデータのエラー解析を向上させることができる。このことは、図1によって処理できる値の範囲としてこのように行われ、すなわち、その後、多様体として割り当てられることで、範囲外の評価が行われない限り、多様体内の1つの値の等高線パターンだけが図1によって処理される必要がある。実験によるデータまたは理論的データについてのこの多様体解析のこの強みは、これがある程度、実際に数学的処理を行うことなく数学的種類の算出を並行する新しいやり方として見なされる理由であり、すなわち、図1および図18におけるメトリック表現の結果は、代数法則に違反せずに使用可能である。
[0100]
GMM、多様体、ツリー、適応プロセスにおいて、適応プロセスは、トレーニング集合に対するより良い検出が判断できるようにウィンドウを調節できる。このウィンドウ生成は、等高線パターンの1つの多様体が多くの他の多様体によって表されることが可能であるため、多様体に対してあらゆる種類の新しい使用を開放し、決定するためのより多くの情報を分類器に与える。それぞれの多様体は、独自の密度、独自の点の集合、独自の確率を有するだけでなく、図1、および図8〜図16の反復処理によって、独自のさらなる密度の集合などを有する。多様体等高線パターンメトリック識別は、ユーザが進みたくなるような浅部しかない((望まれていない多様体であると判断された)雑音は図1の反復のそれぞれのレベルで取り去り可能であることに留意されたい)。クラスタは、例えば、図1によって全て処理される、タイトなクラスタの周りの多様体リング、およびタイトなおよび緩いクラスタの周りの多様体リングをもたらすことができる。図7、図17、および図18において既に使用された方法の解析(図1の18)は、図1の18の2つの大きく異なる多様体メトリック表現の2つの確率分布として1つのクラスタを表すことができる。そして、多様体パターンは増加または減少可能であるため、クラスタは、同様に、これらの例において、2のみではなくそれ以上多くを有することができる。この能力は、クラスタの重複も多様体とすることができるため、クラスタ重複を消去するのに役立つ可能性があり、減算および加算が可能であり、ガウス混合モデルの場合、2つのガウス確率変数の和は畳込によるガウス分布であるため、ガウス分布である多様体の密度は、共に、別のガウスの混合をもたらすためにガウス分布が加えられ得る。例えば、図18において、発明者は、信号を雑音から取り去ることができただけでなく、雑音エンベロープを完全に制御しており、これは、画像が完全にメトリックID’dであったため、もはや画像ソースに関係していないことを意味する。従って、これら3つの図7、図17、および図18は、図1、および図8〜図16の発明が多様体フィラー(図12および図14)、フィードバック(図10および図11)、統計解析(図15および図16)、および学習型等高線認識ハードウェア(LCIS)プロセス(図1、図8〜図14)において得ることができる重複処理の一例である。
[0101]
図1は、メトリックは、何が関連しているかをLCISシステムによって決定されたパターンを記述するコードであるため、代数の誤りについて心配する必要なく、可能なメトリック表現のグループ化を行う。これはこれまでに一度も行われたことがなく、LCIS計算複雑性はほとんど無視できるものである。さらにまた、この時に実践され、まさに本発明の応用において示されるように機能する例として図7、図17、および図18において実証される。
[0102]
雑音を含む、テストおよびトレーニングケースの等高線マッピングにおけるありとあらゆる等高線パターンの完全なメトリック表現をもたらすステップによって多様体を作成するプロセスの簡易かつ一般的な実施形態を説明するために、図1のプロセスの以下の説明は、図8〜図16、および図2〜図6をサポートするLCISシステムによって使用される一連のステップとして提示される。
[0103]
ステップ1
図1の10は、多くのグラフィックフォーマットのうちの1つを有する記憶デバイスから(または、カメラ、スキャナ、または画面キャプチャなどを使用するキャプチャデバイスから)デジタルファイルを読み込む(数個のフォーマット「タイプ」の例:ラスターフォーマット、ウェブ内画素フォーマット、メタ/ベクトルフォーマット、ビットマップフォーマット、圧縮フォーマット、GIFフォーマット、アニメーションフォーマット、透過フォーマット、インターレースおよび非インターレースGIFフォーマット、JPEG画像フォーマット、ならびに、プログレッシブJPEG)。全て、図1のプロセスに対して同じように機能する。図1の11は、ソースデータフォーマットにおいて画像を表す強度マトリクスを展開するために使用される。図1の項目11は、プロセスにおけるこの点で、それぞれの強度値を独自の多様体エンクロージャにしている。
[0104]
ステップ2
ロードされたデータフォーマット(図1の10)からグラフィック強度値(図1の11)を得る。これらは、任意のビット長の強度値の色合い、または白黒の色調とすることができる。ファイルがロードされて、強度値のマトリクスは、ここで、図2に示されるようにマトリクスの行および列として表されることが可能である。図2では、図1の11によって必要とされるように単なる画像強度マトリクスを表す一例が考案され、それによって、画像の全ての多様体は、図1の12〜15を通して低減するように処理可能である。作成された例は、2つの高さの線の等高線パターンの2つの画像、および正方形の等高線パターンの1つの画像を表す。
[0105]
ステップ3
強度の最小値および最大値を判断する。図2において、単なる5×8の画素の画像シミュレーションが提示される。ここで、最大値および最小値は、画像における等高線パターンが5の強度値によって定義されるため5である。現実には、これらの値は、対象の小数点によって、(実数の手っ取り早い例として)5.663121234234などの実数となり、図1における閾値集合によって判断される。
[0106]
ステップ4
