Traitement en cours

Veuillez attendre...

Paramétrages

Paramétrages

Aller à Demande

1. WO2011055680 - FEUILLE DE CUIVRE POUR UN COLLECTEUR DE BATTERIE AU LITHIUM

Document

明 細 書

発明の名称 リチウムイオン電池集電体用銅箔

技術分野

0001  

背景技術

0002   0003   0004   0005   0006   0007  

先行技術文献

特許文献

0008  

発明の概要

発明が解決しようとする課題

0009  

課題を解決するための手段

0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024  

発明の効果

0025  

図面の簡単な説明

0026  

発明を実施するための形態

0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048  

実施例

0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14  

図面

1   2   3  

明 細 書

発明の名称 : リチウムイオン電池集電体用銅箔

技術分野

[0001]
 本発明はリチウムイオン電池集電体用銅箔に関し、とりわけ水系バインダーを使ったリチウムイオン二次電池負極集電体用銅箔に関する。

背景技術

[0002]
 リチウムイオン電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器用に多用されている。将来、電気自動車や一般家庭の分散配置型電源といった大型機器の電源としての利用も有望視されている。
[0003]
 リチウムイオン電池の電極体は一般に、図1に示すように、正極11、セパレータ12及び負極13が幾十にも巻回又は積層されたスタック構造を有している。典型的には、正極は、アルミニウム箔でできた正極集電体とその表面に設けられたLiCoO 2、LiNiO 2及びLiMn 24といったリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔でできた負極集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成される。正極同士及び負極同士は各タブ(14、15)でそれぞれ溶接される。また、正極及び負極はアルミニウムやニッケル製のタブ端子と接続されるが、これも溶接により行われる。溶接は超音波溶接により行われるのが通常である。
[0004]
 負極活物質には、従来、カーボンが多く使われており、これにバインダーであるポリフッ化ビニリデン(PVDF)と溶剤であるN-メチル-2-ピロリドン(NMP)を混合して銅箔表面に塗布する方法が広く用いられている。一方、電池容量の増加が求められ、これに対応して負極活物質もカーボン以外のSiやSn等の合金系が種々検討されており、さらにバインダーとして、スチレンブタジエンゴム(SBR)やアクリル系の樹脂が使用されている。これらの樹脂は、水に分散させ、さらに増粘剤を加えてスラリーを作製して銅箔表面に塗布されており、溶剤系のPVDFに対して水系バインダーと呼ばれている。
[0005]
 溶剤系バインダー及び水系バインダーは、一般に銅箔表面への塗工性が異なるが、これは、塗工性が銅箔表面と溶剤、あるいは水との濡れやすさに依存するためであり、水系バインダーの塗工性を改善するには、銅箔表面の水濡れ性を改善する必要がある。濡れやすさは、対象とする材料表面上に一定量の液滴を保持した場合の接触角を測定して評価する方法が広く用いられており、接触角が小さいほど濡れ性が良好となる。
[0006]
 水濡れ性を向上させる方法としては、圧延銅箔の場合には、圧延油の除去を目的としてよく洗浄する、圧延油を揮発させる、あるいは表面への残留油分を少なくする方法が知られている。例えば、特許第2970724号では、不活性ガスまたは真空化で180℃以上で銅箔を加熱して銅箔表面上の圧延油を蒸発させる方法が記載されている。また、特許第2970727号では、最終圧延ロールの表面粗度(Ra)を1.0μm未満として材料の表面粗さを小さくし、凹部に侵入する圧延油を少なくする方法が記載されている。その他、銅箔表面を加熱して酸化皮膜層を形成する方法(例えば、特許第2928065号)、銅箔上にアゾール系誘導体含有の第一膜を形成後、さらにソルビタン系誘導体含有の第二膜を形成する方法(特許第2943898号)が記載されている。
[0007]
 また、銅箔表面の錆による劣化を防止することも重要であり、そのような防錆性を向上させる方法としては、銅箔表面をクロメート処理やシランカップリング処理する方法が知られている。シランカップリング処理は、密着性の向上効果も得られる。例えば、特開2008-184657号公報には、銅箔の少なくとも一方の面に、ニッケル、コバルト、タングステン、モリブデンのうち少なくとも一つ以上から選択された金属又はこれら金属とメタロイド金属であるリン又は、ほう素との間で形成されたバリア層を形成し、次いで形成したバリア層上に三価クロムをクロム源とするクロメート処理を施し、得られた三価クロメート皮膜上にシランカップリング処理を施すことで、密着性及び防錆性が向上したことが記載されている。

