Parte del contenido de esta aplicación no está disponible en este momento.
Si esta situación persiste, contáctenos aComentarios y contacto
1. (WO2018061945) MEASURING SYSTEM, SUBSTRATE PROCESSING SYSTEM, AND DEVICE MANUFACTURING METHOD
Document

明 細 書

発明の名称 計測システム及び基板処理システム、並びにデバイス製造方法

技術分野

0001  

背景技術

0002   0003  

先行技術文献

特許文献

0004  

発明の概要

課題を解決するための手段

0005   0006   0007   0008   0009   0010   0011   0012  

図面の簡単な説明

0013  

発明を実施するための形態

0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024   0025   0026   0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067   0068   0069   0070   0071   0072   0073   0074   0075   0076   0077   0078   0079   0080   0081   0082   0083   0084   0085   0086   0087   0088   0089   0090   0091   0092   0093   0094   0095   0096   0097   0098   0099   0100   0101   0102   0103   0104   0105   0106   0107   0108   0109   0110   0111   0112   0113   0114   0115   0116   0117   0118   0119   0120   0121   0122   0123   0124   0125   0126   0127   0128   0129   0130   0131   0132   0133   0134   0135   0136   0137   0138   0139   0140   0141   0142   0143   0144   0145   0146   0147   0148   0149   0150   0151   0152   0153   0154   0155   0156   0157   0158   0159   0160   0161   0162   0163   0164   0165   0166   0167   0168   0169   0170   0171   0172   0173   0174   0175   0176   0177   0178   0179   0180   0181   0182   0183   0184   0185   0186   0187   0188   0189   0190   0191   0192   0193   0194   0195   0196   0197   0198   0199   0200   0201   0202   0203   0204   0205   0206   0207   0208   0209   0210   0211   0212   0213   0214   0215   0216   0217   0218   0219   0220   0221   0222   0223   0224   0225   0226   0227   0228   0229   0230   0231   0232   0233   0234   0235   0236   0237   0238   0239   0240   0241   0242   0243   0244   0245   0246   0247   0248   0249   0250   0251   0252   0253   0254   0255   0256   0257   0258   0259   0260   0261   0262   0263   0264   0265   0266   0267   0268   0269   0270   0271   0272   0273   0274   0275   0276   0277   0278   0279   0280   0281   0282   0283  

符号の説明

0284  

請求の範囲

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  

図面

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15  

明 細 書

発明の名称 : 計測システム及び基板処理システム、並びにデバイス製造方法

技術分野

[0001]
 本発明は、計測システム及び基板処理システム、並びにデバイス製造方法に係り、さらに詳しくはマイクロデバイスの製造ラインで用いるための計測システム及び計測システムを含む基板処理システム、並びに基板処理システムの一部を構成する露光装置を用いるデバイス製造方法に関する。

背景技術

[0002]
 半導体素子等のマイクロデバイスを製造するリソグラフィ工程において、ウエハ上に重ね合わせ露光を行う場合、レジスト塗布、現像、エッチング、CVD(ケミカル・ベイパー・デポジション)、CMP(ケミカル・メカニカル・ポリッシング)などのプロセス処理工程を経たウエハには、そのプロセス起因で前層のショット領域の配列に歪みが生じることがあり、その歪みが重ね合わせ精度の低下の要因となり得る。かかる点に鑑み、近時の露光装置は、ウエハ変形の1次成分のみならず、プロセス起因で生じるショット配列の非線形成分等を補正するグリッド補正機能等を有している(例えば、特許文献1参照)。
[0003]
 しかるに、集積回路の微細化に伴い重ね合わせ精度の要求が次第に厳しくなっており、より高精度な補正を行うため、ウエハアライメント(EGA)におけるサンプルショット領域の数を増やすこと、すなわち検出すべきマークの数を増やすことが不可欠である。このため、近年、スループットを維持しつつ、サンプルショット領域の数を増やすことが可能なツインステージタイプの露光装置が採用されるようになっていた。

先行技術文献

特許文献

[0004]
特許文献1 : 米国特許出願公開第2002/0042664号明細書

発明の概要

課題を解決するための手段

[0005]
 第1の態様によれば、マイクロデバイスの製造ラインで用いられる計測システムであって、それぞれ基板に対する計測処理を行なう複数の計測装置と、前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、前記第1計測装置において基板に形成された複数のマークの位置情報を第1条件の設定の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1条件の設定の下で取得することが可能な計測システムが、提供される。
[0006]
 第2の態様によれば、マイクロデバイスの製造ラインで用いられる計測システムであって、それぞれ基板に対する計測処理を行なう複数の計測装置と、前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、前記第1計測装置において基板に形成された複数のマークの位置情報を取得し、前記第2計測装置において、前記基板と同一のロットに含まれる別の基板に形成された複数のマークの位置情報を取得することが可能な計測システムが、提供される。
[0007]
 第3の態様によればマイクロデバイスの製造ラインで用いられる計測システムであって、それぞれ基板に対する計測処理を行なう複数の計測装置と、前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、前記第1計測装置において基板に形成された複数のマークの位置情報を第1の所定条件の設定の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1の所定条件と異なる第2の所定条件の設定の下で取得することが可能な計測システムが、提供される。
[0008]
 第4の態様によれば、マイクロデバイスの製造ラインで用いられる計測システムであって、基板に対する計測処理を行なう第1の計測装置と、基板に対する計測処理を行なう第2の計測装置と、を含み、前記第1の計測装置での計測処理と前記第2の計測装置での計測処理とを並行して実行可能な計測システムが、提供される。
[0009]
 第5の態様によれば、マイクロデバイスの製造ラインで用いられる計測システムであって、基板に対する計測処理を行なう第1の計測装置と、基板に対する計測処理を行なう第2の計測装置と、を含み、前記第1の計測装置と前記第2の計測装置の一方で計測処理された基板を、他方で計測処理可能な計測システムが、提供される。
[0010]
 第6の態様によれば、第1から第5の態様のいずれかに係る計測システムと、前記計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方で前記複数のマークの位置情報の計測が終了した前記基板が載置される基板ステージを有し、該基板ステージ上に載置された前記基板に対して、該基板上の複数のマークのうち選択された一部のマークの位置情報を取得するアライメント計測及び前記基板をエネルギビームで露光する露光が行われる露光装置と、を備える基板処理システムが、提供される。
[0011]
 第7の態様によれば、第1から第5の態様のいずれかに係る計測システムからそれぞれ構成される第1計測システム及び第2計測システムと、前記第1計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方で前記複数のマークの位置情報の計測が終了した基板が載置される基板ステージを有し、該基板ステージ上に載置された前記基板に対して、該基板上の複数のマークのうち選択された一部のマークの位置情報を取得するアライメント計測及び前記基板をエネルギビームで露光する露光が行われる露光装置と、を備え、前記第1計測システムが備える前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、洗浄、酸化・拡散、成膜、エッチング、イオン注入、CMPの少なくとも1つのプロセス処理を経、次の露光のために感応剤が塗布される前の基板に対して行われ、前記第2の計測システムが備える前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、前記露光装置による露光後前記現像処理後であって、エッチング処理前の基板に対して行われ、前記第1計測システム及び前記第2計測システムのそれぞれによる異なる基板に対する前記複数のマークの位置情報の取得は、前記露光装置による異なる基板に対するアライメント計測及び露光と並行して行われる基板処理システムが、提供される。
[0012]
 第8の態様によれば、第6態様に係る基板処理システム及び第7態様に係る基板処理システムのいずれかの一部を構成する露光装置を用いて基板を露光することと、露光された前記基板を現像することと、を含むデバイス製造方法が、提供される。

図面の簡単な説明

[0013]
[図1] 一実施形態に係る基板処理システムを、マイクロデバイスの製造ラインで用いられる他の装置とともに示すブロック図である。
[図2] 図1の基板処理システムが備える計測システムを示す外観斜視図である。
[図3] チャンバの天井部を取り去った図1の計測システムを示す平面図である。
[図4] 計測システムの一部を構成する計測装置の構成を概略的に示す斜視図である。
[図5] 図5(A)は、図4の計測装置の一部省略した正面図(-Y方向から見た図)、図5(B)は、マーク検出系の光軸AX1を通るXZ平面で断面した計測装置の一部省略した断面図である。
[図6] マーク検出系の光軸AX1を通るYZ平面で断面した計測装置の一部省略した断面図である。
[図7] 第2位置計測システムの構成を説明するための図である。
[図8] 計測装置の制御系を中心的に構成する制御装置の入出力関係を示すブロック図である。
[図9] 図1に示される露光装置の構成を概略的に示す図である。
[図10] 露光装置が備える露光制御装置の入出力関係を示すブロック図である。
[図11] 1ロットのウエハを処理する際の制御装置60 の処理アルゴリズムに対応するフローチャートである。
[図12] 図1の基板処理システムで行われるXマーク、Yマークの位置情報(座標位置情報)の計測方法の処理の流れを概略的に示す図である。
[図13] 図1の基板処理システムで行われる重ね合わせずれ計測方法の処理の流れを概略的に示す図(その1)である。
[図14] 図1の基板処理システムで行われる重ね合わせずれ計測方法の処理の流れを概略的に示す図(その2)である。
[図15] 半導体デバイスの製造プロセスの一例を示す図である。

