PATENTSCOPE no estará disponible algunas horas por razones de mantenimiento el lunes 03.02.2020 a las 10:00 AM CET
Colecciones nacionales e internacionales de patentes
Parte del contenido de esta solicitud no está disponible en este momento.
Si el problema persiste, sírvase contactarnos en la direcciónComentarios y contacto
1. (US20080183451) Simulations for hydraulic fracturing treatments and methods of fracturing naturally fractured formation

Oficina : Estados Unidos de América
Número de la solicitud: 11936344 Fecha de la solicitud: 07.11.2007
Número de publicación : 20080183451 Fecha de publicación: 31.07.2008
Número de concesión: 08412500 Fecha de concesión : 02.04.2013
Tipo de publicación : B2
CIP:
G06G 7/48
G FISICA
06
COMPUTO; CALCULO; CONTEO
G
COMPUTADORES ANALOGICOS
7
Dispositivos en los que la operación de cálculo es efectuada haciendo variar valores eléctricos o magnéticos
48
Computadores analógicos para procesos, sistemas o dispositivos específicos, p. ej. simuladores
Solicitantes: Weng Xiaowei
Schlumberger Technology Corporation
Siebrits Eduard
Personas inventoras: Weng Xiaowei
Siebrits Eduard
Mandatarias/os: Stout Myron K.
Wright Daryl
Nava Robin
Fecha de prioridad: 60887008 29.01.2007 US
Título: (EN) Simulations for hydraulic fracturing treatments and methods of fracturing naturally fractured formation
Resumen: front page image
(EN)

A hydraulic fracture design model that simulates the complex physical process of fracture propagation in the earth driven by the injected fluid through a wellbore. An objective in the model is to adhere with the laws of physics governing the surface deformation of the created fracture subjected to the fluid pressure, the fluid flow in the gap formed by the opposing fracture surfaces, the propagation of the fracture front, the transport of the proppant in the fracture carried by the fluid, and the leakoff of the fracturing fluid into the permeable rock. The models used in accordance with methods of the invention are typically based on the assumptions and the mathematical equations for the conventional 2D or P3D models, and further take into account the network of jointed fracture segments. For each fracture segment, the mathematical equations governing the fracture deformation and fluid flow apply. For each time step, the model predicts the incremental growth of the branch tips and the pressure and flow rate distribution in the system by solving the governing equations and satisfying the boundary conditions at the fracture tips, wellbore and connected branch joints. An iterative technique is used to obtain the solution of this highly nonlinear and complex problem.