Traitement en cours

Veuillez attendre...

PATENTSCOPE sera indisponible durant quelques heures pour des raisons de maintenance le mardi 26.10.2021 à 12:00 PM CEST
Paramétrages

Paramétrages

Aller à Demande

1. WO2020158386 - DISPOSITIF D'ESTIMATION DE DISPERSION CHROMATIQUE

Document

明 細 書

発明の名称 波長分散量推定装置

技術分野

0001  

背景技術

0002   0003   0004   0005  

先行技術文献

特許文献

0006  

発明の概要

発明が解決しようとする課題

0007   0008   0009  

課題を解決するための手段

0010   0011   0012   0013   0014   0015   0016   0017  

発明の効果

0018  

図面の簡単な説明

0019  

発明を実施するための形態

0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151  

符号の説明

0152  

請求の範囲

1   2   3   4   5   6   7   8  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25  

明 細 書

発明の名称 : 波長分散量推定装置

技術分野

[0001]
 本発明は、波長分散量推定装置に関する。

背景技術

[0002]
 波長分散は、光ファイバ通信で問題となる信号歪のうち最も主要な問題である。波長分散は、光ファイバ中を伝搬する信号光の群速度が周波数によって異なることにより生じる。波長分散による信号歪は、線形な歪であるため、波長分散量がわかっていれば、逆向きの波長分散を与えることでほぼ完全に補償可能である。この逆向きの波長分散の付与は、直接検波方式の場合には分散補償ファイバで行われるが、デジタルコヒーレント受信方式の場合には主にデジタル信号処理で行われる。
[0003]
 波長分散量が既知でない場合、何らかの手法で受信信号の波長分散量を測定したり、推定したりする必要がある。事前に伝送路の波長分散量を測定器で測定しておく手法もあるが、この手法では、オペレーションの観点ではコストを増加させることになる。これに対して、光受信装置の信号処理部が自動的に波長分散量を測定し、逆分散を付与する手法も存在する。
[0004]
 例えば、自動的に波長分散量を測定する手法として、信号帯域のうち高周波側と低周波側の特定の領域にのみパワーが集中するような特徴のあるトレーニング系列を用いる手法がある。この特徴のあるトレーニング信号を用いることにより、高周波側の領域と低周波側の領域の時間遅延を求めることができ、求めた時間遅延から波長分散量を算出する(例えば、特許文献1参照)。
[0005]
 また、分散補償量を掃引し、クロック抽出感度やPAPR(Peak to Average Power Ratio)などの指標に基づいて、ちょうど分散が補償される適切な分散補償量を自動的に検出する手法なども存在する。

先行技術文献

特許文献

[0006]
特許文献1 : 国際公開第2015/141658号

発明の概要

発明が解決しようとする課題

[0007]
 しかしながら、高周波側の領域と低周波側の領域の時間遅延に基づいて波長分散量を求める手法の場合、特定周波数にエネルギーを局在させた特徴のあるトレーニング信号が必要となる。このような特徴のあるトレーニング信号を用いると、非線形光学効果を介した歪が大きくなることがあるという問題がある。
[0008]
 また、分散補償量を掃引して適切な分散補償量を検出する手法は、掃引に長い時間を要するため高速に分散補償量を検出することができないという問題がある。
[0009]
 上記事情に鑑み、本発明は、特徴のあるトレーニング信号を用いることなく、少ない演算時間で波長分散量を算出することができる技術の提供を目的としている。

課題を解決するための手段

[0010]
 本発明の一態様は、受信信号の主信号を含む第1の信号と前記主信号に対応するイメージ信号を含み周波数領域において前記第1の信号に対して前記受信信号のボーレート分のずれがある第2の信号とを前記受信信号から生成する相関用信号生成部と、前記第1の信号と前記第2の信号の相互相関を算出する相関算出部と、前記相互相関のピークの位置に基づいて波長分散量を算出する分散量算出部と、を備える波長分散量推定装置である。
[0011]
 本発明の一態様は、上記の波長分散量推定装置であって、前記相関用信号生成部は、前記受信信号を周波数領域に変換して周波数領域受信信号を出力する周波数領域変換部と、周波数領域において前記受信信号の主信号を含む第1の区間と、前記第1の区間に含まれる主信号に対応する前記イメージ信号を含み前記第1の区間の先頭位置から前記受信信号のボーレート分離れた位置が先頭位置となる第2の区間を定め、前記周波数領域受信信号を前記第1の区間でフィルタリングして前記第1の信号を生成し、前記周波数領域受信信号を前記第2の区間でフィルタリングして前記第2の信号を生成する帯域フィルタ部と、を備える。
[0012]
 本発明の一態様は、上記の波長分散量推定装置であって、前記受信信号は、ナイキスト信号であり、前記帯域フィルタ部は、前記第1の信号、及び前記第2の信号が、前記ナイキスト信号の周波数領域における振幅スペクトルが増加、または、減少している区間の全部または一部の区間に対応する信号になるようにフィルタリングする。
[0013]
 本発明の一態様は、上記の波長分散量推定装置であって、前記受信信号は、ナイキスト信号であり、前記相関用信号生成部は、前記周波数領域受信信号に対して逆ナイキストフィルタを適用する逆ナイキストフィルタ部を備え、前記帯域フィルタ部は、前記逆ナイキストフィルタ部がフィルタリングした前記周波数領域受信信号を前記第1の区間と前記第2の区間の各々でフィルタリングして前記第1の信号と前記第2の信号を生成する。
[0014]
 本発明の一態様は、上記の波長分散量推定装置であって、前記周波数領域変換部は、予め定められる所定のフレーム長のフレームごとに前記受信信号を分割し、分割したフレームごとの前記受信信号に対して離散フーリエ変換を行って前記受信信号を周波数領域に変換するか、または、前記所定のフレーム長よりも短いフレーム長の分割フレームであって互いに重なる部分を有する分割フレームで前記受信信号を分割し、分割した前記分割フレームごとの前記受信信号に対して前記離散フーリエ変換を行って前記受信信号を周波数領域に変換し、前記分割フレームに分割している場合、前記帯域フィルタ部は、基準とする前記分割フレームに対応する前記周波数領域受信信号を前記第1の区間でフィルタリングして前記第1の信号を生成し、他の前記分割フレームに対応する前記周波数領域受信信号を前記第2の区間でフィルタリングして複数の前記第2の信号を生成し、前記相関算出部は、基準となる前記分割フレームに対応する前記第1の信号と、他の前記分割フレームに対応する複数の前記第2の信号との相互相関を算出し、前記分散量算出部は、前記相互相関の結果において、ピーク値の最大値を含む他の前記分割フレームの位置と、当該他の前記分割フレームの相互相関において前記最大値のピークが得られた位置とに基づいて波長分散量を算出する。
[0015]
 本発明の一態様は、上記の波長分散量推定装置であって、前記相関用信号生成部は、前記受信信号を2つに分岐する分岐器と、前記受信信号のボーレートの1/2の発振周波数で発振信号を出力する発振器と、前記分岐器が分岐した前記受信信号の一方と、前記発振器が出力する前記発振信号とを乗算して前記第1の信号を生成して出力する第1の乗算器と、前記分岐器が分岐した前記受信信号の一方と、前記発振器が出力する前記発振信号の複素共役とを乗算して前記第2の信号を生成して出力する第2の乗算器と、を備える。
[0016]
 本発明の一態様は、上記の波長分散量推定装置であって、前記第1の乗算器の出力に備えられる第1の低域通過フィルタと、前記第2の乗算器の出力に備えられる第2の低域通過フィルタとを、さらに備え、前記第1の低域通過フィルタは、前記第1の乗算器が出力する前記第1の信号に対して、予め定められる遮断周波数でフィルタリングすることにより前記受信信号の高周波成分を含む前記第1の信号を生成し、前記第2の低域通過フィルタは、前記第2の乗算器が出力する前記第2の信号に対して、前記遮断周波数でフィルタリングすることにより前記受信信号の低周波成分を含む前記第2の信号を生成する。
[0017]
 本発明の一態様は、上記の波長分散量推定装置であって、ボーレート推定処理部をさらに備え、前記ボーレート推定処理部は、周波数差を有する2つの相関用信号を前記受信信号から生成する相関用信号生成部と、前記2つの相関用信号の相互相関を算出する相関算出部と、前記相互相関においてピークが得られた際の前記2つの相関用信号の周波数差に基づいて前記受信信号の前記ボーレートを算出するボーレート検出部とを備える。