等高線パターンの境界を記述する点の集合によって、多様体を定義する、または等高線パターンを囲む。図3は、1つの多様体リングに対する選択肢を表す(12および14、または図1)。マトリクス場所空間における1〜5の距離がマトリクスにおける点の間の単位の半分であることが算出される。図3は、19、20および21によって定義される3つの多様体である。例えば、多様体1(19)は、{(2、1.5)、(1.5、2)、(1.5、4)、(2、4.5)、(2.5、4)、(2.5、2)}の集合として点(x、y)によって定義される。多様体2(20)および3(21)は同じように定義される。
[0107]
図1の18の好ましい実施形態は、多様体が強度値5によって示される等高線パターンの周りの空間(または領域)を取り過ぎている(図1の18におけるアルゴリズムは、より多くの多様体パターンを使用する(図13、図15、および図19)ことによって図1のプロセスを反復する(図10および図11)この能力を利用して、等高線パターンの識別を高めるため、結果として生じる多様体のより大きいサブメトリックの固有性をもたらすことができる)ことを強調しているとしよう。リングを定義するそれぞれの多様体の間の空間を低減するために、強度値5とその隣の1との間の空間によって、例えば、x軸マーカー3と4との間の空間(図4の22)をより広い間隔に分割する必要がある。図4および使用する応用において、図19は、2つの多様体パターンを使用するこのプロセスの結果を示す。図2のマトリクスIは、画像ファイルが変化しないため、このプロセスにおいて変化しないことに注目されたい。また、多様体エンクロージャ点集合の記述の表現は、x軸およびy軸の分割であり(図15および図16)、そのため、多様体は、マトリクスの行および列内のx、y軸の場所の値へ「強度を変換すること」である。
[0108]
図4における場所3と場所4との間の空間(22)はここで、2つの等しい部分で分割される。その効果は、5の画像強度値の周りの領域が縮小されることである(図18のアクションの図19)。これには、等高線パターン領域をより綿密に識別する効果がある(領域内のエラーは解像度にある、または画素は図11の87〜88において等高線を増加させることによって間隔をあける)。(x、y)座標(2、2)に位置特定される強度値の場所と(x、y)座標(1、2)に位置特定される強度値の場所との間の空間の縮小を続ける場合、中央の多様体は完全に囲み始め、図5の23の(2、2)、(2、3)、(2、4)に位置特定される強度値の多様体を低減し始め、領域を低減すると共に充填された多様体内の密度が境界まで最小化される(場合によっては、図17の167の166および165に示されるような形状を生じさせる)。
[0109]
図5は、範囲を20の多様体パターンに分割する複数の反復を示すために使用される。すなわち、多様体1(23)、2(24)、および3(25)について、(図1の18に示されるように)20のメトリック表現集合が作成されている(さらにまた、図8〜図16を通して図19によって最良に示される)。さらにまた、図2におけるマトリクスIは変化することはない。図1に記載される発明は、単に、間隔3および4の間の空間を分割しており、それによって、多様体のより多くのパターンが場所23、24、および25(図5)における等高線パターンを識別できる、または、等高線パターン多様体の領域を等高線パターン領域空間のより綿密な近似値に低減する。しかしながら、結果として生じる多様体の充填によって、「領域」が等高線パターンのより精確な記述に低減され、等高線パターンの最小の「密度」も判断される(以下に詳述)ことに留意することが重要である。これらの密度値は、最小確率の密度曲線が考慮され、かつ多様体メトリック表現が表す等高線パターンの下界であると証明される(図10および図11)ため、多様体充填(図16の145)において重要である。
[0110]
ステップ5
図5(23、24、25)の中央のパターンを除く多様体パターン全てを考察することから提案することが所望される場合がある(例は、例えば図19に示されるのより少ないパターンリングを有する図18の等高線パターンメトリック集合を提案することが考えられる)。これによって、多様体を完全に定義するために、中央パターンの多様体メトリックの座標点間表現のみが残されるため、図1および図8〜図16によって作成される多様体を使用する任意の応用に対して、等高線パターンのメトリック分類(図14の116)の「点領域」を表現することが可能である。すなわち、図5において、4つの多様体(3つの中央パターンおよび1の背景)は、61の多様体(20の多様体×3+1の背景=61)の代わりの応用において使用するために作成されているようにする。これによって、多様体作成の利点を使用するアルゴリズムについての計算複雑性が低減され、全て、図10および図11〜図13によって判断される。これらの中央パターンについて、この例において、分割数が無限に近づくため、検出された等高線パターンから生じる多様体が、等高線パターンの形状の(図11における識別精度を高めた)厳密な形状に近づくようになり、その後、ステップ1において示されるように、データフォーマットタイプの画素レベルに(またはデータフォーマットレベル限度に)なると言える。
[0111]
ステップ4に示されるように、中央リングを完全に定義する点は、図1、および図8〜図16から構成される図13のLCIプロセスによって算出され、(必要というわけではないが)比例した間隔で分割されるため、マトリクスにおける既知の基準点で(強度値においてではなく)分割が行われ、等高線パターンの場所の値への強度値の変換をもたらす。この例における全ての多様体が、全て、マトリクスによって表されるべき多様体の点全てのコード化において同じように処理されることに留意することが重要である(図14)。これは、閉多様体が、任意のファイルフォーマットにおいて小さな領域、すなわち、「線」または「点」を有する等高線パターンを囲むことができることを暗示する。従って、多様体精度は、ステップ1において使用されるデータフォーマットの画素幅および高さによってほぼ定義される。さらにまた、強調されたこの能力を検証するために、図5における多様体を参照する。多様体の点によって発見されかつ記述される両方の多様体は、基本的に画素解像度幅を積み重ねることによって定義される領域の線で囲まれた多様体を有する(図5の多様体1(23)および多様体3(25)を参照)。