発明を実施するための形態

[0014]
 以下、一実施形態について図1~図14に基づいて説明する。図1には、マイクロデバイス(例えば、半導体デバイス)の製造ラインで用いられる一実施形態に係る基板処理システム1000が、製造ラインで用いられる他の装置とともにブロック図にて示されている。
[0015]
 基板処理システム1000は、図1に示されるように、互いにインラインにて接続された露光装置200及びコータ・デベロッパ(レジスト塗布現像装置)300を備えている。また、基板処理システム1000は、計測システム500 及び計測システム500 を備えている。以下では、コータ・デベロッパ300を、C/D300と略記する。なお、インラインにて接続されるとは、ウエハ(基板)の搬送経路が実質的につながるように、異なる装置同士が接続されることを意味し、本明細書では、かかる意味で、「インラインにて接続」あるいは「インライン接続」なる用語を用いる。例えば、異なる2つの装置がインライン接続されている場合、ロボットアームなどの搬送機構を用いて、一方の装置で処理を終えたウエハ(基板)を、他方の装置へ、順次搬送することができる。なお、異なる装置がインタフェース部を介して接続される場合も、「インライン接続」と呼ぶ場合もある。
[0016]
 計測システム500 は、ここでは、1つのチャンバ502(図2、図3参照)内に所定方向に隣接して配置された3台の計測装置100 ~100 、及び計測システム500 の全体を統括的に管理する計測システム制御装置530 等を備えている。計測装置100 ~100 のそれぞれは、制御装置60 (i=1~3)を有し、制御装置60 のそれぞれは、計測システム制御装置530 に接続されている。なお、制御装置60 (i=1~3)を備えずに、計測システム制御装置530 で計測装置100 ~100 のそれぞれを制御しても良い。
[0017]
 計測システム500 は、1つのチャンバ(不図示)内に所定方向に隣接して配置された3台の計測装置100 、100 、100 、及び計測システム500 の全体を統括的に管理する計測システム制御装置530 等を備えている。計測装置100 、100 、100 は、制御装置60 、60 、60 をそれぞれ有し、制御装置60 (i=4~6)のそれぞれは、計測システム制御装置530 に接続されている。なお、制御装置60 (i=4~6)を備えずに、計測システム制御装置530 で計測装置100 ~100 のそれぞれを制御しても良い。
[0018]
 基板処理システム1000が備える、露光装置200及びC/D300は、いずれもチャンバを有し、チャンバ同士が隣接して配置されている。
[0019]
 露光装置200が有する露光制御装置220と、C/D300が有する塗布現像制御装置320と、計測システム制御装置530 と、計測システム制御装置530 とは、ローカルエリアネットワーク(LAN)1500を介して互いに接続されている。LAN1500には、製造ラインの全体を管理するホストコンピュータ(HOST)2000、解析装置3000及びホストコンピュータ2000の管理下にある各種プロセス処理(ウエハプロセスの前工程のプロセス処理)を行う装置群も接続されている。図1では、この装置群のうち、エッチング装置2100、CMP装置2200及びCVD装置などの成膜装置2300が、代表的に示されている。この他、LAN1500には、洗浄装置、酸化・拡散装置及びイオン注入装置なども接続されている。
[0020]
 なお、基板処理システム1000に、ホストコンピュータ2000、解析装置3000、エッチング装置2100、CMP装置2200、成膜装置2300の少なくとも1つが含まれても良い。
[0021]
 最初に、計測システムについて説明する。ここで、計測システム500 と計測システム500 とは、計測対象となる基板が露光前であるか、露光後であるかの相違はあるが、互いに同様に構成され、同様の機能を有しているので、以下では、計測システム500 を代表的に取り上げて説明する。図2には、計測システム500 の外観斜視図が示されている。計測システム500 は、基板処理システム1000を構成する他の装置から離れてクリーンルームの床面F上に設置されている。すなわち、計測システム500 は、露光装置200、及びC/D300に、インライン接続されていない。
[0022]
 計測システム500 は、前述の3台の計測装置100 ~100 が、その内部に配置されたチャンバ502と、該チャンバ502の一側に配置された、キャリアシステム510とを備えている。本実施形態において、キャリアシステム510は、EFEM(Equipment Front End Module)システムである。以下、キャリアシステム510を、EFEMシステム510とも呼ぶ。
[0023]
 なお、後述するように、本実施形態のキャリアシステム510は、FOUP(Front-Opening Unified Pod )用であるが、FOUPに限らず、1つ、又は複数のウエハを収容可能な他の種類のキャリア(例えば、SMIFポッド)をキャリアシステム510で扱っても良い。
[0024]
 以下では、チャンバ502と、EFEMシステム510とが並ぶ方向をX軸方向とし、床面Fに平行な面内でX軸に垂直な方向をY軸方向とし、X軸及びY軸に直交する方向をZ軸方向として説明を行う。
[0025]
 図2に示されるように、チャンバ502は、直方体の形状を有し、その内部の第1空間には、図3に示されるように、計測装置100 ~100 がX軸方向に並んで収納されている。図3は、チャンバ502の天井部を取り去った計測システム500 の平面図を示し、この図3には、計測装置100 ~100 それぞれが有するチャンバ101 (i=1~3)が示されている。なお、計測装置100 ~100 それぞれがチャンバ101 を備えていなくても良い。
[0026]
 計測システム500 は、複数の計測装置100 ~100 をX軸方向に並べているので、計測システム500 のY軸方向の幅を大きくすることなく、複数の計測装置100 ~100 を備えることができる。計測システム500 などが設置される工場においては、オペレータ用の通路がY軸方向に延びており、上述の各種処理を行う装置(エッチング装置2100、CMP装置2200など)は、その通路に沿って配置される。したがって、工場の床面Fを有効活用するために、計測システム500 のY軸方向の幅を抑えることは重要である。
[0027]
 また、チャンバ502内の第1空間の-Y側には、計測装置100 ~100 のそれぞれとウエハの受け渡しをすることができる搬送システム521が配置されている。なお、以下では、便宜上、第1空間の-Y側の、搬送システム521が設置された空間を第2空間と呼ぶ。図2において、太い破線は、第1空間と第2空間との仮想的な仕切りを示す。
[0028]
 チャンバ502の-X側(前面側)に隣接して、床面F上には、EFEMシステム510が設置されている。EFEMシステム510は、ウエハ搬送用のロボットが内部に設置されたEFEM本体512と、EFEM本体512の-X側(前面側)に取り付けられたロードポートとを備えたモジュール機器である。EFEM本体512には、その前面側にFOUP用の複数のロードポート514(キャリア載置装置と呼んでも良い)がY軸方向に並んで設けられている。なお、本実施形態では、EFEM本体512は3つのロードポート514を有しているが、ロードポートの数は、3つに限らず、1つでも良いし、2つでも良いし、4つ以上でも良い。ここで、FOUPとは、SEMI スタンダードE47.1に規定されている、ミニエンバイロメント方式の半導体工場で使われるウエハ用の搬送、保管を目的としたキャリアであり、正面開口式カセット一体型搬送、保管箱である。図2及び図3では、3つのロードポート514それぞれの上にFOUP520が設置されており、FOUP内には、計測対象として、少なくとも1枚のウエハが収容されている。
[0029]
 本実施形態では、図示は省略したが、3つのロードポート514の真上のクリーンルームの天井近傍に、OHT(Overhead Hoist Transport)用の軌道レールが設けられている。OHTとは、天井レベルの空間を走行する無人搬送車であり、このOHTによって、FOUP520が、ロードポート514上に搬入される。
[0030]
 3つのロードポート514のそれぞれは、載置部515と載置部515に載置されたFOUP520のカバーを開閉する開閉機構518(図3参照)とを有する。開閉機構518は、ロードポート514の載置部515に載置されたFOUP520に対向する、EFEM本体512のフロント部分に設けられ、FOUP520の内部を外部に対して気密状態を保ったまま、FOUP520のカバーを開閉可能である。この種の開閉機構は、周知であるから、開閉機構518の構成等の説明は省略する。
[0031]
 EFEM本体512の内部には、ウエハを出し入れするため、カバーが開けられた状態の3つのFOUP内部にアクセス可能なウエハ搬送用のロボット516(図3参照)が設けられている。なお、EFEM本体512の上部に、EFEM本体512の内部のクリーン度を保つためのFFU(Fan Filter Unit、不図示)を設け、空調機からの温調空気を、FFUを介してEFEM本体512の内部に送っても良い。なお、空調機からの温調空気を用いてウエハの温度を安定させるバッファを、EFEM本体512の内部に設けても良い。
[0032]
 チャンバ502の第2空間に対向するEFEM本体512の背面側の部分には、開口が形成されており、該開口が開閉部材によって開閉されるようになっている。
[0033]
 EFEMシステム510の構成各部(ロボット516、開閉機構518など)は、計測システム制御装置530 (図1参照)によって制御される。
[0034]
 チャンバ502の第2空間の内部には、図3に示されるように、搬送システム521が設置されている。第2空間内のY軸方向の一側と他側とにそれぞれ配置され、チャンバ502のほぼ全長に渡ってX軸方向に延びるガイド522A、522Bと、ガイド522Aに沿って往復移動可能なロード用の搬送部材524と、ガイド522Bに沿って往復移動可能なアンロード用の搬送部材526とが設けられている。
[0035]
 ロード用の搬送部材524は、ガイド522Aに内蔵された固定子と、搬送部材524に設けられた可動子とを有するリニアモータ(固定子が内蔵されたガイドと同一の符号を用いて、リニアモータ522Aと表記する)によって、ガイド522Aに沿って移動可能である。また、アンロード用の搬送部材526は、ガイド522Bに内蔵された固定子と、搬送部材526に設けられた可動子とを有するリニアモータ(固定子が内蔵されたガイドと同一の符号を用いて、リニアモータ522Bと表記する)によって、ガイド522Bに沿って移動可能である。リニアモータ522A、522Bは、計測システム制御装置530 によって制御される。なお、搬送部材524,526はエアスライダなどを用いて非接触で移動するようにしても良い。また、搬送部材524,526を動かす駆動機構は、上述のリニアモータ(522A,522B)に限られず、回転モータとボールねじ機構を用いた構成であっても良い。
[0036]
 ガイド522Aは、ガイド522Bより高い位置に配置されている。このため、ロード用の搬送部材524が、アンロード用の搬送部材526の上方の空間を移動する。
[0037]
 なお、上述の搬送システム521において、搬送部材524とガイド522Aをウエハのロードとアンロードに用い、搬送部材526とガイド522Bを、ウエハのロードとアンロードに用いても良い。
[0038]
 また、上述の搬送システム521は、複数の計測装置100 ~100 のそれぞれとウエハの受け渡しが可能であるが、搬送システム521が、計測装置100 だけとウエハの受け渡しを行う搬送装置(ガイドと搬送部材を含む)、計測装置100 だけとウエハの受け渡しを行う搬送装置(ガイドと搬送部材を含む)、計測装置100 だけとウエハの受け渡しを行う搬送装置(ガイドと搬送部材を含む)を有していても良い。この場合、搬送装置のそれぞれは、ロード用のガイドと搬送部材、及びアンロード用のガイドと搬送部材を有していても良いし、ロードとアンロードに兼用されるガイドと搬送部材を有していても良い。
[0039]
 図3に示されるように、計測装置100 (i=1~3)には、搬送部材524及び搬送部材526との間で、ウエハの受け渡しを行う多関節型ロボットを有するウエハ搬送系70 (i=1~3)が、設けられている。ウエハ搬送系70 (i=1~3)は、チャンバ101 の開口を介して搬送部材524及び搬送部材526との間で、ウエハの受け渡しを行う。
[0040]
 搬送部材524は、EFEM本体512とチャンバ502との境界の近傍に設定されたウエハ受け渡し位置(ロード側ウエハ受け渡し位置)でロボット516からFOUP520内の計測処理対象のウエハを受け取り、ウエハ搬送系70 (i=1~3のいずれか)による計測装置100 とのウエハ受け渡し位置まで搬送する。計測装置100 (i=1~3)の上述した計測処理対象のウエハは、本実施形態では、少なくとも第1層目の露光が終了し、さらに現像終了後、エッチング、酸化・拡散、成膜、イオン注入、平坦化(CMP)などのウエハプロセスの前工程のプロセス処理のうちの必要な処理が終了したウエハであって、レジスト塗布のためC/D300に搬入される前のウエハである。
[0041]
 なお、同一ウエハについて、計測装置100 ~100 の少なくとも2つで計測を行う場合には、ロード用の搬送部材524は、他の計測装置100 (i=1~3のいずれか)で計測が終了した計測処理対象のウエハをウエハ搬送系70 (i=1~3のいずれか)から受け取り、ウエハ搬送系70 (j=1~3のいずれか、j≠i)による計測装置100 とのウエハ受け渡し位置まで搬送する。
[0042]
 搬送部材526は、ウエハ搬送系70 (i=1~3のいずれか)から計測が終了したウエハを受け取り、EFEM本体512とチャンバ502との境界の近傍に設定されたアンロード側ウエハ受け渡し位置(前述のロード側ウエハ受け渡し位置の下方の位置)へ搬送する。
[0043]
 ロボット516は、搬送部材526によってアンロード側ウエハ受け渡し位置へ搬送された計測処理済みのウエハを、FOUP520内に搬入する(戻す)。
[0044]
 図1に戻り、計測装置100 ~100 のそれぞれとしては、本実施形態では、同様の構成の計測装置が用いられている。
[0045]
 なお、本実施形態では、搬送部材524、搬送部材526などの、計測装置100 とのウエハの受け渡しを行うための搬送システム521が、チャンバ502の第2空間内に配置されることで、搬送部材524、搬送部材526によってウエハが搬送される空間が、結果的に気密空間となっている場合について例示したが、これに限らず、3つの計測装置100 ~100 を床面F上に並べて配置し、これらの計測装置100 ~100 (同一チャンバ内に収容されているか否かを問わない)に、搬送システム521が収容された気密室がその内部に形成される別のチャンバを併設しても良い。すなわち、計測システム500 はチャンバ502を備えていなくても良い。
[0046]
 また、搬送部材524,526の代わりに、ガイドに沿って往復移動可能な多関節型ロボットを用いても良い。この場合、ウエハ搬送系70 は、多関節型ロボットを備えていなくてもよく、搬送システム521の多関節型ロボットとウエハの受け渡しを行う、ロード用のウエハ保持部、及びアンロード用のウエハ保持部を備えていれば良い。
[0047]
 また、搬送部材524,526の替わりに、多関節型ロボットを用いる場合、EFEMシステム510が、ロボット516を備えていなくても良い。この場合、搬送システム521の多関節型ロボットがFOUP520からウエハを取り出したり、FOUP520にウエハを戻したりしても良い。
[0048]
 ここで、計測装置100 について詳述する。図4には、計測装置100 の構成が斜視図にて概略的に示されている。なお、図4に示される計測装置100 は、実際には、前述のチャンバ101 と、該チャンバ101 の内部に収容された構成部分とで構成されるが、以下では、チャンバ101 に関する説明は省略する。本実施形態に係る計測装置100 では、後述するようにマーク検出系MDSが設けられており、以下では、マーク検出系MDSの光軸AX1の方向が前述のZ軸方向に一致し、これに直交するXY平面内で、後述する可動ステージが長ストロークで移動する方向が前述のY軸方向に一致しているものとするとともに、X軸、Y軸、Z軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。ここで、マーク検出系MDSは、その下端(先端)に筒状の鏡筒部41が設けられ、鏡筒部41の内部には、共通のZ軸方向の光軸AX1を有する複数のレンズエレメントから成る光学系(屈折光学系)が収納されている。本明細書では、説明の便宜上から鏡筒部41の内部の屈折光学系の光軸AX1を、マーク検出系MDSの光軸AX1と称している。
[0049]
 図5(A)には、図4の計測装置100 の正面図(-Y方向から見た図)が一部省略して示され、図5(B)には、光軸AX1を通るXZ平面で断面した計測装置100 の断面図が一部省略して示されている。また、図6には、光軸AX1を通るYZ平面で断面した計測装置100 の断面図が一部省略して示されている。
[0050]
 計測装置100 は、図4に示されるように、光軸AX1に直交するXY平面にほぼ平行な上面を有する定盤12と、定盤12上に配置され、ウエハWを保持して定盤12に対してX軸及びY軸方向に所定ストロークで移動可能で、かつZ軸、θx、θy及びθz方向に微小移動(微小変位)が可能なウエハスライダ(以下、スライダと略記する)10と、スライダ10を駆動する駆動システム20(図8参照)と、スライダ10の定盤12に対するX軸、Y軸、Z軸、θx、θy及びθzの各方向(以下、6自由度方向と称する)の位置情報を計測する第1位置計測システム30(図4では不図示、図6、図8参照)と、スライダ10に搭載された(保持された)ウエハW上のマークを検出するマーク検出系MDSを有する計測ユニット40と、マーク検出系MDS(計測ユニット40)と定盤12との相対的な位置情報を計測する第2位置計測システム50(図8参照)と、駆動システム20によるスライダ10の駆動を制御しつつ、第1位置計測システム30による計測情報及び第2位置計測システム50による計測情報を取得し、マーク検出系MDSを用いてスライダ10に保持されたウエハW上の複数のマークの位置情報を求める制御装置60 (図4では不図示、図8参照)と、を備えている。
[0051]
 定盤12は、平面視矩形(又は正方形)の直方体部材から成り、その上面は平坦度が非常に高くなるように仕上げられて、スライダ10の移動の際のガイド面が形成されている。定盤12の素材としては、ゼロ膨張材料とも呼ばれる低熱膨張率の材料、例えばインバー型合金、極低膨張鋳鋼、あるいは極低膨張ガラスセラミックスなどが用いられている。
[0052]
 定盤12には、-Y側の面のX軸方向の中央部に1箇所、+Y側の面のX軸方向の両端部に各1箇所、合計で3箇所に底部が開口した切り欠き状の空所12aが形成されている。図4では、その3箇所の空所12aのうち、-Y側の面に形成された空所12aが示されている。それぞれの空所12aの内部には、除振装置14が配置されている。定盤12は、床面F上に設置された平面視矩形のベースフレーム16のXY平面に平行な上面上で3つの除振装置14によって、上面がXY平面にほぼ平行となるように3点支持されている。なお、除振装置14の数は、3つに限られない。
[0053]
 スライダ10は、図6に示されるように、底面の四隅に空気静圧軸受(エアベアリング)18が各1つ、合計4つ、それぞれの軸受面が、スライダ10の下面とほぼ同一面となる状態で取付けられており、これら4つのエアベアリング18から定盤12に向けて噴出される加圧空気の軸受面と定盤12の上面(ガイド面)との間の静圧(隙間内圧力)によって、スライダ10が、定盤12の上面上で所定のクリアランス(空隙、ギャップ)、例えば数μm程度のクリアランスを介して浮上支持されている。本実施形態では、スライダ10は、ゼロ膨張材料の一種であるゼロ膨張ガラス(例えば、ショット社のゼロデュアなど)がその素材として用いられている。
[0054]
 スライダ10の上部には、ウエハWの直径より僅かに大きな内径の平面視円形の所定深さの凹部10aが形成され、凹部10aの内部にウエハWの直径とほぼ同じ直径のウエハホルダWHが配置されている。ウエハホルダWHとしては、バキュームチャック、静電チャック、あるいはメカニカルチャックなどを用いることができるが、一例として、ピンチャック方式のバキュームチャックが、用いられるものとする。ウエハWは、その上面が、スライダ10の上面とほぼ同一面にとなる状態で、ウエハホルダWHによって吸着保持されている。ウエハホルダWHには、複数の吸引口が形成されており、この複数の吸引口が不図示の真空配管系を介してバキュームポンプ11(図8参照)に接続されている。そして、バキュームポンプ11のオン・オフ等が、制御装置60 によって制御される。なお、スライダ10とウエハホルダWHのいずれか一方、又は両方を「第1基板保持部材」と呼んでも良い。
[0055]
 また、スライダ10には、ウエハホルダWHに形成された例えば3つの円形開口を介して上下動し、ウエハ搬送系70 (図4では不図示、図8参照)と協働してウエハをウエハホルダWH上にロードするとともにウエハをウエハホルダWH上からアンロードする上下動部材(不図示)が設けられている。上下動部材を駆動する駆動装置13が制御装置60 によって制御される(図8参照)。
[0056]
 本実施形態では、ウエハホルダWHとして、一例として、直径300mmの300ミリウエハを吸着保持可能なサイズのものが用いられているものとする。なお、ウエハ搬送系70 がウエハホルダWH上のウエハを、上方から非接触で吸引保持する非接触保持部材、例えばベルヌーイチャックなどを有している場合には、スライダ10に上下動部材を設ける必要はなく、ウエハホルダWHに上下動部材のための円形開口を形成する必要もない。
[0057]
 図5(B)及び図6に示されるように、スライダ10の下面のウエハWよりも一回り大きい領域には、2次元グレーティング(以下、単にグレーティングと呼ぶ)RG1が水平(ウエハW表面と平行)に配置されている。グレーティングRG1は、X軸方向を周期方向とする反射型の回折格子(X回折格子)と、Y軸方向を周期方向とする反射型回折格子(Y回折格子)と、を含む。X回折格子及びY回折格子の格子線のピッチは、例えば1μmと設定されている。
[0058]
 除振装置14は、能動型振動分離システム(いわゆるAVIS(Active Vibration Isolation System))であり、加速度計、変位センサ(例えば静電容量センサなど)、及びアクチュエータ(例えばボイスコイルモータなど)、並びにエアダンパとして機能するエアマウント等を備えている。除振装置14は、比較的高周波の振動を、エアマウント(エアダンパ)によって減衰させることができるとともに、アクチュエータにより除振(制振)することができる。したがって、除振装置14は、定盤12とベースフレーム16との間で振動が伝達するのを回避することができる。なお、エアマウント(エアダンパ)に代えて、油圧式のダンパを用いても良い。
[0059]
 ここで、エアマウントに加えてアクチュエータを設けているのは、エアマウントの気体室内の気体の内圧は高いため、制御応答が20Hz程度しか確保できないので、高応答の制御が必要な場合には、不図示の加速度計などの出力に応じてアクチュエータを制御する必要があるからである。但し、床振動などの微振動は、エアマウントによって除振される。
[0060]
 除振装置14の上端面は、定盤12に接続されている。エアマウントには、不図示の気体供給口を介して気体(例えば圧縮空気)を供給することが可能であり、エアマウントは、内部に充填された気体量(圧縮空気の圧力変化)に応じてZ軸方向に所定のストローク(例えば、1mm程度)で伸縮する。このため、3つの除振装置14それぞれが有するエアマウントを用いて定盤12の3箇所を下方から個別に上下動させることにより、定盤12及びこの上に浮上支持されたスライダ10の、Z軸方向、θx方向、及びθy方向それぞれの位置を任意に調整できるようになっている。また、除振装置14のアクチュエータは、定盤12を、Z軸方向に駆動するのみならず、X軸方向及びY軸方向にも駆動可能である。なお、X軸方向及びY軸方向への駆動量は、Z軸方向への駆動量に比べて小さい。3つの除振装置14は、制御装置60 に接続されている(図8参照)。なお、3つの除振装置14のそれぞれが、X軸方向、Y軸方向、及びZ軸方向に限らず、例えば6自由度方向に定盤12を移動できるアクチュエータを備えていても良い。制御装置60 は、第2位置計測システム50によって計測されるマーク検出系MDS(計測ユニット40)と定盤12との相対的な位置情報に基づいて、後述する第1位置計測システム30のヘッド部32が固定される定盤12の6自由度方向の位置が、マーク検出系MDSに対して所望の位置関係を維持するように、3つの除振装置14のアクチュエータを常時リアルタイムで制御している。なお、3つの除振装置14の各々をフィードフォワード制御しても良い。例えば、制御装置60 は、第1位置計測システム30の計測情報に基づいて、3つの除振装置14の各々をフィードフォワード制御するようにしても良い。なお、制御装置60 による除振装置14の制御についてはさらに後述する。
[0061]
 駆動システム20は、図8に示されるように、スライダ10をX軸方向に駆動する第1駆動装置20Aと、スライダ10を第1駆動装置20Aと一体でY軸方向に駆動する第2駆動装置20Bとを含む。
[0062]
 図4及び図6からわかるように、スライダ10の-Y側の側面には、磁石ユニット(又はコイルユニット)から成り、側面視逆L字状の一対の可動子22aが、X軸方向に所定間隔で固定されている。スライダ10の+Y側の側面には、図6に示されるように、磁石ユニット(又はコイルユニット)から成る一対の可動子22b(ただし、+X側の可動子22bは不図示)が、X軸方向に所定間隔で固定されている。一対の可動子22aと一対の可動子22bとは、左右対称に配置されているが、互いに同様に構成されている。
[0063]
 可動子22a、22bは、図4~図6に示されるように、平面視矩形枠状の可動ステージ24の一部を構成するY軸方向に所定距離離れて配置され、それぞれX軸方向に延びる一対の板部材24a、24bのXY平面に実質的に平行な上面上に非接触で支持されている。すなわち、可動子22a、22bの下面(板部材24a、24bにそれぞれ対向する面)には、エアベアリング(不図示)がそれぞれ設けられ、これらのエアベアリングが板部材24a、24bに対して発生する浮上力(加圧空気の静圧)により、可動子22a、22bは、可動ステージ24によって、下方から非接触で支持されている。なお、各一対の可動子22a、22bが固定されたスライダ10の自重は、前述したように、4つのエアベアリング18が定盤12に対して発生する浮上力によって支持されている。
[0064]
 一対の板部材24a、24bそれぞれの上面には、図4~図6に示されるように、コイルユニット(又は磁石ユニット)から成る固定子26a、26bが、X軸方向の両端部を除く領域に配置されている。
[0065]
 一対の可動子22aと固定子26aとの間の電磁相互作用により、一対の可動子22aを、X軸方向に駆動する駆動力(電磁力)及びY軸方向に駆動する駆動力(電磁力)が発生し、一対の可動子22bと固定子26bとの間の電磁相互作用により、一対の可動子22bを、X軸方向に駆動する駆動力(電磁力)及びY軸方向に駆動する駆動力(電磁力)が発生する。すなわち、一対の可動子22aと固定子26aとによって、X軸方向及びY軸方向の駆動力を発生するXYリニアモータ28Aが構成され、一対の可動子22bと固定子26bとによって、X軸方向及びY軸方向の駆動力を発生するXYリニアモータ28Bが構成され、XYリニアモータ28AとXYリニアモータ28Bとによって、スライダ10を、X軸方向に所定ストロークで駆動するとともに、Y軸方向に微小駆動する第1駆動装置20Aが構成されている(図8参照)。第1駆動装置20Aは、XYリニアモータ28AとXYリニアモータ28Bとがそれぞれ発生するX軸方向の駆動力の大きさを異ならせることにより、スライダ10を、θz方向に駆動することができる。第1駆動装置20Aは、制御装置60 によって制御される(図8参照)。本実施形態では、後述する第2駆動装置とともに第1駆動装置20Aにより、スライダ10をY軸方向に駆動する粗微動駆動系を構成する関係から第1駆動装置20Aは、X軸方向の駆動力のみならず、Y軸方向の駆動力も発生するが、第1駆動装置20Aは、Y軸方向の駆動力を必ずしも発生する必要はない。
[0066]
