WIPO logo
Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 | العربية |
PATENTSCOPE

Search International and National Patent Collections
World Intellectual Property Organization
Search
 
Browse
 
Translate
 
Options
 
News
 
Login
 
Help
 
Results 1-10 of 74,214 for Criteria: Office(s):all Language:EN Stemming: true maximize
prev 1 2 3 4 5 6 7 8 9 10 next
Page: / 7422  Go >
RSS iconmap icon 

Analysis
Analysis

List Length
Machine translation
TitleCtrPubDate
Int.ClassAppl.NoApplicantInventor
1. 20160032482 DIRECTIONAL SOLIDIFICATION SYSTEM AND METHODUS04.02.2016
C30B 11/00
14776536SILICOR MATERIALS INC.Abdallah Nouri

The present invention relates to an apparatus and method for purifying materials using a rapid directional solidification. Devices and methods shown provide control over a temperature gradient and cooling rate during directional solidification, which results in a material of higher purity. The apparatus and methods of the present invention can be used to make silicon material for use in solar applications such as solar cells.


2. 20160035919 QUANTUM DOT SOLAR CELL PERFORMANCE WITH A METAL SALT TREATMENTUS04.02.2016
H01L 31/0352
14270141Samsung Electronics Co., Ltd.Su Kyung Suh

The performance of lead sulfide quantum dot (QD) photovoltaic cells is improved by exposing a QD layer to a solution containing metal salts after the synthesis of the QDs is completed. The halide ions from the salt solution passivate surface lead (Pb) sites and alkali metal ions mend Pb vacancies. Metal cations and halide anions with small ionic radius have high probability of reaching QD surfaces to eliminate surface recombination sites. Compared to control devices fabricated using only a ligand exchange procedure without salt exposure, devices with metal salt treatment show increases in both the form factor and short circuit current of the PV cell. Some embodiments comprise a method for treatment of QDs with a salt solution and ligand exchange. Other embodiments comprise a photovoltaic cell having a QD layer treated with a salt solution and ligand exchange.


3. 20160036379 HYBRID SOLAR THERMAL AND PHOTOVOLTAIC SYSTEM WITH TERMAL ENERGY CATURE SUBSYSTEMUS04.02.2016
H02S 40/44
14775652Richard Lyle SHOWNRichard Lyle Shown

A hybrid photovoltaic and solar thermal system for generating electrical energy and providing heated water for storage or immediate use. The system includes photovoltaic solar panels, each attached to base with an open top, a bottom, and sides. A base cover is connected to the base sides to define a fluid reservoir. A fluid inlet disposed in each side of the bases provide water to the reservoir from a water supply. A fluid outlet disposed in the sides of each base discharges heated water from the reservoirs through a discharge pipe connected to hot water storage tanks.


4. 20160036373 PHOTOVOLTAIC SYSTEMS AND RELATED TECHNIQUESUS04.02.2016
H01L 31/04
14799365Fraunhofer USA, Inc.Christian Hoepfner

Photovoltaic systems and related techniques are provided. A method for commissioning a photovoltaic (PV) system may include obtaining data describing an arrangement of two or more components of the PV system; performing a test of the PV system, wherein performing the test includes determining whether the PV system complies with at least one PV system criterion based, at least in part, on at least a portion of the data describing the arrangement of the two or more components of the PV system; and in response to determining that the PV system complies with the at least one PV system criterion, activating the PV system and/or notifying a user of the PV system that the PV system complies with the at least one PV system criterion. The method may further include sending information associated with the PV system to a regulatory entity and/or an operator of an electrical grid.


5. 20160036235 Safety Shutdown System for Photovoltaic Power GeneratorsUS04.02.2016
H02J 3/38
14805177Robert GetslaRobert Getsla

A photovoltaic power generator with safety shutdown system includes a plurality of solar panel strings, a combiner, and a plurality of solar safety switches electrically disposed between a plurality of DC outputs of the plurality of solar panels strings and a plurality of DC inputs of the combiner. Each solar safety switch is associated with one of the solar panel strings and includes a solid-state device and a close actuator. The solid-state device of each solar safety switch is connected between the positive and negative terminals of the DC output of its associated solar panel string. The close actuator in each solar safety switch controls whether its associated solid-state device is turned on or is turned off. During normal operating conditions, the close actuators prevent their respective solid-state devices from turning on. However, in the event of a fire, the close actuators cause their associated solid-state devices to turn on, thereby effectively short-circuiting the DC outputs of their associated solar panel strings and preventing the solar panel strings from producing high voltages.