発明の効果

[0018]
 本発明により、特徴のあるトレーニング信号を用いることなく、少ない演算時間で波長分散量を算出することが可能になる。

図面の簡単な説明

[0019]
[図1] 第1の実施形態の波長分散量推定部を備えた光受信装置の構成を示すブロック図である。
[図2] インパルス信号の時間波形とスペクトルを示した図である。
[図3] RZ信号の時間波形とスペクトルを示した図である。
[図4] NRZ信号の時間波形とスペクトルを示した図である。
[図5] ナイキスト信号の時間波形とスペクトルを示した図である。
[図6] NRZ信号のスペクトルを示した図である。
[図7] NRZ信号のスペクトルと波長分散を与える前と与えた後のスペクトログラムを示す図である。
[図8] 第1の実施形態における相関算出部の内部構成を示すブロック図である。
[図9] 第1の実施形態における波長分散量推定部の処理の流れを示すフローチャートである。
[図10] 第1の実施形態における帯域フィルタ部が周波数領域において選定する2つの区間の一例を示す図である。
[図11] 第1の実施形態のナイキスト信号の場合に帯域フィルタ部が周波数領域において選定する2つの区間の一例を示す図である。
[図12] 第1の実施形態における波長分散量推定部の他の構成例を示すブロック図である。
[図13] 第1の実施形態における逆ナイキストフィルタ部による処理を説明する図である。
[図14] 第2の実施形態における波長分散量推定部の構成を示すブロック図である。
[図15] 第2の実施形態における分割フレームの構成を示す図である。
[図16] 第2の実施形態における波長分散量推定部の処理の流れを示すフローチャートである。
[図17] 第3の実施形態における波長分散量推定部の構成を示すブロック図である。
[図18] 第3の実施形態における相関算出部の内部構成を示すブロック図、及び相関算出部と分散量算出部との接続構成を示す図である。
[図19] 第3の実施形態における波長分散量推定部の処理の流れを示すフローチャートである。
[図20] 第3の実施形態における相関算出部の内部構成を示すブロック図である。
[図21] 第4の実施形態における波長分散量推定部の構成を示すブロック図(その1)である。
[図22] 第4の実施形態における波長分散量推定部の構成を示すブロック図(その2)である。
[図23] 第4の実施形態におけるボーレート推定処理部の内部構成を示すブロック図である。
[図24] 第4の実施形態においてボーレートを算出する処理の流れを示すフローチャートである。
[図25] 第4の実施形態におけるボーレート推定処理部の他の内部構成を示すブロック図である。