 可動ステージ24は、一対の板部材24a、24bと、X軸方向に所定距離離れて配置され、それぞれY軸方向に延びる一対の連結部材24c、24dと、を有している。連結部材24c、24dのY軸方向の両端部には、段部がそれぞれ形成されている。そして、連結部材24c、24dそれぞれの-Y側の段部の上に板部材24aの長手方向の一端部と他端部が載置された状態で、連結部材24c、24dと板部材24aとが一体化されている。また、連結部材24c、24dそれぞれの+Y側の段部の上に板部材24bの長手方向の一端部と他端部が載置された状態で、連結部材24c、24dと板部材24bとが一体化されている(図5(B)参照)。すなわち、このようにして、一対の板部材24a、24bが一対の連結部材24c、24dにより連結され、矩形枠状の可動ステージ24が構成されている。
[0067]
 図4及び図5(A)に示されるように、ベースフレーム16上面のX軸方向の両端部近傍には、Y軸方向に延びる一対のリニアガイド27a、27bが、固定されている。+X側に位置する一方のリニアガイド27aの内部には、上面及び-X側の面の近傍にY軸方向のほぼ全長に渡るコイルユニット(又は磁石ユニット)から成るY軸リニアモータ29Aの固定子25a(図5(B)参照)が収納されている。リニアガイド27aの上面及び-X側の面に対向して、断面L字状の磁石ユニット(又はコイルユニット)から成り、固定子25aとともに、Y軸リニアモータ29Aを構成する可動子23aが配置されている。リニアガイド27aの上面及び-X側の面にそれぞれ対向する、可動子23aの下面及び+X側の面には、対向する面に対して加圧空気を噴出するエアベアリングがそれぞれ固定されている。そのうち、特に、可動子23aの+X側の面に固定されたエアベアリングとしては、真空予圧型のエアベアリングが用いられている。この真空予圧型のエアベアリングは、軸受面とリニアガイド27aの-X側の面との間の加圧空気の静圧と真空予圧力とのバランスにより、可動子23aとリニアガイド27aとの間のX軸方向のクリアランス(隙間、ギャップ)を一定の値に維持する。
[0068]
 可動子23aの上面上には、複数、例えば2つの直方体部材から成るXガイド19がY軸方向に所定間隔を隔てて固定されている。2つのXガイド19のそれぞれには、Xガイド19とともに一軸ガイド装置を構成する断面逆U字状のスライド部材21が、非接触で係合している。スライド部材21のXガイド19に対向する3つの面には、エアベアリングがそれぞれ設けられている。
[0069]
 2つのスライド部材21は、図4に示されるように、連結部材24cの下面(-Z側の面)にそれぞれ固定されている。
[0070]
 -X側に位置する他方のリニアガイド27bは、内部にコイルユニット(又は磁石ユニット)から成るY軸リニアモータ29Bの固定子25bを収納し、左右対称であるが、リニアガイド27aと同様に構成されている(図5(B)参照)。リニアガイド27bの上面及び+X側の面に対向して、左右対称であるが可動子23aと同様の断面L字状の磁石ユニット(又はコイルユニット)から成り、固定子25bとともに、Y軸リニアモータ29Bを構成する可動子23bが配置されている。リニアガイド27bの上面及び+X側の面にそれぞれ対向して、可動子23bの下面及び-X側の面には、エアベアリングがそれぞれ固定され、特に、可動子23bの-X側の面に固定されたエアベアリングとして、真空予圧型のエアベアリングが用いられている。この真空予圧型のエアベアリングによって、可動子23bとリニアガイド27bとの間のX軸方向のクリアランス(隙間、ギャップ)が一定の値に維持される。
[0071]
 可動子23bの上面と、連結部材24dの底面との間には、前述と同様、Xガイド19と該Xガイド19に非接触で係合するスライド部材21とによって構成される一軸ガイド装置が2つ設けられている。
[0072]
 可動ステージ24は、+X側と-X側の各2つ(合計4つ)の一軸ガイド装置を介して、可動子23a、23bによって下方から支持され、可動子23a、23b上でX軸方向に移動可能である。このため、前述した第1駆動装置20Aにより、スライダ10がX軸方向に駆動された際に、その駆動力の反力が固定子26a、26bが設けられた可動ステージ24に作用し、可動ステージ24はスライダ10とは反対方向に運動量保存則に従って移動する。すなわち、スライダ10に対するX軸方向の駆動力の反力に起因する振動の発生が、可動ステージ24の移動によって防止(あるいは効果的に抑制)される。すなわち、可動ステージ24が、スライダ10のX軸方向の移動に際し、カウンタマスとして機能する。ただし、可動ステージ24を、必ずしもカウンタマスとして機能させる必要はない。なお、スライダ10は、可動ステージ24に対してY軸方向に微小移動するのみなので特に設けていないが、可動ステージ24に対してスライダ10をY軸方向に駆動する駆動力に起因する振動の発生を防止(あるいは効果的に抑制)するためのカウンタマスを設けても良い。
[0073]
 Y軸リニアモータ29Aは、可動子23aと固定子25aとの間の電磁相互作用により可動子23aをY軸方向に駆動する駆動力(電磁力)を発生し、Y軸リニアモータ29Bは、可動子23bと固定子25bとの間の電磁相互作用により可動子23bをY軸方向に駆動する駆動力(電磁力)を発生する。
[0074]
 Y軸リニアモータ29A、29Bが発生するY軸方向の駆動力は、+X側と-X側の各2つの一軸ガイド装置を介して、可動ステージ24に作用する。これにより、可動ステージ24と一体的に、スライダ10が、Y軸方向に駆動される。すなわち、本実施形態では、可動ステージ24と、4つの一軸ガイド装置と、一対のY軸リニアモータ29A、29Bとによって、スライダ10をY軸方向に駆動する第2駆動装置20B(図8参照)が構成されている。
[0075]
 本実施形態では、一対のY軸リニアモータ29A、29Bは、定盤12とは物理的に分離されているとともに、3つの除振装置14によって振動的にも分離されている。なお、一対のY軸リニアモータ29A、29Bの固定子25a、25bがそれぞれ設けられたリニアガイド27a、27bを、ベースフレーム16に対してY軸方向に移動可能な構成にして、スライダ10のY軸方向の駆動時におけるカウンタマスとして機能させても良い。
[0076]
 計測ユニット40は、図4に示されるように、-Y側の面に底部が開口した切り欠き状の空所42aが形成されたユニット本体42と、その空所42a内に基端部が挿入された状態でユニット本体42に接続された前述のマーク検出系MDSと、マーク検出系MDSの先端の鏡筒部41をユニット本体42に接続する接続機構43とを有している。
[0077]
 接続機構43は、鏡筒部41を不図示の取付部材を介して背面側(+Y側)で支持する支持プレート44と、支持プレート44をそれぞれの一端部で支持し他端部がユニット本体42の底面に固定された一対の支持アーム45a、45bとを含む。
[0078]
 本実施形態では、マーク検出系MDSとして、例えばハロゲンランプ等の照明光源で発生する、ブロードバンドな検出光束を対象マークに照射し、その対象マークからの反射光により受光面に結像された対象マークの像と不図示の指標(内部に設けられた指標板上の指標パターン)の像とを撮像素子(CCD等)を用いて撮像し、それらの撮像信号を出力する画像処理方式のFIA(Field Image Alignment)系が用いられている。マーク検出系MDSからの撮像信号は、信号処理装置49(図4では不図示、図8参照)を介して制御装置60 に供給されるようになっている(図8参照)。計測装置100 では、マーク検出系MDSを用いるマークの計測条件(アライメント計測条件とも呼ばれる)を切り換え(選択)設定できるようになっている。切り換え(選択)設定されるアライメント計測条件には、検出対象のマークに検出光を照射するための照射条件、マークから発生する光を受光するための受光条件、及びマークから生じる光を受光して得た光電変換信号を処理するための信号処理条件が含まれる。照射条件及び受光条件は、制御装置60 によりマーク検出系MDSを介して切り換え設定され、信号処理条件は、制御装置60 により信号処理装置49を介して切り換え設定される。
[0079]
 切り換え設定される照射条件には、例えば、マーク検出系MDSが有する光学系からマークに照射される検出光の波長、光量、及び光学系のNA又はσのうちの少なくとも1つが含まれる。また、切り換え設定される受光条件には、マークから生じる回折光の次数、及び前記マークから生じる光の波長のうちの少なくとも1つが含まれる。
[0080]
 例えば、マーク検出系MDSが有する波長選択機構において使用するフィルタを選択的に照明光源からの照明光の光路上に設定することで検出光(照明光)の波長を選択することができる。また、マーク検出系MDSが有する照明視野絞り、照明開口絞り、及び結像開口絞り(例えば、輪帯照明開口絞りと併用される輪帯遮光形状の遮光部を備えた結像開口絞りなども含む)などの設定又は絞り状態を制御することで、照明条件(通常照明/変形照明)や暗視野/明視野検出方式や、光学系の開口数N.A.、σ及び照明光量等を設定制御することができる。
[0081]
 また、切り換え設定される信号処理条件には、信号処理装置49で使用する波形解析(波形処理)アルゴリズム、EGA計算モデル等の信号処理アルゴリズムの選択、選択した各信号処理アルゴリズムで使用する種々のパラメータの選択の少なくとも1つが含まれる。
[0082]
 かかるアライメント計測条件の切り換え(選択)設定が可能なFIA系については、例えば米国特許出願公開第2008/0013073号明細書などに開示されており、本実施形態のマーク検出系MDSにおいても、同様の構成のFIA系を採用することができる。なお、上記米国特許出願公開明細書には、照明開口絞りを、通常の円形の透過部を有する照明開口絞りから輪帯状の透過部を有する照明開口絞りに変更し、更に、結像開口絞りの後段の結像開口絞りに近接した位置に位相差板を配置することにより、FIA系(アライメントセンサ)を位相差顕微鏡型のセンサとして機能させることで、受光条件の1つとして、マークから生じる所定次数の回折光に対して所定の位相差を付与することも開示されている。本実施形態では、マーク検出系MDSは、光学系の焦点位置を調整するアライメントオートフォーカス機能をも有しているものとする。
[0083]
 図4の説明に戻り、鏡筒部41と支持プレート44との間には、概略二等辺三角形状のヘッド取付部材51が配置されている。ヘッド取付部材51には、図4のY軸方向に貫通する開口部が形成され、この開口部内に挿入された取付部材(不図示)を介して、鏡筒部41が、支持プレート44に取付けられている(固定されている)。また、ヘッド取付部材51も、その裏面が支持プレート44に固定されている。このようにして、鏡筒部41(マーク検出系MDS)とヘッド取付部材51と支持プレート44とが、一対の支持アーム45a、45bを介してユニット本体42と一体化されている。
[0084]
 ユニット本体42の内部には、マーク検出系MDSから検出信号として出力される撮像信号を処理して検出中心に対する対象マークの位置情報を算出し、制御装置60 に出力する前述の信号処理装置49などが配置されている。ユニット本体42は、ベースフレーム16上に設置された-Y側から見て門型の支持フレーム46上に、複数、例えば3つの除振装置48を介して下方から3点支持されている。各除振装置48は、能動型振動分離システム(いわゆるAVIS(Active Vibration Isolation System))であり、加速度計、変位センサ(例えば静電容量センサなど)、及びアクチュエータ(例えばボイスコイルモータなど)、並びにエアダンパ又は油圧式のダンパなどの機械式のダンパ等を備えている。各除振装置48は、比較的高周波の振動を、機械式のダンパによって減衰させることができるとともに、アクチュエータにより除振(制振)することができる。したがって、各除振装置48は、比較的高周波の振動が、支持フレーム46とユニット本体42との間で伝達するのを回避することができる。
[0085]
 なお、マーク検出系MDSとしては、FIA系に限らず、例えばコヒーレントな検出光を対象マークに照射し、その対象マークから発生する2つの回折光(例えば同次数の回折光、あるいは同方向に回折する回折光)を干渉させて検出して検出信号を出力する回折光干渉型のアライメント検出系を、FIA系に代えて用いても良い。あるいは、回折光干渉型のアライメント系をFIA系とともに用い、2つの対象マークを同時に検出しても良い。さらに、マーク検出系MDSとして、スライダ10を所定方向に移動している間、対象マークに対して、計測光を所定方向に走査させるビームスキャン型のアライメント系を用いても良い。また、本実施形態では、マーク検出系MDSが、アライメントオートフォーカス機能を有しているものとしたが、これに代えて、あるいはこれに加えて、計測ユニット40が、焦点位置検出系、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成の斜入射方式の多点焦点位置検出系を、備えていても良い。
[0086]
 第1位置計測システム30は、図5(B)及び図6に示されるように、定盤12の上面に形成された凹部内に配置され、定盤12に固定されたヘッド部32を有する。ヘッド部32は、上面がスライダ10の下面(グレーティングRG1の形成面)に対向している。ヘッド部32の上面とスライダ10の下面との間に所定のクリアランス(隙間、ギャップ)、例えば数mm程度のクリアランスが形成されている。
[0087]
 第1位置計測システム30は、図8に示されるように、エンコーダシステム33と、レーザ干渉計システム35とを備えている。エンコーダシステム33は、ヘッド部32からスライダ10の下面の計測部(グレーティングRG1の形成面)に複数のビームを照射するとともに、スライダ10の下面の計測部からの複数の戻りビーム(例えば、グレーティングRG1からの複数の回折ビーム)を受光して、スライダ10の位置情報を取得可能である。エンコーダシステム33は、スライダ10のX軸方向の位置を計測するXリニアエンコーダ33x、スライダ10のY軸方向の位置を計測する一対のYリニアエンコーダ33ya、33ybを含む。エンコーダシステム33では、例えば米国特許出願公開第2007/288121号明細書などに開示されるエンコーダヘッド(以下、適宜ヘッドと略記する)と同様の構成の回折干渉型のヘッドが用いられている。なお、ヘッドは、光源及び受光系(光検出器を含む)、並びに光学系を含むが、本実施形態では、これらのうち、少なくとも光学系がグレーティングRG1に対向してヘッド部32の筐体内部に配置されていれば良く、光源及び受光系の少なくとも一方は、ヘッド部32の筐体外部に配置されていても良い。
[0088]
 本実施形態では、第1位置計測システム30(エンコーダシステム33)は、スライダ10のX軸方向及びY軸方向の位置情報の計測に関して、共通の検出点を有し、この検出点のXY平面内での位置が、マーク検出系MDSの検出中心に、例えばnmレベルで一致するように、制御装置60 によって、3つの除振装置14のアクチュエータがリアルタイムで制御される。この、3つの除振装置14のアクチュエータの制御は、第2位置計測システム50によって計測されるマーク検出系MDS(計測ユニット40)と定盤12との相対的な位置情報に基づいて行われる。したがって、本実施形態では、制御装置60 は、エンコーダシステム33を用いることで、スライダ10上に載置されたウエハW上のアライメントマークを計測する際、スライダ10のXY平面内の位置情報の計測を、常にマーク検出系MDSの検出中心の直下(スライダ10の裏面側)で行うことができる。また、制御装置60 は、一対のYリニアエンコーダ33ya、33ybの計測値の差に基づいて、スライダ10のθz方向の回転量を計測する。
[0089]
 レーザ干渉計システム35は、スライダ10の下面の計測部(グレーティングRG1の形成された面)に測長ビームを入射させるとともに、その戻りビーム(例えば、グレーティングRG1の形成された面からの反射光)を受光して、スライダ10の位置情報を取得可能である。レーザ干渉計システム35は、例えば4本の測長ビームを、スライダ10の下面(グレーティングRG1の形成された面)に入射させる。レーザ干渉計システム35は、これら4本の測長ビームそれぞれを照射するレーザ干渉計35a~35d(図8参照)を備えている。本実施形態では、レーザ干渉計35a~35dにより、4つのZヘッドが構成されている。なお、レーザ干渉計35a~35dそれぞれからの測長ビームは、スライダ10の下面(グレーティングRG1の形成された面)上で、エンコーダシステム33の検出点を中心とする、X軸及びY軸にそれぞれ平行な各2辺を有する正方形の各頂点の位置に照射される。
[0090]
 本実施形態では、グレーティングRG1の形成された面は、レーザ干渉計システム35からの各測長ビームの反射面をも兼ねる。制御装置60 は、レーザ干渉計システム35を用いて、スライダ10のZ軸方向の位置、θx方向及びθy方向の回転量の情報を計測する。なお、上述した説明から明らかなように、スライダ10は、Z軸、θx及びθyの各方向に関しては、定盤12に対して前述した駆動システム20によって積極的に駆動されることはないが、底面の4隅に配置された4つのエアベアリング18によって定盤12上に浮上支持されているため、実際には、スライダ10は、Z軸、θx及びθyの各方向に関して定盤12上でその位置が変化する。すなわち、スライダ10は、実際には、Z軸、θx及びθyの各方向に関して定盤12に対して可動である。特に、スライダ10のθx及びθyの各方向の変位は、エンコーダシステム33の計測誤差(アッベ誤差)を生じさせる。かかる点を考慮して、第1位置計測システム30(レーザ干渉計システム35)により、スライダ10のZ軸、θx及びθyの各方向の位置情報を計測することとしている。
[0091]
 なお、スライダ10のZ軸方向の位置、θx方向及びθy方向の回転量の情報の計測のためには、グレーティングRG1の形成された面上の異なる3点にビームを入射させることができれば足りるので、Zヘッド、例えばレーザ干渉計は、3つあれば良い。なお、スライダ10の下面にグレーティングRG1を保護するための保護ガラスを設け、保護ガラスの表面にエンコーダシステム33からの各計測ビームを透過させ、レーザ干渉計システム35からの各測長ビームの透過を阻止する、波長選択フィルタを設けても良い。
[0092]
 以上の説明からわかるように、制御装置60 は、第1位置計測システム30のエンコーダシステム33及びレーザ干渉計システム35を用いることで、スライダ10の6自由度方向の位置を計測することができる。この場合、エンコーダシステム33では、全ての計測ビームの空気中での光路長が極短く、かつXヘッド73xからグレーティングRG1に照射される一対の計測ビームの光路長同士、Yヘッド37yaからグレーティングRG1に照射される一対の計測ビームの光路長同士、及びYヘッド37ybからグレーティングRG1に照射される一対の計測ビームの光路長同士が、互いにほぼ等しいため、空気揺らぎの影響が殆ど無視できる。したがって、エンコーダシステム33により、スライダ10のXY平面内(θz方向も含む)の位置情報を高精度に計測できる。また、エンコーダシステム33によるX軸方向、及びY軸方向の実質的なグレーティングRG1上の検出点、及びレーザ干渉計システム35によるZ軸方向のスライダ10下面上の検出点は、それぞれマーク検出系MDSの検出中心にXY平面内で一致するので、検出点とマーク検出系MDSの検出中心とのXY平面内のずれに起因するいわゆるアッベ誤差の発生が実質的に無視できる程度に抑制される。したがって、制御装置60 は、第1位置計測システム30を用いることで、検出点とマーク検出系MDSの検出中心とのXY平面内のずれに起因するアッベ誤差なく、スライダ10のX軸方向、Y軸方向及びZ軸方向の位置を高精度に計測できる。
[0093]
 しかし、マーク検出系MDSの光軸AX1に平行なZ軸方向に関しては、ウエハWの表面の位置で、エンコーダシステム33によってスライダ10のXY平面内の位置情報を計測しているわけではない、すなわちグレーティングRG1の配置面とウエハWの表面とのZ位置が一致しているわけではない。したがって、グレーティングRG1(すなわち、スライダ10)がXY平面に対して傾斜している場合、エンコーダシステム33の各エンコーダの計測値に基づいて、スライダ10を位置決めすると、結果的に、グレーティングRG1の配置面とウエハWの表面とのZ位置の差ΔZ(すなわちエンコーダシステム33による検出点とマーク検出系MDSによる検出中心(検出点)とのZ軸方向の位置ずれ)に起因して、グレーティングRG1のXY平面に対する傾斜に応じた位置決め誤差(一種のアッベ誤差)が生じてしまう。しかるに、この位置決め誤差(位置制御誤差)は、差ΔZと、ピッチング量θx、ローリング量θyとを用いて、簡単な演算で求めることができ、これをオフセットとし、そのオフセット分だけエンコーダシステム33(の各エンコーダ)の計測値を補正した補正後の位置情報に基づいて、スライダ10を位置決めすることで、上記の一種のアッベ誤差の影響を受けることがなくなる。あるいは、エンコーダシステム33(の各エンコーダ)の計測値を補正する代わりに、上記のオフセットに基づいて、スライダ10を位置決めすべき目標位置などのスライダを動かすための1つ、又は複数の情報を補正しても良い。
[0094]
 なお、グレーティングRG1(すなわち、スライダ10)がXY平面に対して傾斜している場合、その傾斜に起因する位置決め誤差が生じないように、ヘッド部32を動かしても良い。すなわち、第1位置計測システム30(例えば、レーザ干渉計システム35)によりグレーティングRG1(すなわち、スライダ10)がXY平面に対して傾斜していることが計測された場合には、第1位置計測システム30を用いて取得される位置情報に基づいて、ヘッド部32を保持している定盤12を動かしても良い。定盤12は、上述したように、除振装置14を用いて移動することができる。
[0095]
 また、グレーティングRG1(すなわち、スライダ10)がXY平面に対して傾斜している場合、その傾斜に起因する位置決め誤差に基づき、マーク検出系MDSを用いて取得されるマークの位置情報を補正しても良い。
[0096]
 第2位置計測システム50は、図4、図5(A)及び図5(B)に示されるように、前述のヘッド取付部材51の長手方向の一端部と他端部の下面にそれぞれ設けられた一対のヘッド部52A、52Bと、ヘッド部52A、52Bに対向して配置されたスケール部材54A、54Bとを有する。スケール部材54A、54Bの上面は、ウエハホルダWHに保持されたウエハWの表面と同一高さとされている。スケール部材54A、54Bそれぞれの上面には、反射型の2次元グレーティングRG2a、RG2bが形成されている。2次元グレーティング(以下、グレーティングと略記する)RG2a、RG2bは、ともに、X軸方向を周期方向とする反射型回折格子(X回折格子)と、Y軸方向を周期方向とする反射型回折格子(Y回折格子)と、を含む。X回折格子及びY回折格子の格子線のピッチは、例えば1μmと設定されている。
[0097]
 スケール部材54A、54Bは、熱膨張率が低い材料、例えば前述したゼロ膨張材料から成り、図5(A)及び図5(B)に示されるように、支持部材56をそれぞれ介して定盤12上に固定されている。本実施形態では、グレーティングRG2a、RG2bと、ヘッド部52A、52Bとが、数mm程度のギャップを隔てて対向するように、スケール部材54A、54B及び支持部材56の寸法が定められている。
[0098]
 図7に示されるように、ヘッド取付部材51の+X側の端部の下面に固定された一方のヘッド部52Aは、同一の筐体の内部に収容された、X軸及びZ軸方向を計測方向とするXZヘッド58X と、Y軸及びZ軸方向を計測方向とするYZヘッド58Y とを含む。XZヘッド58X (より正確には、XZヘッド58X が発する計測ビームのグレーティングRG2a上の照射点)と、YZヘッド58Y (より正確には、YZヘッド58Y が発する計測ビームの2次元グレーティングRG2a上の照射点)とは、同一のY軸に平行な直線上に配置されている。
[0099]
 他方のヘッド部52Bは、マーク検出系MDSの光軸AX1を通るY軸に平行な直線(以下、基準軸と呼ぶ)LVに関してヘッド部52Aと対称に配置されているが、ヘッド部52Aと同様に構成されている。すなわち、ヘッド部52Bは、基準軸LVに関してXZヘッド58X 、YZヘッド58Y と対称に配置されたXZヘッド58X 、YZヘッド58Y とを有し、XZヘッド58X 、YZヘッド58Y のそれぞれからグレーティングRG2b上に照射される計測ビームの照射点は、同一のY軸に平行な直線上に設定される。
[0100]
 ヘッド部52A,52Bは、それぞれスケール部材54A、54Bを用いて、グレーティングRG2a、RG2bのX軸方向の位置(X位置)及びZ軸方向の位置(Z位置)を計測するXZリニアエンコーダ、及びY軸方向の位置(Y位置)及びZ位置を計測するYZリニアエンコーダを構成する。ここで、グレーティングRG2a、RG2bは、定盤12上に支持部材56をそれぞれ介して固定されたスケール部材54A、54Bの上面に形成されており、ヘッド部52A,52Bは、マーク検出系MDSと一体のヘッド取付部材51に設けられている。この結果、ヘッド部52A,52Bは、マーク検出系MDSに対する定盤12の位置(マーク検出系MDSと定盤12との位置関係)を計測する。以下では、便宜上、XZリニアエンコーダ、YZリニアエンコーダを、XZヘッド58X 1、58X 、YZヘッド58Y 1、58Y とそれぞれ同一の符号を用いて、XZリニアエンコーダ58X 1、58X 、及びYZリニアエンコーダ58Y 1、58Y と表記する(図8参照)。
[0101]
 本実施形態では、XZリニアエンコーダ58X 1とYZリニアエンコーダ58Y 1とによって、定盤12のマーク検出系MDSに対するX軸、Y軸、Z軸、及びθxの各方向に関する位置情報を計測する4軸エンコーダ58 が構成される(図8参照)。同様に、XZリニアエンコーダ58X とYZリニアエンコーダ58Y とによって、定盤12のマーク検出系MDSに対するX軸、Y軸、Z軸、及びθxの各方向に関する位置情報を計測する4軸エンコーダ58 が構成される(図8参照)。この場合、4軸エンコーダ58 、58 でそれぞれ計測される定盤12のマーク検出系MDSに対するZ軸方向に関する位置情報に基づいて、定盤12のマーク検出系MDSに対するθy方向に関する位置情報が求められ(計測され)、4軸エンコーダ58 、58 でそれぞれ計測される定盤12のマーク検出系MDSに対するY軸方向に関する位置情報に基づいて、定盤12のマーク検出系MDSに対するθz方向に関する位置情報が求められる(計測される)。
[0102]
 したがって、4軸エンコーダ58 と4軸エンコーダ58 とによって、定盤12のマーク検出系MDSに対する6自由度方向の位置情報、すなわちマーク検出系MDSと定盤12との6自由度方向に関する相対位置の情報を計測する第2位置計測システム50が構成される。第2位置計測システム50によって計測されるマーク検出系MDSと定盤12との6自由度方向に関する相対位置の情報は、制御装置60 に常時供給されており、制御装置60 は、この相対位置の情報に基づいて、第1位置計測システム30の検出点が、マーク検出系MDSの検出中心に対して、所望の位置関係になるように、具体的には、第1位置計測システム30の検出点が、マーク検出系MDSの検出中心とXY平面内の位置が例えばnmレベルで一致し、かつスライダ10上のウエハWの表面がマーク検出系MDSの検出位置に一致するように、3つの除振装置14のアクチュエータをリアルタイムで制御している。なお、第1位置計測システム30の検出点が、マーク検出系MDSの検出中心に対して、所望の位置関係になるように制御可能であれば、第2位置計測システム50は、6自由度のすべての方向で相対位置の情報を計測できなくても良い。
[0103]
 前述の第1位置計測システム30の説明と上記の第2位置計測システム50との説明から明らかなように、計測装置100 では、第1位置計測システム30と第2位置計測システム50とによって、マーク検出系MDSに対するスライダ10の6自由度方向の位置情報を計測する位置計測系が構成されている。
[0104]
 図8には、計測システム500 の各計測装置100 (i=1~3)の制御系(及び後述する計測システム500 の各計測装置100 (i=4~6)の制御系)を中心的に構成する制御装置60 の入出力関係を示すブロック図が示されている。制御装置60 は、ワークステーション(又はマイクロコンピュータ)等を含み、計測装置100 の構成各部を統括制御する。図8に示されるように、計測装置100 は、図4に示される構成部分とともにチャンバ101 内に一部が配置されたウエハ搬送系70 を備えている。ウエハ搬送系70 は、前述の通り、例えば水平多関節型ロボットから成る。
[0105]