先行技術文献

特許文献

[0008]
特許文献1 : 特許第2970724号公報
特許文献2 : 特許第2970727号公報
特許文献3 : 特許第2928065号公報
特許文献4 : 特許第2943898号公報
特許文献5 : 特開2008-184657号公報

発明の概要

発明が解決しようとする課題

[0009]
 このように、リチウムイオン電池の集電体として使用される銅箔の水濡れ性及び防錆性向上のための技術開発が行われてきているが、これらの特性をバランス良く向上させた銅箔については、いまだ満足できるものがないのが実情である。そこで、本発明は水濡れ性及び防錆性の特性をバランス良く向上したリチウムイオン電池の集電体用銅箔を提供することを第一の課題とする。本発明はそのような銅箔を製造する方法を提供することを第二の課題とする。更に、本発明は本発明に係る銅箔を集電体として用いたリチウムイオン電池を提供することを第三の課題とする。

課題を解決するための手段

[0010]
 本発明者は上記課題を解決するために研究を重ねたところ、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物を塗布することで水濡れ性が改善することを確認した。しかしながら、防錆性に関して、銅に広く用いられているアゾール系化合物による表面処理と比較すると、劣っていることが確認された。そこで、更に研究を重ねたところ、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とアゾール系表面処理剤との混合液で表面処理することにより、課題解決の糸口を見出した。詳細に検討したところ、銅箔表面を分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とアゾール系表面処理剤との混合液で表面処理することで、それぞれの表面処理剤の濃度を単独で使用する場合よりも低い濃度で十分な防錆性の効果が得られ、また、アゾール系表面処理剤を混合することによる水濡れ性の低下が僅かであることが判明した。この効果は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物による表面処理とアゾール系表面処理剤による表面処理とをそれぞれ単独で重ねて行った(表面処理剤の重ね塗り)場合には得られないものである。すなわち、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とアゾール系表面処理剤との混合液で表面処理することにより、従来得られなかった水濡れ性及び防錆性のバランスに優れた銅箔を提供できることを見出した。
[0011]
 以上の知見を基礎として完成した本発明は一側面において、銅箔表面の少なくとも一部にアゾール化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の混合層が形成されたリチウムイオン電池集電体用銅箔である。
[0012]
 本発明に係る銅箔は一実施形態において、XPSによる深さ方向分析でO及びNを検出し、かつC検出量がバックグラウンドレベルよりも大きい深さ範囲の平均値D 0が1.0~5.0nmである。
[0013]
 本発明に係る銅箔は別の一実施形態において、前記水溶性有機化合物が下記一般式(1)で表される基を含む。
[化1]


 (式(1)中、Xは活性水素を有する化合物における活性水素を除いた残基を表す。)
[0014]
 本発明に係る銅箔は更に別の一実施形態において、前記Xが、水酸基、フェノキシ基、ハロゲン、有機酸エステル(RCOO)、アミノ基、アルコキシ基(RO)、アルキルメルカプト基(RS)等が挙げられるが、好ましくは、下記一般式(2)、(3)又は(4)で表される基である。
[化2]


[化3]


[化4]


 (式(3)中、R1及びR2は、それぞれヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。式(4)中、R3、R4及びR5は、それぞれ水素、ヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。)
[0015]
 本発明に係る銅箔は更に別の一実施形態において、前記式(1)で表される基が、下記反応式(5)によりエポキシ基が活性水素を有する化合物X-Hと付加反応することで得られるものである。
[化5]


[0016]
 本発明に係る銅箔は更に別の一実施形態において、前記反応式(5)におけるエポキシ基を有する化合物が、グリシドキシ基を有する水溶性エポキシ樹脂、又は、グリシドキシ基を有するシランカップリング剤である。
[0017]
 本発明に係る銅箔は更に別の一実施形態において、前記水溶性有機化合物が分子内にイミダゾール基を含む。
[0018]
 本発明に係る銅箔は更に別の一実施形態において、前記銅箔表面と前記混合層との間に、アゾール化合物又はクロメート層で構成された中間層が形成されている。
[0019]
 本発明に係る銅箔は更に別の一実施形態において、前記アゾール化合物がベンゾトリアゾール系化合物である。
[0020]
 本発明に係る銅箔は更に別の一実施形態において、前記ベンゾトリアゾール系化合物が1,2,3-ベンゾトリアゾールである。
[0021]
 本発明に係る銅箔は更に別の一実施形態において、リチウムイオン二次電池負極集電体用である。
[0022]
 本発明は別の一側面において、本発明に係る銅箔を集電体として用いたリチウムイオン電池である。
[0023]
 本発明は更に別の一側面において、銅箔表面の少なくとも一部に対し、アゾール化合物と、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で表面処理を実施して、前記アゾール化合物及び前記水溶性有機化合物の混合層を形成する工程を含むリチウムイオン電池集電体用銅箔の製造方法である。
[0024]
 本発明に係るリチウムイオン電池集電体用銅箔の製造方法は別の一実施形態において、前記混合液が、アゾール化合物を0.01~0.25g/L、及び、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物を0.5~20g/Lで含む。