発明を実施するための形態

[0020]
(第1の実施形態)
 以下、本発明の実施形態について図面を参照して説明する。図1は、第1の実施形態の波長分散量推定部10を備える光受信装置1の構成を示すブロック図である。光受信装置1は、いわゆるデジタルコヒーレント方式で信号光を受信する光受信装置であり、LO(Local Oscillator)レーザ20、コヒーレント光電変換器21、ADC(Aanalog-to-Ditigal Converter)22-1~22-4、虚数単位乗算部23-1,23-2、及び波長分散量推定部10を備える。
[0021]
 LOレーザ20は、局部発振レーザであり、信号光の周波数と位相が一致した局部発振光を出力する。コヒーレント光電変換器21は、LOレーザ20が出力する局部発振光を用いて、受光した信号光に対して光ホモダイン・コヒーレント検波を行って、信号光を4レーンのベースバンドの電気信号に変換する。
[0022]
 4個のADC22-1~22-4の各々は、コヒーレント光電変換器21が出力する4レーンの電気信号を取り込み、デジタル信号に変換する。4レーンのデジタル信号は、信号光の水平偏波の同相及び直交成分、並びに、垂直偏波の同相及び直交成分である。虚数単位乗算部23-1,23-2は、それぞれ直交成分を出力するADC22-2,22-4に接続されている。
[0023]
 虚数単位乗算部23-1は、ADC22-2が出力する直交成分の位相を複素平面上で90度進めて出力する。ADC22-1の出力と、虚数単位乗算部23-1の出力が合成されて、ADC22-1が出力する同相成分を実数成分とし、虚数単位乗算部23-1が出力する直交成分を虚数成分とする水平偏波の受信信号が生成されることになる。
[0024]
 虚数単位乗算部23-2は、ADC22-4が出力する直交成分の位相を複素平面上で90度進めて出力する。ADC22-3の出力と、虚数単位乗算部23-2の出力が合成されて、ADC22-3が出力する同相成分を実数成分とし、虚数単位乗算部23-2が出力する直交成分を虚数成分とする垂直偏波の受信信号が生成されることになる。
[0025]
 複素数で表される水平偏波の受信信号及び垂直偏波の受信信号は、光受信装置1の後段のデジタル信号の処理ブロックに供給される。波長分散量推定部10は、垂直偏波の受信信号を入力信号として取り込み、エイリアス相関法により、波長分散量の推定を行う。ここで、エイリアス相関法とは、受信信号の周波数領域における主信号と、主信号に対応するイメージ信号の間の時間的な相関を利用して波長分散量を推定する手法である。
[0026]
 ここで、波長分散量推定部10が取り込むデジタルの入力信号について説明する。デジタルデータ伝送では、伝送路で接続された光送信装置と光受信装置1が、時間的に離散化されたシンボルの系列を送受信する。このシンボル系列が、伝送路において伝送される際、シンボル系列に対応する信号の波形は、離散値ではなく連続値になる。そのため、離散値であるシンボル列は、例えば、RZ(Return-to-Zero)、NRZ(Non Return-to-Zero)、Nyquist(以下、「ナイキスト」という。)などの波形整形方式により連続値の信号に変換される。
[0027]
 図2から図5は、それぞれインパルス、RZ、NRZ、ナイキストの波形整形方式ごとの時間波形と、周波数領域におけるスペクトル波形を示した図である。図2から図5の(a)の時間波形の図において、横軸は時間であり、縦軸は、電力値である。また、図2から図5の(b)のスペクトル波形の図において、横軸は周波数であり、縦軸は、電力値、すなわちパワースペクトルである。なお、図2から図5の(b)の図の縦軸は、対数表記ではなくリニア表記である。また、周波数の単位は、ボーレートを表す「baud」であり、一般的な周波数を表す単位である「Hz」との関係は、例えば、1000baud=1000Hzという関係である。
[0028]
 図2(a)は、インパルス波形の信号(以下、「インパルス信号」という。)の時間波形を示した図である。インパルス信号は、実際に利用されることはないが、その波形は、最も基本となる波形である。インパルス信号の波形は、時間軸上のシンボル位置にデータを示す短パルスが配置された波形となる。インパルス信号のスペクトル波形は、図2(b)に示すように、キャリア周波数fcの付近に矩形の主信号が存在し、主信号を平行移動させたイメージ信号が、周波数Bごと、すなわち、±B,±2B,…の位置に存在する。
ここで、「B」は、インパルス信号のシンボルレート、すなわちボーレートである。理想的なインパルス信号であればイメージ信号は無限個存在することになる。
[0029]
 図3、図4、図5の(a)及び(b)の図は、それぞれRZ波形の信号、NRZ波形の信号、ナイキスト波形の信号(以下、それぞれ「RZ信号」、「NRZ信号」、「ナイキスト信号」という。)の時間波形と、周波数領域におけるスペクトル波形を示した図である。RZ信号、NRZ信号、ナイキスト信号のボーレートは、いずれも「B」である。RZ、NRZ、ナイキストなどの実際に用いられる波形整形は、インパルス信号のスペクトルを、キャリア周波数fcを中心周波数としたバンドパスフィルタでフィルタリングすることにより得られる波形であると考えることができる。
[0030]
 バンドパスフィルタの形状は、RZ信号を生成する場合、図3(b)に示すように±2Bの位置にNull点を有するレイズド・コサイン・フィルタの形状になる。また、NRZ信号を生成する場合、図4(b)に示すように±Bの位置にNull点を有するレイズド・コサイン・フィルタの形状になる。また、ナイキスト信号を生成する場合、図5(b)に示すように矩形フィルタの遷移部分(±B/2周辺)のみをレイズド・コサイン・フィルタとする形状になる。
[0031]
 図3から図5の(b)の図より、RZ、NRZ、ナイキストのいずれの波形整形であっても、主信号のコピーであるイメージ信号が、主信号とは異なる周波数領域に存在していることがわかる。
[0032]
 例えば、図6は、NRZ信号の周波数領域におけるスペクトル波形を詳細に示した図である。図6に示すように、主信号、+1次イメージ信号、及び-1次イメージ信号の各々は、USB(Upper Side Band)、LSB(Lower Side Band)の2つの側波帯を含んでいる。
USB、すなわち上側波帯の主信号に対応する+1次イメージ信号が、周波数+Bから+3/2Bの範囲に現れ、-1次イメージ信号が、周波数-1/2Bから-Bの範囲に現れる。また、LSB、すなわち下側波帯の主信号に対応する+1次イメージ信号が、周波数+1/2Bから+Bの範囲に現れ、-1次イメージ信号が、周波数-Bから-3/2Bの範囲に現れる。
[0033]
(エイリアス相関法について)
 波長分散は、信号の周波数成分ごとに異なる遅延が発生することによって生じる。図7は、NRZのスペクトル波形と、NRZ信号に波長分散を与える前と与えた後のNRZ信号のスペクトログラムとを示した図である。スペクトログラムは、例えば、横軸を周波数軸とし、縦軸を時間軸として信号強度をプロットしたグラフである。図7(a)の下の図は、波長分散を与える前のスペクトログラムを示した図であり、図7(b)の下の図は、波長分散を与えた後のスペクトログラムを示した図である。
[0034]
 図7(a),(b)と、図6とを対比すると、α の部分は、主信号の下側波帯の部分になり、β の部分は、主信号の上側波帯の部分になる。また、α +1の部分は、主信号の下側波帯の部分であるα に対応する+1次イメージ信号になり、β -1の部分は、主信号の上側波帯の部分であるβ 対応する-1次イメージ信号になる。すなわち、主信号α に対応するイメージ信号α +1は、主信号β の高周波側に隣接して発生する。また、主信号β に対応するイメージ信号β -1は、主信号α の低周波側に隣接して発生する。
[0035]
 α とα +1は、NRZの波形を生成するバンドパスフィルタの影響で、振幅スペクトルは異なるものの、時間波形は非常に類似している。また、β とβ -1も振幅スペクトルは異なるものの、時間波形は非常に類似している。また、NRZ信号全体の下側波帯と上側波帯は、どちらもβαの順で並んでいる。そのため、下側波帯と上側波帯の時間波形は、非常に類似している波形になっていると考えることができる。
[0036]
 波長分散が生じると、矩形であったスペクトログラムは、周波数の値に応じた遅延が発生する。そのため、図7(b)の下の図に示すように、スペクトログラムは、ひし形に変形する。下側波帯β -1,α と、上側波帯β ,α +1を比較すると、周波数の値に応じた相対的な遅延が発生しており、その遅延量は、下側波帯が、上側波帯よりも大きく、各々が同様のひし形に変形していることがわかる。
[0037]
 すなわち、下側波帯と上側波帯は、非常に類似している時間波形であり、両方とも波長分散の影響を同様に受ける。そのため、図7(b)の下の図に示すように、波長分散量に応じた相対的な遅延を受けることになる。したがって、受信信号の下側波帯と上側波帯を抽出し、下側波帯と上側波帯の相互の時間相関を求めて遅延量を算出することにより、受信信号の波長分散量を測定することができることになる。
[0038]
(第1の実施形態の波長分散量推定部の構成)
 図1に戻り、波長分散量推定部10は、相関用信号生成部11、相関算出部12、及び分散量算出部13を備える。相関用信号生成部11は、垂直偏波の受信信号を入力信号として取り込み、主信号を含む第1の信号と、当該主信号に対応するイメージ信号を含み周波数領域において第1の信号に対して受信信号のボーレートである「B」のずれがある第2の信号とを生成する。
[0039]
 相関用信号生成部11は、周波数領域変換部111と帯域フィルタ部113を備える。
周波数領域変換部111は、取り込んだ入力信号を、例えば、離散フーリエ変換によって周波数領域に変換する。ここでは、周波数領域変換部111は、例えば、離散フーリエ変換を高速に演算する、高速フーリエ変換(以下、「FFT」(Fast Fourier Transform)という。)を行う。
[0040]
 帯域フィルタ部113は、フィルタリングによって周波数変換された受信信号から、上述した第1の信号と第2の信号を生成するため、周波数領域において2つの区間を選定する。帯域フィルタ部113は、2つの区間を選定する際、いずれか一方の区間が少なくとも主信号の全部または一部を含むように選定を行う。また、帯域フィルタ部113は、他方の区間が、一方の区間に含まれる主信号の部分に対応するイメージ信号を含むように選定を行う。また、帯域フィルタ部113は、2つの区間の先頭の位置が、受信信号のボーレートB分離れるように選定を行う。
[0041]
 相関算出部12は、第1の信号と第2の信号の相互相関を算出する。相関算出部12は、例えば、図8に示すように、複素共役演算部120、乗算器121、時間領域変換部122、及び絶対値演算部123を備える。
[0042]
 複素共役演算部120は、帯域フィルタ部113が選定した一方の区間でフィルタリングして生成した第1の信号を取り込み、取り込んだ第1の信号の複素共役を算出して出力する。乗算器121は、帯域フィルタ部113が他方の区間でフィルタリングして生成した第2の信号と、複素共役演算部120が出力する第1の信号の複素共役とを乗算して出力する。時間領域変換部122は、乗算器121が出力する信号を、例えば、逆離散フーリエ変換によって時間領域に変換する。ここでは、時間領域変換部122は、例えば、逆離散フーリエ変換を高速に演算する、逆高速フーリエ変換(以下、「IFFT」(Inverse Fast Fourier Transform)という。)を行う。
[0043]
 絶対値演算部123は、時間領域変換部122が出力する値の絶対値を出力する。絶対値演算部123が出力する絶対値の値が、第1の信号と第2の信号の相互相関を示すことになる。分散量算出部13は、相関算出部12が算出した相互相関の結果に含まれるピークの位置に基づいて波長分散量を算出する。