 計測システム500 は、3台の計測装置100 (i=4~6)及び搬送システム521が内部に収容されたチャンバ502と同様のチャンバと、該チャンバの一側に配置された、EFEMシステム510とを備えて、上述した計測システム500 と同様に構成されている。
[0106]
 本実施形態では、計測システム500 は、図1から明らかなように、計測システム500 と同様、露光装置200、及びC/D300に、インライン接続されていないが、露光装置200、及びC/D300の少なくとも一方にインライン接続されていても良い。本実施形態では、図示は省略したが、計測システム500 のEFEMシステム510の3つのロードポート514の真上のクリーンルームの天井近傍に、OHT用の軌道レールが設けられている。OHTによって、FOUP520が、ロードポート514上に搬入される。また、計測システム500 が備える3台の計測装置100 (i=4~6)のそれぞれは、前述した計測装置100 (i=1~3)と同様に構成されている。
[0107]
 露光装置200は、一例としてステップ・アンド・スキャン方式の投影露光装置(スキャナ)である。図9には、露光装置200のチャンバ内の構成部分が一部省略して示されている。
[0108]
 露光装置200は、図9に示されるように、照明系IOP、レチクルRを保持するレチクルステージRST、レチクルRに形成されたパターンの像を感応剤(レジスト)が塗布されたウエハW上に投影する投影ユニットPU、ウエハWを保持してXY平面内を移動するウエハステージWST、及びこれらの制御系等を備えている。露光装置200は、Z軸方向と平行な光軸AXを有する投影光学系PLを備えている。
[0109]
 照明系IOPは、光源、及び光源に送光光学系を介して接続された照明光学系を含み、レチクルブラインド(マスキングシステム)で設定(制限)されたレチクルR上でX軸方向(図9における紙面直交方向)に細長く伸びるスリット状の照明領域IARを、照明光(露光光)ILによりほぼ均一な照度で照明する。照明系IOPの構成は、例えば米国特許出願公開第2003/0025890号明細書などに開示されている。ここで、照明光ILとして、一例として、ArFエキシマレーザ光(波長193nm)が用いられる。
[0110]
 レチクルステージRSTは、照明系IOPの図9における下方に配置されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系211(図9では不図示、図10参照)によって、不図示のレチクルステージ定盤上を、水平面(XY平面)内で微小駆動可能であるとともに、走査方向(図9における紙面内左右方向であるY軸方向)に所定ストローク範囲で駆動可能となっている。
[0111]
 レチクルステージRST上には、-Z側の面(パターン面)にパターン領域と、該パターン領域との位置関係が既知の複数のマークと、が形成されたレチクルRが載置されている。レチクルステージRSTのXY平面内の位置情報(θz方向の回転情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)214によって、移動鏡212(又はレチクルステージRSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出されている。レチクル干渉計214の計測情報は、露光制御装置220(図10参照)に供給される。なお、上述したレチクルステージRSTのXY平面内の位置情報は、レチクル干渉計214に代えて、エンコーダにより計測を行っても良い。
[0112]
 投影ユニットPUは、レチクルステージRSTの図9における下方に配置されている。投影ユニットPUは、鏡筒240と、鏡筒240内に保持された投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4倍、1/5倍又は1/8倍など)を有する。レチクルRは、投影光学系PLの第1面(物体面)とパターン面がほぼ一致するように配置され、表面にレジスト(感応剤)が塗布されたウエハWは、投影光学系PLの第2面(像面)側に配置される。このため、照明系IOPからの照明光ILによってレチクルR上の照明領域IARが照明されると、レチクルRを通過した照明光ILにより、その照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLを介して、照明領域IARに共役なウエハW上の領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。
[0113]
 投影光学系PLとしては、一例としてZ軸方向と平行な光軸AXに沿って配列される複数枚、例えば10~20枚程度の屈折光学素子(レンズ素子)のみから成る屈折系が用いられている。この投影光学系PLを構成する複数枚のレンズ素子のうち、物体面側(レチクルR側)の複数枚のレンズ素子は、不図示の駆動素子、例えばピエゾ素子などによって、Z軸方向(投影光学系PLの光軸方向)にシフト駆動、及びXY面に対する傾斜方向(すなわちθx方向及びθy方向)に駆動可能な可動レンズとなっている。そして、結像特性補正コントローラ248(図9では不図示、図10参照)が、露光制御装置220からの指示に基づき、各駆動素子に対する印加電圧を独立して調整することにより、各可動レンズが個別に駆動され、投影光学系PLの種々の結像特性(倍率、歪曲収差、非点収差、コマ収差、像面湾曲など)が調整されるようになっている。なお、可動レンズの移動に代えて、あるいはこれに加えて、鏡筒240の内部の隣接する特定のレンズ素子間に気密室を設け、該気密室内の気体の圧力を結像特性補正コントローラ248が制御する構成にしても良いし、照明光ILの中心波長を結像特性補正コントローラ248がシフトできる構成を採用しても良い。これらの構成によっても、投影光学系PLの結像特性の調整が可能である。
[0114]
 ウエハステージWSTは、平面モータ又はリニアモータ等を含むステージ駆動系224(図9では、便宜上ブロックにて示されている)によって、ウエハステージ定盤222上をX軸方向、Y軸方向に所定ストロークで駆動されるとともに、Z軸方向、θx方向、θy方向、及びθz方向に微小駆動される。ウエハステージWST上に、ウエハWが、ウエハホルダ(不図示)を介して真空吸着等によって保持されている。本実施形態では、ウエハホルダは、300mmウエハを吸着保持することができるものとする。なお、ウエハステージWSTに代えて、X軸方向、Y軸方向及びθz方向に移動する第1ステージと、該第1ステージ上でZ軸方向、θx方向及びθy方向に微動する第2ステージとを備える、ステージ装置を用いることもできる。なお、ウエハステージWSTとウエハステージWSTのウエハホルダのいずれか一方、又は両方を、「第2基板保持部材」と呼んでも良い。
[0115]
 ウエハステージWSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)は、レーザ干渉計システム(以下、干渉計システムと略記する)218によって、移動鏡216(又はウエハステージWSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出される。なお、ウエハステージWSTのXY平面内の位置情報は、干渉計システム218に代えて、エンコーダシステムにより計測を行っても良い。
[0116]
 干渉計システム218の計測情報は、露光制御装置220に供給される(図10参照)。露光制御装置220は、干渉計システム218の計測情報に基づいて、ステージ駆動系224を介してウエハステージWSTのXY平面内の位置(θz方向の回転を含む)を制御する。
[0117]
 また、図9では図示が省略されているが、ウエハWの表面のZ軸方向の位置及び傾斜量は、例えば米国特許第5,448,332号明細書等に開示される斜入射方式の多点焦点位置検出系から成るフォーカスセンサAFS(図10参照)によって計測される。このフォーカスセンサAFSの計測情報も露光制御装置220に供給される(図10参照)。
[0118]
 また、ウエハステージWST上には、その表面がウエハWの表面と同じ高さである基準板FPが固定されている。この基準板FPの表面には、アライメント検出系ASのベースライン計測等に用いられる第1基準マーク、及び後述するレチクルアライメント検出系で検出される一対の第2基準マークなどが形成されている。
[0119]
 投影ユニットPUの鏡筒240の側面には、ウエハWに形成されたアライメントマーク又は第1基準マークを検出するアライメント検出系ASが設けられている。アライメント検出系ASとして、一例としてハロゲンランプ等のブロードバンド(広帯域)光でマークを照明し、このマークの画像を画像処理することによってマーク位置を計測する画像処理方式の結像式アライメントセンサの一種であるFIA(Field Image Alignment)系が用いられている。なお、画像処理方式のアライメント検出系ASに代えて、あるいはアライメント検出系ASとともに、回折光干渉型のアライメント系を用いても良い。
[0120]
 露光装置200では、さらに、レチクルステージRSTの上方に、レチクルステージRSTに載置されたレチクルR上の同一Y位置にある一対のレチクルマークを同時に検出可能な一対のレチクルアライメント検出系213(図9では不図示、図10参照)がX軸方向に所定距離隔てて設けられている。レチクルアライメント検出系213によるマークの検出結果は、露光制御装置220に供給されている。
[0121]
 図10には、露光制御装置220の入出力関係がブロック図にて示されている。図10に示されるように、露光装置200は、上記構成各部の他、露光制御装置220に接続された、ウエハを搬送するウエハ搬送系270等を備えている。露光制御装置220は、マイクロコンピュータ又はワークステーション等を含み、上記構成各部を含む装置全体を統括的に制御する。ウエハ搬送系270は、例えば水平多関節型ロボットから成る。
[0122]
 図1に戻り、C/D300は、図示は省略されているが、例えばウエハに対する感応剤(レジスト)の塗布を行う塗布部と、ウエハの現像が可能な現像部と、プリベーク(PB)及び現像前ベーク(post-exposure bake:PEB)を行うベーク部と、ウエハ搬送系(以下、便宜上、C/D内搬送系と呼ぶ)と、を備えている。C/D300は、さらに、ウエハを温調できる温調部330を備えている。温調部330は、通常、冷却部であり、例えばクールプレートと呼ばれる平坦なプレート(温調装置)を備えている。クールプレートは、例えば冷却水の循環等により冷却される。この他、ペルチェ効果による電子冷却を利用する場合もある。
[0123]
 解析装置3000は、ホストコンピュータ2000からの指示に応じて、種々の解析、演算を行う。一例を挙げれば、解析装置3000は、例えば後述するように計測システム500 で取得される重ね合わせずれの計測結果に基づいて、所定のプログラムに従った演算を行なって、露光装置200にフィードバックするための補正値を算出する。
[0124]
 本実施形態に係る基板処理システム1000では、露光装置200及びC/D300は、いずれもバーコードリーダ(不図示)を備えており、ウエハ搬送系270(図10参照)及びC/D内搬送系(不図示)のそれぞれによるウエハの搬送中に、バーコードリーダにより、各ウエハの識別情報、例えばウエハ番号、ロット番号などの読み取りが適宜行われる。以下では、説明の簡略化のため、バーコードリーダを用いた各ウエハの識別情報の読み取りに関する説明は省略する。
[0125]
 次に、一方の計測システム500 の3台の計測装置100 ~100 において、並行して、同一ロットに含まれる複数のウエハ(例えば、25枚のウエハ)を処理する際の各計測装置100 の動作について、計測装置100 の制御装置60 の処理アルゴリズムに対応する図11のフローチャートに基づいて説明する。ここでは、一例として、同一ロットの25枚のウエハのうち、計測装置100 が9枚、計測装置100 が8枚、計測装置100 が8枚、それぞれ計測処理を受け持つものとする。なお、計測装置100 、計測装置100 、計測装置100 のうちの2つの計測装置に、同一ロットに含まれる複数枚(25枚)のウエハを振り分けても良い。また、上記のように、同一ロットに含まれる複数枚のウエハの振り分けは、ほぼ均等であっても良いし、ほぼ均等でなくても良い。
[0126]
 前提として、計測装置100 (i=1~3)の計測対象であるウエハWは300ミリウエハであり、ウエハ処理の前工程のプロセス処理(エッチング、酸化・拡散、成膜、イオン注入、平坦化(CMP)など)が終了し、レジストが塗布される前のウエハである。計測対象であるウエハW上には、前層以前の露光により、複数、例えばI個(一例としてI=98)のショット領域と呼ばれる区画領域(以下、ショットと呼ぶ)がマトリクス状の配置で形成され、各ショットを取り囲むストリートライン又は各ショット内部のストリートライン(1ショット複数チップ取りの場合)の上には、複数種類のマーク、例えばサーチアライメント用のサーチアライメントマーク(サーチマーク)、ファインアライメント用のウエハアライメントマーク(ウエハマーク)などが設けられているものとする。この複数種類のマークはショットとともに形成される。本実施形態では、サーチマーク及びウエハマークとして、2次元マークが用いられるものとする。
[0127]
 また、計測装置100 のオペレータにより、予めウエハWに対するアライメント計測に必要な情報が不図示の入力装置を介して入力され、制御装置60 のメモリ内に記憶されているものとする。ここで、アライメント計測に必要な情報としては、ウエハWの厚さ情報、ウエハホルダWHのフラットネス情報、ウエハW上のショット及びアライメントマークの配置の設計情報などの各種情報が含まれる。
[0128]
 以下で説明する、図11のフローチャートに対応する処理は、3台の計測装置100 ~100 で、並行して、かつ個別に行われる。
[0129]
 図11のフローチャートに対応する処理アルゴリズムがスタートするのは、例えばオペレータ又はホストコンピュータ2000から計測開始が指示されたときである。このとき、1ロットに含まれる25枚のウエハのうち、それぞれの計測装置の受け持ち枚数のウエハは、計測装置100 のチャンバ101 内の所定位置にあるウエハキャリア内に収納されているものとする。これに限らず、3台の計測装置100 のよる計測処理と並行して1ロットのウエハのそれぞれを計測装置100 内に順次搬入することとしても良い。例えば、ロボット516、搬送部材524及び搬送部材526等を制御する計測システム制御装置530 の管理の下、所定のFOUP520内の1ロットに含まれる例えば25枚のウエハを、1枚ずつロボット516によって順次取り出し、搬送部材524によって、3台の計測装置100 それぞれとの所定の受け渡し位置まで、順次搬送することとしても良い。この場合、図11のフローチャートに対応する処理アルゴリズムがスタートするのは、計測システム制御装置530 によって各制御装置60 及びロボット516に搬送開始の指令がなされたときとなる。
[0130]
 なお、露光装置200と計測システム500 とが接続されている場合には、露光装置200の露光制御装置220から、ホストコンピュータ2000を介さずに、計測システム制御装置530 に計測開始が指示されても良い。
[0131]
 なお、計測装置100 は、露光装置200及びC/D300と同様、バーコードリーダ(不図示)を備えており、ウエハ搬送系70 (図8参照)によるウエハの搬送中に、バーコードリーダにより、各ウエハの識別情報、例えばウエハ番号、ロット番号などの読み取りが適宜行われる。以下では、説明の簡略化のため、バーコードリーダを用いた各ウエハの識別情報の読み取りに関する説明は省略する。なお、計測装置100 のそれぞれが、バーコードリーダを備えていなくても良い。例えば、搬送システム521にバーコードリーダを配置しても良い。
[0132]
 まず、ステップS102で計測対象のウエハの番号を示すカウンタのカウント値iを1に初期化する(i←1)。
[0133]
 次のステップS104で、ウエハWを、スライダ10上にロードする。このウエハWのロードは、制御装置60 の管理の下、ウエハ搬送系70 とスライダ10上の上下動部材とによって行われる。具体的には、ウエハ搬送系70 によりウエハWがウエハキャリア(又は受け渡し位置)からローディングポジションにあるスライダ10の上方に搬送され、駆動装置13により上下動部材が所定量上昇駆動されることで、ウエハWが上下動部材に渡される。そして、ウエハ搬送系70 がスライダ10の上方から退避した後、駆動装置13により上下動部材が下降駆動されることで、ウエハWがスライダ10上のウエハホルダWH上に載置される。そして、バキュームポンプ11がオンにされ、スライダ10上にロードされたウエハWがウエハホルダWHで真空吸着される。なお、計測装置100 のよる計測処理と並行して1ロットに含まれる複数のウエハのそれぞれを計測装置100 内に順次搬入する場合、上記のウエハのロードに先立って、所定のFOUP520内の複数のウエハが、1枚ずつロボット516によって順次取り出され、ロボット516から搬送部材524に渡され、搬送部材524によって計測装置100 との所定の受け渡し位置まで搬送され、ウエハ搬送系70 に渡されることになる。
[0134]
 次のステップS106では、ウエハWのZ軸方向の位置(Z位置)を調整する。このZ位置の調整に先立って、制御装置60 により、第2位置計測システム50によって計測されるマーク検出系MDSと定盤12とのZ軸方向、θy方向、θx方向に関する相対的な位置情報に基づいて、3つの除振装置14のエアマウントの内圧(除振装置14が発生するZ軸方向の駆動力)が制御され、定盤12は、その上面が、XY平面に平行になり、Z位置が所定の基準位置となるように設定されている。ウエハWは厚さが一様であると考えられる。したがって、ステップS106では、制御装置60 は、メモリ内のウエハWの厚さ情報に基づいて、マーク検出系MDSによるオートフォーカス機能により光学系の焦点位置を調整可能な範囲にウエハW表面が設定されるように、3つの除振装置14が発生するZ軸方向の駆動力、例えばエアマウントの内圧(圧縮空気の量)を調整して、定盤12をZ軸方向に駆動し、ウエハW表面のZ位置を調整する。なお、計測ユニット40が焦点位置検出系を備えている場合には、制御装置60 は、焦点位置検出系の検出結果(出力)に基づいてウエハ表面のZ位置調整を行うこととしても良い。例えば、マーク検出系MDSが、先端部の光学素子(対物光学素子)を介してウエハW表面のZ軸方向の位置を検出する焦点位置検出系を備えていても良い。また、焦点位置検出系の検出結果に基づくウエハWの表面のZ位置の調整は、除振装置14を使って定盤12を動かして、定盤12とともにスライダ10を動かすことによって行なうことができる。なお、スライダ10を、XY平面内の方向のみならず、Z軸方向、θx方向及びθy方向にも駆動可能な構成の駆動システム20を採用し、その駆動システム20を使ってスライダ10を動かしても良い。なお、ウエハ表面のZ位置調整は、ウエハ表面の傾斜調整を含んでいても良い。ウエハ表面の傾斜を調整するために駆動システム20を用いることによって、グレーティングRG1の配置面とウエハWの表面とのZ位置の差ΔZに起因する誤差(一種のアッベ誤差)が生じる可能性がある場合には、上述したような対策の少なくとも1つを実行すれば良い。
[0135]
 次のステップS108では、予め定められたサーチマークの計測条件の設定の下で、ウエハWのサーチアライメントを行う。サーチマークの計測条件は、後述するようにステップS110で設定される第1条件と同じ条件であっても良いし、ウエハマークとサーチマークとの相違を考慮した、よりサーチマークの計測に適した計測条件であっても良い。
[0136]
 サーチアライメントでは、例えば、ウエハW中心に関してほぼ対称に周辺部に位置する少なくとも2つのサーチマークをマーク検出系MDSを用いて検出する。制御装置60 は、駆動システム20によるスライダ10の駆動を制御して、それぞれのサーチマークをマーク検出系MDSの検出領域(検出視野)内に位置決めしつつ、第1位置計測システム30による計測情報及び第2位置計測システム50による計測情報を取得し、マーク検出系MDSを用いてウエハWに形成されたサーチマークを検出した時の検出信号と、第1位置計測システム30による計測情報(及び第2位置計測システム50による計測情報)とに基づいて、各サーチマークの位置情報を求める。
[0137]
 ここで、サーチマークの計測は、マーク検出系MDSの光学系からサーチマークにブロードバンド光(検出光)を照射しサーチマークから発生する予め定められた波長(検出波長)の光であって、所定次数(例えば±1次)の回折光をディテクタで受光し、その光電変換信号を所定の信号処理条件に従って処理することで行われる。
[0138]
 制御装置60 は、信号処理装置49から出力されるマーク検出系MDSの検出結果(上記の光電変換信号を上記信号処理条件の下で処理して得られるマーク検出系MDSの検出中心(指標中心)と各サーチマークとの相対位置関係)と、各サーチマーク検出時の第1位置計測システム30の計測値(及び第2位置計測システム50の計測値)とに基づいて、2つのサーチマークの基準座標系上の位置座標を求める。ここで、基準座標系は、第1位置計測システム30の測長軸によって規定される直交座標系である。
[0139]
 しかる後、2つのサーチマークの位置座標からウエハWの残留回転誤差を算出し、この回転誤差がほぼ零となるようにスライダ10を微小回転させる。これにより、ウエハWのサーチアライメントが終了する。なお、ウエハWは、実際にはプリアライメントが行われた状態でスライダ10上にロードされるので、ウエハWの中心位置ずれは無視できるほど小さく、残留回転誤差は非常に小さい。
[0140]
 次のステップS110では、マークに検出光を照射するための照射条件、マークから発生する光を受光するための受光条件、及びマークから生じる光を受光して得た光電変換信号を処理するための信号処理条件の少なくとも1つを含む前述したマークの計測条件(アライメント計測条件)として、計測システム制御装置530 から指示された第1条件を設定する。
[0141]
 ステップS110において、ウエハマークの検出に適した、切り換え可能な照射条件、受光条件及び信号処理条件の少なくとも1つが、第1条件として設定される。ここでは、第1条件の一例として、例えばマーク検出系MDSにおける照明光の波長の最適化を行うものとする。また、一例として、ここでは、処理対象のウエハWに形成されるウエハマークは、ウエハWに積層されているパターン層(レイヤ)の最表層に形成されたマークであり、これを観察するのに特段の観察光(照明光)の波長を限定する必要はなく、ハロゲンランプ等の照明光源で発するブロードバンドな白色光で観察すれば良い。したがって、制御装置60 では、マーク検出系MDSの波長選択機構において波長530~800nmの光束(白色光)を透過させるフィルタが選択されるように、波長選択機構の設定(制御)を行う。
[0142]
 次のステップS112では、第1条件の設定の下で、全ウエハに対するアライメント計測(全ショット1点計測、言い換えれば、全ショットEGA計測)、すなわち98個のショットのそれぞれについて、1つのウエハマークを計測する。具体的には、制御装置60 は、前述したサーチアライメント時における各サーチマークの位置座標の計測と同様にして、ウエハW上のウエハマークの基準座標系上における位置座標、すなわち、ショットの位置座標を求める。ただし、この場合、第1条件で定められるブロードバンドな波長の検出光を、デフォルトにて設定された光量で、コンベンショナルな照明条件(σ値)でマーク検出系MDSの光学系を介してウエハマークに照射し、ウエハマークから生じる所定次数(例えば±1次)の回折光をディテクタで受光し、その光電変換信号をデフォルトにて設定された信号処理条件(処理アルゴリズム)に従って処理することで、ウエハW上のウエハマークの基準座標系上における位置座標の算出に用いられる、マークの検出結果が得られる。
[0143]
 ただし、この場合、サーチアライメント時とは異なり、ショットの位置座標の算出に際しては、第2位置計測システム50の計測情報を、必ず用いる。その理由は、前述したように、制御装置60 により、第2位置計測システム50の計測情報に基づいて、第1位置計測システム30の検出点が、マーク検出系MDSの検出中心とXY平面内の位置が例えばnmレベルで一致し、かつスライダ10上のウエハWの表面がマーク検出系MDSの検出位置に一致するように、3つの除振装置14のアクチュエータがリアルタイムで制御されている。しかし、ウエハマークの検出時において、第1位置計測システム30の検出点が、マーク検出系MDSの検出中心とXY平面内の位置が例えばnmレベルで一致している補償はないので、両者の位置ずれ量をオフセットとして考慮して、ショットの位置座標を算出する必要があるからである。例えば、上記オフセットを用いて、マーク検出系MDSの検出結果又は第1位置計測システム30の計測値を補正することで、算出されるウエハW上のウエハマークの基準座標系上における位置座標を補正することができる。
[0144]
 ここで、この全ショット1点計測に際して、制御装置60 は、第1位置計測システム30の計測情報及び第2位置計測システム50の計測情報に基づいて、スライダ10(ウエハW)を、駆動システム20を介してX軸方向及びY軸方向の少なくとも一方の方向に移動し、ウエハマークを、マーク検出系MDSの検出領域内に位置決めする。すなわち、ステップ・アンド・リピート方式でスライダ10をXY平面内でマーク検出系MDSに対して移動して、全ショット1点計測が行われる。
[0145]
 なお、計測ユニット40が焦点位置検出系を備えている場合には、ステップS106での説明と同様に、制御装置60 は、焦点位置検出系の検出結果(出力)に基づいてウエハ表面のZ位置の調整を行っても良い。
[0146]
 ステップS112の全ウエハに対するアライメント計測(全ショット1点計測)に際して、スライダ10がXY平面内で移動されると、その移動に伴い、定盤12に偏荷重が作用するが、本実施形態では、制御装置60 が、第1位置計測システム30の計測情報に含まれるスライダのX、Y座標位置に応じて、偏荷重の影響が相殺されるように3つの除振装置14を個別にフィードフォワード制御し、それぞれの除振装置14が発生するZ軸方向の駆動力を個別に制御する。なお、制御装置60 は、第1位置計測システム30の計測情報を用いることなく、スライダ10の既知の移動経路の情報に基づいて、定盤12に作用する偏荷重を予測し、偏荷重の影響が相殺されるように3つの除振装置14を個別にフィードフォワード制御しても良い。また、本実施形態では、ウエハホルダWHのウエハ保持面(ピンチャックの多数のピンの上端面で規定される面)の凹凸の情報(以下、ホルダフラットネス情報と呼ばれる)は、予め実験等で求められているので、アライメント計測(例えば全ショット1点計測)に際して、スライダ10を移動する際に、制御装置60 は、そのホルダフラットネス情報に基づいて、ウエハW表面の計測対象のウエハマークを含む領域が、マーク検出系MDSの光学系の焦点深度の範囲内に迅速に位置するように、3つの除振装置14をフィードフォワード制御することで、定盤12のZ位置を微調整する。なお、上述の定盤12に作用する偏荷重の影響を相殺するためのフィードフォワード制御及びホルダフラットネス情報に基づくフィードフォワード制御のいずれか一方、又は両方は実行しなくても良い。
[0147]
 なお、マーク検出系MDSの倍率の調整が可能である場合には、サーチアライメントに際しては、低倍率に設定し、アライメント計測に際しては、高倍率に設定することにしても良い。また、スライダ10上にロードされたウエハWの中心位置ずれ、及び残留回転誤差が無視できるほど小さい場合には、ステップS108を省いても良い。
[0148]
 ステップS112における全ショット1点計測において、後述するEGA演算で用いられる、基準座標系におけるサンプルショット領域(サンプルショット)の位置座標の実測値が検出されることとなる。サンプルショットとは、ウエハW上の全てのショットのうち、後述するEGA演算で用いられるものとして、予め定められた特定の複数(少なくとも3つ)のショットを指す。なお、全ショット1点計測では、ウエハW上の全ショットがサンプルショットとなる。ステップS112の後、ステップS114に進む。
[0149]
 ステップS114では、ステップS112で計測したウエハマークの位置情報を用いて、EGA演算を行う。EGA演算とは、上述のウエハマークの計測(EGA計測)の後、サンプルショットの位置座標の設計値と実測値との差のデータに基づいて、最小二乗法等の統計演算を用いて、ショットの位置座標と、そのショットの位置座標の補正量との関係を表現するモデル式の係数を求める統計演算を意味する。
[0150]
 本実施形態では、一例として、次のモデル式が、ショットの位置座標の設計値からの補正量の算出に用いられる。
[0151]
[数1]