[0112]
図5はまた、本発明のLCISのプロセスが多様体2の正方形の等高線パターン(図5の24)に記載されるように、深さ(密度)または領域を記述することができることを示す。
[0113]
多様体に、(図2における強度値の場所全てを値1と置き換えて、多様体がデータセットを離れるため、1の背景は多様体が既に定義されるため干渉しないことを思い起こす)1が充填された場合、図5の23の密度は、x軸に沿った3、およびy軸における1、1、および1の高さを積み重ねた単一のヒストグラムから算出されることになる。図5の24について、密度は、x軸に対して3および3、ならびにy軸に対して2、2、および2となる。図5の25について、密度は、x軸において2、ならびにy軸において1および1となる。実像において(図16の145〜155)、これらの密度は、正規またはガウス分布である中心極限定理によって記述されるものと同様のヒストグラム分布を形成する可能性がある。また、スプラインを使用して、等高線パターンの周りのより多くの点が作成され、次いで、スケーリングされて全く新しい密度を示すことができる(図14の116のようにLCISによって別のメトリックとして記憶できる)。また、1になるように充填する必要はなく、ユーザが領域により意味を持たせたい場合、1の重み付けと呼ばれる、重み値×1とすることができる。実際に、密度充填は、密度を表す必要さえなく、結局のところ、識別子でありそれ以上のものでもないが、統計的意味を持つ密度として最良である。
[0114]
図3〜図5において、強度の値は、値がデジタルファイルのフォーマットから生じるように等高線パターンのそれぞれを表す。図3〜図5の場合、「線」を表す2つの等高線パターン、および「正方形」を表す1つの等高線パターンがある。別の実施形態は、上述される同じ技法を使用した異なる等高線パターンの多様体を組み合わせることであるが、ここで、2つ以上の等高線の組み合わせを利用する(図11の84、または図13を補助するための図10と共に図11の83〜87)。例えば、図1の12〜15の選択肢を使用する際に、別の多様体メトリック表現式を作成するための多様体の組み合わせをもたらすことができる。
[0115]
図6において、図2におけるIは、図1に対して利用可能である4つの全く異なる等高線パターン多様体を示すために異なる強度値を含むように再定義されるものとする。追加されるそれぞれの値は、ここで、5の整数でなく実数となり、実数の丸め法によって範囲が選定できることを示し、すなわち、多様体選択によって精密さは制御されている。
[0116]
図6において、プロセスによって図1における閾値が示される。その閾値は、4.5〜5.22の強度範囲における等高線パターンのグループを組み合わせるためのものである(図15の122〜130)。この集合における等高線パターンはここで、{1、5、4.5、5.22}の集合となるように図1の11によって定義される。1にとどまるスペーシングの閾値は、2つの等高線パターンを互いから分離する。手っ取り早い例として、多様体1は、y軸の点{2、2.4725、2.4725、3、3.5275、3.5275、4、5、5.4725、5.4725、5.4725、5、4、3、2、1.5、1.5275、1.5275、2}によって(図1の18によって)定義され、多様体2は、設定点{2、1.5、1.5275、1.5275、2}によって定義される。x軸も同様に単純である。これらの点を通過する点のパターン(または、例えば、より多くの点を補完するスプライン計算を使用した円滑化)は、対象の等高線パターンを囲む多様体のメトリックを表すことになる(図15の139および図14の113)。
[0117]
等高線パターン強度の値1は、画像全体に含有される等高線パターンのシェルとなるように決定される背景である。図1によって作成された個々の多様体の減算から生じる画像は、雑音または対象ではない情報として一般に定義されることになる個性のない残部を表すことになる(図18において発見される単一の等高線)。多様体充填によるこの雑音、および充填からの密度の算出は、依然、画像の雑音強度に対する調節に対して必要とするアルゴリズムにとって価値がある可能性がある。これは、等高線パターンからの雑音の除去が図1の図7、図8、および図9の結果に見られるように非常に価値がある可能性があるため、統計、フィードバック、分類、機械言語トレーニングされたアルゴリズム(またはこれらの組み合わせ)にとって非常に重要である。雑音は排除されず、使用するため、その多様体、点間、およびメトリック表現(図14の117)は、強度値が特に、図18に示される結果を見出す際に使用された複数話者の識別でまさに使用されているため、重要である。
[0118]
図6の多様体の最終計算の値(y軸の値{2、2.4725、2.4725、3、3.5275、3.5275、4、5、5.4725、5.4725、5.4725、5、4、3、2、1.5、1.5275、1.5275、2}の例)によって、等高線パターンを定義する点(図14の113)は、5または1の絶対値を示さないことは明らかである。点はその代わりに、図1の最終的な16および17のプロセスの、強度からマトリクス場所の「変換」である。すなわち、これらは、単にマトリクスにおける強度値(図15の124、126、および129)の間の分離による分割した点の場所である。これらは、強度の画素から多様体の壁までの変更値を分離する単一のまたは組み合わせたグループを表す(図1、図10の64、図11の83〜87、および図12)。所望される場合、図1のプロセスの13および15のうちの選択肢によって、図6における多様体1および2を同様に1つの等高線パターンにする別の閾値を処理することができる。