発明の効果

[0025]
 本発明に係る銅箔によれば、防錆性及び水濡れ性がバランス良く向上する。そのため、リチウムイオン電池の集電体として好適に使用することができる。

図面の簡単な説明

[0026]
[図1] 図1は、リチウムイオン電池のスタック構造の模式図を示す。
[図2] 図2は、アゾール系化合物とエポキシ基を加水分解させたシランカップリングの混合有機被膜の厚みを測定する際に得られるXPS装置によるN、Si及びCのデプスプロファイルの例を示す。
[図3] 図3は、アゾール系化合物及び水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物の混合有機被膜の厚みを測定する際に得られるXPS装置によるN、O及びCのデプスプロファイルの例を示す。

発明を実施するための形態

[0027]
1.銅箔基材
 本発明において、銅箔は電解銅箔及び圧延銅箔のいずれでもよい。また、「銅箔」には銅合金箔も含まれるものとする。銅箔の材料としては、特に制限はなく、用途や要求特性に応じて適宜選択すればよい。例えば、限定的ではないが、圧延銅箔の場合、高純度の銅(無酸素銅やタフピッチ銅等)の他、Sn入り銅、Ag入り銅、Ni、Si等を添加したCu-Ni-Si系銅合金、Cr、Zr等を添加したCu-Cr-Zr系銅合金のような銅合金が挙げられる。
[0028]
 銅箔の厚みは特に制限はなく、要求特性に応じて適宜選択すればよい。一般的には1~100μmであるが、リチウム二次電池負極の集電体として使用する場合、銅箔を薄肉化した方がより高容量の電池を得ることができる。そのような観点から、典型的には2~50μm、より典型的には5~20μm程度である。
[0029]
2.表面処理
 表面処理は、アゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液を用いて行う。表面処理は、銅箔の上下面のうち負極活物質との密着性が要求される少なくとも一面に混合液を浸漬、塗布及び噴霧などによって接触させ、その後、乾燥することでアゾール系化合物及び水溶性エポキシ樹脂を銅箔表面の銅と反応させ、銅箔表面に固定することで行う。
[0030]
 本発明では、アゾール系化合物の防錆性を利用し、それと分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合層によって負極活物質への防錆性及び水濡れ性をバランス良く向上させている。このような点から、アゾール系化合物としては、特に良好な防錆性を有することが一般的に知られているベンゾトリアゾール系化合物が好ましい。また、ベンゾトリアゾール系化合物としては、限定されず、上述の本発明の目的からはどのようなものであってもよい。ベンゾトリアゾール系化合物としては、例えば、1,2,3-ベンゾトリアゾール、1-メチルベンゾトリアゾール、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、トリルトリアゾール、ナフトトリアゾール、5-ニトロベンゾトリアゾール、及び、フェナジノトリアゾール等のベンゾトリアゾール系化合物が挙げられる。
[0031]
 分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物は、下記一般式(1)で表される基を含んでいる。
[化6]


 式(1)中、Xは活性水素を有する化合物における活性水素を除いた残基を表す。このようなXの具体例としては、水酸基、水酸基を含む飽和又は不飽和炭化水素基、フェノール基、カルボキシル基、カルボキシル基を含む有機酸、第二級アミノ基、及び、イミダゾール基等が挙げられる。
[0032]
 上記列挙したXのうち、代表的なものを下記一般式(2)、(3)及び(4)に示す。
[化7]


[化8]


[化9]


 式(3)中、R1及びR2は、それぞれヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。式(4)中、R3、R4及びR5は、それぞれ水素、ヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。
[0033]
 また、式(1)で表される基は、下記反応式(5)によりエポキシ基が活性水素を有する化合物X-Hと付加反応することで得られるものであってもよい。
[化10]


[0034]
 上記水溶性有機化合物は、さらにはエチレングリコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、プロピレングリコールモノフェニルエーテルなどのグリコールエーテル類、及び、下記一般式(A)~(G)で示されるエポキシ基をもつ化合物が、加水分解することで水酸基が付与される、又は、アミン化合物と付加反応することにより得られる、又は、イミダゾール化合物と付加反応することにより得られる化合物である。
[0035]
[化11]