[0152]
 ここで、dx、dyは、ショットの位置座標の設計値からのX軸方向,Y軸方向の補正量であり、X、Yは、ウエハWの中心を原点とするウエハ座標系におけるショットの設計上の位置座標である。すなわち、上記式(1)は、ウエハの中心を原点とするウエハ座標系における各ショットの設計上の位置座標X、Yに関する多項式であり、その位置座標X、Yと、そのショットの位置座標の補正量(アライメント補正成分)dx、dyとの関係を表現するモデル式となっている。なお、本実施形態では、前述したサーチアライメントにより、基準座標系とウエハ座標系との回転がキャンセルされるため、以下では、基準座標系と、ウエハ座標系を特に区別せず、すべて基準座標系であるものとして説明する。
[0153]
 モデル式(1)を用いれば、ウエハWのショットの位置座標X,Yから、そのショットの位置座標の補正量を求めることができる。ただし、この補正量を算出するためには、係数a 0、a 1、…、b 0、b 1、…を求める必要がある。EGA計測の後、そのサンプルショットの位置座標の設計値と実測値との差のデータに基づいて、最小二乗法等の統計演算を用いて、上記式(1)の係数a 0、a 1、…、b 0、b 1、…を求める。
[0154]
 モデル式(1)の係数a 0、a 1、…、b 0、b 1、…を決定後、係数決定後のモデル式(1)にウエハ座標系における各ショット(区画領域)の設計上の位置座標X、Yを代入して、各ショットの位置座標の補正量dx、dyを求めることで、ウエハW上の複数のショット(区画領域)の真の配列(変形成分として、線形成分のみならず、非線形成分まで含む)を求めることができる。
[0155]
 ところで、既に露光が行われたウエハWの場合、それまでのプロセスの影響により、計測結果として得られる検出信号の波形が、全てのウエハマークについて良好であるとは限らない。かかる計測結果(検出信号の波形)が不良なウエハマークの位置を、上記のEGA演算に含めると、その計測結果(検出信号の波形)が不良なウエハマークの位置誤差が、係数a 0、a 1、…、b 0、b 1、…の算出結果に悪影響を与える。
[0156]
 そこで、本実施形態では、信号処理装置49が、計測結果が良好なウエハマークの計測結果のみを、制御装置60 に送り、制御装置60 は、計測結果を受信した全てのウエハマークの位置を用いて、上述のEGA演算を実行するようになっている。なお、上記式(1)の多項式の次数に特に制限はない。制御装置60 は、EGA演算の結果を、ウエハの識別情報(例えばウエハ番号、ロット番号)に対応づけて、アライメント履歴データファイルとして、内部又は外部の記憶装置に記憶する。なお、アライメント履歴データファイルに、EGA演算の結果以外の情報(例えば、EGA演算に用いられたマークの情報)が含まれても良い。
[0157]
 ステップS114のEGA演算が終了すると、ステップS116に進み、ウエハWをスライダ10上からアンロードする。このアンロードは、制御装置60 の管理の下、ステップS104におけるロードの手順と逆の手順で、ウエハ搬送系70 とスライダ10上の上下動部材とによって行われる。なお、計測装置100 のよる計測処理と並行して計測装置100 が計測を受け持つ同一ロット内の一部の所定枚数のウエハのそれぞれを計測装置100 内に順次搬入し、計測装置100 から順次搬出する場合、計測を終えたウエハWは、ウエハ搬送系70 によって搬送部材526に渡され、搬送部材526によって前述のアンロード側ウエハ受け渡し位置まで搬送された後、ロボット516によって所定のFOPU520内に戻されることとなる。
[0158]
 次のステップS118では、カウンタのカウント値iを1インクリメント(i←i+1)した後、ステップS120に進んで、カウント値iが同一ロット内の計測装置100 が計測を受け持つウエハの数Mより大きいか否かを判断する。数Mは、計測装置100 では9、計測装置100 及び100 では8である。
[0159]
 そして、このステップS120における判断が否定された場合には、計測装置100 が計測を受け持つ全てのウエハに対する処理が終了していないと判断して、ステップS104に戻り、以降ステップS120における判断が肯定されるまで、ステップS104~ステップS120までの処理(判断を含む)を繰り返す。
[0160]
 そして、ステップS120における判断が肯定されると、計測装置100 が計測を受け持つ全てのウエハに対して処理が終了したと判断して、本ルーチンの一連の処理を終了する。
[0161]
 これまでの説明からわかるように、計測装置100 によると、アライメント計測に際し、ウエハW上のI個(例えば98個)のショットのそれぞれについて、少なくとも各1つのウエハマークの位置情報(座標位置情報)が計測され、計測された位置情報(計測結果が不良なウエハマークの位置情報は除かれる)を用い、最小二乗法等の統計演算により、上記式(1)の係数a 0、a 1、…、b 0、b 1、…が求められる。したがって、ウエハグリッドの変形成分を、線形成分のみならず、非線形成分まで、正確に求めることが可能になる。ここで、ウエハグリッドとは、ショットマップ(ウエハW上に形成されたショットの配列に関するデータ)に従って配列されたウエハW上のショットの中心を結んで形成される格子を意味する。ショットの位置座標の補正量(アライメント補正成分)dx、dyを、複数のショットについて求めることは、ウエハグリッドの変形成分を求めることに他ならない。なお、本明細書では、ウエハグリッドを「グリッド」と略記し、あるいは「ショット領域(又はショット)の配列」とも記述している。
[0162]
 計測システム500 では、3台の計測装置100 ~100 によって、前述したフローチャートに沿った計測処理を、並行して行なうことができる。すなわち、計測装置100 ~100 によって、ウエハキャリア内にそれぞれ収納された計測対象の所定枚数のウエハ、合計1ロットのウエハに対して、実質的に1ロットの1/3の枚数のウエハに対する計測処理時間で、各ウエハの全てのショットに対して少なくとも1つのウエハマークの位置計測が可能となり、ウエハグリッドの変形成分を、線形成分のみならず、非線形成分まで、正確に求めることが可能になる。なお、計測処理と並行して、各計測装置100 に対するウエハの搬入及び各計測装置100 からの計測済みのウエハの搬出を行う場合にも、1つのロードポート514に搬入されたFOUP520内部の1ロットのウエハに対して、並行して処理をおこなうことができ、1ロットのウエハに対して、実質的に1ロットの1/3の枚数のウエハに対する処理時間で、各ウエハの全てのショットに対して少なくとも1つのウエハマークの位置計測が可能となり、ウエハグリッドの変形成分を、線形成分のみならず、非線形成分まで、正確に求めることが可能になる。なお、3台の計測装置100 ~100 は、例えば1ロット内の1枚のウエハを、3台の計測装置100 ~100 それぞれで同じ条件の下で計測処理した場合に、実質的に同じ計測結果が得られるように、例えば基準ウエハなどを用いて調整されていても良い。
[0163]
 求められた各ウエハのウエハグリッドの情報、例えば、求められた各ウエハのウエハグリッドの変形成分のデータ(係数a 0、a 1、…、b 0、b 1、…を決定後のモデル式(1)のデータ)は、計測装置100 の制御装置60 によって、各ウエハのアライメント履歴データファイルの一部として、計測システム制御装置530 に送信される。計測システム制御装置530 は、受信した各ウエハのウエハグリッドの情報、例えば受信した各ウエハのウエハグリッドの変形成分のデータ(係数a 0、a 1、…、b 0、b 1、…を決定後のモデル式(1)のデータ)を含むアライメント履歴データファイルを、例えばウエハ毎に内部の記憶装置に記憶する。
[0164]
 上述したように、計測装置100 ~100 において、並行して、同一ロットに含まれる25枚のウエハ計測処理が、9枚、8枚、8枚で分担しておこなわれているので、計測装置100 ~100 による計測処理は、ほぼ同時に終了する。したがって、同一ロットの25枚のウエハを、1台の計測装置で順次処理する場合に比べて、約1/3の時間で計測処理が終了する。なお、上記の場合、分担枚数が1枚多い、計測装置100 による処理を最初に開始することが望ましい。
[0165]
 計測システム制御装置530 は、1ロットに含まれるすべてのウエハの計測が終了すると、そのロットに含まれる複数のウエハそれぞれの、ウエハグリッドの情報(アライメント履歴データファイル)をホストコンピュータ2000に送信する。言うまでもないが、計測システム500 から送信されるウエハグリッドの情報(アライメント履歴データファイル)には、ウエハグリッドの非線形成分のデータも含まれている。
[0166]
 なお、計測装置100 の制御装置60 を、LAN1500を介してホストコンピュータ2000に接続し、ウエハグリッドの情報(アライメント履歴データファイル)を、計測システム制御装置530 を介さずに制御装置60 からホストコンピュータ2000に送信しても良い。
[0167]
 また、本実施形態においては、計測システム500 からウエハグリッドの情報を、送信(出力)するようにしているが、計測システム500 から送信される情報(データ)は、これに限られず、例えば計測装置100 で計測された複数のウエハマークの座標位置情報を、各ウエハのアライメント履歴データの少なくとも一部として、送信(出力)するようにしても良い。
[0168]
 なお、最初に、1ロットに含まれる25枚のウエハのうち、それぞれの計測装置の受け持ち枚数のウエハが、計測装置100 のチャンバ101 内にあるウエハキャリア内に収納されていた場合には、計測が終了した時点では、それぞれの計測装置の受け持ち枚数のウエハは、それぞれのウエハキャリア内に戻されている。そこで、計測システム制御装置530 では、搬送システム521を用いて、それぞれのウエハキャリア内のウエハをFOUP520内戻す必要がある。一方、3台の計測装置100 のよる計測処理と並行して1ロットのウエハのそれぞれを計測装置100 内に順次搬入することとした場合には、搬送部材526が、ウエハ搬送系70 (i=1~3のいずれか)から計測が終了したウエハを受け取り、前述のアンロード側ウエハ受け渡し位置へ搬送し、ロボット516が、そのアンロード側ウエハ受け渡し位置へ搬送された計測処理済みのウエハを、FOUP520内に搬入している(戻している)。
[0169]
 次に、露光装置200及びC/D300を含むリソグラフィシステムにより、多数のウエハを連続的に処理する場合の動作の流れについて説明する。
[0170]
 まず、C/D内搬送系(例えばスカラーロボット)により、C/D300のチャンバ内に配置されたウエハキャリアから第1枚目のウエハ(W とする)が取り出され、塗布部に搬入される。これにより、塗布部によりレジストの塗布が開始される。レジストの塗布が終了すると、C/D内搬送系は、ウエハW を塗布部から取り出してベーク部に搬入する。これにより、ベーク部でウエハW の加熱処理(PB)が開始される。そして、ウエハのPBが終了すると、C/D内搬送系により、ウエハW がベーク部から取り出され温調部330内に搬入される。これにより、温調部330内部のクールプレートでウエハW の冷却が開始される。この冷却は、露光装置200内で影響のない温度、一般的には、例えば20~25℃の範囲で定められる露光装置200の空調系の目標温度を目標温度として行われる。通常、温調部330内に搬入された時点では、ウエハの温度は目標温度に対して±0.3[℃]の範囲内にあるが、温調部330により目標温度±10[mK]の範囲に温調される。
[0171]
 そして、温調部330内で冷却(温調)が終了すると、そのウエハW は、C/D内搬送系により、C/D300と露光装置200との間に設けられた基板受け渡し部のロード側基板載置部に載置される。
[0172]
 C/D300内では、上記と同様の一連のウエハに対するレジスト塗布、PB、冷却、及びこれらの一連の処理に伴う上記のウエハの搬送動作が順次繰り返し行われ、ウエハが順次ロード側基板載置部に載置される。なお、実際には、C/D300のチャンバ内に、塗布部及びC/D内搬送系をそれぞれ2つ以上設けることにより、複数枚のウエハに対する並行処理が可能であり、露光前処理に要する時間の短縮が可能になる。
[0173]
 前述のロード側基板載置部に載置されたウエハW は、ウエハ搬送系270により、露光装置200内部の所定の待機位置まで搬送される。ただし、第1枚目のウエハW は、待機位置で待機すること無く、直ちに露光制御装置220によって、ウエハステージWST上にロードされる。このウエハのロードは、露光制御装置220により、前述した計測装置100 で行われたと同様にして、ウエハステージWST上の不図示の上下動部材とウエハ搬送系270とを用いて行われる。ロード後、ウエハステージWST上のウエハに対して、アライメント検出系ASを用いて前述と同様のサーチアライメント、及び例えば3~16程度のショットをアライメントショットとするEGA方式のウエハライメントが行われる。このEGA方式のウエハライメントに際し、露光装置200の露光制御装置220には、露光装置200におけるウエハアライメント及び露光の対象となるウエハ(対象ウエハ)の、アライメント履歴データファイルが、対象ウエハの識別情報(例えばウエハ番号、ロット番号)などとともにホストコンピュータ2000から提供される。露光装置200がホストコンピュータ2000から取得したアライメント履歴データには、計測システム500 で計測された各ウエハのウエハグリッドの情報が含まれており、露光制御装置220は、所定の準備作業の後、後述するようなウエハアライメントを行う。なお、ホストコンピュータ2000を介さずに、露光制御装置220と計測システム制御装置530 とが、アライメント履歴データなどのやりとりを行っても良い。
[0174]
 ここで、ウエハアライメントの具体的な説明に先立って、露光装置200で、3~16程度のショットをアライメントショットとするEGA方式のウエハライメントが行われる理由について説明する。
[0175]
 計測装置100 により求められたウエハWのショットの位置座標の補正量(上記式(1)の係数a 0、a 1、…、b 0、b 1、…)は、例えば露光装置200によりウエハWを露光する際の露光位置に対するウエハの位置合わせに用いられる。しかるに、露光装置200により計測装置100 で位置座標の補正量が計測されたウエハWは、前述したように計測装置100 のスライダ10からアンロードされた後、FOUP520内に収納され、そのFOUP520が、OHTその他の搬送系により、C/D300に搬入される。そして、そのウエハWは、C/D300によってレジストが塗布された後、露光のため、露光装置200のウエハステージWST上にロードされる。この場合において、スライダ10上のウエハホルダWHと、露光装置200のウエハステージWST上のウエハホルダとは、仮に同一タイプのウエハホルダが用いられていたとしても、ウエハホルダの個体差によりウエハWの保持状態が異なる。このため、せっかく、計測装置100 でウエハWのショットの位置座標の補正量(上記式(1)の係数a 0、a 1、…、b 0、b 1、…)を求めていても、その係数a 0、a 1、…、b 0、b 1、…の全てをそのまま用いることはできない。しかるに、ウエハホルダ毎にウエハWの保持状態が異なることで影響を受けるのは、ショットの位置座標の補正量の1次以下の低次成分(線形成分)であり、2次以上の高次成分は殆ど影響を受けないものと考えられる。その理由は、2次以上の高次成分は、主としてプロセスに起因するウエハWの変形に起因して生じる成分であると考えられ、ウエハホルダによるウエハの保持状態とは無関係な成分であると考えて差し支えないからである。
[0176]
 かかる考えに基づけば、計測装置100 により、時間を掛けてウエハWについて求めた高次成分の係数a 、a 、……、a 、……、及びb 、b 、……、b 、……は、露光装置200でのウエハWの位置座標の補正量の高次成分の係数としてもそのまま用いることが可能である。したがって、露光装置200のウエハステージWST上では、ウエハWの位置座標の補正量の線形成分を求めるための簡易なEGA計測(例えば3~16個程度のウエハマークの計測)を行うだけで足りるのである。
[0177]
 露光装置200では、アライメント履歴データに含まれる、計測装置100 によって位置情報が計測された(補正量の算出にマークの位置情報が用いられた)ウエハマークの中からアライメントショット数に対応する数のウエハマークを選択して、検出対象とし、その検出対象のウエハマークをアライメント検出系ASを用いて検出し、その検出結果と検出時のウエハステージWSTの位置(干渉計システム218による計測情報)とに基づいて、検出対象の各ウエハマークの位置情報を求め、その位置情報を用いて、EGA演算を行い、次式(2)の各係数を求める。
[0178]
[数2]