[0119]
このように等高線パターンを組み合わせることによって、分類アルゴリズム解析のために使用できるサブコードの多様体密度(図14の117)がもたらされる。プロセス10〜17の美点は、処理(図1の18)における使用を望むLCISシステムのために、多様体の発見に向けて、プロセス機械コードへ変更する必要がないことである。図1の利点は、統計解析ルーチン、フィードバック、分類、および学習型等高線識別の組み合わせが、図1、図13、および図14について(当然ながら、これらをサポートする他の図も)ではないならば、可能とはされないであろうことである。現時点の技術における計算複雑性は、画像において識別された等高線パターンを取り去ることを、定義する等高線パターンに対するメトリック固有性をもたらす必要性が見当たらないため、可能としない。これによって、学習型等高線識別プロセスの新規性が定義される。等高線パターンから単一の強度点まで全てが見出され、多様体充填によって、確率密度値の表現に変換される領域、および、バルーン状に変更できる、領域、場所、およびメトリックコンテナ(図14)によって表され、すなわち、点(図14の113)は、ある領域およびメトリックを定義した任意の領域が圧迫されたバルーン状の同じ領域を有する別の形状に変更できることを表す。この全ては、図14の情報のメトリックによって多様体を定義することに関して行われる。
[0120]
ステップ6
最終的に、ステップ1〜5は、画像内の等高線パターン全てを発見するステップを行う。ステップ5は、ユーザ、分類器、フィードバックシステム、もしくは統計解析、またはそれの組み合わせが所望する場合、等高線パターンのグループを定義する閾値を利用する。ステップ5によって、オペレータ、または図1の18のプロセスは、等高線パターンの場所の間で所望される(ステップ4を参照)分割の範囲を判断可能となる(図15の122〜138、および図16の140〜160)。これは、図における勾配によって示されるように空間の分割の単純な重み付けである。このステップ6は次いで、{確率密度、領域、x軸の場所、y軸の場所、サブ領域、サブ密度、サブ軸の場所、およびサブyの場所}の集合(図1の18)であるメトリック表現への等高線パターン形状の変換を利用し、かつ、必要に応じて、図14の113〜117に記憶することである。
[0121]
図1の実施形態で行われる1つとして、がん細胞を位置特定することがある。図17は、顕微鏡によって捕えられ、かつ、TIFであるデジタル画像ファイルコンテナにおいて位置特定されるがん細胞のソースファイルを表す。図17の161〜163は、x−y軸上にグラフ化不可能であるが、強調するように、165および166にリンクされる多様体コードによって分類、フィードバック、統計適応プロセスにおいて使用可能である点の集合を、環境から識別しかつ取り去るために使用される。図1および図8〜図16によって、165および166における略図であるが、単なる略図よりは詳細に作成され、2つの多様体が厳密な形状で再形成されるが、画像(161)から取り去られた半分より完全な形で発見される正に対象のものに細胞をより明確にリンクさせる元の一部を選定する。この多様体を充填することによって、がんの厳密なタイプの統計的表現の密度が非常に詳細になり、従って、GMM、機械学習、デシジョンツリー、および適応フィードバックシステムの主な実施形態のアルゴリズムを使用するアルゴリズムを追跡する際に使用可能である。この解析は、図1および図8〜図16の上記のプロセスおよびLCISを使用する実際の実装形態である。
[0122]
別の実施形態は、通信信号システム、保安通信システム、電磁波受信システム、および暗号化システムなどにおいて一般的な信号波形解析を行うことである。図1は、雑音内の信号が検出されることを示すために図18において使用される。図18には示されないが、図8〜図16を通して実行される、図1の18によって、雑音エンベロープが完全に記述されたのも分かる。171における信号の周りはより明るい色調になっている。図1の18におけるプロセスは、GMM解析において使用するための多様体を作成後、デシジョンツリーによって分類されるようにすることである。デシジョンツリーは、図16の145〜155において作成されかつ実証される、図1のそれぞれの多様体の充填から判断された平均および分散のガウス混合からビルドされる。これに起因して、ピークにおける複数のパターン、および、背景の雑音における単一の多様体パターンがあり、すなわち、検出されたのが分かり、等高線パターン発見に対する適応はここで生じた(図10の64および図11)。基本的に、GMMは、図1の18においてもたらされた充填の密度算出を使用して、多様体がx軸および/またはy軸でのガウス分布によって分布したデータを有するかどうかを判断する。学習から判断される次のステップは、実のところトレーニング集合における対象の等高線パターンである多様体が他に作成されているかどうかについてである。そうでない場合、プロセスは停止し、ある場合、多様体パターンに適応し続ける(または、多様体パターンの計数が代替的に使用されることになる(図5および図18))。それとは関係なく、これらのアクションを使用して、図1の12〜15の決定における閾値を変更し、過去のデータに対してトレーニングが行われる学習型等高線識別システムによる直接的な結果となり(図10)、また、フィードバックプロセス(図11)によって判断される(すなわち、図1の複数の反復を通して閾値を変更する分類に関係している適応プロセス)。
[0123]