[0044]
(第1の実施形態の波長分散量推定部による処理)
 次に、図9及び図10を参照しつつ、第1の実施形態の波長分散量推定部10による処理について説明する。図9は、波長分散量推定部10による処理の流れを示すフローチャートである。
[0045]
 図9に示す処理が開始される前に、帯域フィルタ部113は、図10に示すように、上述した2つの区間として、例えば、高周波帯域の区間(以下、「高周波帯域区間130」という。)と低周波帯域の区間(以下、「低周波帯域区間131」という。)の2つの区間を予め選定する。帯域フィルタ部113が、高周波帯域区間130と低周波帯域区間131を選定する際の条件として、以下の2つの条件が予め定められる。
[0046]
 第1の選定条件は、図10に示すように、低周波帯域区間131の最低周波数値、すなわち先頭の位置が、高周波帯域区間130の先頭の位置から受信信号のボーレートB分離れていることである。
[0047]
 第2の選定条件は、高周波帯域区間130でフィルタリングすることにより得られる信号と、低周波帯域区間131でフィルタリングすることにより得られる信号の少なくとも一部が重なり合うこと、すなわち、2つの信号の積分値がゼロにならないことである。
[0048]
 例えば、帯域フィルタ部113は、第1及び第2の選定条件に基づいて、以下のような高周波帯域区間130と低周波帯域区間131を選定する。すなわち、帯域フィルタ部113は、高周波帯域区間130として、主信号の上側波帯の全部または一部を含む区間を選定する。このとき、第1の選定条件を満たす位置に低周波帯域区間131を選定すると、低周波帯域区間131は、高周波帯域区間130に含まれる主信号の部分に対応する-1次イメージ信号を含むことになる。ただし、低周波帯域区間131の長さは、高周波帯域区間130の長さと同程度である必要がある。これにより、高周波帯域区間130に対応する信号と、低周波帯域区間131に対応する信号は、一部が重なり合うことになり、第2の選定条件を満たすことになる。
[0049]
 また、帯域フィルタ部113は、上記の選定とは逆に、低周波帯域区間131として、主信号の下側波帯の全部または一部を含む区間を選定してもよい。このとき、第1の選定条件を満たす位置に高周波帯域区間130を選定すると、高周波帯域区間130は、低周波帯域区間131に含まれる主信号の部分に対応する+1次イメージ信号を含むことになる。ただし、高周波帯域区間130の区間の長さは、低周波帯域区間131の長さと同程度である必要がある。これにより、低周波帯域区間131に対応する信号と、高周波帯域区間130に対応する信号は、一部が重なり合うことになり、第2の選定条件を満たすことになる。
[0050]
 さらに、帯域フィルタ部113は、図10に示すように、高周波帯域区間130として、主信号の上側波帯の全部または一部、及び主信号の上側波帯に高周波側で隣接する周波数+Bまでの+1次イメージ信号の全部または一部を含む区間を選定してもよい。このとき、第1の選定条件を満たす位置に低周波帯域区間131を選定すると、低周波帯域区間131は、高周波帯域区間130に含まれる上側波帯の主信号の部分に対応する-1次イメージ信号、及び+1次イメージ信号の部分に対応する下側波帯の主信号を含むことになる。ただし、低周波帯域区間131の区間の長さが、高周波帯域区間130の長さと同程度である必要がある。これにより、高周波帯域区間130に対応する信号と、低周波帯域区間131に対応する信号は、一部が重なり合うことになり、第2の選定条件を満たすことになる。
[0051]
 図9に示すように、相関用信号生成部11の周波数領域変換部111は、受信信号の垂直偏波を入力信号として取り込むと、取り込んだ入力信号をFFTにより周波数領域に変換する(ステップS1)。
[0052]
 帯域フィルタ部113は、予め選定した高周波帯域区間130でフィルタリングすることにより高周波成分信号を生成する。帯域フィルタ部113は、予め選定した低周波帯域区間131でフィルタリングすることにより低周波成分信号を生成する(ステップS2)。
[0053]
 低周波帯域区間131が、少なくとも主信号の一部を含んでいる場合、低周波成分信号が上述した第1の信号に対応し、高周波成分信号が第2の信号に対応する。逆に、高周波帯域区間130が、少なくとも主信号の一部を含んでいる場合、高周波成分信号が第1の信号に対応し、低周波成分信号が第2の信号に対応する。高周波帯域区間130と低周波帯域区間131の両方が、少なくとも主信号の一部を含んでいる場合、高周波成分信号か低周波成分信号のいずれか一方が第1の信号に対応し、他方が第2の信号に対応する。ここでは、低周波成分信号が第1の信号に対応し、高周波成分信号が第2の信号に対応するとして以下の説明を行う。
[0054]
 相関算出部12の複素共役演算部120は、帯域フィルタ部113が出力する低周波成分信号の複素共役を算出して出力する。乗算器121は、帯域フィルタ部113が出力する高周波成分信号と、低周波成分信号の複素共役とを乗算して出力する。時間領域変換部122は、乗算器121が出力する信号を、IFFTにより時間領域の信号に変換する。
絶対値演算部123は、時間領域変換部122が出力する値の絶対値を出力する。絶対値演算部123が出力する絶対値の値が、低周波成分信号と高周波成分信号の相互相関を表すことになる(ステップS3)。
[0055]
 高周波成分信号と低周波成分信号に、類似する波形が含まれていると、相互相関において、その波形が一致した位置で、ピークが現れることになる。波長分散による遅延が生じていない場合、高周波成分信号の先頭位置と、低周波成分信号の先頭位置とが一致した場合にピークが現れることになる。これに対して、波長分散による遅延が生じている場合、高周波成分信号の先頭位置と、低周波成分信号の先頭位置とが遅延に相当する長さ離れた位置でピークが現れることになる。
[0056]
 ピーク位置をτ[ps]とし、高周波成分と低周波成分の波長差をΔ[nm]とする。
上述したボーレートB[baud]は、低周波帯域区間131と高周波帯域区間130の先頭位置の周波数差を示しているが、これを波長差に変換すると波長差Δ[nm]となる。分散量算出部13は、波長分散量D[ps/nm]を次式(1)により算出する(ステップS4)。
[0057]
D=τ/Δ・・・(1)
[0058]
 上記の第1の実施形態の構成において、相関用信号生成部11の周波数領域変換部111は、取り込んだ受信信号を入力信号とし、入力信号を周波数領域に変換して周波数領域受信信号を出力する。帯域フィルタ部113は、周波数領域において入力信号の主信号を含む第1の区間と、第1の区間に含まれる主信号に対応するイメージ信号を含み第1の区間の先頭位置から入力信号のボーレート分離れた位置が先頭位置となる第2の区間を定め、周波数領域受信信号を第1の区間でフィルタリングして第1の信号を生成し、周波数領域受信信号を第2の区間でフィルタリングして第2の信号を生成する。相関算出部12は、第1の信号と第2の信号の相互相関を算出する。分散量算出部13は、相互相関のピークの位置に基づいて波長分散量を算出する。これにより、相互相関の結果においてピークの位置が波長分散によって生じた遅延量を示すことになり、ピークの位置から波長分散量を算出することが可能になる。第1の実施形態による構成は、トレーニング信号を用いるトレーニング方式に対して、トレーニング信号を用いずに波長分散量を算出するブラインド方式と呼ばれる方式である。また、第1の実施形態による構成は、分散補償量を掃引して波長分散量を検出するような長い時間を要するパラメータスキャン方式でもない。したがって、特徴のあるトレーニング信号を用いることなく、少ない演算時間で波長分散量を算出することができる。
[0059]
 なお、上記の第1の実施形態において、高周波帯域区間130、または低周波帯域区間131のいずれかが、主信号の一部を含んでいればよいとしているが、主信号の部分をできるだけ多く含むようにする方が望ましい。2つの信号において重なり合う部分が多いほどより明瞭なピークが得られるからである。
[0060]
 また、さらに、高周波帯域区間130及び低周波帯域区間131の区間として、いずれ一方が主信号を含むような狭い区間ではなく、図10に示すように、主信号と、当該主信号に隣接するイメージ信号を含む広い区間を選定するのがより望ましい。このようにする方が、2つの信号において、さらに重なり合う部分が多くすることができ、相互相関の結果においてより明瞭なピークが得られることになる。
[0061]
 なお、上記の第1の実施形態において、帯域フィルタ部113が選定する高周波帯域区間130と低周波帯域区間131の区間は、図10に示すように離れていてもよいし、連続していてもよい。また、高周波帯域区間130の区間の一部と、低周波帯域区間131の区間が重複していてもよい。また、高周波帯域区間130と低周波帯域区間131の区間の区間長は、同一であることが望ましいが、同一でなくてもよい。ただし、上述した相関算出部12の時間領域変換部122がIFFTを行う場合、高周波帯域区間130と低周波帯域区間131の区間長は、同一にする必要がある。
[0062]
 また、上記の第1の実施形態の構成では、相関算出部12は、図8に示す構成を備えており、周波数領域で掛け算を行って時間領域に戻すことにより相互相関を算出している。
しかしながら、本発明の構成は、当該実施の形態に限られない。例えば、第1の信号と第2の信号をIFFTにより時間領域に変換して、時間領域の畳み込みによって相互相関を算出するようにしてもよい。
[0063]
 また、上記の第1の実施形態において、図7に示したスペクトログラムは、横軸を周波数軸、縦軸を時間軸としているが、横軸を時間軸、縦軸を周波数軸として表すこともある。また、図7は模式図であるが、ウェーブレット変換を用いることで、実際の信号データから同様のスペクトログラムを生成することもできる。
[0064]
 また、上記の第1の実施形態において、帯域フィルタ部113は、第1及び第2の選定条件を満たすように、高周波帯域区間130と低周波帯域区間131の区間を選定している。RZ信号及びNRZ信号の場合、上述した第1及び第2の選定条件を満たすことにより、相関算出部12が算出する相互相関によりピークが得られることになる。これに対して、ナイキスト信号の場合、イメージ信号の大部分がバンドパスフィルタによって除去されている。そのため、相互相関の結果においてノイズが多くなり良好なピークが得られないことになる。
[0065]
 図11は、ナイキスト信号のスペクトル波形を示した図であり、ロールオフ遷移点140,141は図11に示す位置になる。帯域フィルタ部113は、ナイキスト信号の場合、例えば、高周波帯域区間130として、少なくとも高周波側のロールオフ遷移点140からNull点である+Bまでの区間の全部または一部を選定する。言い換えると、帯域フィルタ部113は、高周波帯域区間130として、下側波帯の主信号に対応する+1次イメージ信号の部分であって振幅スペクトルが減少している区間を選定する。このとき、第1の選定条件が満たすように低周波帯域区間131を選定すると、低周波帯域区間131は、高周波帯域区間130に含まれる+1次イメージ信号の部分に対応する下側波帯の主信号を含むことになる。ただし、低周波帯域区間131の長さは、高周波帯域区間130の長さと同一、または、同程度である必要がある。
[0066]
 また、帯域フィルタ部113は、上記とは逆に、低周波帯域区間131の区間として、少なくとも低周波側のNull点である-Bからロールオフ遷移点141までの区間の全部または一部を選定する。言い換えると、帯域フィルタ部113は、低周波帯域区間131として、上側波帯の主信号に対応する-1次イメージ信号の部分であって振幅スペクトルが増加している区間を選定する。このとき、第1の選定条件が満たすように高周波帯域区間130を選定すると、高周波帯域区間130は、低周波帯域区間に含まれる-1次イメージ信号の部分に対応する上側波帯の主信号を含むことになる。ただし、高周波帯域区間130の長さは、低周波帯域区間131の長さと同一、または、同程度である必要がある。