[0179]
 そして、露光制御装置220は、ここで求めた係数(c 、c 、c 、d 、d 、d )を、対象ウエハのウエハグリッドの変形成分のデータに含まれる係数(a 、a 、a 、b 、b 、b )と置き換え、置き換え後の係数を含む次式(3)で表されるウエハの中心を原点とするウエハ座標系における各ショットの設計上の位置座標X、Yに関する多項式を用いて、各ショットの位置座標の補正量(アライメント補正成分)dx、dyを求め、この補正量に基づいて、ウエハグリッドを補正するための、各ショットの露光に際しての露光位置(レチクルパターンの投影位置)に対する位置合わせのための目標位置(以下、便宜上、位置決め目標位置と呼ぶ)を決定する。なお、本実施形態では、静止露光方式ではなく、走査露光方式で露光が行われるが、便宜上、位置決め目標位置と称している。
[0180]
[数3]


[0181]
 なお、露光装置200でも、サーチアライメントにより、ウエハステージWSTの移動を規定する基準座標系(ステージ座標系)とウエハ座標系との回転がキャンセルされるため、基準座標系とウエハ座標系を特に区別する必要はない。
[0182]
 そして、露光制御装置220は、その位置決め目標位置に従ってウエハステージWSTを位置制御しつつ、ウエハW 上の各ショットに対してステップ・アンド・スキャン方式で露光を行う。
[0183]
 そして、ウエハステージWST上のウエハ(この場合ウエハW )に対する露光が終了する前に、2枚目のウエハW が、C/D内搬送系により基板受け渡し部のロード側基板載置部に載置され、ウエハ搬送系270により露光装置200内部の所定の待機位置まで搬送され、その待機位置で待機することになる。
[0184]
 そして、ウエハW の露光が終了すると、ウエハステージ上でウエハW とウエハW とが交換され、交換後のウエハW に対して、前述と同様のウエハアライメント及び露光が行われる。なお、ウエハW の待機位置までの搬送が、ウエハステージ上のウエハ(この場合ウエハW )に対する露光が終了するまでに終わらない場合には、ウエハステージが露光済みのウエハを保持したまま待機位置の近傍で待機することになる。
[0185]
 上記の交換後のウエハW に対するウエハアライメントと並行してウエハ搬送系270により露光済みのウエハW が基板受け渡し部のアンロード側基板載置部に搬送される。
[0186]
 前述の如くして、ウエハ搬送系270により、基板受け渡し部のアンロード側基板載置部に載置された露光済みのウエハは、C/D内搬送系によりベーク部内に搬入され、該ベーク部内のベーキング装置によりPEBが行われる。ベーク部内には、複数枚のウエハを同時に収容可能である。
[0187]
 一方、PEBが終了したウエハは、C/D内搬送系によりベーク部から取り出され、現像部内に搬入され、該現像部内の現像装置により現像が開始される。
[0188]
 そして、ウエハの現像が終了すると、そのウエハは、C/D内搬送系により現像部から取り出され、搬入時に用いられたFOUP520又はこれとは異なるウエハキャリア内の所定の収納段に搬入される。以降、C/D300内では、露光済みの第2枚目以降のウエハに対して、ウエハW と同様の手順で、PEB、現像、及びウエハの搬送が繰り返し行われることとなる。
[0189]
 なお、上述の説明では、ウエハマークとして2次元マークが用いられているが、ウエハマークとして1次元マーク、例えばX軸方向を周期方向とするラインアンドスペースパターンから成るXマーク、及びY軸方向を周期方向とするラインアンドスペースパターンから成るYマークが、用いられることがある。この場合において、XマークとYマークとで、マーク検出系MDSによりマークを計測する際の計測条件が異なることがある。このような状態は種々の要因で起こり得るが、例えば米国特許第5,532,091号明細書等に示されているように、次層を重ね合わせ露光するために、ウエハ上に形成された複数の層(マルチレイヤ)にまたがってアライメントをする必要がある際であって、例えば、Y軸方向のアライメントは、直前のレイヤに対して(基準として)なされ、X軸方向のアライメントは、直前のレイヤの1つ前のレイヤに対して(基準として)なされるという状況下を一例として想定するものとする。より具体的には、Y軸方向の位置合わせは、ウエハWの既に形成されているパターンの層の中で最表層に形成されたパターン(マーク)に対してなされ、X軸方向の位置合わせは、最表層の下の層に形成されたパターン(マーク)に対してなされるものとする。従って、アライメント計測時にXマークを観察する時には、ウエハWの上面からYマークが形成されている最表層を介して、その最表層の下の層に形成されているXマークを観察することとなる。そのため、Xマークを適切に計測するためのアライメント計測条件(照明条件、光学条件、信号処理アルゴリズム等)は、Yマークを適切に計測するためのアライメント計測条件とは異なる。
[0190]
 次に、計測システム500 1の2台の計測装置を用いて計測ウエハ上のI個(例えば98個)のショットそれぞれについて、Xマーク、Yマークの位置情報(座標位置情報)を計測する計測方法について説明する。図12には、この場合の計測方法における処理の流れが概略的に示されている。
[0191]
 まず、ステップS202において、ウエハW 11(計測対象の基板)を含む、あるロットの複数のウエハが収容されたFOUPが、上述のOHTなどを用いて、計測システム500 1のロードポート514に載置される。FOUPに収容されたウエハW 11を含む、あるロットの複数のウエハは、ロボット516などを用いてFOUPから順次取り出され、搬送システム521などを用いて、計測装置100 (i=1~3)のうちの少なくとも1つに順次搬送される。
[0192]
 なお、以下では、FOUPに収容されている複数のウエハのうちの1枚を、ウエハW 11として説明するが、同様の処理が、FOUPに収容されている複数のウエハのすべてに行われる。また、以下では、一例として、ウエハW 11について、Xマークの計測を計測装置100 で行った後に、Yマークの計測を計測装置100 で行う場合について、説明する。もちろん、Yマークの計測を計測装置100 で行った後に、Xマークの計測を計測装置100 で行っても良い。
[0193]
 ウエハW 11は、上述のようにして計測装置100 に搬送されると、次にステップS204において制御装置60 の管理の下、ウエハ搬送系70 とスライダ10上の上下動部材とによって前述のステップS104と同様の手順で計測装置100 のスライダ10上にロードされる。
[0194]
 次にステップS206において、計測装置100 によるウエハW 11のXマークの計測条件が、第1の所定条件に設定される。以下では、この第1の所定条件を、前述の第1条件との識別のため、第2条件とも称する。第2条件は、ウエハW 11上に形成されたXマークの検出に適した計測条件である。ここで、前述と同様に、アライメント計測条件(第2条件の一例)として、マーク検出系MDSにおける照明光の波長の最適化を行うものとする。処理対象のウエハW 11に形成されるXマークは、最表層を上層とする下層(例えば、1つ下の層)に形成されたマークであり、これを適切に観察するためには、最表層を構成している物質に対して透過率の高い観察光(照明光)を使用することが好ましい。ここでは、そのような観察光は例えば赤色域の光であったとする。そこで、制御装置60 は、マーク検出系MDSの波長選択機構において、波長710~800nmの光束(赤色光)を透過させるフィルタが選択されるように、波長選択機構の設定(制御)を行なう。
[0195]
 次にステップS208において、設定された第2条件の下で、ウエハW 11のI個のXマークのXY平面内の絶対位置座標が次のようにして求められる。すなわち、制御装置60 は、スライダ10の位置情報を、第1位置計測システム30(及び第2位置計測システム50)を用いて計測しつつ、マーク検出系MDSを用いてウエハW 11上のI個のXマークをそれぞれ検出し、I個のXマークそれぞれの検出結果とそれぞれのXマークの検出時のスライダ10の絶対位置座標(X、Y)とに基づいて、ウエハW 11上のI個のXマークそれぞれのXY平面内の絶対位置座標を求める。ただし、この場合、第2条件で定められる赤色域の波長の検出光を、デフォルトにて設定された光量で、コンベンショナルな照明条件(σ値)でマーク検出系MDSの光学系を介してウエハマークに照射し、ウエハマークから生じる所定次数(例えば±1次)の回折光をディテクタで受光し、その光電変換信号をデフォルトにて設定された信号処理条件(処理アルゴリズム)に従って処理することで、ウエハW 11上のウエハマークの基準座標系上における位置座標の算出に用いられる、マークの検出結果が得られる。また、このとき、制御装置60 は、第1位置計測システム30によって計測されるスライダ10のθx方向及びθy方向の計測値に基づいて得られる、第1位置計測システム30のX軸方向及びY軸方向アッベ誤差、及び第2位置計測システム50のX軸方向及びY軸方向の計測値を、オフセットとして、I個のXマークそれぞれのXY平面内の絶対位置座標を求める。
[0196]
 次にステップS210において、ウエハW 11は、計測装置100 のスライダ10上からアンロードされ、計測システム500 の外部に搬出されることなく、計測装置100 のスライダ10上にロードされる。具体的には、ウエハW 11は、制御装置60 の管理の下、ステップS204(及びステップ104)におけるロードの手順と逆の手順で、ウエハ搬送系70 とスライダ10上の上下動部材とによって計測装置100 のスライダ10上からアンロードされた後、ウエハ搬送系70 によって搬送部材524(又は526)に渡され、搬送部材524(又は526)によって、計測装置100 との受け渡し位置まで搬送される。しかる後、制御装置60 の管理の下、前述のステップS104と同様の手順で、ウエハ搬送系70 と計測装置100 のスライダ10上の上下動部材とによって、ウエハW 11は、計測装置100 のスライダ10上にロードされる。
[0197]
 次にステップS212において、計測装置100 によるウエハW 11のYマークの計測条件が、第2の所定条件に設定される。以下では、この第2の所定条件を、第3条件とも称する。第3条件は、ウエハW 11上に形成されたYマークの検出に適した計測条件である。ここで、前述と同様に、アライメント計測条件(第3条件の一例)として、マーク検出系MDSにおける照明光の波長の最適化を行うものとする。処理対象のウエハW 11に形成されるYマークは、最表層に形成されたマークであり、これを観察するのに特段の観察光(照明光)の波長を限定する必要はなく、ハロゲンランプ等の照明光源で発するブロードバンドな白色光で観察すれば良い。従って、制御装置60 では、マーク検出系MDSの波長選択機構において波長530~800nmの光束(白色光)を透過させるフィルタが選択されるように、波長選択機構の設定(制御)を行う。
[0198]
 次にステップS214において、制御装置60 によって設定された第3条件の下で、ウエハW 11のI個のYマークのXY平面内の絶対位置座標が、ステップS208におけるXマークのXY平面内の絶対位置座標と同様にして求められる。このとき、制御装置60 は、第1位置計測システム30によって計測されるスライダ10のθx方向及びθy方向の計測値に基づいて得られる、第1位置計測システム30のX軸方向及びY軸方向アッベ誤差、及び第2位置計測システム50のX軸方向及びY軸方向の計測値を、オフセットとして、I個のYマークそれぞれのXY平面内の絶対位置座標を求める。
[0199]
 上述したように、3台の計測装置100 ~100 は、例えば1ロット内の1枚のウエハを、3台の計測装置100 ~100 それぞれで同じ条件の下で計測処理した場合に、実質的に同じ計測結果が得られるように調整されている。したがって、次のステップS216において、計測システム制御装置530 (又は制御装置60 )により、ステップS208で求めたXマークの絶対位置座標と、ステップS214で求めたYマークの絶対位置座標とに基づいて、上述のステップS114と同様に、最小二乗法等の統計演算(EGA演算)により、上記式(1)の係数a 0、a 1、…、b 0、b 1、…が求められる。以下、図11のフローチャートと同様に、計測対象のロット内のウエハに対する計測処理が完了すると、一連の処理を終了する。
[0200]
 このように、この例においては、計測装置100 では第2条件で、ロット内の全てのウエハに対するXマークの計測が行われ、計測装置100 では第3条件で、ロット内の全てのウエハに対するYマークの計測を行うことができる。したがって、計測装置100 、計測装置100 は、計測対象のロットのすべてウエハに対する計測が完了するまで、それぞれの計測条件を変更することなく、それぞれ計測対象のマークを正確に計測することができる。
[0201]
 計測システム制御装置530 は、1ロットに含まれるすべてのウエハの計測が終了すると、そのロットに含まれる複数のウエハそれぞれの、ウエハグリッドの情報(アライメント履歴データファイル)をホストコンピュータ2000に送信する。言うまでもないが、計測システム500 から送信されるウエハグリッドの情報(アライメント履歴データファイル)には、ウエハグリッドの非線形成分のデータも含まれている。
[0202]
 なお、計測装置100 の制御装置60 を、LAN1500を介してホストコンピュータ2000に接続し、ウエハグリッドの情報(アライメント履歴データファイル)を、計測システム制御装置530 を介さずに制御装置60 からホストコンピュータ2000に送信しても良い。
[0203]
 また、本実施形態においては、計測システム500 からウエハグリッドの情報を、送信(出力)するようにしているが、計測システム500 から送信される情報(データ)は、これに限られず、例えば計測装置100 で計測されたウエハマーク(Xマーク)の座標位置情報とウエハマーク(Yマーク)の座標位置情報とを、各ウエハのアライメント履歴データの少なくとも一部として、送信(出力)するようにしても良い。
[0204]
 なお、計測システム500 では、計測対象ロットに含まれるあるウエハに対する計測装置100 によるXマークの絶対位置座標の取得と、計測対象ロットに含まれる別のウエハに対する計測装置100 によるYマークの絶対位置座標の取得とを、少なくとも一部並行して行なうようにすることも可能である。かかる場合には、計測対象ロットに含まれる計測対象の全てのウエハに対する計測時間の短縮が可能となる。
[0205]
 また、上記説明では、XマークとYマークが異なる層に形成されているウエハを計測対象としているが、XマークとYマークとが同じ層に形成されていても良い。この場合も、Xマークの検出に適した計測条件とYマークの検出に適した計測条件とが異なる場合には、例えば、計測装置100 でXマークの絶対位置座標の取得を行い、計測装置100 にYマークの絶対位置座標を取得しても良い。
[0206]
 ところで、上述したように、計測装置100 は第1位置計測システム30を備えているので、第1位置計測システム30の測長軸によって規定される直交座標系(基準座標系)の原点出しを行うことで、スライダ10の絶対位置、ひいてはスライダ10の位置情報とマーク検出系MDSの検出結果とから求められる、スライダ10上に保持されたウエハW上のウエハマーク、例えば重ね合わせ計測マーク(レジストレーションマーク)の絶対位置を、基準座標系上で管理することが可能である。すなわち、計測装置100 を、重ね合わせ計測器として機能させることもできる。なお、本明細書で「絶対位置」とは、基準座標系上における座標位置を意味する。
[0207]
 したがって、計測システム500 の計測装置100 (i=1~3)の少なくとも1つを、重ね合わせ計測器として機能させることもできる。しかし、本実施形態では、計測システム500 の各計測装置100 は、前述したウエハ処理の前工程のプロセス処理が終了し、レジストが塗布される前のウエハを計測対象として、前述の計測を行うこととしているので、この計測システム500 の各計測装置100 によるあるロットのウエハに対する計測と並行して、別のロットのウエハに対して、計測システム500 で重ね合わせ計測等を実行することも可能である。
[0208]
 次に、他方の計測システム500 の2台の計測装置を用いる重ね合わせ計測方法について説明する。図13及び図14には、この場合の重ね計測方法における処理の流れが概略的に示されている。
[0209]
 まず、ステップS302において、あるロットに含まれるウエハ(ウエハW 11とする)がC/D300に搬入され、C/D300の塗布部において、露光装置200、又は露光装置200とは異なる露光装置、例えばスキャナ又はステッパにより第1の層(下層)の露光が行われたウエハW 11にレジストの塗布が行われる。レジスト塗布前のウエハW 11には、下層の露光により、複数、例えばI個(Iは例えば98)のショットとともに、ショットとの設計上の位置関係が既知のウエハマーク及び重ね合わせずれ計測用の第1マーク(正確には、第1マークのレジスト像(適宜、第1マーク像とも称する))が、それぞれのショットに対応して形成されている。この場合、I個の第1マーク像それぞれの設計上の位置関係も既知である。
[0210]
 次に、ステップS304において、レジストが塗布されたウエハW 11が、前述したウエハW と同様の所定の処理過程を経て、露光装置200のウエハステージWST上にロードされる。具体的には、ウエハW 11は、ベーク部で加熱処理(PB)、温調部330での温調などが行われた後、ウエハステージWST上にロードされる。
[0211]
 次に、ステップS306において、露光装置200の露光制御装置220により、ウエハステージWST上のウエハW 11に対して、アライメント検出系ASを用いて前述と同様のサーチアライメント、及び例えば3~16程度のショットをアライメントショットとするEGA方式のウエハライメントが行われる。
[0212]
 なお、ステップS302に先だって、先に説明したように、計測システム500 の計測装置100 (i=1~3)でウエハW 11のウエハグリッドの情報が求められ、露光装置200の露光制御装置220に提供されている。
[0213]
 次に、ステップS308において、露光制御装置220により、ウエハアライメントの結果に基づき、前述の式(3)で表される各ショットの位置座標の補正量(アライメント補正成分)dx、dyが求められ、この補正量に基づいて、ウエハグリッドを補正するための、各ショットの露光に際しての位置決め目標位置が決定される。
[0214]
 なお、ステップ302に先だって、計測システム500 の計測装置100 でウエハW 11のウエハグリッドの情報を求めずに、アライメント検出系ASを用いた、例えば3~16程度のショットをアライメントショットとするEGA方式のウエハライメントの結果だけで、各ショットの露光に際しての位置決め目標位置を決定しても良い。
[0215]
 次に、ステップS310において、露光装置200により、その位置決め目標位置に従ってウエハステージWSTを位置制御しつつ、ウエハW 11上の各ショットに対してステップ・アンド・スキャン方式で第2の層(第1の層を下層とする上層)の露光が行われる。このとき、露光装置200は、ウエハW 11上の第1マーク像に対応して第2マークが形成されたレチクル(便宜上、レチクルR 11とする)を用いて露光を行う。したがって、この第2の層の露光により、ウエハW 11上のI個のショットに対してレチクルR 11のパターン領域が重ね合わせて転写されるとともに、I個の第1マークの位置関係に対応する位置関係で配置されたI個の第2マークの転写像が形成される。
[0216]
 次に、ステップS312において、第2の層の露光が終了したウエハW 11は、前述の露光済みのウエハW と同様の処理過程を経て、C/D300の現像部内に搬入される。具体的には、ウエハW 11は、ウエハ搬送系270により基板受け渡し部のアンロード側基板載置部に搬送され、C/D内搬送系によりアンロード側基板載置部からC/D300のベーク部内に搬入され、該ベーク部内のベーキング装置によりPEBが行われる。PEBが終了したウエハW 11は、C/D内搬送系によりベーク部から取り出され、現像部内に搬入される。
[0217]
 次に、ステップS314において、現像部内の現像装置により、複数の第2マークの転写像が形成されたウエハW 11が、現像される。この現像により、ウエハW 11上には、I個のショットとともに、第1マーク像と対応する第2マーク像との組が、I個、所定の位置関係で形成され、重ね合わせ計測に際しての計測対象の基板となる。すなわち、このようにして重ね合わせ計測に際しての計測対象となる基板(重ね合わせ計測対象基板)が作製される。ここで、第1マーク像と対応する第2マーク像との組として、例えば外ボックスマークとこの内側に配置された内ボックスマークとから成るボックス・イン・ボックスマークのレジスト像などを用いることができる。
[0218]
 次に、ステップS316において、現像済みのウエハW 11(重ね合わせ計測対象の基板)を含む、あるロットの複数のウエハが収容されたFOUPが、C/D300から取り出されて、上述のOHTなどを用いて、計測システム500 のロードポート514に載置される。すなわち、C/D300から取り出されたFOUP内のウエハW 11を含む、あるロットの複数のウエハは、現像処理後に行われるプロセス処理(エッチング処理、又はエッチング処理後の成膜処理(スパッタ処理、CVD処理、熱酸化処理の少なくとも1つを含む))が施される前に、計測システム500 に搬送される。FOUPに収容されたウエハW 11を含む、あるロットの複数のウエハは、ロボット516などを用いてFOUPから順次取り出され、搬送システム521などを用いて、計測装置100 (i=4~6)のうちの少なくとも1つに順次搬送される。
[0219]
 なお、以下では、FOUPに収容されている複数のウエハのうちの1枚を、ウエハW 11として説明するが、同様の処理が、FOUPに収容されている複数のウエハのすべて、又は一部に行われる。また、以下では、一例として、ウエハW 11(重ね合わせ計測に際しての計測対象の基板)について、第1マーク像の計測が計測装置100 で行われ、第2マーク像の計測が計測装置100 で行われる場合について、説明する。
[0220]
 ウエハW 11は、上述のようにして計測装置100 に搬送されると、次にステップS318において制御装置60 の管理の下、ウエハ搬送系70 とスライダ10上の上下動部材とによって前述のステップS104と同様の手順で計測装置100 のスライダ10上にロードされる。
[0221]
 次にステップS320において、計測装置100 によるウエハW 11の第1マーク像の計測条件が、第1の所定条件に設定される。以下では、この第1の所定条件を、前述の第1条件との識別のため、第2条件とも称する。第2条件は、第1の層の露光によってウエハW 11上に形成された第1マーク像の検出に適した計測条件である。ここで、前述と同様に、アライメント計測条件(第2条件の一例)として、マーク検出系MDSにおける照明光の波長の最適化を行うものとする。処理対象のウエハW 11に形成される第1マーク像は、第1の層(第2の層(最表層)を上層とする下層(例えば、1つ下の層))に形成されたマークであり、これを適切に観察するためには、最表層を構成している物質に対して透過率の高い観察光(照明光)を使用することが好ましい。ここでは、そのような観察光は例えば赤色域の光であったとする。そこで、制御装置60 は、マーク検出系MDSの波長選択機構において、波長710~800nmの光束(赤色光)を透過させるフィルタが選択されるように、波長選択機構の設定(制御)を行なう。
[0222]
 次にステップS322において、設定された第2条件の下で、ウエハW 11のI個の第1マーク像のXY平面内の絶対位置座標が次のようにして求められる。すなわち、制御装置60 は、スライダ10の位置情報を、第1位置計測システム30(及び第2位置計測システム50)を用いて計測しつつ、マーク検出系MDSを用いてウエハW 11上のI個の第1マーク像をそれぞれ検出し、I個の第1マーク像それぞれの検出結果とそれぞれの第1マーク像の検出時のスライダ10の絶対位置座標(X、Y)とに基づいて、ウエハW 11上のI個の第1マーク像それぞれのXY平面内の絶対位置座標を求める。ただし、この場合、第2条件で定められる赤色域の波長の検出光を、デフォルトにて設定された光量で、コンベンショナルな照明条件(σ値)でマーク検出系MDSの光学系を介してウエハマークに照射し、ウエハマークから生じる所定次数(例えば±1次)の回折光をディテクタで受光し、その光電変換信号をデフォルトにて設定された信号処理条件(処理アルゴリズム)に従って処理することで、ウエハW 11上のウエハマークの基準座標系上における位置座標の算出に用いられる、マークの検出結果が得られる。また、このとき、制御装置60 は、第1位置計測システム30によって計測されるスライダ10のθx方向及びθy方向の計測値に基づいて得られる、第1位置計測システム30のX軸方向及びY軸方向アッベ誤差、及び第2位置計測システム50のX軸方向及びY軸方向の計測値を、オフセットとして、I個の第1マーク像それぞれのXY平面内の絶対位置座標を求める。
[0223]
 次にステップS324において、ウエハW 11は、計測装置100 のスライダ10上からアンロードされ、計測システム500 の外部に搬出されることなく、計測装置100 のスライダ10上にロードされる。具体的には、ウエハW 11は、制御装置60 の管理の下、ステップS318(及びステップ104)におけるロードの手順と逆の手順で、ウエハ搬送系70 とスライダ10上の上下動部材とによって計測装置100 のスライダ10上からアンロードされた後、ウエハ搬送系70 によって搬送部材524(又は526)に渡され、搬送部材524(又は526)によって、計測装置100 との受け渡し位置まで搬送される。しかる後、制御装置60 の管理の下、前述のステップS104と同様の手順で、ウエハ搬送系70 と計測装置100 のスライダ10上の上下動部材とによって、ウエハW 11は、計測装置100 のスライダ10上にロードされる。
[0224]
 次にステップS326において、計測装置100 によるウエハW 11の第2マーク像の計測条件が、第2の所定条件に設定される。以下では、この第2の所定条件を、第3条件とも称する。第3条件は、第2の層の露光によってウエハW 11上に形成された第2マーク像の検出に適した計測条件である。ここで、前述と同様に、アライメント計測条件(第3条件の一例)として、マーク検出系MDSにおける照明光の波長の最適化を行うものとする。処理対象のウエハW 11に形成される第2マーク像は、第2の層(最表層)に形成されたマークであり、これを観察するのに特段の観察光(照明光)の波長を限定する必要はなく、ハロゲンランプ等の照明光源で発するブロードバンドな白色光で観察すれば良い。従って、制御装置60 では、マーク検出系MDSの波長選択機構において波長530~800nmの光束(白色光)を透過させるフィルタが選択されるように、波長選択機構の設定(制御)を行う。
[0225]
 次にステップS328において、制御装置60 によって設定された第3条件の下で、ウエハW 11のI個の第2マーク像のXY平面内の絶対位置座標が、ステップS322における第1マーク像のXY平面内の絶対位置座標と同様にして求められる。このとき、制御装置60 は、第1位置計測システム30によって計測されるスライダ10のθx方向及びθy方向の計測値に基づいて得られる、第1位置計測システム30のX軸方向及びY軸方向アッベ誤差、及び第2位置計測システム50のX軸方向及びY軸方向の計測値を、オフセットとして、I個の第2マーク像それぞれのXY平面内の絶対位置座標を求める。
[0226]
 次にステップS330において、計測システム制御装置530 (又は制御装置60 )により、相互に組を成す第1マーク像の絶対位置座標と第2マーク像の絶対位置座標とに基づいて、第1の層と第2の層との重ね合わせ誤差(重ね合わせずれ)が求められる。
[0227]
 次にステップS332において、計測システム制御装置530 (又は制御装置60 )により、I個の第1マーク像の絶対位置座標とI個の第2マーク像の絶対位置座標とに基づいて、重ね合わせ誤差が、第1の層の露光と、第2の層の露光とのいずれに主として起因するかが、例えば次のようにして判断される。すなわち、計測システム制御装置530 (又は制御装置60 )は、第1マーク像の絶対位置座標の設計上の位置座標からのずれ量(ΔX1 ,ΔY1 )(i=1~I)と、第2マーク像の絶対位置座標の設計上の位置座標からのずれ量(ΔX2 ,ΔY2 )(i=1~I)とを求め、ΔX1 、ΔX2 、ΔY1 、ΔY2 それぞれについてi=1~Iの総和ΣΔX1 、ΣΔX2 、ΣΔY1 、ΣΔY2 を求める。そして、計測システム制御装置530 (又は制御装置60 )は、ΣΔX1 >ΣΔX2 かつΣΔY1 >ΣΔY2 の場合、重ね合わせ誤差は、X軸方向及びY軸方向のいずれについても第1の層の露光に主として起因すると判断し、ΣΔX1 <ΣΔX2 かつΣΔY1 <ΣΔY2 の場合、重ね合わせ誤差は、X軸方向及びY軸方向のいずれについても第2の層の露光に主として起因すると判断する。また、計測システム制御装置530 (又は制御装置60 )は、ΣΔX1 >ΣΔX2 かつΣΔY1 <ΣΔY2 の場合、重ね合わせ誤差は、X軸方向については第1の層の露光に主として起因し、かつY軸方向については第2の層の露光に主として起因すると判断し、ΣΔX1 <ΣΔX2 かつΣΔY1 >ΣΔY2 の場合、重ね合わせ誤差は、X軸方向については第2の層の露光に主として起因し、かつY軸方向については第1の層の露光に主として起因すると判断する。
[0228]
 なお、上記の判断方法は一例であり、要は、計測システム制御装置530 (又は制御装置60 )は、I個の第1マーク像の絶対位置座標とI個の第2マーク像の絶対位置座標とに基づいて、重ね合わせ誤差が、第1の層の露光と、第2の層の露光とのいずれに主として起因するかを判断するのであれば、その具体的な判断方法は特に問わない。
[0229]
 なお、ステップS330及びステップS332の処理と並行して、ステップS328におけるI個の第2マーク像のXY平面内の絶対位置座標の計測が終了したウエハW 11は、ウエハ搬送系70 によって搬送部材526に渡され、搬送部材526によって前述のアンロード側ウエハ受け渡し位置まで搬送された後、ロボット516によって所定のFOPU520内に戻されることとなる。
[0230]
 上述の重ね合わせ計測方法により得られたウエハW 11の重ね合わせ誤差(重ね合わせずれ)のデータ、及び重ね合わせ誤差が第1の層の露光と第2の層の露光とのいずれに主として起因するかの判断結果のデータは、計測システム制御装置530 (又は制御装置60 )によって第1の層の露光を行った露光装置と第2の層の露光を行なった露光装置200の少なくとも一方にフィードバックされることになる。
[0231]
 例えば、重ね合わせ誤差の主要因が第1の層の露光である場合には、それらのデータを第1の層を行った露光装置にフィードバックしても良い。そして、その露光装置で、ウエハW 11を含むロットとは別のロットに含まれるウエハに対して、ウエハW 11の第1の層と同様の露光処理を行う場合に、フィードバックされたデータに基づいて、第2の層との重ね合わせ誤差が小さくなるように位置決め目標位置を決めて良い。
[0232]
 また、重ね合わせ誤差の主要因が第2の層の露光である場合には、それらのデータを第2の層の露光を行った露光装置200にフィードバックしても良い。そして、露光装置200で、ウエハW 11を含むロットとは別のロットに含まれるウエハに対して、ウエハW 11の第2の層と同様の露光処理を行う場合に、フィードバックされたデータに基づいて、第1の層との重ね合わせ誤差が小さくなるように位置決め目標位置を決めて良い。
[0233]
 なお、データのフィードバックはホストコンピュータ2000を介して行っても良い。
[0234]
 また、ステップS322及びステップS328の少なくとも一方において、ウエハW 11の上の全ショットについて2以上のマークの絶対位置座標を取得し、第1の層の各ショットの形状と大きさに関する第1情報、及び第2の層の各ショットの形状と大きさに関する第2情報の少なくとも一方が取得できる場合には、第1情報を、第1の層を露光した露光装置に提供(フィードバック)し、第2情報を第2の層を露光した露光装置200に提供(フィードバック)しても良い。この場合、第2の層の各ショットの形状と大きさが所望状態となるように、結像特性補正コントローラ248を制御したり、レチクルステージRSTの速度と方向の少なくとも一方を制御したりしても良い。
[0235]
 なお、上述の説明においては、第1マーク像の絶対位置座標と第2マーク像の絶対位置座標とに基づいて、第1の層と第2の層との重ね合わせ誤差(重ね合わせずれ)を求めているが、第1マーク像の絶対位置座標のデータと第2マーク像の絶対位置座標のデータを、第1の層と第2の層の重ね合わせ誤差(第1の層と第2の層の位置ずれ)の情報として、計測システム500 から出力しても良い。この場合、計測システム500 から出力されたデータを、第1の層の露光を行なった露光装置(露光装置200又は別の露光装置)と第2の層の露光を行った露光装置200との少なくとも一方に提供(フィードバック)しても良い。
[0236]
 また、第1マーク像の絶対位置座標と第2マーク像の絶対位置座標とに基づいて、相互に組を成す第1マーク像と第2マーク像との位置ずれをそれぞれ求め、それらの位置ずれのデータを、第1の層と第2の層の重ね合わせ誤差(第1の層と第2の層の位置ずれ)の情報として、計測システム500 から出力しても良い。この場合も、計測システム500 から出力されたデータを、第1の層の露光を行なった露光装置(露光装置200又は別の露光装置)と第2の層の露光を行った露光装置200との少なくとも一方に提供(フィードバック)しても良い。
[0237]
 なお、図13及び図14のフローチャートに従う処理アルゴリズムでは、同一ロットに含まれる全ての重ね合わせ計測対象基板(ウエハW 11)に対して、ステップS322において計測装置100 で第1マーク像の絶対位置座標の計測が行われた場合には、その重ね合わせ計測対象基板に対して、ステップS328において計測装置100 で第2マーク像の絶対位置座標の計測が行われるものとしているが、ロット内の一部の計測対象基板に対しては、計測装置100 での第2マーク像の絶対位置座標の計測は、必ずしも行わなくても良い。
[0238]
 なお、ステップS322において、I個よりも少ないK個の第1マーク像の絶対位置座標を求め、ステップS328において、K個の第2マーク像の絶対位置座標を求めても良い。
[0239]
 上述の説明から明らかなように、基板処理システム1000で行われる重ね合わせ計測方法によると、計測システム500 は、第1マーク像の絶対位置座標と第2マーク像の絶対位置座標とをそれぞれ計測することができ、これらの絶対位置座標に基づいて、重ね合わせ誤差を計測することができる。また、その重ね合わせ誤差が、下層の露光に主として起因するのか、上層の露光に主として起因するのを、特定することができるという、従来にない優れた効果を得ることができる。
[0240]
 なお、上記ステップS330において、第1の層と第2の層との重ね合わせ誤差(重ね合わせずれ)が求められているので、ステップS332は、必要に応じて実行すれば良い。
[0241]
 なお、上述の説明では、第1の層と第2の層の重ね合わせ誤差を求めるために、重ね合わせずれ計測用のマーク(第1マーク像、第2マーク像)を用いたが、ウエハマーク(アライメントマーク)を用いても良い。すなわち、第1の層のI個のウエハマークの絶対位置座標と、第2の層のI個のウエハマークの絶対位置座標とから、第1の層と第2の層との重ね合わせ誤差を求めても良い。
[0242]