これらの図によって説明されるプロセスの多くの応用が使用されているが、結果は全体的にメトリックであり、ソースから取り去られるため、これらの図において使用される際にその使用のいずれにおいても図1のプロセスに対して変更する必要はない。実際、これは、特に、LCIS、統計解析、フィードバック、および図1の多様体作成プロセスを使用している分類システムプロセスをそのように使用することである。この特定のプロセス(図1の18)は、図1における18での多様体のメトリック発見をうまく使用することによって、単位1の画素の厚さの線を位置特定するためにも使用可能であることを証明する。
[0124]
図7の30における熱画像は、放射データフォーマットとしての画像を記憶したハードウェアデバイスによって捕捉された放射パターンを示す。図7の32は、統計解析、フィードバック、分類、および、図14の等高線パターンメトリックの再処理は毎回、図1および図8〜図16の反復によってもたらされ、低減させた19200の可能な点集合メトリックは、厳密には真の対象のパターンである等高線を示す4044の点集合メトリックに未連結であることを示す。次いで、密度値および領域のフィードバック、分類、および統計解析処理を通して、図8および図13のLCISが図7における33の画像を作成した。33におけるこの画像は、図13の101のアプリケーションモジュールLCISによって、図13の表示デバイス110によって出力されたデータ点の1つの多様体ストリームである。分類システムに対して、この最終多様体の密度は、取り出されたデータセットから記憶される(図14における111は、13における101のユーザにとって必要なファイルフォーマットとして記憶される)。ここで、機械学習が、この最終結果に割り当てられる、密度、領域、およびx、y軸場所を利用可能であるだけでなく、図7の32におけるそのサブレベルの多様体を利用することができる。この結果は、チェーンの完全な指紋生成である。ユーザが望む場合、フィードバック/分類プロセスにおいて多様体のそれぞれの反復における、33に対する多くのレベルのサブ密度値は、記憶され、かつ画像のこの最終多様体表現にリンク可能である。ツリー分類システムが使用される場合、Classification and Regression Treeアルゴリズムにおけるジニ指数のような手順は、等高線パターンメトリック自体の実際の確立分布の値と完全に置き換え可能である。図7はこの能力の一例である。
[0125]
たった今説明されたプロセスのシステムは、コンポーネントの背景で開始する。図8および図13のLCISがここで論述される。
[0126]
学習は、プロセスが機械言語コード化アルゴリズム(図10の55〜72)を実行する単一のまたは複数の反復である、学習技法をもたらす統計的方法を使用するプロセスである。本明細書に記載されるようなシステム(図8および図13)として、学習型オブジェクト識別システム(LOIS)があり、ここで、これらのコード化アルゴリズムは、トレーニング集合(図10の56)と呼ばれる過去のイベントのデータセット(図8の39)を記憶したメモリから情報を入手し、この情報から傾向およびパターンを学習し(図10の65〜72)、次いで、一般にテストデータと呼ばれる、新しいデータセットの出力(図11の74)を終了させるために学習されたことを適用するプロセスである。LOISの最終プロセスの前のステップは、一般に、トレーニング集合から学習された傾向をデータに適用することによって、未知のイベント(図11の88)またはテストデータのオブジェクトを識別することである。LOISの最終プロセスは、結果を分類し、メモリに記憶し、および表示することであり、つまり、その結果をある対象のオブジェクトとしてラベリングすることである。このようなシステムを説明するために使用される一般的な用語は、機械学習および人工知能研究を対象とする分野に包含されるものである。
[0127]
LOISシステムは一般に、5つのコンポーネント、およびそのファームウェアまたはシステムソフトウェア(図8の項目34〜39)から成る。プロセッサは、システムのデータパスを使用してメモリから命令およびデータを入手する。入力ブロックはデータをメモリに書き込み、出力ブロックは、表示、または別のLOISによるさらなる解析を目的としてデータをメモリから読み出す。制御ブロック(34)は、データパス(35)、メモリ、入力ブロック37、および出力ブロック38の動作を判断する信号を送る。制御部は次いで、データをメモリおよび表示デバイス(図13の110)に送り返す。プロセッサはコントローラを含有し、メモリに対するデータパスを有する。システムはバイナリ機械言語プログラムプロセスによって制御され、このプロセスは、アセンブリ言語プログラムと呼ばれるより高レベルに、または、さらにまた、ユーザにとって使いやすく、アプリケーション開発がしやすい高レベルの言語に変換可能である。全ての場合において、コード化は、システムを、同LOISシステムの並列または直列バージョンと一致させて機能させるプロセスである。これは、それぞれがハードウェアコンポーネント(図13の100〜110)の全く同じ集合を有する他のシステムのブロックを含有することができ、それぞれが、異なるアクション、または、上記システムに直列にまたは並列に設計可能である他のブロックの1つまたは多くに利益をもたらすように一致させたプロセスを行うことを暗示する。これは、本明細書では、システムのグループ化、または、コントローラ、メモリ、入力および出力、ならびにデータパスの独自の基本類別を有する独立したプロセスのグループ化として定義される。
[0128]