(式中、R6は水酸基又は炭素数1~5のアルキル基を示し、R7は酸素を含んでいても良い炭素数1~10のアルキレン基を示し、R8は炭素数1~5のアルキル基を示し、Lは2又は3を示す。)
[0036]
[化12]


(式中、nは1~4の整数を示す。)
[0037]
[化13]


[0038]
[化14]


[0039]
[化15]


[0040]
[化16]


(式中、nは1~30の整数を示す。)
[0041]
[化17]


(式中、nは1~5の整数を示す。)
[0042]
 水濡れ性の改善に着目した場合、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物で表面処理をすることに効果があることは考えられるが、防錆性と超音波溶接性への影響は不明である。また、銅箔の防錆処理にはアゾール系化合物が広く用いられているが、アゾール系化合物で表面処理をすると水濡れ性が低下する場合が多く、水濡れ性と防錆性を両立させることは困難である。水濡れ性と防錆性を両立させる方法として、一方の表面処理後に他方の表面処理をする、すなわち上塗り、あるいは重ね塗りが考えられるが、アゾール系化合物の表面処理後に分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物による表面処理をした場合は防錆性が低下し、また、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物による表面処理後にアゾール系化合物の表面処理をした場合は、水濡れ性が低下してしまい、水濡れ性と防錆性とを両立させることはできない。そこで、本発明では、アゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で一度に表面処理することで、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物で得られる水濡れ性とアゾール系化合物による表面処理で得られる防錆性とを両立させることとした。
[0043]
 さらに、アゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で表面処理を行う場合には、それぞれ単独で使用する場合よりも低濃度で十分な効果が得られる。すなわち、該表面処理により形成された銅箔表面の混合層の平均厚みが薄くても十分な防錆性及び水濡れ性が得られることを見出した。また、混合層の平均厚みを薄くすれば、超音波溶接性が良好となるため、優れた防錆性、水濡れ性及び超音波溶接性をバランス良く備えることができる。
[0044]
 アゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とで形成された混合層と銅箔との間には、さらにアゾール系化合物で構成された中間層を形成してもよい。この場合、最表面にはアゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とで形成された混合層が存在するため、上述のように優れた防錆性、水濡れ性及び超音波溶接性をバランス良く備えることができる上、さらに混合層と銅箔との間にアゾール系化合物で構成された中間層が形成されているため、防錆性をより向上させることができる。また、中間層として、クロメート処理層を形成してもよい。クロメート処理層もまた、防錆性を有しているため、クロメート処理層で形成した中間層を設けることによって、防錆性をより向上させることができる。さらに、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物とアゾール系化合物とで形成された混合層と銅箔との間に中間層を設ける代わりに、例えば銅箔表面を分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物で処理しておいて、その上に混合層を設けてもよい。これにより、水濡れ性がさらに向上する。
[0045]
 アゾール系化合物と分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液により形成された混合層について、その構造を正確に解明することは困難であるが、化学構造解析として、銅箔表面をフーリエ変換型赤外分光装置(FT-IR装置)にて分析することでOH基、Si-OH基、Si-O-Si基を検出し、飛行時間型二次イオン質量分析装置(TOF-SIMS装置)でアゾール系化合物を検出することができる。
 以上の検出結果により分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物及びアゾール系化合物の存在を確認した上で、さらにX線光電子分光分析装置(XPS装置)とアルゴンスパッタとを組み合わせて、深さ方向の元素分析を行い、各元素の分布の様子によって、混合層が形成されているのか、又は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物及びアゾール系化合物による単独の層が形成されているのかを判定する。また、当該深さ方向の元素分析により、混合層の厚みを決定する。XPS装置にて、アゾール系化合物と水溶性エポキシ樹脂の加水分解物、二級アミン付加物、又は、イミダゾール化合物付加物の混合層の場合はN及びOを検出し、且つ、C検出量がバックグラウンドレベルよりも大きい深さ範囲を混合層の厚みとしてこれを複数箇所測定し、その平均値D 0を混合層の平均厚みとする。また、アゾール系化合物とエポキシ基を付与したシランカップリング剤の加水分解物の混合層ではSi及びNを検出し、且つ、C検出量がバックグラウンドレベルよりも大きい深さ範囲を混合層の厚みとしてこれを複数箇所測定し、その平均値D 0を混合層の平均厚みとすることもできる。例として、アゾール系化合物とエポキシ基を加水分解されたシランカップリング剤の混合有機皮膜につき、XPS装置にて分析した結果を図2に示す。なお、密着性、防錆性及び超音波溶接性の共存を図る観点から、混合層の平均厚みD 0は1.0~5.0nmが好ましく、1.5~4.0nmがより好ましい。また、混合層と銅箔との間にさらに中間層が形成されている場合であっても、混合層及び中間層の合計の平均厚みについて、D 0は同様に、1.0~5.0nmが好ましく、1.5~4.0nmがより好ましい。また、混合層と中間層とが形成されている場合、それらの厚みの割合として、混合層の方が大きいことが好ましい。図3に、アゾール系化合物及び水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物の有機被膜の厚みを測定する際に得られるXPS装置によるN、O及びCのデプスプロファイルの例を示す。
[0046]
 アゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物は、エタノールや水等の溶媒に溶かして使用することができる。一般に、アゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の濃度を高くすると、形成される有機皮膜が厚くなり、濃度を低くすると薄くなる。両者を混合した溶液で処理することで、アゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の混合層が形成される。
[0047]
 表面処理で使用するアゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の混合液において、アゾール系化合物の濃度は、0.01~0.25g/L、好ましくは0.02~0.2g/Lであり、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の濃度は、0.5~20g/L、好ましくは1~10g/Lである。これらの濃度範囲の混合液にて表面処理をすることで、防錆性、水濡れ性及び超音波溶接性のバランスが良好な混合層を形成することができる。
[0048]
 本発明に係る銅箔を材料とする集電体とその上に形成された活物質層によって構成された負極を用いて、慣用手段によりリチウムイオン電池を作製することができる。リチウムイオン電池には、電解質中のリチウムイオンが電気伝導を担うリチウムイオン一次電池用及びリチウムイオン二次電池が含まれる。負極活物質としては、限定的ではないが、炭素、珪素、スズ、ゲルマニウム、鉛、アンチモン、アルミニウム、インジウム、リチウム、酸化スズ、チタン酸リチウム、窒化リチウム、インジウムを固溶した酸化錫、インジウム-錫合金、リチウム-アルミニウム合金、リチウム-インジウム合金等が挙げられる。
実施例
[0049]
 以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
 (実施例1)
 アゾール系化合物及び水溶性エポキシ樹脂の混合液による表面処理が特性に与える影響を検討するため、以下の条件で実施例及び比較例を作成した。各種条件及び試験結果を後述の表1に示す。
[圧延銅箔の製造]
 厚さ200mm、幅600mmのタフピッチ銅のインゴットを製造し、熱間圧延により10mmまで圧延した。
 次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRaを0.03μmとし、最終パスの圧延速度400m/分、加工度20%として厚さ10μmに仕上げた。圧延油の粘度は9.0cSt(25℃)であった。得られた圧延銅箔はRaが0.11μmであった。
[0050]
[電解銅箔の製造]
 特許第4115240号の実施例に記載された電解液を用いて電解して、10μmの電解銅箔を製造した。得られた電解銅箔はRaが0.12μmであった。
[0051]
[表面処理]
 上記の通り製造した板厚10μmの圧延銅箔及び電解銅箔につき、表1に記載の濃度のアゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物各単独の水溶液、及び、両者を混合した水溶液を準備し、これに3秒間浸漬した後、ドライヤーにて乾燥した。アゾール系化合物は、1,2,3-ベンゾトリアゾール(以下、BTA)を、また、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物は、下記反応式(6)に示すとおり、ナガセケムテックス社製の「デナコールEX-521」のエポキシ基を開環させて水酸基を付加したものを用いた。
[化18]