 また、ウエハマークと、重ね合わせずれ計測用のマーク(第1マーク像、第2マーク像)とは、形状、サイズ等が異なるので、照射条件等を含む好適な計測条件が異なる。そこで、同一ロット(計測対象ロット)に含まれる複数枚のウエハについて、前述のステップS320において、ウエハW 11の第1マーク像の計測条件の代わりに、第1の所定条件としてウエハ上のウエハマークのレジスト像の計測に適した計測条件を設定し、ステップS322において、そのウエハマークのレジスト像の絶対位置座標を、第1の所定条件の下で求める。また、そのウエハマークのレジスト像の絶対位置座標が取得されたウエハについて、前述のステップS326において、第2の所定条件として重ね合わせずれ計測用のマーク(第1マーク像、第2マーク像の少なくとも一方)の計測に適した計測条件を設定し、ステップS328において、その重ね合わせずれ計測用のマークの絶対位置座標を、第2の所定条件の下で求めることとしても良い。したがって、図13及び図14のフローチャートに従う処理の流れで、計測対象ロットに含まれる複数枚のウエハについて、ウエハマークのレジスト像、重ね合わせずれ計測用のマークのいずれについても、高精度な位置計測を行なうことが可能である。
[0243]
 また、上述の説明では、第2の層の露光処理後に、計測システム500 の計測装置100 で、現像済のウエハW 11の第1マーク像(又は、第1層のウエハマーク)の絶対位置座標を取得し、第2マーク像(又は第2の層のウエハマーク)の絶対位置座標を、計測装置100 で取得している。しかし、これに限らず、第1の層の露光処理後であって、第2の層の露光処理前に、現像済のウエハW 11の第1マーク像(又は、第1層のウエハマーク)の絶対位置座標を計測システム500 の計測装置100 で取得し、第2の層の露光処理後に、現像済のウエハW 11の第2マーク像(又は、第2層のウエハマーク)の絶対位置座標を計測システム500の計測装置100 で取得しても良い。この場合、第1の層と第2の層の重ね合わせ誤差は、計測システム500 (制御装置60 又は計測システム制御装置530 )で求めても良いし、別の装置(例えば、ホストコンピュータ2000)で求めても良い。
[0244]
 また、第2の層の次の層の露光処理を行うために、ウエハW 11が各種プロセス(エッチング処理及び成膜処理を含む)を経てC/D300(又は別のC/D)に搬入される直前に、ウエハW 11を計測システム500 又は計測システム500 に搬入し、いずれかの計測装置100 (i=1~6のいずれか)で、ウエハW 11の第1マーク像(又は、第1層のウエハマーク)の絶対位置座標と第2マーク像(又は第2の層のウエハマーク)の絶対位置座標の両方、又はウエハW 11の第2マーク像(又は、第2層のウエハマーク)の絶対位置座標を取得しても良い。この場合も、第1の層と第2の層との重ね合わせ誤差(第1の層と第2の層と位置ずれ)を計測システム500 又は計測システム500 で求めて良いし、計測システム500 又は計測システム500 で取得された絶対位置座標の情報を別の装置(例えば、ホストコンピュータ2000)に提供し、その別の装置で第1の層と第2の層との重ね合わせ誤差(第1の層と第2の層と位置ずれ)を求めて良い。また、計測システム500 又は計測システム500 で求められた第1の層と第2の層との重ね合わせ誤差(第1の層と第2の層と位置ずれ)の情報、あるいは計測システム500 又は計測システム500 で取得された絶対位置座標の情報を露光装置200、又は別の露光装置に提供しても良い。
[0245]
 なお、上述の説明では、第1の層と第2の層の重ね合わせ誤差の情報を取得しているが、これに限られず、第m層(下層、mは1以上の整数)と第n層(上層、nは、mよりも大きい、2以上の整数)の重ね合わせ誤差を取得しても良い。この場合、第n層が第m層の次の層でなくても良い。
[0246]
 以上説明したように、本実施形態に係る基板処理システム1000によると、計測システム500 と、計測システム500 と、露光装置200及びC/D300を含むリソグラフィシステムと、のそれぞれにより、多数のウエハが連続して処理される。基板処理システム1000では、計測システム500 による前述した計測対象のウエハに対する前述した計測処理と、計測システム500 による計測が終了したウエハに対するリソグラフィシステムによる処理(レジスト塗布、露光及び現像)と、リソグラフィシステムによる処理が終了したウエハに対する計測処理とは、互いに独立して行われる。このため、計測システム500 による計測処理が終了したウエハに対してリソグラフィシステムによる処理が行われ、リソグラフィシステムによる処理が終了したウエハに対して計測システム500 による計測処理が行われるという制約はあるが、基板処理システム1000全体としてのスループットが最大となるように、全体の処理シーケンスを定めることができる。
[0247]
 また、基板処理システム1000によると、前述した簡易なEGA計測及び露光を含む露光装置200による対象ウエハの処理動作とは独立して、計測システム500 の計測装置100 により対象ウエハのアライメント計測を行うことができ、露光装置200によるウエハ処理のスループットを殆ど低下させることがない、効率的な処理が可能になる。また、基板処理システム1000の全体としても、計測システム500 の計測装置100 により計測処理が事前に行われたあるロットのウエハに対する露光装置200によるアライメント及び露光処理と、計測システム500 の計測装置100 による別のロットのウエハに対する計測処理と、リソグラフィシステムによる処理が終了したさらに別のロットのウエハに対する計測システム500 による計測処理とを、並行して行なうようにすることで、ウエハ処理のスループットを殆ど低下させることがない、効率的な処理が可能になる。しかも、計測システム500 では、全ショットをサンプルショットとする全ショットEGAを、露光装置200のあるロットのウエハに対するウエハアライメント及び露光の動作と並行して、別のロットのウエハに対して行なうことができる。
[0248]
 また、計測システム500 の計測装置100 (i=1~3)では、全ショットをサンプルショットとする全ショットEGAを、ウエハ処理の前工程のプロセス処理(エッチング、酸化・拡散、成膜、イオン注入、平坦化(CMP)など)が終了した同一ロットのウエハに対する露光装置200によるウエハアライメント及び露光の動作に先立って(より正確には、ウエハに対するレジスト塗布に先立って)行い、アライメント計測により得られた各ウエハについて、ウエハグリッドの情報(例えば、ウエハグリッドの変形成分のデータ)を含むアライメント履歴データを取得する。取得された各ウエハについてのアライメント履歴データは、ウエハ毎に計測システム制御装置530 によって内部の記憶装置に記憶される。したがって、露光装置200では、計測システム制御装置530 を使って求めた、対象ウエハについてウエハグリッドの情報を含むアライメント履歴データを有効活用して、その対象ウエハに対してウエハアライメント及び露光を行なうことができる。すなわち、本実施形態に係る基板処理システム1000では、計測システム500 の計測装置100 (i=1~3)における事前計測処理で得られた対象ウエハについての、ウエハグリッドの情報(例えば、ウエハグリッドの変形成分のデータ)を含むアライメント履歴データが、露光装置200に実質的にフィードフォワード的に転送(提供)されていると言える。
[0249]
 また、計測装置100 (i=1~3)における事前計測処理における全ショットEGAで得られたモデル式における高次成分の係数は、露光装置200においてもそのまま採用することができるので、露光装置200では、数ショットをアライメントショットとするアライメント計測を行って上記モデル式の低次成分の係数を求めるのみで、この低次成分の係数と、計測装置100 で取得された高次成分の係数とを用いることで、モデル式(1)の低次成分の係数(未定係数)のみならず、高次成分の係数(未定係数)も確定することができ、この未定係数が確定したモデル式(1)(すなわち、上式(3))とウエハ上の複数のショットの配列の設計値(X,Y)とを用いて、各ショットの設計上の位置からの補正量を求めることができ、これにより、露光装置200でモデル式(1)の低次及び高次成分の係数を求めた場合と同様の精度の良い補正量の取得が可能となる。そして、この補正量とウエハ上の複数のショットの配列の設計値とに基づいて、各ショットの露光の際の位置決め目標位置の算出が可能になる。したがって、この目標位置に従ってウエハステージWSTの位置を制御することで、各ショットを露光位置(レチクルパターンの投影位置)に対して精度良く位置合わせすることができる。これにより、露光装置200のスループットを低下させることなく、露光の際のレチクルのパターンの像とウエハ上の各ショット領域に形成されたパターンとの重ね合わせ精度の向上が可能になる。
[0250]
 また、本実施形態に係る計測装置100 (i=1~6)によると、制御装置60 は、駆動システム20によるスライダ10の移動を制御しつつ、第1位置計測システム30、及び第2位置計測システム50を用いて、定盤12に対するスライダ10の位置情報、及びマーク検出系MDSと定盤12との相対的な位置情報を取得するとともに、マーク検出系MDSを用いてウエハWに形成された複数のマークの位置情報を求めている。したがって、計測装置100 によると、ウエハWに形成された複数のマークの位置情報を、精度良く求めることができる。
[0251]
 また、本実施形態に係る計測装置100 (i=1~6)によると、制御装置60 は、第2位置計測システム50による計測情報(定盤12とマーク検出系MDSとの相対的な位置情報)を常時取得し、マーク検出系MDSの検出中心と定盤12に対するスライダ10の6自由度方向の位置情報を検出する第1位置計測システム30の検出点との位置関係がnmレベルで所望の関係に維持されるように、3つの除振装置14(のアクチュエータ)を介して定盤12の6自由度方向の位置をリアルタイムで制御している。また、制御装置60 は、駆動システム20によるスライダ10の駆動を制御しつつ、第1位置計測システム30による計測情報(定盤12に対するスライダ10の位置情報)及び第2位置計測システム50による計測情報(定盤12とマーク検出系MDSとの相対的な位置情報)を取得し、マーク検出系MDSを用いてウエハWに形成されたマークを検出した時の検出信号と、マーク検出系MDSを用いてウエハWに形成されたマークを検出した時に得られる第1位置計測システム30による計測情報と、マーク検出系MDSを用いてウエハWに形成されたマークを検出した時に得られる第2位置計測システム50による計測情報とに基づいて、複数のウエハマークの位置情報を求める。したがって、計測装置100 によると、ウエハWに形成された複数のマークの位置情報を、精度良く求めることができる。
[0252]
 なお、例えば、計測されたマークの位置情報を用いてEGA演算を行なうことなく、計測されたマークの位置情報に基づいて、露光の際のウエハW(ウエハステージWST)の位置制御を行なう場合などには、例えば上記の第2位置計測システム50による計測情報を、マークの位置情報の算出には用いなくても良い。ただし、この場合には、マーク検出系MDSを用いてウエハWに形成されたマークを検出した時に得られる第2位置計測システム50による計測情報を、オフセットして用いて、例えばウエハW(ウエハステージWST)の位置決め目標値などウエハWを移動させるための情報を補正することとすれば良い。あるいは、上記のオフセットを考慮して、露光時におけるレチクルR(レチクルステージRST)の移動を制御することとしても良い。
[0253]
 また、本実施形態に係る計測装置100 (i=1~6)によると、ウエハWが載置され保持されるスライダ10の6自由度方向の位置情報を計測する第1位置計測システム30は、少なくともウエハW上のウエハマークを、マーク検出系MDSで検出するため、スライダ10が移動する範囲では、ヘッド部32から計測ビームをグレーティングRG1に照射し続けることができる。したがって、第1位置計測システム30は、マーク検出のためにスライダ10が移動するXY平面内の全範囲で、連続して、その位置情報の計測が可能である。したがって、例えば計測装置100 の製造段階(半導体製造工場の内での装置の立ち上げ段階を含む)において、第1位置計測システム30の測長軸によって規定される直交座標系(基準座標系)の原点出しを行うことで、スライダ10の絶対位置、ひいてはスライダ10の位置情報とマーク検出系MDSの検出結果とから求められる、スライダ10上に保持されたウエハW上のマーク(サーチマーク、ウエハマークに限らず、その他のマーク、例えば重ね合わせ計測マーク(レジストレーションマーク)なども含む)の絶対位置を、基準座標系上で管理することが可能である。
[0254]
 これまでの説明から明らかなように、本実施形態に係る基板処理システム1000では、計測システム500 、500 を備えていることにより、仮に、露光装置200が所定時間(要求される高いスループットを維持するために許容される時間)内に、ウエハの位置座標の補正量の線形成分を求めるための簡易なEGA計測(例えば、アライメント系ASを用いた3~16個程度のウエハマークの位置情報の取得)を行なう機能しか備えていない場合であっても、その簡易なEGA計測を行なって得られるウエハグリッドの変形の低次成分と、計測システム500 (又は計測システム500 )によって事前に求められた例えば全点EGAによって求められたウエハグリッドの変形の高次成分と、を用いて、ウエハグリッドの変形を高精度に求めることができる。したがって、計測システム500 (又は計測システム500 )により、露光装置200のグリッド補正機能を実質的に向上させることができる。したがって、最先端のグリッド補正機能を有しない露光装置により、ウエハに対して高スループットで、あるいはスループットを低下させることなく、高精度な露光が可能になる。
[0255]
 なお、上記実施形態に係る基板処理システム1000では、計測装置100 、C/D300及び露光装置200が、バーコードリーダを備えている場合について説明したが、バーコードリーダに代えて、無線ICタグであるRFIDタグの書込/読出装置を備えていても良い。かかる場合には、各ウエハにRFIDタグを取り付け、計測装置100 が書込/読出装置を用いてウエハ毎に前述したアライメント履歴データをRFIDタグに書き込み、他の装置、例えば露光装置200が、書込/読出装置を用いて対象ウエハのRFIDタグからアライメント履歴データを読み出すことで、前述した対象ウエハについてのアライメント履歴データのフィードフォワード転送を、簡単に実現できる。
[0256]
 また、上記実施形態に係る基板処理システム1000では、露光装置200が上記モデル式の1次以下の低次成分の係数を求め、この低次成分の係数と、計測装置100 で取得された上記モデル式の2次以上の高次成分の係数とを用いる場合について説明した。しかしながら、これに限らず、例えば上記モデル式の2次以下の成分の係数を露光装置200内でのアライメントマークの検出結果から求め、この2次以下の成分の係数と、計測装置100 で取得された上記モデル式の3次以上の高次成分の係数とを用いても良い。あるいは、例えば上記モデル式の3次以下の成分の係数を露光装置200内でのアライメントマークの検出結果から求め、この3次以下の成分の係数と、計測装置100 で取得された上記モデル式の4次以上の高次成分の係数とを用いても良い。すなわち、上記モデル式の(N-1)次(Nは2以上の整数)以下の成分の係数を露光装置200内でのアライメントマークの検出結果から求め、この(N-1)次以下の成分の係数と、計測装置100 で取得された上記モデル式のN次以上の高次成分の係数とを用いても良い。
[0257]
 なお、上記実施形態では、計測装置100 (i=1~3)が、ウエハ座標系(基準座標系に一致)における各ショットの設計上の位置座標X、Yと、そのショットの位置座標の補正量(アライメント補正成分)dx、dyとの関係を表現するモデル式(1)の2次以上の高次成分の係数a 、a 、a …及びb 、b 、b …、並びに1次以下の低次成分の係数a 、a 、a 、b 、b 、b も求めることとしたが、露光装置200で低次成分の係数が求められるので、計測装置100 では、低次成分の係数を必ずしも求めなくても良い。
[0258]
 なお、本実施形態に係る基板処理システム1000において、計測装置100 の計測ユニット40が、前述の多点焦点位置検出系を備えている場合には、計測装置100 により、ウエハアライメント計測とともにウエハWのフラットネス計測(フォーカスマッピングとも呼ばれる)を行うこととしても良い。この場合、そのフラットネス計測の結果を用いることで、露光装置200によりフラットネス計測を行うこと無く、露光時のウエハWのフォーカス・レベリング制御が可能となる。
[0259]
 なお、上記実施形態では、計測システム500 の計測装置100 、100 、及び100 が同様の構成、機能を有し、同一ロットに含まれる例えば25枚のウエハを、例えば3つのグループに分け、各グループのウエハを、計測装置100 、100 、及び100 それぞれの計測対象のウエハとして、同内容のアライメント計測処理を並行して行う場合について説明した。しかしながら、計測装置100 、100 、及び100 が、互いに並行して、異なるロットのウエハに対して同内容のアライメント計測処理を行うこととしても良い。例えば、計測装置100 で計測されているロットの次に同じ露光装置(例えば露光装置200)で露光されるロットのウエハを計測装置100 で計測し、計測装置100 で計測されているロットの次に同じ露光装置(例えば露光装置200)で露光されるロットのウエハを計測装置100 で計測することとしても良い。
[0260]
 なお、上記実施形態では、スループットを優先する観点から、同一ロットの25枚のウエハについて、計測システム500 の3台の計測装置100 、100 、100 によって分担して計測処理を受け持ち、並行処理を行なう場合について説明した。しかしながら、スループットよりも計測精度を優先する場合には、同一の計測装置100 (i=1~3のいずれか)によって、同一ロットの25枚のウエハについて、上述した計測処理を行うことが望ましい。その理由は、計測装置100 、100 、100 が、同一製品であるウエハホルダを備えている場合であっても、ウエハホルダ間には個体差があり、吸着状態が微妙に異なり、これによって計測装置100 、100 、100 に計測誤差が生じ得るからである。かかる点を考慮して、同一ロットの25枚のウエハを、計測システム500 の3台又は2台の計測装置100 で分担して計測する場合には、例えば同一のスーパーフラットウエハを用いてウエハホルダのフラットネス計測を行う等によって、ウエハホルダの個体差に起因する計測誤差を予め求めておいても良い。なお、同一ロットに含まれる複数のウエハを計測システム500 の3台又は2台の計測装置100 で分担しない場合でも、スーパーフラットウエハを用いて、ウエハホルダの個体差に起因する計測誤差を予め求めておいても良い。また、同一ロットの複数のウエハを、計測システム500 の3台又は2台の計測装置100 で分担して計測するか、しないかに関わらず、スーパーフラットウエハを用いて、計測装置100 (i=4~6)のウエハホルダの個体差に起因する計測誤差を予め求めておいても良い。
[0261]
 また、計測システム500 の3台の計測装置100 ~100 は、例えば1ロット内の1枚のウエハを、3台の計測装置100 ~100 それぞれで同じ条件の下で計測処理した場合に、実質的に同じ計測結果が得られるように、例えば基準ウエハなどを調整されていても良い。
[0262]
 また、上述のスループットを優先するか、計測精度を優先するかを、計測システム500 のユーザが選択可能にしておくことが望ましい。また、計測システム500 を実際に稼働させるに際しては、各計測装置100 の稼働効率を考慮する必要があり、計測装置100 、100 及び100 の全てが常に同時に空いている(非稼動状態にある)とは限らない。したがって、2台以上の計測装置100 が同時に空いている場合にのみ、同一ロットのウエハをその2台以上の計測装置100 に振り分けることとしても良い。
[0263]
 また、例えば計測システム500 の計測装置100 、100 、及び100 の少なくとも1つを、他の計測装置と異なる機能の計測装置としても良い。例えば、1つの計測装置を、ウエハ表面の凹凸(フラットネス)計測を行なう多点焦点位置検出系を備えた計測装置としても良いし、ウエハ形状測定装置としても良い。また、計測システム500 、500 の少なくとも一方は、計測装置を2台、あるいは4台以上備えていても良い。
[0264]
 また、上記実施形態では、同一ロット内のウエハを、計測システム500 の計測装置100 の計測対象とするとともに、計測装置100 の計測対象ともしている。しかしながら、これに限らず、あるロット(例えば露光装置200に送られるロット)のウエハを計測装置100 の計測対象とし、別のロット(例えば露光装置200以外の露光装置に送られるロット)のウエハを計測装置100 の計測対象としても良い。この場合において、計測装置100 では、その計測対象のロットのウエハ上のマークの計測に適した計測条件(第1の所定条件)を設定した上で、計測対象のマークの計測を行い、計測装置100 では、その計測対象のロットのウエハ上のマークの計測に適した計測条件(第2の所定条件)を設定した上で、計測対象のマークの計測を行うこととしても良い。
[0265]
 また、上記実施形態では、重ね合わせ誤差計測に際して、同一ロット内のウエハを、計測システム500 の計測装置100 の計測対象とするとともに、計測装置100 の計測対象ともしている。しかしながら、これに限らず、あるロットのウエハを計測装置100 の計測対象とし、別のロットのウエハを計測装置100 の計測対象としても良い。この場合において、計測装置100 では、その計測対象のロットのウエハ上のマークの計測に適した計測条件(第1の所定条件)を設定した上で、計測対象のマークの計測を行い、計測装置100 では、その計測対象のロットのウエハ上のマークの計測に適した計測条件(第2の所定条件)を設定した上で、計測対象のマークの計測を行うこととしても良い。
[0266]
 なお、計測システム500 の計測装置500 が、計測装置500 及び500 の少なくとも一方と同様の構成、機能を有している場合には、計測装置500 及び計測装置500 の一方又は両方に代えて、計測装置500 を用いることが可能である。
[0267]
 なお、上記実施形態では、基板処理システム1000全体のスループットを極力高めるため、複数台、一例として3台の計測装置100 ~100 を備えた計測システム500 と、複数台、一例として3台の計測装置100 ~100 を備えた計測システム500 と、を基板処理システム1000が備えている場合について説明した。しかしながら、計測システム500 と計測システム500 とは、同様の構成を有しているので、上記実施形態において、計測システム500 が果たす役割を、計測システム500 に肩代わりさせることが可能であるとともに、計測システム500 が果たす役割を、計測システム500 に肩代わりさせることも可能である。したがって、基板処理システム1000全体のスループットを多少低下させても良いのであれば、基板処理システム1000は、計測システム500 及び500 の一方、例えば計測システム500 のみを備えていても良い。この場合において、その計測システム500 が計測装置100を、4台以上備えている場合には、そのうちの2台に、前述した実施形態における計測装置100 、100 の役割を果たさせ、残りの2台に、計測装置100 、100 の役割を果たさせても良い。
[0268]
 なお、上記実施形態では、計測システム500 を用いて重ね合わせ誤差計測を行なう場合について例示したが、これに限らず、計測システム500 は、重ね合わせ誤差計測以外に、単純に露光、現像後のウエハのアライメント情報(絶対位置情報、グリッド情報など)を取得するだけでも良い。また、計測システム500 で、計測システム500 で行われていたのと同様に同一ロットのウエハを複数の計測装置100 (i=4、5、6のうちの少なくとも2つ)に振り分けても良い。
[0269]
 また、上記実施形態に係る基板処理システム1000において、計測システム500 、500 は、露光装置200、及びC/D300のいずれともインライン接続されていないが、計測システム500 、500 の一方、例えば計測システム500 は、露光装置200とC/D300の一方、又は両方とインライン接続されていても良い。例えば、C/D300が、露光装置200と計測システム500 との間に配置されるように、C/D300と計測システム500 とをインライン接続しても良い。あるいは、露光装置200とC/D300との間に配置されるように、計測システム500 を、露光装置200とC/D300の両方にインライン接続しても良い。この場合、計測システム500 は、キャリアシステム510を備えていなくても良い。
[0270]
 また、上記実施形態では、計測システム500 、500 の一方は、複数台の計測装置100 を備えていなくても良い。例えば、計測システム500 が、複数台の計測装置100 を備え、計測システム500 が、計測装置を1台のみ備えていても良い。この場合には、これまでに説明した同一ロット内のウエハを、複数の計測装置で行なう計測処理(ウエハグリッドの計測処理及び重ね合わせずれ計測処理などの少なくとも1つ)は、計測システム500 を用いて行えば良い。また、この場合、計測システム500 に代えて一般的な重ね合わせ計測器を用いても良い。
[0271]
 また、上記実施形態では、計測システム500 の計測装置100 (i=1~3)で取得した各ウエハについてのウエハグリッドの変形成分のデータ及びアライメント履歴データファイルを、露光装置200が事前計測データとして有効活用する場合について説明した。しかしながら、これに限らず、計測装置100 で取得した各ウエハについてのウエハグリッドの変形成分のデータ及びアライメント履歴データファイルに基づいて、計測システム制御装置530 (又は解析装置3000)が、プロセスコントロールデータを求め、このプロセスコントロールデータを、ホストコンピュータ2000にフィードバック的に送信するようにしても良い。計測装置100 で取得したデータから求められる、プロセスコントロールデータとしては、CVD装置などの成膜装置2300、あるいはCMP装置2200に対するコントロールデータなどが代表的に挙げられる。なお、上記実施形態では、計測装置100 (i=1~3のいずれか)が、備えるマーク検出系MDSの検出信号を処理する信号処理装置49が、マーク検出系MDSの検出結果として得られる検出信号の波形が良好なウエハマークの計測結果のデータのみ選別して制御装置60 に送るようになっている。換言すれば、信号処理装置49は、検出信号の波形が良好でないウエハマークの計測結果も取得している。したがって、計測システム制御装置530 (又は解析装置3000)は、検出信号の波形が良好でないウエハマークの計測結果も含む全てのウエハマークの計測結果のデータを、信号処理装置49から取得して、それらのデータに基づいてプロセスコントロールデータを求めることとしても良い。あるいは、信号処理装置49は、全てのウエハマークの計測結果のデータを、制御装置60 に送り、マーク検出系MDSによる検出結果として得られる検出信号が良好か否かの判断を、制御装置60 が行っても良い。この場合には、制御装置60 は、EGA演算に用いられなかったウエハマークの計測結果も含む全てのウエハマークの計測結果のデータを計測システム制御装置530(又は解析装置3000)に送り、計測システム制御装置530 (又は解析装置3000)は、この送られたデータに基づいて、プロセスコントロールデータを求めることとしても良い。
[0272]
 なお、上記実施形態では、対象が300ミリウエハであるものとしたが、これに限らず、直径450mmの450ミリウエハであっても良いし、直径200mmの200ミリウエハであっても良い。露光装置200とは別に、計測装置100 によってウエハアライメントを行うことができるので、450ミリウエハであっても、200ミリウエハあっても、露光処理のスループットの低下を招くこと無く、例えば全点EGA計測などが可能になる。なお、計測システム500 及び計測システム500 の少なくとも一方において、1つの計測装置と他の計測装置とで直径の異なるウエハを計測するようにしても良い。例えば、計測システム500 の計測装置100 を300ミリウエハ用とし、計測装置100 を450ミリウエハ用としても良い。
[0273]
 なお、上記実施形態に係る計測装置100 では、グレーティングRG1、RG2a、RG2bそれぞれが、X軸方向及びY軸方向を周期方向とする場合について説明したが、これに限らず、第1位置計測システム30、第2位置計測システム50のそれぞれが備える格子部(2次元グレーティング)は、XY平面内で互いに交差する2方向を周期方向としていれば良い。
[0274]
 また、上記実施形態で説明した計測装置100 の構成は一例にすぎない。例えば、計測装置は、ベース部材(定盤12)に対して移動可能なステージ(スライダ10)を有し、該ステージに保持された基板(ウエハ)上の複数のマークの位置情報を計測できる構成であれば良い。したがって、計測装置は、例えば第1位置計測システム30と第2位置計測システム50とを、必ずしも備えている必要はない。
[0275]
 また、上記実施形態で説明した第1位置計測システム30のヘッド部32の構成、及び検出点の配置などは一例に過ぎないことは勿論である。例えば、マーク検出系MDSの検出点と、ヘッド部32の検出中心とは、X軸方向及びY軸方向の少なくとも一方で、位置が一致していなくても良い。また、第1位置計測システム30のヘッド部とグレーティングRG1(格子部)との配置は反対でも良い。すなわち、スライダ10にヘッド部が設けられ、定盤12に格子部が設けられていても良い。また、第1位置計測システム30は、エンコーダシステム33とレーザ干渉計システム35とを必ずしも備えている必要はなく、エンコーダシステムのみによって第1位置計測システム30を構成しても良い。ヘッド部からスライダ10のグレーティングRG1にビームを照射し、グレーティングからの戻りビーム(回折ビーム)を受光して定盤12に対するスライダ10の6自由度方向の位置情報を計測するエンコーダシステムにより、第1位置計測システムを構成しても良い。この場合において、ヘッド部のヘッドの構成は特に問わない。第1位置計測システム30は、定盤12に対するスライダ10の6自由度方向の位置情報を必ずしも計測できる必要はなく、例えばX、Y、θz方向の位置情報を計測できるのみであっても良い。また、定盤12に対するスライダ10の位置情報を計測する第1位置計測システムが、定盤12とスライダ10との間に配置されていても良い。また、第1計測システムは、定盤12に対するスライダ10の6自由度方向又は水平面内の3自由度方向の位置情報を計測する干渉計システムその他の計測装置によって構成しても良い。
[0276]
 同様に、上記実施形態で説明した第2位置計測システム50の構成は、一例に過ぎない。例えば、ヘッド部52A、52Bが、定盤12側に固定され、スケール54A、54Bがマーク検出系MDSと一体的に設けられていても良い。また、第2位置計測システム50は、ヘッド部を1つのみ備えていても良いし、3つ以上備えていても良い。いずれにしても、第2位置計測システム50によって、定盤12とマーク検出系MDSとの、6自由度方向の位置関係を計測できることが望ましい。ただし、第2位置計測システム50は、必ずしも、6自由度方向全ての位置関係を計測できなくても良い。
[0277]
 なお、上記実施形態では、スライダ10が、複数のエアベアリング18によって定盤12上に浮上支持され、スライダ10をX軸方向に駆動する第1駆動装置20Aと、スライダ10を第1駆動装置20Aと一体でY軸方向に駆動する第2駆動装置20Bとを含んで、スライダ10を定盤12に対して非接触状態で駆動する駆動システム20が構成された場合について説明した。しかし、これに限らず、駆動システム20として、スライダ10を、定盤12上で6自由度方向に駆動する構成の駆動システムを採用しても良い。かかる駆動システムを、一例として磁気浮上型の平面モータによって構成しても良い。かかる場合には、エアベアリング18は不要になる。なお、計測装置100 は、除振装置14とは別に、定盤12を駆動する駆動システムを備えていても良い。
[0278]
 また、上述の実施形態においては、計測システム500は、キャリアシステム510としてEFEMシステムを備えていたが、EFEMシステムの替わりにY軸方向に沿って複数(例えば、3つ)のキャリア(FOUPなど)を保管可能な、キャリア保管装置を設置しても良い。この場合、計測システム500は、複数の計測装置100 のそれぞれに隣接して設けられた複数のロードポートと、キャリア保管装置と複数のロードポートの載置部との間でキャリア(FOUPなど)の受け渡しを行うキャリア搬送装置を備えていても良い。
[0279]
 なお、上記実施形態では、露光装置200にC/D300がインライン接続されている場合について説明したが、C/D300に代えて、基板(ウエハ)上に感応剤(レジスト)を塗布する塗布装置(コータ)が露光装置200にインライン接続されていても良い。この場合、露光後のウエハは、露光装置に対してインライン接続されていない現像装置(デベロッパ)に搬入されることになる。あるいは、C/D300に代えて、露光後の基板(ウエハ)を現像する現像装置(デベロッパ)が露光装置200にインライン接続されていても良い。この場合、別の場所で予めレジストが塗布されたウエハが、露光装置に搬入されることになる。
[0280]
 上記実施形態では、露光装置が、スキャニング・ステッパである場合について説明したが、これに限らず、露光装置は、ステッパなどの静止型露光装置であっても良いし、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置であっても良い。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。また、露光装置は、前述した液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に限らず、例えば、欧州特許出願公開第1420298号明細書、国際公開第2004/055803号、国際公開第2004/057590号、米国特許出願公開第2006/0231206号明細書、米国特許出願公開第2005/0280791号明細書、米国特許第6,952,253号明細書などに記載されている液体を介して基板を露光する液浸型の露光装置であっても良い。また、露光装置は半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置などであっても良い。
[0281]
 半導体デバイスは、上記各実施形態に係る基板処理システムの一部を構成する露光装置で、パターンが形成されたレチクル(マスク)を用いて感光物体を露光するとともに、露光された感光物体を現像するリソグラフィステップを経て製造される。この場合、高集積度のデバイスを歩留り良く製造することができる。
[0282]
 なお、図14に示されるように、半導体デバイスの製造プロセスが、リソグラフィステップの他に、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクル(マスク)を製作するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を含んでいても良い。
[0283]
 なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。