一般に、入力データフォーマットの変更は、システムのプロセッサにおいて生じ、システムにおける別のプロセッサを制御する目的で行われる。これは、システム間の内部動作のシーケンスが、図12および図14の106および111のデータに対してトレーニングが行われる(データの表示はオプション)場合に記憶するために、または、データのテストがLOISで行われる場合に記憶および表示するために最終出力を提供するように行われる。同じ初期入力へのLOISの外部のトランスレーションは、同じ構成、または全体的により簡易である構成の別のシステムの取り付けによって行われることが考えられ、すなわち、メモリは必要ではない場合がある。データの転送は、処理されたデータのデータ値からビットへのトランスレーションを介して行われる。これらのデータフォーマットの変更は、結果として、ファームウェア機械コードの特有のシーケンス、プロセッサ用の機械コードに変えられたより高レベルの言語アプリケーションソフトウェア、または、命令の特有の出力を生じさせるように組み合わせられる、ANDゲート面およびORゲート面の集合を有するプログラマブルロジックアレイ(PLA)などの電子コンポーネントのハードウェアアレイが生じる可能性がある。ハードウェアは、ブール関数またはプロセスを実装するために使用されるチップとすることができる。反復を再処理する方法を必要とする設計に使用される現実の複雑なLOISシステム、または単に複数のLOISシステムは、非常に洗練されたコンピュータシステムを設計する技法である層または抽象化と呼ばれる。
[0129]
LOISシステム用の典型的なデータセットは、画素強度を含有するデータセットから成り、この場合、それぞれの強度は、画素場所を特定した軸のメトリック、および軸識別子がより高い次元を有することができる色強度値を有する。メトリックという用語は、データをキャプチャするために使用されるデバイスの物理的性質を生じさせたデータセットの変化を定義するための測定の標準である。
[0130]
LOISシステムのメモリは、プロセッサ内とすることができ(図8、または図13の106および109において示されるように)、ある移植可能な媒体に記憶可能である、またはプロセッサから独立しているがLOISシステムに搭載可能である。データへのアクセスはデータパス(35)によって行われる。メモリは、電源が取り去られる時に記憶される情報が失われる揮発性か、磁気記憶デバイスといった電力損失の影響を受けない不揮発性メモリであってよい。
[0131]
コンポーネントと他のシステムとの間の通信は、図8のデータパスのバス37および38によって、および図13に示されるように行われてよい。バイナリビットのシーケンスは、これらのパスを進んで、LOISにデータおよび命令を与える。データが適正なフォーマットでない場合、システムはまた、その入力を、機械コードによって読み取り可能なビットの必要なシーケンスに変えるためのアクションを行うことができる。
[0132]
コンピュータワードは、ワードを2進数として表すことができるビットから構成される。LOISはこの能力を利用することで、数字によって表される入力、演算アルゴリズム、および命令集合に関するアルゴリズムに従うハードウェアを含むことができる。ビットワードによって機能するハードウェアのユニットは、演算論理装置またはALUである。これは、LOISの学習フェーズにおいて一般的な数学的処理を行う算術/論理命令によって動作する。
[0133]
本明細書の文脈における典型的なアルゴリズムは、ルールベースのアルゴリズムまたはブラックボックス化アルゴリズムである(図13における107)。ルールベースのアルゴリズムは、結果は記録される決定のシーケンスまたはハードウェアからの別のプロセスである、デシジョンツリーなどの機械コード化プロセスである。ブラックボックスアルゴリズムは、結果がニューラルネットワークなど、ユーザから隠されるアルゴリズムである。
[0134]
ハードウェアおよびソフトウェア間のインターフェースは、典型的には、プログラムカウンタおよびレジスタと共に、ページテーブル実装形態である。別のLOISシステムがプロセッサを使用する必要がある場合、状態は保存されなければならない(図14の112および118)。状態をリストア後、プログラムは、オフになったところから継続することができる。この状態の保存によって、LOISはデータをブロックにおいて保存することができる。これによって、このプログラムのLOISは一続きの読み取りで取り出される1つの場所におけるプロセスをグループ化することができる。例えば、データのグループ化が長さに関わらずオブジェクトの1定義として共に保持されることを必要とする場合、状態を保存することによって行うことが可能である。また、状態が保存されており、ここでプロセスシーケンスに入れられていたことが分かっているため、この性質の領域にアペンドすることができる。従って、プロセスのアドレス空間、ひいてはメモリにおいてアクセスできるデータの全ては、そのページテーブルによって定義され、これは、メモリに常駐する。ページテーブル全体を保存するのではなく、ファームウェアオペレーティングシステムは、単にページテーブルレジスタをロードして、アクティブにしたいプロセスのページテーブルを示すようにする。図14によって説明されるようないわゆる1つのエンクロージャの一例は、x、y軸においてある円を定義する点のベクトルまたはマトリクス集合である。プロセスでは、状態を保存し、メモリへのデータの書き込みを開始し、プロセスを継続し、戻り、x、y軸データセットの行および列の合計の保存を開始し、プロセスを継続し、戻り、次いで、x、y軸データセットの行および列の合計の統計値の保存を開始するなどを行うことになる。ここで、状態が保存される場合、テーブルはx、y点の行および列合計と呼ぶことができ、統計値は、シーケンスが読み取られた後に動的長さで設定される1データとして定義可能であることを意味する1つのシーケンスとして読み取り可能である。このシステムの場合、データのシーケンスは多様体である。ここで、シーケンスはx−y軸点の合計の同シーケンスの別の集合とすることができ、統計値は、メモリが割り当て可能ある限り任意の記憶シーケンスが任意の長さを有することができることを意味することは重要である。これは、分類器が、学習アルゴリズムの必要性にとって必要な、または、記憶されるそのデータセット、またはその解析されたデータおよび記憶されるデータの扱いを分類することを目的とした任意のサイズのシーケンスを引き出すことができる。
[0135]
上記の趣旨に基づき、図1〜図19は本発明のプロセスを説明するために使用される。