[0067]
 さらに、帯域フィルタ部113は、図11に示すように、高周波帯域区間130として、振幅スペクトルが減少している区間の全部、すなわち上側波帯の主信号と+1次イメージ信号に跨った区間を選定してもよいし、上側波帯の主信号と+1次イメージ信号に跨った区間の一部を選定してもよい。このとき、第1の選定条件が満たすように低周波帯域区間131を選定すると、低周波帯域区間131は、高周波帯域区間130に含まれている主信号と+1次イメージ信号に対応する信号が含まれる振幅スペクトルが増加している部分を含む区間になる。ただし、低周波帯域区間131の長さは、高周波帯域区間130の長さと同一、または、同程度である必要がある。
[0068]
 これにより、ナイキスト信号の場合においても、高周波帯域区間130に対応する信号と、低周波帯域区間131に対応する信号は、一部が重なり合うことになり、第2の選定条件を満たすことになる。また、さらに、イメージ信号が存在する部分に絞って区間を選定しているため、ノイズを低減することができ、相互相関においてより明瞭なピークが得られることになる。
[0069]
 なお、帯域フィルタ部113は、ロールオフ遷移点140,141の付近に区間を絞った高周波帯域区間130と低周波帯域区間131を直接選定するのではなく、以下のように2段階に分けてフィルタリングするようにしてもよい。すなわち、帯域フィルタ部113は、最初に、第2の選定条件を満たす図10のような高周波帯域区間130と低周波帯域区間131を選定し、選定した2つの区間でフィルタリングすることにより得られる信号に対して、更に、図11に示すようなロールオフ遷移点140,141の付近に絞ったバンドパスフィルタを適用して、低周波成分信号と高周波成分信号を生成するようにしてもよい。
[0070]
 なお、上述したナイキスト信号用の帯域フィルタ部113を構成しておくことで、RZ信号やNRZ信号の場合にも相関算出部12の相互相関によってピークが得られる。そのため、実装上は、ナイキスト信号用の帯域フィルタ部113を構成しておく方が、ナイキスト信号、RZ信号、NRZ信号のいずれにも適用することができるという利点が得られる。
[0071]
(第1の実施形態の他の構成例)
 図12は、第1の実施形態の他の構成例による波長分散量推定部10aの構成を示すブロック図である。図1に示した波長分散量推定部10と、同一の構成については、同一の符号を付し、以下、異なる構成について説明する。
[0072]
 波長分散量推定部10aは、相関用信号生成部11a、相関算出部12、及び分散量算出部13を備える。相関用信号生成部11aは、周波数領域変換部111、逆ナイキストフィルタ部112、及び帯域フィルタ部113を備える。
[0073]
 逆ナイキストフィルタ部112は、図13(b)に示す形状のフィルタを備えている。
図13において、図13(a)の図は、ナイキスト信号の波形であり、この波形は、インパルス信号からナイキスト信号を生成するバンドパスフィルタの形状に一致している。
[0074]
 図13(b)に示す形状のフィルタは、インパルス信号からナイキスト信号を生成するバンドパスフィルタの逆特性を有する逆ナイキスト伝達関数によって示される形状を有するフィルタである。以下、図13(b)に示す形状のフィルタを逆ナイキストフィルタという。逆ナイキストフィルタを適用することにより、インパルス信号からナイキスト信号を生成するバンドパスフィルタによる抑圧をキャンセルすることができる。つまり、逆ナイキストフィルタ部112は、例えば、図13(a)に示すナイキスト信号を入力信号として取り込むと、逆ナイキストフィルタを適用して、図13(c)に示すような抑圧されたイメージ信号の振幅スペクトルを増幅した出力信号を出力することになる。
[0075]
 これにより、イメージ信号の振幅スペクトルを増加させることができるため、相関算出部12による相互相関によって明瞭なピークが得られることになる。ただし、単にイメージ信号の振幅スペクトルを増幅するとノイズが増加してしまうため、ノイズエンハンスを抑制するように逆ナイキストフィルタ部112のフィルタの形状を予め決める必要がある。
[0076]
(第2の実施形態)
 図14は、第2の実施形態の波長分散量推定部10bの構成を示すブロック図である。
第1の実施形態と、同一の構成については、同一の符号を付し、以下、異なる構成について説明する。
[0077]
 第1の実施形態の波長分散量推定部10,10aでは、帯域フィルタ部113が、単一のFFTフレームに対して、高周波帯域区間130及び低周波帯域区間131を選定して、高周波成分信号と低周波成分信号を生成していた。そして、相関算出部12が、高周波成分信号と低周波成分信号のいずれか一方の複素共役と、他方の信号とを要素ごとに乗算し、IFFTで時間領域に変換して相互相関を算出していた。これにより、算出した相互相関では、一点にピークが現れるため、分散量算出部13は、このピークの位置を検出して波長分散量を算出していた。
[0078]
 ところで、長さNの時間領域フレームのk番目の要素にピークが存在していた場合、+kの位置が波長分散量を示している場合と、-(N-k)の位置が波長分散量を示している場合の2通りが考えられるという問題(いわゆるアンラップ問題)がある。したがって、単一のFFTフレームを用いる場合、2通りのどちらが正しい波長分散量を示しているかを別の手段によって判別する必要がある。これに対して、以下に説明する第2の実施形態の波長分散量推定部10bでは、別の手段を用いることなく、ピークの位置から正しい波長分散量を算出する。
[0079]
 波長分散量推定部10bは、相関用信号生成部11b、相関算出部12b、及び分散量算出部13bを備える。相関用信号生成部11bは、ブロック分割部110、周波数領域変換部111-1,111-2、及び帯域フィルタ部113-1,113-2を備える。
[0080]
 ブロック分割部110は、例えば、図15に示すように、取り込んだ入力信号を隣接するブロック間で50%のオーバーラップが生じるように複数の分割ブロックに分割する。
分割フレームの各々の長さは同一の時間長であり、第1の実施形態の波長分散量推定部10,10aにおけるFFTフレームの長さが、例えば、2048である場合、第2の実施形態では、例えば、1つの分割ブロックの長さを1/8の長さの256とする。
[0081]
 ブロック分割部110は、生成した複数の分割ブロックの中からいずれか1つの分割ブロックを基準分割ブロックとして選択する。ブロック分割部110は、選択した基準分割ブロックを周波数領域変換部111-1に出力し、基準分割ブロック以外の分割ブロックの各々を周波数領域変換部111-2に出力する。
[0082]
 周波数領域変換部111-1は、基準分割ブロックに含まれる信号を周波数領域に変換する。周波数領域変換部111-2は、基準分割ブロック以外の分割ブロックの各々に含まれる信号を周波数領域に変換する。
[0083]
 帯域フィルタ部113-1は、上述した第1及び第2の選定条件にしたがって選定した低周波帯域区間131で基準分割ブロックに対応する周波数変換された信号をフィルタリングして低周波成分信号を生成する。
[0084]
 帯域フィルタ部113-2は、上述した第1及び第2の選定条件にしたがって選定した高周波帯域区間130で基準分割ブロック以外の分割ブロックの各々に対応する周波数変換された信号をフィルタリングして複数の高周波成分信号を生成する。
[0085]
 相関算出部12bは、帯域フィルタ部113-1が出力する低周波成分信号と、帯域フィルタ部113-2が出力する複数の高周波成分信号の各々との相互相関を算出する。分散量算出部13bは、相関算出部12bが出力する複数の相互相関の結果から、ピークの値の最大値を検出する。分散量算出部13bは、検出した最大値に対応する分割フレームの位置と、相互相関において最大値のピークが得られた位置とに基づいて波長分散量を算出する。
[0086]
(第2の実施形態の波長分散量推定部による処理)
 次に、図16を参照しつつ、第2の実施形態の波長分散量推定部10bの処理の流れについて説明する。以下、ブロック分割部110が出力する各々の分割ブロックを図15に示すように、分割ブロック#0,#1,#-1,…として表す。
[0087]
 また、図16に示す処理が開始される前に、帯域フィルタ部113-1は、予め低周波帯域区間131を選定し、帯域フィルタ部113-2は、予め高周波帯域区間130を選定しているものとする。
[0088]
 ブロック分割部110は、取り込んだ入力信号を隣接するブロック間で50%のオーバーラップが生じるように複数の分割ブロック#0,#1,#-1,…に分割する。ブロック分割部110は、分割ブロック#0,#1,#-1,…の中から、例えば、分割ブロック#0を基準分割ブロックとして選択する。ブロック分割部110は、基準分割ブロックを周波数領域変換部111-1に出力し、基準分割ブロック以外の分割ブロック#1,#-1,…を周波数領域変換部111-2に出力する(ステップSb1)。
[0089]
 周波数領域変換部111-1は、基準ブロックに含まれる信号を、例えば、FFTにより周波数領域に変換する(ステップSb2)。帯域フィルタ部113-1は、予め選定した低周波帯域区間131で基準ブロックに対応する周波数領域に変換された信号をフィルタリングして低周波成分信号を生成する。帯域フィルタ部113-1は、生成した低周波成分信号を相関算出部12bに出力する(ステップSb3)。
[0090]
 一方、周波数領域変換部111-2は、ブロック分割部110が出力する分割ブロック#1,#-1,…のいずれか1つを選択する。ここでは、最初に、周波数領域変換部111-2は、分割ブロック#1を選択したとする。周波数領域変換部111-2は、選択した分割ブロック#1に含まれる信号を、例えば、FFTにより周波数領域に変換する(ステップSb10)。帯域フィルタ部113-2は、予め選定した高周波帯域区間130で分割ブロック#1に対応する周波数領域に変換された信号をフィルタリングして高周波成分信号を生成する。帯域フィルタ部113-2は、生成した高周波成分信号を相関算出部12bに出力する(ステップSb11)。周波数領域変換部111-2、及び帯域フィルタ部113-2は、全ての分割ブロック#1,#-1,…について、ステップSb10とステップSb11の処理を繰り返し行う(ループL1s~L1e)。
[0091]
 相関算出部12bは、帯域フィルタ部113-1が出力する低周波成分信号と、帯域フィルタ部113-2が出力する複数の高周波成分信号の各々との相互相関を算出する(ステップSb15)。
[0092]
 分散量算出部13bは、相関算出部12bが出力する複数の相互相関の結果の各々から、分割ブロック#1,#-1,…ごとに、ピーク値p(n)と、ピーク位置p_loc(n)とを検出する。ここで、「n」は、分割ブロックに付与されている符号#1,#-1,…から記号「#」を除いた数字、例えば、「1」,「-1」,…の任意の1つを表す変数である。
[0093]
 分散量算出部13bは、複数のピーク値p(n)から最大値を検出する。ここで、ピーク値の最大値が得られる「n」が「N」であるとする。分散量算出部13bは、高周波成分信号と低周波成分信号の遅延量τを次式(2)に基づいて算出する。
[0094]
τ=len×N+p_loc(N)・・・(2)
[0095]
 なお、式(2)において「len」は、1つの分割フレームの長さである。分散量算出部13bは、算出したτを式(1)に代入して波長分散量D[ps/nm]を算出する(ステップSb16)。
[0096]