符号の説明

[0284]
 10…スライダ、12…定盤、14…除振装置、16…ベースフレーム、18…エアベアリング、20…駆動システム、20A…第1駆動装置、20B…第2駆動装置、22a,22b…可動子、23a,23b…可動子、24…可動ステージ、25a,25b…固定子、26a,26b…固定子、28A,28B…X軸リニアモータ、29A,29B…Y軸リニアモータ、30…第1位置計測システム、32…ヘッド部、33…エンコーダシステム、40…計測ユニット、48…除振装置、50…第2位置計測システム、52A,52B…ヘッド部、60 …制御装置、70 …ウエハ搬送系、100 …計測装置、200…露光装置、300…C/D、500 、500 …計測システム、510…EFEMシステム、512…EFEM本体、514…ロードポート、516…ロボット、521…搬送システム、524…ロード用搬送部材、526…アンロード用搬送部材、530 、530 …計測システム制御装置、1000…基板処理システム、MDS…マーク検出系、RG1…グレーティング、RG2a,RG2b…グレーティング、W…ウエハ、WST…ウエハステージ。

請求の範囲

[請求項1]
 マイクロデバイスの製造ラインで用いられる計測システムであって、
 それぞれ基板に対する計測処理を行なう複数の計測装置と、
 前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、
 前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、
 前記第1計測装置において基板に形成された複数のマークの位置情報を第1条件の設定の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1条件の設定の下で取得することが可能な計測システム。
[請求項2]
 前記第1計測装置において前記第1条件の設定の下で前記位置情報の取得が行われる前記基板と同一のロットに含まれる前記別の基板に形成されたマークの位置情報が、前記第2計測装置において前記第1条件の設定の下で取得される請求項1に記載の計測システム。
[請求項3]
 前記第1条件は、前記マークに検出光を照射するための照射条件、前記マークから発生する光を受光するための受光条件、及び前記マークから生じる光を受光して得た光電変換信号を処理するための信号処理条件のうちの少なくとも1つを含む請求項1又は2に記載の計測システム。
[請求項4]
 前記第1計測装置、及び前記第2計測装置のそれぞれは前記検出光を前記マーク上に照射する光学系を備え、
 前記照射条件は、前記検出光の波長、光量、及び前記光学系のNA又はσの少なくとも1つを含む請求項3に記載の計測システム。
[請求項5]
 前記受光条件は、前記マークから生じる回折光の次数、及び前記マークから生じる光の波長の少なくとも一方を含む請求項3又は4に記載の計測システム。
[請求項6]
 マイクロデバイスの製造ラインで用いられる計測システムであって、
 それぞれ基板に対する計測処理を行なう複数の計測装置と、
 前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、
 前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、
 前記第1計測装置において基板に形成された複数のマークの位置情報を取得し、前記第2計測装置において、前記基板と同一のロットに含まれる別の基板に形成された複数のマークの位置情報を取得することが可能な計測システム。
[請求項7]
 前記第1計測装置において基板に形成された複数のマークの位置情報を第1の所定条件の設定の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1の所定条件と異なる第2の所定条件の設定の下で取得する請求項1~6のいずれか一項に記載の計測システム。
[請求項8]
 マイクロデバイスの製造ラインで用いられる計測システムであって、
 それぞれ基板に対する計測処理を行なう複数の計測装置と、
 前記複数の計測装置と基板の受け渡しを行うための搬送システムと、を備え、
 前記複数の計測装置は、基板に形成された複数のマークの位置情報を取得する第1計測装置と、基板に形成された複数のマークの位置情報を取得する第2計測装置と、を含み、
 前記第1計測装置において基板に形成された複数のマークの位置情報を第1の所定条件の設定の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1の所定条件と異なる第2の所定条件の設定の下で取得することが可能な計測システム。
[請求項9]
 前記別の基板は、前記第1計測装置において前記第1の所定条件の設定の下で前記位置情報の取得が終了した後に、前記第2計測装置において前記第2の所定条件の設定の下で前記位置情報の取得が行われる請求項7又は8に記載の計測システム。
[請求項10]
 前記第1の所定条件は、前記マークに照射される検出光の照射条件、及び、前記マークから発生する光を受光するときの受光条件、及び前記マークから生じる光を受光して得た光電変換信号を処理するための信号処理条件のうちの少なくとも1つが、前記第2の所定条件と異なる請求項7~9のいずれか一項に記載の計測システム。
[請求項11]
 前記第1計測装置、及び前記第2計測装置のそれぞれは前記検出光を前記マーク上に照射する光学系を備え、
 前記照射条件は、前記検出光の波長、光量、及び前記光学系のNA又はσの少なくとも1つを含む請求項10に記載の計測システム。
[請求項12]
 前記マークからは、次数が異なる複数の回折光が発生し、
 前記受光条件は、前記位置情報の取得に用いられる回折光の次数を含む請求項10又は11に記載の計測システム。
[請求項13]
 前記マークからは、波長が異なる複数の光が発生し、
 前記受光条件は、前記位置情報の取得に用いられる光の波長を含む請求項10~12のいずれか一項に記載の計測システム。
[請求項14]
 前記第1計測装置において前記基板上の第m層(mは1以上の整数)に形成された複数のマークの位置情報が前記第1の所定条件の設定の下で取得され、前記第2計測装置において、第n層(nは、mより大きい、2以上の整数)に形成された複数のマークの位置情報が前記第2の所定条件の設定の下で取得される請求項7~13のいずれか一項に記載の計測システム。
[請求項15]
 前記第m層に形成された複数のマークの位置情報と、前記第n層に形成された複数のマークの位置情報のそれぞれを出力する請求項14に記載の計測システム。
[請求項16]
 前記第m層に形成された複数のマークは所定平面内の一方向を周期方向とする格子マークを含み、前記第n層に形成された複数のマークは、前記所定平面内で前記一方向に交差する方向を周期方向とする格子マークを含む請求項15に記載の計測システム。
[請求項17]
 前記第m層に形成された複数のマークの位置情報と、前記第n層に形成された複数のマークの位置情報とに基づいて求められる情報を出力する請求項14又は15に記載の計測システム。
[請求項18]
 前記第m層に形成された複数のマークは第1マークを含み、前記第n層に形成された複数のマークは、前記第1マークに対応する第2マークを含み、
 前記出力する情報は、前記第1マークと前記第2マークの位置ずれに関する情報を含む請求項17に記載の計測システム。
[請求項19]
 前記出力する情報は、前記第m層と前記第n層の重ね合わせずれに関する情報を含む請求項17又は18に記載の計測システム。
[請求項20]
 前記第1計測装置において前記第1の所定条件の設定の下で前記位置情報の取得が行われる前記基板と同一ロットに含まれる前記別の基板に形成されたマークの位置情報が、前記第2計測装置において前記第2の所定条件の設定の下で取得される請求項7~19のいずれか一項に記載の計測システム。
[請求項21]
 基板を複数枚収納したキャリアを設置可能な少なくとも1つのキャリア載置部を有するキャリアシステムをさらに備え、
 前記搬送システムは、前記キャリアシステムとの間で基板の受け渡しを行う請求項2、6、20のいずれか一項に記載の計測システム。
[請求項22]
 同一ロットに含まれる前記基板と前記別の基板は、前記複数のマークの位置情報の取得に先立って、前記キャリアに収納された状態で、前記キャリア載置部に搬入される請求項21に記載の計測システム。
[請求項23]
 前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、露光前の感応剤塗布、露光後の現像、洗浄、酸化・拡散、成膜、エッチング、イオン注入、CMPの少なくとも1つのプロセス処理を経た後の基板に対して行われる請求項1~22のいずれか一項に記載の計測システム。
[請求項24]
 前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、前記現像処理後であって、エッチング処理前の基板に対して行われる請求項23に記載の計測システム。
[請求項25]
 前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、次の露光のために感応剤が塗布される前の基板に対して行われる請求項1~24のいずれか一項に記載の計測システム。
[請求項26]
 前記複数の計測装置は、前記第1計測装置、及び前記第2計測装置とは異なる種類の計測を前記基板に対して行なう第3計測装置を少なくとも1台含む請求項1~25のいずれか一項に記載の計測システム。
[請求項27]
 前記第3計測装置は、前記基板表面の凹凸情報を計測可能な装置である請求項26に記載の計測システム。
[請求項28]
 前記第1計測装置は、
 前記基板を保持して移動可動なステージと、
 前記ステージを移動する駆動システムと、
 前記ステージの位置情報を取得可能な第1位置計測系と、
 前記基板に形成されたマークを検出するマーク検出系と、を備え、
 前記駆動システムによる前記ステージの移動を制御し、前記マーク検出系を用いて前記基板に形成された前記複数のマークをそれぞれ検出し、前記複数のマークそれぞれの検出結果と前記複数のマークそれぞれの検出時に前記第1位置計測系を用いて得られる前記ステージの位置情報とに基づいて、前記複数のマークそれぞれの絶対位置座標を求める制御装置を更に備える請求項1~27のいずれか一項に記載の計測システム。
[請求項29]
 前記第1位置計測系は、前記ステージの少なくとも3自由度方向の位置情報を取得可能である請求項28に記載の計測システム。
[請求項30]
 前記第1位置計測系は、格子部を有する計測面と前記計測面にビームを照射するヘッド部の一方が前記ステージに設けられ、前記ヘッド部からのビームを前記計測面に照射するとともに、該ビームの前記計測面からの戻りビームを受光して前記ステージの位置情報を取得可能である請求項28又は29に記載の計測システム。
[請求項31]
 前記ヘッド部が設けられたベース部材と、
 前記マーク検出系と前記ベース部材との相対的な位置情報を取得する第2位置計測系と、をさらに備え、
 前記制御装置は、前記第2位置計測系を使って取得される位置情報と前記第1位置計測系を使って取得される位置情報とに基づいて前記駆動システムによる前記ステージの移動を制御する請求項30に記載の計測システム。
[請求項32]
 前記ベース部材は、前記ステージを所定平面内で互いに直交する第1、第2方向及び前記所定平面に垂直な第3方向を含む6自由度方向に移動可能に支持し、
 前記第2位置検出系は、前記マーク検出系と前記ベース部材との前記6自由度方向に関する相対的な位置情報を取得可能である請求項31に記載の計測システム。
[請求項33]
 前記制御装置は、前記複数のマークの前記絶対位置座標を求めるに際し、前記第2位置計測系を用いて得られる前記マーク検出系と前記ベース部材との前記所定平面内における相対位置情報を補正量として用いる請求項32に記載の計測システム。
[請求項34]
 前記制御装置は、求めた複数の前記マークの前記絶対位置座標を用いて、統計演算を行い、前記基板上の前記複数の区画領域の配列の設計値からの補正量を求める請求項28~33のいずれか一項に記載の計測システム。
[請求項35]
 前記複数のマークは、アライメントマークを含む請求項1~34のいずれか一項に記載の計測システム。
[請求項36]
 前記複数のマークは、重ね合わせずれ計測用のマークを含む請求項1~35のいずれか一項に記載の計測システム。
[請求項37]
 マイクロデバイスの製造ラインで用いられる計測システムであって、
 基板に対する計測処理を行なう第1の計測装置と、
 基板に対する計測処理を行なう第2の計測装置と、を含み、
 前記第1の計測装置での計測処理と前記第2の計測装置での計測処理とを並行して実行可能な計測システム。
[請求項38]
 前記第1計測装置は、基板に形成された複数のマークの位置情報を取得し、
 前記第2計測装置は、基板に形成された複数のマークの位置情報を取得する請求項37に記載の計測システム。
[請求項39]
 前記第1計測装置において基板に形成された複数のマークの位置情報を第1条件の下で取得し、前記第2計測装置において別の基板に形成された複数のマークの位置情報を前記第1条件の下で取得することが可能な請求項38に記載の計測システム。
[請求項40]
 マイクロデバイスの製造ラインで用いられる計測システムであって、
 基板に対する計測処理を行なう第1の計測装置と、
 基板に対する計測処理を行なう第2の計測装置と、を含み、
 前記第1の計測装置と前記第2の計測装置の一方で計測処理された基板を、他方で計測処理可能な計測システム。
[請求項41]
 前記第1計測装置は、基板に形成された複数のマークの位置情報を取得し、
 前記第2計測装置は、基板に形成された複数のマークの位置情報を取得する請求項40に記載の計測システム。
[請求項42]
 請求項1~41のいずれか一項に記載の計測システムと、
 前記計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方で前記複数のマークの位置情報の計測が終了した前記基板が載置される基板ステージを有し、該基板ステージ上に載置された前記基板に対して、該基板上の複数のマークのうち選択された一部のマークの位置情報を取得するアライメント計測及び前記基板をエネルギビームで露光する露光が行われる露光装置と、を備える基板処理システム。
[請求項43]
 前記基板上には、複数の区画領域とともに前記複数のマークが形成され、
 前記計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方を使って取得された前記複数の区画領域の配列情報と、前記露光装置において前記アライメント計測で得られたマークの位置情報とに基づいて、前記基板ステージの移動が制御される請求項42に記載の基板処理システム。
[請求項44]
 前記計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方を使って取得した前記複数のマークの前記位置情報を用いて、前記基板上の前記複数の区画領域の配列に関する第1情報を求め、
 前記露光装置は、前記アライメント計測で取得した前記一部のマークの位置情報を用いて、前記基板上の前記複数の区画領域の配列に関する第2情報を求め、
 前記第1情報と、前記第2情報とに基づいて、前記基板の露光を行う際に前記基板ステージの位置を制御する請求項43に記載の基板処理システム。
[請求項45]
 前記第1情報は、前記基板上の前記複数の区画領域の配列の非線形的な変形成分を含む請求項44に記載の基板処理システム。
[請求項46]
 前記第2情報は、前記基板上の前記複数の区画領域の配列の線形的な変形成分を含む請求項44又は45に記載の基板処理システム。
[請求項47]
 請求項1~41のいずれか一項に記載の計測システムからそれぞれ構成される第1計測システム及び第2計測システムと、
 前記第1計測システムの前記第1計測装置、及び前記第2計測装置の少なくとも一方で前記複数のマークの位置情報の計測が終了した基板が載置される基板ステージを有し、該基板ステージ上に載置された前記基板に対して、該基板上の複数のマークのうち選択された一部のマークの位置情報を取得するアライメント計測及び前記基板をエネルギビームで露光する露光が行われる露光装置と、を備え、
 前記第1計測システムが備える前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、洗浄、酸化・拡散、成膜、エッチング、イオン注入、CMPの少なくとも1つのプロセス処理を経、次の露光のために感応剤が塗布される前の基板に対して行われ、
 前記第2の計測システムが備える前記第1計測装置及び前記第2計測装置の少なくとも一方で行われる前記複数のマークの位置情報の取得は、前記露光装置による露光後前記現像処理後であって、エッチング処理前の基板に対して行われ、
 前記第1計測システム及び前記第2計測システムのそれぞれによる異なる基板に対する前記複数のマークの位置情報の取得は、前記露光装置による異なる基板に対するアライメント計測及び露光と並行して行われる基板処理システム。
[請求項48]
 請求項42~47のいずれか一項に記載の基板処理システムの一部を構成する露光装置を用いて基板を露光することと、
 露光された前記基板を現像することと、
を含むデバイス製造方法。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]

[ 図 12]

[ 図 13]

[ 図 14]

[ 図 15]