Claims

[1]
等高線を識別するためのシステムであって、
パターン認識のためのプロセッサおよびデータキャプチャ手段を有するトレーニングモジュールと、
認識されたパターンに応用例を割り当てるためのデータキャプチャ手段を有する分類手段と、
前記トレーニングモジュールおよび前記分類器を相互接続するデータパスを有するコントローラと、
前記トレーニングモジュールおよび前記分類器に接続される入力および出力を有するメモリ媒体と、
前記システムのコンポーネントの前記出力を表示するように適応された表示デバイスと、
ユーザと通信するように適応されたアプリケーションソフトウェアと、
前記システムと通信するためのユーザの手段を可能にするように適応された入力デバイスと、を備える、システム。
[2]
前記トレーニングモジュールは、データをキャプチャしかつ記憶し、データを少なくとも1つの学習型等高線識別システムのメモリシステムによって処理可能であるデータフォーマットに変えて記憶するための少なくとも1つの学習型等高線識別システムであって、それぞれのトレーニングケースは等高線マップに変換され、該等高線マップの等高線のセットはそれぞれ、等高線メトリックに変換され、該等高線メトリックは、動的な等高線輪郭データ点メモリコンテナ、動的な合計メモリコンテナ、動的な統計メモリコンテナ、複数の動的なトレーニング数学機械コード命令集合出力、およびこれら等高線コンテナ集合の複数の動的なサブ変換された等高線メトリックを含む等高線メトリックに変換される、少なくとも1つの学習型等高線識別システムと、前記トレーニングモジュールの学習ファームウェア命令の範囲内で、等高線メトリックを使用する実行シーケンスが行われる等高線パターン検索のためのグループ化の動作中にメモリ場所を管理するコントローラと、等高線メトリックに変換されるケースデータ全ての等高線全てをグループ化するために機械コード命令集合を実行するプロセッサであって、該等高線メトリックのラベルは既知であるため、トレーニングのために使用されるトレーニングサンプルのコレクション内で、および、一般的な前記パターンを発見するために使用される記録されたプロセスの前記トレーニングモジュールの出力をテストするために使用されるトレーニングサンプルのコレクション内で共通する等高線パターンを発見する、プロセッサと、評価を行うために必要な前記機械命令をメモリに記憶することを行うためのコントローラインターフェースと、実行開始時に動作するモジュール、および実行停止点を判断するモジュールに必要な初期化ルーチン全てを設定するために使用される初期化子と、を備える、請求項1に記載のシステム。
[3]
分類モジュールは、データをキャプチャしかつ記憶し、データを少なくとも1つの学習型等高線識別システムのメモリシステムによって処理可能であるデータフォーマットに変えて記憶するための少なくとも1つの学習型等高線識別システムであって、それぞれのテストケースは等高線マップに変換され、該等高線マップの等高線のセットはそれぞれ、等高線メトリックに変換され、該等高線メトリックは、動的な等高線輪郭データ点メモリコンテナ、動的な合計メモリコンテナ、動的な統計メモリコンテナ、複数の動的なトレーニング数学機械コード命令集合出力、およびこれら等高線コンテナ集合の複数の動的なサブ変換された等高線メトリックを含む等高線メトリックに変換される、少なくとも1つの学習型等高線識別システムと、前記テストケースの前記トレーニングモジュールおよび前記等高線メトリックの前記出力をメモリから抽出する動作中にメモリ場所を管理するコントローラと、前記テストケースの抽出された前記等高線メトリックからラベリング済みパターンのトレーニングの比較によってラベリングされるべき複数のパターンを判断するために前記トレーニングモジュールの出力の機械コード命令集合を実行するプロセッサと、テストケースのラベリング済みパターンの評価および記憶を行うために必要な前記機械命令をメモリに記憶することを行うためのコントローラインターフェースと、実行開始時に動作するモジュール、および実行停止点を判断するモジュールに必要な初期化ルーチン全てを設定するために使用される初期化子と、を備える、請求項1に記載のシステム。
[4]
前記コントローラはマイクロプログラムされた制御部を含み、それによって、制御を指定する方法は有限状態表現ではなくマイクロコードを使用するものになる、請求項1に記載のシステム。
[5]
マイクロコードはプロセッサを制御するマイクロ命令のセットである、請求項4に記載のシステム。
[6]
マイクロコードは、命令をキューに送るプロセスを参照するために動的にスケジューリングされたプロセッサに対するマイクロコードディスパッチングを組み込むための手段を含む、請求項4に記載のシステム。
[7]
ディスパッチングは、マイクロコードディスパッチングの性能への影響を低減するために命令の復号を簡略化するための手段を含む、請求項6に記載のシステム。
[8]
前記コントローラはハードワイヤード制御部を含み、有限状態機械制御の実装形態は、プログラマブルロジックアレイのコレクションによって行われる、請求項1、2、および4のいずれか一項に記載のシステム。
[9]
前記プロセッサは、プロセッサが1秒当たり2つ以上の命令を実行できるようにする高度なパイプライン方式を有するスーパースカラーアーキテクチャである少なくとも1つのプロセッサを含む、請求項1、2、および4のいずれか一項に記載のシステム。
[10]
マイクロ命令は低レベルの命令の表現を含み、該低レベルの命令のそれぞれは、所与のクロックサイクルに対してアクティブであり、さらにまた、どんなマイクロ命令が前記学習型等高線識別システムにおいて次に実行されるのかに関する仕様を提供する制御信号のセットをアサートする、請求項1、2、および4のいずれか一項に記載のシステム。
[11]
マイクロ操作は、前記学習型等高線識別システム内のハードウェアによって直接実行されるRISCのような命令である、請求項1、2、および4のいずれか一項に記載のシステム。
[12]
メモリは、前記学習型識別システムのハードウェアにおける所与の開始アドレスによって命令のシーケンスを保持する命令キャッシュとしての追跡キャッシュから成る、請求項1、2、および4のいずれか一項に記載のシステム。
[13]
制御実装形態は、それぞれの学習型等高線識別システムの制御を指定するための有限状態図手段、および、それぞれの学習型等高線識別システムの制御を指定するためのマイクロプログラミング手段のうちの少なくとも1つから成る、請求項1に記載のシステム。