 上記の第2の実施形態の構成により、入力信号を隣接するブロック間で50%のオーバーラップが生じるように複数の分割ブロックに分割する。分割した分割ブロックからいずれか1つの分割ブロックを基準ブロックとして選択する。選択した基準分割ブロックからフィルタリングにより低周波成分信号を生成し、基準分割ブロック以外の分割ブロックの各々からフィルタリングにより複数の高周波成分信号を生成する。生成した低周波成分信号と、生成した複数の高周波成分信号の各々との相互相関を算出し、算出した相互相関に含まれるピーク値の中から最大値を検出し、検出したピーク値の最大値に対応する分割ブロックの位置と、ピーク値の最大値の相互相関の結果における位置とに基づいて低周波成分信号と、高周波成分信号の遅延量τを算出する。
[0097]
 そのため、ピーク値の最大値が得られた分割ブロックの位置と、相互相関における当該ピークの位置という2つの位置を示す情報から遅延量τを一意に算出することができるようになる。ただし、第2の実施形態の構成であっても、例えば、図15に示す両端の分割ブロック#3,#-3の場合には、アンラップ問題は残ることになるが、多くの分割ブロックにおいて正確に遅延量τを算出することができる。
[0098]
 また、上記の第2の実施形態の構成では、第1の実施形態の構成よりも短いFFTフレームを用いるため、ハードウェア実装する際の回路規模を削減できるという効果がある。
ただし、第2の実施形態の構成では、分割ブロックの長さ、すなわちFFTフレームの長さが短いため、ピークの明瞭さが低下することになるが、信号系列の取得と相互相関の算出を複数回行い、同じnに対する複数の相互相関の平均を計算することで、ピークの明瞭さの低下を低減することができる。
[0099]
 なお、上記の第2の実施形態の構成では、帯域フィルタ部113-1が、低周波帯域区間131を選定し、帯域フィルタ部113-2が、高周波帯域区間130を選定している。これに対して、逆に、帯域フィルタ部113-1が、高周波帯域区間130を選定し、帯域フィルタ部113-2が、低周波帯域区間131を選定するようにしてもよい。
[0100]
 また、上記の第2の実施形態の構成では、1つの分割ブロックの長さを256としているが、256の長さ以外の長さにしてもよく、また、隣接する分割フレームとの重複領域も50%以外の割合にしてもよい。また、基準分割ブロックとして、分割ブロック#0以外のブロックを選択するようにしてもよい。
[0101]
(第3の実施形態)
 図17は、第3の実施形態の波長分散量推定部10cの構成を示すブロック図である。
第1の実施形態と、同一の構成については、同一の符号を付し、以下、異なる構成について説明する。波長分散量推定部10cは、相関用信号生成部11c、相関算出部12c、及び分散量算出部13cを備える。第1及び第2の実施形態の波長分散量推定部10,10a,10bは、周波数領域において相互相関用の信号を生成していた。これに対して、第3の実施形態の波長分散量推定部10cは、時間領域において相互相関用の信号を生成する。
[0102]
 相関用信号生成部11cは、分岐器115、発振器116、複素共役演算部117、乗算器118-1,118-2、及びLPF(Low Pass Filter)119-1,119-2を備える。
[0103]
 分岐器115は、受信信号の垂直偏波を入力信号として取り込み、取り込んだ入力信号を2分岐して乗算器118-1,118-2に出力する。発振器116は、例えば、NCO(Numerically Controlled Oscillator)、すなわち数値制御発振器であり、受信信号のボーレートBの1/2の発振周波数の発振信号を出力する。
[0104]
 複素共役演算部117は、発振器116が出力する発振信号を取り込み、発振信号の複素共役の信号を出力する。言い換えると、発振器116が、例えば、正回転の複素数の発振信号を出力しているとすると、乗算器118-1には、正回転の発振信号が与えられ、乗算器118-2には、負回転の発振信号が与えられることになる。
[0105]
 乗算器118-1は、分岐器115が出力する入力信号と、発振器116が出力する信号とを乗算して出力する。乗算器118-2は、分岐器115が出力する入力信号と、複素共役演算部117が出力する発振信号の複素共役の信号とを乗算して出力する。LPF119-1,119-2は、低域通過フィルタであり、乗算器118-1,118-2が出力する信号の高周波成分をフィルタリングにより除去する。
[0106]
 相関算出部12cは、LPF119-1が出力する信号と、LPF119-2が出力する信号との畳み込み演算を行い、相互相関を算出する。相関算出部12cは、例えば、図18に示すように、遅延器125-1,125-2、及び乗算器126を備える。
[0107]
 遅延器125-1は、LPF119-1に接続されており、LPF119-1が出力する信号を、遅延時間τ の時間分、遅延させて乗算器126に出力する。遅延器125-2は、LPF119-2に接続されており、LPF119-2が出力する信号を、遅延時間τ の時間分、遅延させて乗算器126に出力する。遅延器125-1,125-2の各々は、遅延時間τ ,τ を任意の遅延時間に切り替えて設定し、設定した遅延時間τ ,τ を分散量算出部13cに出力する。
[0108]
 乗算器126は、遅延器125-1が出力する信号と、遅延器125-2が出力する信号とを乗算し、乗算により算出した乗算値、すなわち相互相関値を分散量算出部13cに出力する。
[0109]
 分散量算出部13cは、相関算出部12cの乗算器126が順次出力する相互相関値の中からピークを検出し、検出したピークに対応する遅延時間τ ,τ から遅延量τを次式(3)により算出する。
[0110]
τ=τ -τ ・・・(3)
[0111]
 分散量算出部13cは、式(3)により算出した遅延量τを式(1)に代入して波長分散量Dを算出する。
[0112]
(第3の実施形態の波長分散量推定部による処理)
 次に、図19を参照しつつ、第3の実施形態の波長分散量推定部10cの処理の流れについて説明する。相関用信号生成部11cの分岐器115は、受信信号の垂直偏波を入力信号として取り込み、取り込んだ入力信号を2分岐して乗算器118-1,118-2に出力する(ステップSc1)。
[0113]
 乗算器118-1は、分岐器115が出力する一方の入力信号と、発振器116が出力する入力信号のボーレートBの1/2の発振周波数の発振信号とを乗算して出力する。乗算器118-2は、分岐器115が出力する他方の入力信号と、複素共役演算部117が出力する入力信号のボーレートBの1/2の発振周波数の発振信号の複素共役の信号とを乗算して出力する(ステップSc2)。すなわち、乗算器118-1,118-2は、入力信号と、入力信号のボーレートBの1/2の発振周波数の発振信号とをミキシングし、乗算器118-1は、1/2Bだけ周波数が増加した入力信号を出力し、乗算器118-2は、1/2Bだけ周波数が減少した入力信号を出力する。
[0114]
 LPF119-1,119-2は、乗算器118-1,118-2が出力する信号の高周波成分をフィルタリングにより除去する(ステップSc3)。LPF119-1は、1/2Bだけ周波数が増加した入力信号の正の周波数領域での高周波成分を除去するため、入力信号より1/2Bだけ周波数が増加した低周波成分信号を出力する。これに対して、LPF119-2は、1/2Bだけ周波数が減少した入力信号の負の周波数領域での高周波成分を除去するため、入力信号より1/2Bだけ周波数が減少した高周波成分信号を出力する。これにより、低周波成分信号と、高周波成分信号との周波数差は、ボーレートに等しいBになる。
[0115]
 相関算出部12cは、LPF119-1が出力する低周波成分信号と、LPF119-2が出力する高周波成分信号と畳み込み演算を行い、低周波成分信号と高周波成分信号の相互相関を算出する(ステップSc4)。具体的には、相関算出部12cにおいて、遅延器125-1が、LPF119-1が出力する低周波成分信号に任意に切り替えて設定する遅延時間τ の遅延を与えて乗算器126に出力する。遅延器125-1は、新たな遅延時間τ を設定すると、設定した遅延時間τ を分散量算出部13cに出力する。
[0116]
 遅延器125-2は、LPF119-2が出力する高周波成分信号に任意に切り替えて設定する遅延時間τ の遅延を与えて乗算器126に出力する。遅延器125-2は、新たな遅延時間τ を設定すると、設定した遅延時間τ を分散量算出部13cに出力する。
[0117]
 なお、相関算出部12cにおいて、1つではなく、2つの遅延器125-1,125-2を用いて、低周波成分信号と高周波成分信号の各々に遅延時間を与える理由は、正の波長分散と、負の波長分散の両方を検出できるようにするためである。
[0118]
 乗算器126は、遅延器125-1,125-2が出力する2つの信号を乗算し、乗算により算出した乗算値、すなわち相互相関値を分散量算出部13cに出力する。分散量算出部13cは、相関算出部12cの乗算器126が順次出力する相互相関値の中からピークを検出し、検出したピークに対応する遅延時間τ ,τ から遅延量τを式(3)により算出する。分散量算出部13cは、式(3)により算出した遅延量τを式(1)に代入して波長分散量Dを算出する(ステップSc5)。
[0119]
 上記の第3の実施形態の構成において、相関用信号生成部11cの分岐器115は、受信信号を入力信号として取り込み、取り込んだ入力信号を2つに分岐する。発振器116は、入力信号のボーレートの1/2の発振周波数で発振信号を出力する。乗算器118-1は、分岐器115が分岐した入力信号の一方と、発振器116が出力する発振信号とを乗算して第1の信号を生成して出力する。乗算器118-2は、分岐器115が分岐した入力信号の一方と、発振器116が出力する発振信号の複素共役とを乗算して第2の信号を生成して出力する。相関算出部12cは、第1の信号と第2の信号の相互相関を算出する。分散量算出部13cは、相互相関のピークの位置に基づいて波長分散量を算出する。
これにより、相互相関の結果においてピークの位置が波長分散によって生じた遅延量を示すことになり、ピークの位置から波長分散量を算出することが可能になる。第3の実施形態による構成は、第1及び第2の実施形態における構成と同様に、ブラインド方式と呼ばれる方式であり、トレーニング信号を用いることなく波長分散量を算出することを可能にしている。また、分散補償量を掃引して波長分散量を検出するような長い時間を要するパラメータスキャン方式でもない。したがって、特徴のあるトレーニング信号を用いることなく、少ない演算時間で波長分散量を算出することができる。
[0120]
 なお、上記の第3の実施形態の構成では、遅延器125-1,125-2の各々が、遅延時間τ ,τ を任意に切り替えて設定する構成にしているが、予め定められるパラメータスキャンの手順にしたがって外部から異なる遅延時間τ ,τ を順次与えるようにしてもよい。例えば、パラメータスキャンの手順として、遅延時間τ を一定値に固定して、遅延時間τ を最小値から連続して最大値まで増加させ、遅延時間τ が最大値になると、遅延時間τ を増加させ、遅延時間τ を最小値から連続して最大値まで増加させることを繰り返すようにするような手順にしてもよい。
[0121]
 また、上記の第3の実施形態の構成では、相関算出部12cは、時間領域において相互相関を算出するようにしているが、例えば、相関算出部12c及び分散量算出部13cに替えて、図20に示す相関算出部12d、及び第1の実施形態の分散量算出部13を適用するようにしてもよい。
[0122]
 相関算出部12dは、図8に示した第1の実施形態の相関算出部12の構成に、周波数領域変換部127-1,127-2を加えた構成である。第1の実施形態の相関算出部12では、相関用信号生成部11が出力する低周波成分信号と高周波成分信号が既に周波数領域の信号になっていた。
[0123]