(式中、n≒3である。)
[0052]
[防錆性]
(1)銅箔を30mm×60mmの大きさに切り出した。
(2)試料(1)を硫化水素暴露試験機(H2S:3ppm、40℃、50RH%)に入れ、20分間保持した。
(3)試料を(2)の試験機から取り出し、銅箔表面の色調を確認した。
(4)試験後の銅箔表面の色調が試験前と同じものを「○」、試験前と比較して、薄い赤褐色に変色したものを「△」、表面全体が紫あるいは青色に変色したものを「×」とした。
[0053]
[水濡れ性]
 協和界面科学株式会社製接触角計CA-D型を用い、室温(25℃)にて1.52mmφの純水の液滴を滴下することで接触角を測定し、接触角60°未満を「◎」、60~70°を「○」、70~80°を「△」、80°を超えると「×」とした。
[0054]
[超音波溶接性]
(1)銅箔を100mm×150mmの大きさに切り出し、30枚重ねた。
(2)ブランソン社製のアクチュエータ(型番:Ultraweld L20E)にホーン(ピッチ0.8mm、高さ0.4mm)を取り付けた。アンビルは0.2mmピッチを使用した。
(3)溶接条件は、圧力40psi、振幅60μm、振動数20kHz、溶接時間は0.1秒とした。
(4)上記条件で溶接した後、銅箔を1枚ずつ剥離したときに、21枚以上の銅箔が溶接部分で破れた場合を「◎」、11~20枚の銅箔が溶接部分で破れた場合を「○」、1~10枚の銅箔が溶接部分で破れた場合を「△」、一枚も銅箔が破れなかった場合を「×」とした。なお、銅箔を剥離する前に、ホーンに接触していた最表層の銅箔の溶接部分を実態顕微鏡にて20倍で拡大観察し、クラックが発生していないことを確認してから剥離試験を実施した。
[0055]
[有機皮膜の厚み]
 有機皮膜(混合層、又は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物又はBTA単独で形成された層)の厚みは、アルゴンスパッタしながらXPS装置で銅箔の深さ方向について元素分析し、O及びNを検出し、且つ、C検出量がバックグラウンドレベルよりも大きな深さ範囲(SiO 2換算)を有機皮膜厚みとし、任意の5カ所の平均値を有機皮膜厚みの平均値とした。
 ・装置:XPS装置(アルバックファイ社、型式5600MC)
 ・真空度:5.7×10 -7Pa
 ・X線:単色AlKα、X線出力210W、入射角45°、取り出し角45°
 ・イオン線:イオン種Ar +、加速電圧3kV、掃引面積3mm×3mm、スパッタリングレート2.3nm/min(SiO 2換算)
[0056]
[表1]