6. 20160036267 ELECTRONIC DEVICE PROTECTIVE CASEUS04.02.2016
H02J 7/35
14427118BOE TECHNOLOGY GROUP CO., LTD.PEIHUAN YANG

The present disclosure provides an electronic device protective case[.] which is able to, by means of photovoltaic power generation, alleviate the insufficient capacity of a cell for an electronic device when it is used in the open air, and while an accumulator may be used as a power tank. A charging/discharging controller is used to control a photovoltaic cell panel in the protective case to store electric energy after the photovoltaic conversion in an accumulator, with the electric energy in the accumulator used to charge the electronic device. In addition, electrical connection states between an external data line port and the electronic device protective case as well as a port of an electronic device is controlled by means of a switch assembly, and when the switch assembly is in an ON state, the charging/discharging controller is used to control the accumulator or an external data line port to charge the electronic device.


7. 20160036372 PHOTOVOLTAIC SYSTEMS AND RELATED TECHNIQUESUS04.02.2016
H01L 31/04
14799325Fraunhofer USA, Inc.Christian Hoepfner

Photovoltaic systems and related techniques are provided. A method for commissioning a photovoltaic (PV) system may include obtaining data describing an arrangement of two or more components of the PV system; performing a test of the PV system, wherein performing the test includes determining whether the PV system complies with at least one PV system criterion based, at least in part, on at least a portion of the data describing the arrangement of the two or more components of the PV system; and in response to determining that the PV system complies with the at least one PV system criterion, activating the PV system and/or notifying a user of the PV system that the PV system complies with the at least one PV system criterion. The method may further include sending information associated with the PV system to a regulatory entity and/or an operator of an electrical grid.


8. 20160036375 TRANSPORTABLE HYBRID POWER SYSTEMUS04.02.2016
H02S 20/30
14883335Reza AnsariReza Ansari

A transportable, deployable power system comprising a hybrid power box containing solar panels, wind turbine(s), fuel cells, fuel reformers, and other energy sources. The system could also include waste water and potable water inlet and outlet ports for water treatment. It will also allow for shelf mounted solar and wind turbine installation for disaster recovery, backup power for telecommunication, military power, Homeland Security power, off grid homes and water and wastewater packaging domestically and internationally. The present invention is ideal for any situation requiring immediate power and/or water treatment, such as remote construction sites or in emergency situations. The hybrid power box can be mounted to a standard shipping truck, train, or ship, and transported over land to the desired location.


9. 20160036381 PHOTOVOLTAIC SYSTEMS AND RELATED TECHNIQUESUS04.02.2016
H02S 50/10
14799343Fraunhofer USA, Inc.Matthew Alan Kromer

Photovoltaic systems and related techniques are provided. A method for commissioning a photovoltaic (PV) system may include obtaining data describing an arrangement of two or more components of the PV system; performing a test of the PV system, wherein performing the test includes determining whether the PV system complies with at least one PV system criterion based, at least in part, on at least a portion of the data describing the arrangement of the two or more components of the PV system; and in response to determining that the PV system complies with the at least one PV system criterion, activating the PV system and/or notifying a user of the PV system that the PV system complies with the at least one PV system criterion. The method may further include sending information associated with the PV system to a regulatory entity and/or an operator of an electrical grid.


10. 20160037198 REBROADCASTING SYSTEMUS04.02.2016
H04N 21/262
14775498HITACHI KOKUSAI ELECTRIC INC.Satoshi SAKATA

A rebroadcasting system for retransmitting a television broadcast, which was received from a satellite, in a segment broadcasting, such as one-segment broadcasting and three-segment broadcasting, comprises: charging a solar battery during the daytime; recording broadcasts during the retransmission halt time; retransmitting television broadcasts, which are received from the satellite, in real time by use of central (one or three) segments and the charged power during any time when the output of the solar battery is low, for example, during the night, before sunset, after sunrise, or a rainy day; reproducing the recorded broadcasts; and retransmitting the reproduced recorded programs by use of any remaining segments, for example, segments adjacent to the central segments.



Results 1-10 of 74,214 for Criteria: Office(s):all Language:EN Stemming: true
prev 1 2 3 4 5 6 7 8 9 10 next