 これに対して、第3の実施形態の相関用信号生成部11cが出力する低周波成分信号と高周波成分信号は、時間領域の信号である。そのため、相関算出部12dでは、周波数領域変換部127-1,127-2が、LPF119-1,119-2が出力する低周波成分信号と高周波成分信号を、例えば、FFTにより周波数領域に変換する。これにより、相関算出部12dは、第1の実施形態の相関算出部12と同様に周波数領域での畳み込み演算、すなわち相互相関を算出する。分散量算出部13は、第1の実施形態と同様に、相関算出部12dが出力する相互相関の結果から波長分散量Dを算出する。
[0124]
 また、上記の第3の実施形態の構成では、相関用信号生成部11cは、LPF119-1,119-2を備えているが、LPF119-1,119-2による高周波領域の除去により得られる効果は、第1の実施形態において図11を参照して説明したナイキスト信号の場合のノイズを軽減する効果と同様の効果である。そのため、ノイズに対する耐性があるRZ信号やNRZ信号の場合には、LPF119-1,119-2を備えなくてもよい。
[0125]
(第4の実施形態)
 次に、図21から図25を参照しつつ、第4の実施形態の波長分散量推定部10e,10fについて説明する。第1から第3の実施形態の波長分散量推定部10,10a,10b、10cでは、ボーレートBが予め分かっているものとして、相互相関に用いる2つの信号の周波数差がボーレートB分になるように2つの信号を生成していた。これに対して、第4の実施形態の波長分散量推定部10e,10fは、ボーレートBが不明である場合、受信信号からボーレートを推定するボーレート推定処理部15を備える。
[0126]
 図21は、例えば、第1の実施形態の波長分散量推定部10がボーレート推定処理部15を備えた波長分散量推定部10eの構成を示すブロック図である。図21の波長分散量推定部10eの場合、ボーレート推定処理部15は、推定したボーレートを帯域フィルタ部113が取り込み、取り込んだボーレートの値を2つの区間の先頭位置の周波数差の値として利用する。図22は、例えば、第3の実施形態の波長分散量推定部10cがボーレート推定処理部15を備えた波長分散量推定部10fの構成を示すブロック図である。図22の波長分散量推定部10fの場合、ボーレート推定処理部15は、推定したボーレートを発振器116が取り込み、取り込んだボーレートの半分の値を発振周波数として利用する。なお、第1から第3の実施形態と同一の構成については、同一の符号を付している。
[0127]
 図23は、ボーレート推定処理部15の構成を示すブロック図である。第1の実施形態の波長分散量推定部10では、帯域フィルタ部113が、高周波帯域区間130と低周波帯域区間131の区間を互いの先頭がボーレートB離れるように固定的に選定していた。
これに対して、ボーレート推定処理部15は、任意に周波数の区間を選定する構成を備えている。
[0128]
 ボーレート推定処理部15は、周波数領域変換部111、帯域フィルタ部151、相関算出部152、及びボーレート検出部153を備える。帯域フィルタ部151は、周波数領域において2つの区間を任意に選定する。
[0129]
 帯域フィルタ部151は、選定した2つの区間で周波数領域変換部111が周波数領域に変換した入力信号をフィルタリングして2つの相関用信号を生成する。帯域フィルタ部151は、選定した2つの区間の先頭位置の差を示す周波数差情報を相関算出部152に出力する。
[0130]
 相関算出部152は、帯域フィルタ部151が出力する2つの相関用信号の相互相関を算出する。相関算出部152は、第1の実施形態の相関算出部12のように周波数領域で相互相関を算出してもよいし、第3の実施形態の相関算出部12cのように時間領域で相互相関を算出してもよい。なお、時間領域で相互相関を算出する場合、2つの相関用信号を、例えば、IFFTによって、時間領域に変換しておく必要がある。相関算出部152は、算出した相互相関の結果と、周波数差情報とをボーレート検出部153に出力する。
[0131]
 ボーレート検出部153は、相関算出部152が算出した相互相関の結果にピークが含まれている場合、相関算出部152から受けた周波数差情報をボーレートとして出力する。
[0132]
(第4の実施形態の波長分散量推定部が備えるボーレート推定処理部による処理)
 次に、図24を参照しつつ、ボーレート推定処理部15による処理の流れについて説明する。ボーレート推定処理部15の周波数領域変換部111は、受信信号の垂直偏波を入力信号として取り込むと、取り込んだ入力信号をFFTにより周波数領域に変換する(ステップSe1)。周波数領域変換部111は、周波数領域に変換した入力信号を帯域フィルタ部151に出力する。
[0133]
 帯域フィルタ部151は、周波数領域において2つの区間を選定する(ステップSe2)。帯域フィルタ部151は、周波数領域変換部111が周波数領域に変換した入力信号を選定した2つの区間でフィルタリングして2つの相関用信号を生成する(ステップSe3)。帯域フィルタ部151は、2つの相関用信号と、選定した2つの区間の先頭位置の差である周波数差情報とを相関算出部152に出力する。
[0134]
 相関算出部152は、帯域フィルタ部151が出力する2つの相関用信号の相互相関を算出する(ステップSe4)。相関算出部152は、算出した相互相関の結果と、帯域フィルタ部151から受けた周波数差情報とをボーレート検出部153に出力する。
[0135]
 ボーレート検出部153は、相互相関の結果にピークが含まれているか否かを判定する(ステップSe5)。ボーレート検出部153は、相互相関の結果にピークが含まれていないと判定した場合(ステップSe5、No)、再設定指示情報を帯域フィルタ部151に出力する。帯域フィルタ部151は、再設定指示情報を受けると、ステップSe2の処理を行い、新たに2つの区間を選定する。
[0136]
 一方、ボーレート検出部153は、相互相関の結果にピークが含まれていると判定した場合(ステップSe5、Yes)、相関算出部152から受けた周波数差情報をボーレートとして帯域フィルタ部113や発振器116に出力する(ステップSe6)。
[0137]
 上記の第4の実施形態の構成により、受信信号のボーレートが不明であっても、受信信号の主信号と、イメージ信号の間隔がボーレートと等しい事を利用して、受信信号からボーレートを検出することができる。図23に示すように、ボーレート推定処理部15は、周波数領域における2つの区間を再設定することを繰り返す処理、すなわち1次元のパラメータスキャンの処理を行う。この処理は、波長分散量を算出する処理の前に先だって行う処理になる。
[0138]
 なお、上記の第4の実施形態の構成において、帯域フィルタ部151は、任意に2つの区間を選定しているとしているが、2つの区間の両方を任意に選定するようにしてもよいし、一方の区間が、主信号、またはイメージ信号を含むように固定的に設定しておき、他方の区間を任意に選定するようにしてもよい。
[0139]
 また、上記の第4の実施形態の構成において、ボーレート推定処理部15に替えて、図25に示すボーレート推定処理部15aを備えるようにしてもよい。ボーレート推定処理部15aは、分岐器115、複素共役演算部117、乗算器118-1,118-2、LPF119-1,119-2、発振器155、相関算出部152、及びボーレート検出部153を備える。
[0140]
 発振器155は、発振周波数を任意の値に設定して発振信号を出力する。発振器155は、設定した発振周波数の2倍の値を周波数差情報として相関算出部152に出力する。
[0141]
 すなわち、ボーレート推定処理部15aにおいて、乗算器118-1,118-2は、入力信号と、発振器155が任意に設定した発振周波数の発振信号とをミキシングしている。乗算器118-1は、発振周波数の半分の周波数分、周波数が増加した入力信号を出力し、乗算器118-2は、発振周波数の半分の周波数分、周波数が減少した入力信号を出力する。
[0142]
 相関算出部152は、LPF119-1,119-2の各々が出力する2つの相関用信号の相互相関を算出する。相関算出部152は、算出した相互相関の結果と、発振器155から受けた周波数差情報とをボーレート検出部153に出力する。
[0143]
 ボーレート検出部153は、相互相関の結果にピークが含まれているか否かを判定する。ボーレート検出部153は、相互相関の結果にピークが含まれていないと判定した場合、再設定指示情報を発振器155に出力する。発振器155は、再設定指示情報を受けると、新たな発振周波数を設定して発振信号を出力し、設定した発振周波数の2倍の値を周波数差情報として相関算出部152に出力する。一方、ボーレート検出部153は、相互相関の結果にピークが含まれていると判定した場合、相関算出部152から受けた周波数差情報をボーレートとして出力する。
[0144]
 図23に示すボーレート推定処理部15の場合、帯域フィルタ部151が選定する周波数領域における2つの区間は、FFTフレームのサイズに依存してしまう。そのため、ボーレートとサンプリングレートが簡単な整数比になっていない場合、どこを区間に選定しても、ピークが得られない可能性がある。これに対して、図25に示すボーレート推定処理部15aは、発振周波数を連続値の中の任意の値に設定できるので、ピークが得られる周波数差を特定することができる。
[0145]
 なお、第1の実施形態の他の構成例である波長分散量推定部10a、及び第2の実施形態の波長分散量推定部10bが、内部にボーレート推定処理部15,15aを備えるようにしてもよい。
[0146]
 上述したように、第1から第4の実施形態では、入力信号を垂直偏波の受信信号にしているが、水平偏波の受信信号を入力信号にしてもよい。また、2つの波長分散量推定部10,10a,10b,10c,10e,10fを備えて、一方が、水平偏波の受信信号から波長分散量を算出し、他方が、垂直成分の受信信号から波長分散量を算出するようにしてもよい。
[0147]
 また、上記の第1及び第3の実施形態の構成では、図8及び図20に示すように、複素共役演算部120は、低周波成分信号側に備えられているが、高周波成分信号側に備えられていてもよい。複素共役演算部120を低周波成分信号側に備える場合、低周波成分信号を基準として高周波成分信号の遅延を検出することになり、高周波成分信号側に備える場合、高周波成分信号を基準として低周波成分信号の遅延を検出することになる。
[0148]
 また、上記の第1から第3の実施形態の構成において、ナイキスト信号の場合、ロールオフ係数が小さい、すなわち遷移が急峻であるほど、イメージ信号の部分が少なくなる。
そのため、2つの相関用信号において重なり合う部分が少なくなるため、ピークが得られなくなり、波長分散量を算出することが難しくなる。第1から第3の実施形態の構成において適用可能なロールオフ係数は、0.1程度以上のナイキスト信号である。
[0149]
 ロールオフ係数がゼロ、すなわち完全矩形フィルタの場合、波長分散量を算出することができない。ロールオフ係数がゼロの完全ナイキスト信号やFTN(Faster Than Nyquist)信号、すなわち信号帯域幅をボーレート以下まで狭窄化信号については、第1から第3の実施形態の構成では、波長分散量を算出することができない。このような場合、主信号より低速の信号をトレーニング信号として挿入する手段がある。例えば、主信号の1/2のボーレートのRZ波形の信号を主信号に対して時分割多重し、当該RZ波形の信号の部分に対して、第1から第3の実施形態の構成を適用することにより、波長分散量を算出することができる。また、当該RZ波形の信号の部分に対して第4の実施形態の構成を適用することによりボーレートを算出することもできる。
[0150]
 上述した実施形態における波長分散量推定部10,10a,10b,10c,10e,10fを、波長分散量推定装置として、光受信装置1の外部に備えて、光受信装置1に接続するようにしてもよい。また、この波長分散量推定装置をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
[0151]
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。