[0057]
 (評価結果)
 実施例1-1~1-11は、BTAと分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で表面処理をしており、更に、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合有機皮膜厚が1.0~5.0nmの範囲にある。このため、水濡れ性、防錆性及び溶接性の全てにおいて良好な特性を示している。
 比較例1-12は、表面処理未実施であり、表面に有機皮膜が存在せず、溶接性は良好で水濡れ性も悪くはないが、防錆性が悪く、水濡れ性、防錆性及び溶接性を同時に満足させることはできない。
 比較例1-13~1-15は、BTAのみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど防錆性が良好である。しかしながら、いずれの濃度であっても水濡れ性が悪く、BTAのみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 比較例1-16~1-18は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物のみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど水濡れ性が良好である。しかしながら、いずれの濃度であっても防錆性が悪く、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物のみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 また、比較例1-19は、BTAのみで表面処理を行った後、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物で表面処理を行っており、BTAの防錆効果が低下している。
 また、比較例1-20は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物のみで表面処理を行った後、BTAで表面処理を行っており、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の水濡れ性改善効果が低下している。
[0058]
 (実施例2)
 以下の方法で表面処理した試料につき、実施例1に従い評価した。各種条件及び試験結果を後述の表2に示す。
 [表面処理]
 実施例1の通り製造した板厚10μmの圧延銅箔及び電解銅箔につき、表1に記載の濃度のアゾール系化合物及びエポキシ基を加水分解させたシランカップリング剤各単独の水溶液、及び、両者を混合した水溶液を準備し、これに3秒間浸漬した後、ドライヤーにて乾燥した。アゾール系化合物は、1,2,3-ベンゾトリアゾール(以下、BTA)また、エポキシ基を加水分解させたシランカップリング剤として、下記一般式(H)の化合物を用いた。
[化19]


(式中、XはCH 2(OH)-CH(OH)-、R9は水酸基又は炭素数1~5のアルキル基を示し、R10は酸素を含んでいてもよい炭素数1~10のアルキル基を示す。)
[0059]
[表2]


[0060]
 (評価結果)
 実施例2-1~2-11は、BTAとエポキシ基を加水分解させたシランカップリング剤との混合液で表面処理をしており、更に、エポキシ基を加水分解させたシランカップリング剤との混合有機皮膜厚が1.0~5.0nmの範囲にある。このため、水濡れ性、防錆性及び溶接性の全てにおいて良好な特性を示している。
 比較例2-12は、表面処理未実施であり、表面に有機皮膜が存在せず、溶接性は良好で水濡れ性も悪くはないが、防錆性が悪く、水濡れ性、防錆性及び溶接性を同時に満足させることはできない。
 比較例2-13~2-15は、BTAのみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど防錆性が良好である。しかしながら、いずれの濃度であっても水濡れ性が悪く、BTAのみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 比較例2-16~2-18は、エポキシ基を加水分解させたシランカップリング剤のみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど水濡れ性が良好である。しかしながら、いずれの濃度であっても防錆性が悪く、エポキシ基を加水分解させたシランカップリング剤のみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 また、比較例2-19は、BTAのみで表面処理を行った後、エポキシ基を加水分解させたシランカップリング剤で表面処理を行っており、BTAの防錆効果が低下している。
 また、比較例2-20は、エポキシ基を加水分解させたシランカップリング剤のみで表面処理を行った後、BTAで表面処理を行っており、エポキシ基を加水分解させたシランカップリング剤の水濡れ性改善効果が低下している。
[0061]
 (実施例3)
 以下の方法で表面処理した試料につき、実施例1に従い評価した。各種条件及び試験結果を後述の表3に示す。
 [表面処理]
 実施例1の通り製造した板厚10μmの圧延銅箔及び電解銅箔につき、表3に記載の濃度のアゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物各単独の水溶液、及び、両者を混合した水溶液を準備し、これに3秒間浸漬した後、ドライヤーにて乾燥した。アゾール系化合物は、1,2,3-ベンゾトリアゾール(以下、BTA)また、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物は、下記反応式(7)に示すとおり、ナガセケムテックス社製の「デナコールEX-521」のエポキシ基にイミダゾールを付加反応させたものを用いた。
[化20]