[14]
制御計画は、前記学習型等高線識別システムの前記プロセッサに対する前記データパスおよびコントローラの両方についてのアーキテクチャを設定する命令から成る、請求項1に記載のシステム。
[15]
データシステムは、無線通信チャネル、導波路、およびこれら全ての組み合わせのうちの少なくとも1つによってデータをキャプチャする、請求項1に記載のシステム。
[16]
別の等高線メトリックを作成するために複数のより高い次元から等高線メトリックをロードするトレーニングモジュール、別の等高線メトリックを作成するために複数の次元から等高線メトリックをロードするための分類手段、メトリックを削除することによって前記等高線を修正するコントローラ、前記等高線メトリックのメモリ場所にアペンドするコントローラ、命令集合が他のシステムをグループ化して等高線のメトリック記憶場所へのその出力および入力を形成するコントローラ、命令集合が他のシステムをグループ化してその出力および入力を形成するコントローラ、および、命令集合の結果が、数値データタイプへのトランスレーションを通して非類似のデータタイプのメトリックを有する等高線のグループを処理できるコントローラ、のうちの2つ以上を含む、請求項1に記載のシステム。
[17]
コンポーネントの統合は、前記学習型等高線識別システムの機械言語プロセスコードによって定義されるソースと出力先との間で、データ、ドキュメント、情報、およびプロセッサメッセージをやり取りするように設計される、請求項1に記載のシステム。
[18]
プロセッサは、機械言語コードを実行するためのコントローラ、および、データパスによってインターフェース接続され、かつマイクロコード命令集合によって通信されるプラグインモジュールにインターフェース接続できるコントローラ、のうちの少なくとも1つを含む、請求項1に記載のシステム。
[19]
学習型システムは、データセットを複数の等高線に変換して、追加の学習型等高線識別システムをグループ化しかつインターフェース接続することによって前記トレーニングモジュールおよびその分類器によって解析可能でありかつ表示可能である等高線パターンにトランスレートされるようにする、請求項1に記載のシステム。
[20]
前記トレーニングモジュールをオフにすることによって分類および表示を行うことができる、請求項1に記載のシステム。
[21]
学習型等高線識別システムは、ハードウェアの初期化を制御するために書き込まれる高レベルの機械コードシーケンスと、取り付けられた受信デバイスから入力を受け入れるために書き込まれる高レベルの機械コードシーケンスと、表示デバイスから入力を受け入れるために書き込まれる高レベルの機械コードシーケンスと、必要な時の修正を可能にするユーザ定義の点において停止しかつ開始する、等高線マッピングおよび等高線メトリックの変換を自動化学習、トレーニング、および特性評価するための前記学習型等高線識別システムを制御するために書き込まれる高レベルの機械コードと、変換された等高線メトリックが、ユーザによる操作、または、等高線のグループ化の選択を向上させるために使用されるプラグインアプリケーションモジュールによって追加可能であるように、前記システムへのハードウェア変更なくトレーニングプロセスを変更するために書き込まれる高レベルの機械コードと、を含む、請求項1に記載のシステム。
[22]
プラグインアプリケーションモジュールは、等高線メトリックコンテナを記憶しかつ作成する機械コード命令集合に出力を送る数学的処理ルーチンと、前記機械コード命令集合に、テストモジュール出力とトレーニングモジュール出力との間で適合するパターンの選抜された精度を高めるための付加をもたらし、トレーニングケースおよびテストケースの等高線メトリックはそれらの等高線マップから個々の等高線およびそれらのメトリックに変換されている、ユーザソフトウェアアプリケーションと、表示された前記出力のユーザを、識別されるように報告された前記パターンの確率的ステートメントを作る際に支援するために、前記トレーニングモジュールおよび分類器の出力を使用するユーザソフトウェアアプリケーションと、から成ることができる、請求項21に記載のシステム。
[23]
前記表示デバイスは、ユーザが、前記学習型等高線識別システムの処理されたイベントを見るための手段と、取り付けられたシステム入力デバイスによって前記ハードウェアとの対話を要求するユーザプロンプトが要求される学習型システムを表示するための手段と、から成る、請求項22に記載のシステム。
[24]
前記表示デバイスは、少なくとも1つの学習型等高線識別システムハードウェアによって使用され、かつ、出力と前記学習型システムとの間の通信パスを設定する命令を介して、前記学習型等高線システムハードウェアに自律的命令を提供するようにインターフェース接続されるプラグインモジュールである、請求項21または22に記載のシステム。
[25]
学習型識別システムの組み合わせの最適化によって、コンフュージョンマトリクスの検査によってトレーニングモジュールおよび分類器両方によってパターンラベルの正確性の確率を高めさせることが発見可能であるように、数学的ユーザインターフェースおよび符号器全体において、前記学習型等高線識別システムをシミュレートするためにコンピュータシステムを動作させるように設計される高レベルのコード集合、トレーニングモジュール命令集合シーケンスからのコンフュージョンマトリクス出力を算出するように設計される高レベルのコード集合、等高線データマトリクスが前記トレーニングモジュールによって前記分類器に報告されるパターンを精確に記述するように、学習型等高線識別システムの構成の実装をフィードバックするように設計される高レベルのコード集合、および、数学的処理モジュールを使用してコンフュージョンマトリクスによって前記トレーニングモジュールの出力として報告される成功度を高めるように設計される高レベルのコード集合、のうちの少なくとも1つを含む、請求項1に記載のシステム。

Drawings

[ Fig. 1]

[ Fig. 2]

[ Fig. 3]

[ Fig. 4]

[ Fig. 5]

[ Fig. 6]

[ Fig. 7]

[ Fig. 8]

[ Fig. 9]

[ Fig. 10]

[ Fig. 11]

[ Fig. 12]

[ Fig. 13]

[ Fig. 14]

[ Fig. 15a]

[ Fig. 15b]

[ Fig. 16]

[ Fig. 17]

[ Fig. 18]

[ Fig. 19]