符号の説明

[0152]
1…光受信装置,10…波長分散量推定部,11…相関用信号生成部,12…相関算出部,13…分散量算出部,20…LOレーザ,21…コヒーレント光電変換器,22-1~22-4…ADC,23-1,23-2…複素演算部,111…周波数領域変換部,113…帯域フィルタ部

請求の範囲

[請求項1]
 受信信号の主信号を含む第1の信号と、前記主信号に対応するイメージ信号を含み周波数領域において前記第1の信号に対して前記受信信号のボーレート分のずれがある第2の信号とを前記受信信号から生成する相関用信号生成部と、
 前記第1の信号と前記第2の信号の相互相関を算出する相関算出部と、
 前記相互相関のピークの位置に基づいて波長分散量を算出する分散量算出部と、
 を備える波長分散量推定装置。
[請求項2]
 前記相関用信号生成部は、
 前記受信信号を周波数領域に変換して周波数領域受信信号を出力する周波数領域変換部と、
 周波数領域において前記受信信号の主信号を含む第1の区間と、前記第1の区間に含まれる主信号に対応する前記イメージ信号を含み前記第1の区間の先頭位置から前記受信信号のボーレート分離れた位置が先頭位置となる第2の区間を定め、前記周波数領域受信信号を前記第1の区間でフィルタリングして前記第1の信号を生成し、前記周波数領域受信信号を前記第2の区間でフィルタリングして前記第2の信号を生成する帯域フィルタ部と、
 を備える、請求項1に記載の波長分散量推定装置。
[請求項3]
 前記受信信号は、ナイキスト信号であり、
 前記帯域フィルタ部は、
 前記第1の信号、及び前記第2の信号が、前記ナイキスト信号の周波数領域における振幅スペクトルが増加、または、減少している区間の全部または一部の区間に対応する信号になるようにフィルタリングする、請求項2に記載の波長分散量推定装置。
[請求項4]
 前記受信信号は、ナイキスト信号であり、
 前記相関用信号生成部は、
 前記周波数領域受信信号に対して逆ナイキストフィルタを適用する逆ナイキストフィルタ部を備え、
 前記帯域フィルタ部は、
 前記逆ナイキストフィルタ部がフィルタリングした前記周波数領域受信信号を前記第1の区間と前記第2の区間の各々でフィルタリングして前記第1の信号と前記第2の信号を生成する、請求項2又は3に記載の波長分散量推定装置。
[請求項5]
 前記周波数領域変換部は、
 予め定められる所定のフレーム長のフレームごとに前記受信信号を分割し、分割したフレームごとの前記受信信号に対して離散フーリエ変換を行って前記受信信号を周波数領域に変換するか、または、前記所定のフレーム長よりも短いフレーム長の分割フレームであって互いに重なる部分を有する分割フレームで前記受信信号を分割し、分割した前記分割フレームごとの前記受信信号に対して前記離散フーリエ変換を行って前記受信信号を周波数領域に変換し、
 前記分割フレームに分割している場合、
 前記帯域フィルタ部は、
 基準とする前記分割フレームに対応する前記周波数領域受信信号を前記第1の区間でフィルタリングして前記第1の信号を生成し、他の前記分割フレームに対応する前記周波数領域受信信号を前記第2の区間でフィルタリングして複数の前記第2の信号を生成し、
 前記相関算出部は、
 基準となる前記分割フレームに対応する前記第1の信号と、他の前記分割フレームに対応する複数の前記第2の信号との相互相関を算出し、
 前記分散量算出部は、
 前記相互相関の結果において、ピーク値の最大値を含む他の前記分割フレームの位置と、当該他の前記分割フレームの相互相関において前記最大値のピークが得られた位置とに基づいて波長分散量を算出する、請求項2から4のいずれか一項に記載の波長分散量推定装置。
[請求項6]
 前記相関用信号生成部は、
 前記受信信号を2つに分岐する分岐器と、
 前記受信信号のボーレートの1/2の発振周波数で発振信号を出力する発振器と、
 前記分岐器が分岐した前記受信信号の一方と、前記発振器が出力する前記発振信号とを乗算して前記第1の信号を生成して出力する第1の乗算器と、
 前記分岐器が分岐した前記受信信号の一方と、前記発振器が出力する前記発振信号の複素共役とを乗算して前記第2の信号を生成して出力する第2の乗算器と、
 を備える、請求項1に記載の波長分散量推定装置。
[請求項7]
 前記第1の乗算器の出力に備えられる第1の低域通過フィルタと、
 前記第2の乗算器の出力に備えられる第2の低域通過フィルタとを、さらに備え、
 前記第1の低域通過フィルタは、
 前記第1の乗算器が出力する前記第1の信号に対して、予め定められる遮断周波数でフィルタリングすることにより前記受信信号の高周波成分を含む前記第1の信号を生成し、
 前記第2の低域通過フィルタは、
 前記第2の乗算器が出力する前記第2の信号に対して、前記遮断周波数でフィルタリングすることにより前記受信信号の低周波成分を含む前記第2の信号を生成する、請求項6に記載の波長分散量推定装置。
[請求項8]
 ボーレート推定処理部をさらに備え、
 前記ボーレート推定処理部は、
 周波数差を有する2つの相関用信号を前記受信信号から生成する相関用信号生成部と、
 前記2つの相関用信号の相互相関を算出する相関算出部と、
 前記相互相関においてピークが得られた際の前記2つの相関用信号の周波数差に基づいて前記受信信号の前記ボーレートを算出するボーレート検出部と、
 を備える、請求項1から7のいずれか一項に記載の波長分散量推定装置。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]

[ 図 16]

[ 図 17]

[ 図 18]

[ 図 19]

[ 図 20]

[ 図 21]

[ 図 22]

[ 図 23]

[ 図 24]

[ 図 25]