(式中、R11はイミダゾール基であり、n≒3である。)
[0062]
[表3]


[0063]
 (評価結果)
 実施例3-1~3-11は、BTAと分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物との混合液で表面処理をしており、更に、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物との混合有機皮膜厚が1.0~5.0nmの範囲にある。このため、水濡れ性、防錆性及び溶接性の全てにおいて良好な特性を示している。
 比較例3-12は、表面処理未実施であり、表面に有機皮膜が存在せず、溶接性は良好で水濡れ性も悪くはないが、防錆性が悪く、水濡れ性、防錆性及び溶接性を同時に満足させることはできない。
 比較例3-13~3-15は、BTAのみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど防錆性が良好である。しかしながら、いずれの濃度であっても水濡れ性が悪く、BTAのみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 比較例3-16~3-18は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物のみで表面処理を行っており、処理液濃度が低いほど溶接性が良好で、処理液濃度が高いほど水濡れ性が良好である。しかしながら、いずれの濃度であっても防錆性が悪く、分子中に水酸基と線状エーテル結合を有する水溶性有機化合物にイミダゾール基を付加した化合物のみでは、水濡れ性、防錆性及び溶接性を同時に満足させることができないことを示している。
 また、比較例3-19は、BTAのみで表面処理を行った後、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物で表面処理を行っており、BTAの防錆効果が低下している。
 また、比較例3-20は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物にイミダゾール基を付加した化合物のみで表面処理を行った後、BTAで表面処理を行っており、分子中に水酸基と線状エーテル結合を有する水溶性有機化合物にイミダゾール基を付加した化合物の水濡れ性改善効果が低下している。
[0064]
 (実施例4)
 以下の方法で表面処理した試料につき、実施例1で記載の方法又は以下の方法で評価した。各種条件及び試験結果を後述の表4に示す。
[0065]
[圧延銅箔の製造]
 無酸素銅に各種元素を添加し、厚さ200mm、幅600mmの銅合金インゴットを製造し、熱間圧延により10mmまで圧延した。
 次に、焼鈍と冷間圧延を繰り返し、最後に冷間圧延で、ワークロール径60mm、ワークロール表面粗さRaを0.03μmとし、最終パスの圧延速度400m/分、加工度20%として厚さ6~20μmに仕上げた。圧延油の粘度は9.0cSt(25℃)であった。得られた圧延銅箔はRaが0.11μmであった。
[0066]
[表面処理]
 上記の通り製造した板厚6~20μmの圧延銅箔につき、表4に記載の濃度のアゾール系化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物各単独の水溶液、及び、両者を混合した水溶液を準備し、これに5秒間浸漬した後、ドライヤーにて乾燥した。アゾール系化合物は、1,2,3-ベンゾトリアゾール(以下、BTA)を、また、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物は、ナガセケムテックス社製の「デナコールEX-521」のエポキシ基を開環させて水酸基を付加したものを用いた。
[0067]
[超音波溶接性]
(1)銅箔を100mm×150mmの大きさに切り出し、板厚6μmでは50枚、板厚10μmでは30枚、板厚20μmでは15枚重ねた。
(2)ブランソン社製のアクチュエータ(型番:Ultraweld L20E)にホーン(ピッチ0.8mm、高さ0.4mm)を取り付けた。アンビルは0.2mmピッチを使用した。
(3)溶接条件は、圧力40psi、振幅60μm、振動数20kHz、溶接時間は0.1秒とした。
(4)上記条件で溶接した後、銅箔を1枚ずつ剥離したときに、板厚6μmでは35枚以上、板厚10μmでは21枚以上、板厚20μmでは11枚以上の銅箔が溶接部分で破れた場合を「◎」、板厚6μmでは18~34枚、板厚10μmでは11~20枚、板厚20μmでは6~10枚の銅箔が溶接部分で破れた場合を「○」、板厚6μmでは1~17枚、板厚10μmでは1~10枚、板厚20μmでは1~5枚の銅箔が溶接部分で破れた場合を「△」、一枚も銅箔が破れなかった場合を「×」とした。なお、銅箔を剥離する前に、ホーンに接触していた最表層の銅箔の溶接部分を実態顕微鏡にて20倍で拡大観察し、クラックが発生していないことを確認してから剥離試験を実施した。
[0068]
[その他の評価]
 水濡れ性、防錆性及び有機皮膜の厚みは、実施例1に記載の方法で評価した。
[0069]
[表4]


[0070]
 (評価結果)
 実施例4-1~4-9は、BTAと分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で表面処理をしており、更に、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合有機皮膜厚が1.0~5.0nmの範囲にある。このため、各種銅合金においても、水濡れ性、防錆性及び溶接性の全てにおいて良好な特性を示している。比較例4-10は、BTAのみで表面処理を行った後、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物で表面処理を行っており、BTAの防錆効果が低下している。比較例4-11は、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物のみで表面処理を行った後、BTAで表面処理を行っており、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の水濡れ性改善効果が低下している。

請求の範囲

[請求項1]
 銅箔表面の少なくとも一部にアゾール化合物及び分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物の混合層が形成されたリチウムイオン電池集電体用銅箔。
[請求項2]
 XPSによる深さ方向分析でO及びNを検出し、かつC検出量がバックグラウンドレベルよりも大きい深さ範囲の平均値D 0が1.0~5.0nmである請求項1に記載のリチウムイオン電池集電体用銅箔。
[請求項3]
 前記水溶性有機化合物が下記一般式(1)で表される基を含む請求項1又は2に記載のリチウムイオン電池集電体用銅箔。
[化1]


 (式(1)中、Xは活性水素を有する化合物における活性水素を除いた残基を表す。)
[請求項4]
 前記Xが、下記一般式(2)、(3)又は(4)で表される基である請求項3に記載のリチウムイオン電池集電体用銅箔。
[化2]


[化3]


[化4]


 (式(3)中、R1及びR2は、それぞれヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。式(4)中、R3、R4及びR5は、それぞれ水素、ヒドロキシアルキル基、エーテル基、芳香族置換アルキル基、不飽和炭化水素基及びアルキル基からなる群から選択された一種である。)
[請求項5]
 前記式(1)で表される基が、下記反応式(5)によりエポキシ基が活性水素を有する化合物X-Hと付加反応することで得られるものである請求項3又は4に記載のリチウムイオン電池集電体用銅箔。
[化5]


[請求項6]
 前記反応式(5)におけるエポキシ基を有する化合物が、グリシドキシ基を有する水溶性エポキシ樹脂、又は、グリシドキシ基を有するシランカップリング剤である請求項5に記載のリチウムイオン電池集電体用銅箔。
[請求項7]
 前記水溶性有機化合物が分子内にイミダゾール基を含む請求項1~6のいずれかに記載のリチウムイオン電池集電体用銅箔。
[請求項8]
 前記銅箔表面と前記混合層との間に、アゾール化合物又はクロメート層で構成された中間層が形成された請求項1~7のいずれかに記載のリチウムイオン電池集電体用銅箔。
[請求項9]
 前記アゾール化合物がベンゾトリアゾール系化合物である請求項1~8のいずれかに記載のリチウムイオン電池集電体用銅箔。
[請求項10]
 前記ベンゾトリアゾール系化合物が1,2,3-ベンゾトリアゾールである請求項9に記載のリチウムイオン電池集電体用銅箔。
[請求項11]
 リチウムイオン二次電池負極集電体用である請求項1~10のいずれかに記載のリチウムイオン電池集電体用銅箔。
[請求項12]
 請求項1~11のいずれかに記載の銅箔を集電体として用いたリチウムイオン電池。
[請求項13]
 銅箔表面の少なくとも一部に対し、アゾール化合物と、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物との混合液で表面処理を実施して、前記アゾール化合物及び前記水溶性有機化合物の混合層を形成する工程を含むリチウムイオン電池集電体用銅箔の製造方法。
[請求項14]
 前記混合液は、アゾール化合物を0.01~0.25g/L、及び、分子中に水酸基と線状エーテル結合とを有する水溶性有機化合物を0.5~20g/Lで含む請求項13に記載のリチウムイオン電池集電体用銅箔の製造方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]