Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

IC:B25J

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.102024116593Verfahren und System zum Durchführen einer Roboterapplikation
DE 18.12.2025
Int.Class B25J 9/18
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
16Programme controls
18electric
Appl.No 102024116593 Applicant KUKA Deutschland GmbH Inventor Feustel Martin

Ein Verfahren zum Durchführen einer Roboterapplikation weist die Schritte auf: Betreiben einer Roboteranordnung zum Durchführen der Roboterapplikation; Überprüfen während dieses Betriebs der Roboteranordnung, ob ein erster Zustand vorliegt, der mithilfe einer vorgegebenen ersten geometrischen Bedingung für die Roboteranordnung definiert ist; und Auslösen einer ersten Aktion, die für den erste Zustand vorgegeben ist, falls diese Überprüfung ergibt, dass der erste Zustand vorliegt. Die Erfindung betrifft außerdem ein System bzw. Computerprogramm(produkt). embedded image

2.112023005822Roboterprogrammiervorrichtung, Roboterprogrammierverfahren und Programm
DE 18.12.2025
Int.Class B25J 9/22
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
16Programme controls
22Recording or playback systems
Appl.No 112023005822 Applicant FANUC CORPORATION Inventor Yoneyama Hiroyuki

Diese Roboterprogrammiervorrichtung weist auf: eine Einheit zum Anordnen von dreidimensionalen Modellen zum Anordnen eines Robotermodells, eines Werkzeugmodells und eines Werkstückmodells in einem virtuellen Raum; eine Einheit zum Bestimmen einer Einschneidetiefe zum Empfangen einer Bestimmung einer Toleranz für die Einschneidetiefe des Werkzeugmodells in Bezug auf das Werkstückmodell; und eine Einheit zum Anpassen von Position und Stellung eines Einlernpunkts zum Anpassen einer Position und Stellung des Werkzeugmodells an einem Einlernpunkt des Roboterprogramms so, dass das Werkzeugmodell mit dem Werkstückmodell in einem Zustand in Kontakt kommt, in dem die Einschneidetiefe des Werkzeugmodells in Bezug auf das Werkstückmodell gleich wie oder kleiner als die Toleranz ist. embedded image

3.WO/2025/258322TRAINING DEVICE, ROBOT SYSTEM, AND TRAINING METHOD
WO 18.12.2025
Int.Class B25J 13/00
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
13Controls for manipulators
Appl.No PCT/JP2025/017883 Applicant UNIVERSITY OF TSUKUBA Inventor SAKAINO, Sho
This training device trains a machine learning model for estimating a command value for driving a robot having one or more motors. The training device trains the machine learning model by using, as input information, a response value obtained when the robot is driven on the basis of the command value, and a value identified on the basis of the response value.
4.WO/2025/256087MODULAR VARIABLE STIFFNESS PNEUMATIC SOFT ACTUATOR AND SOFT ROBOT
WO 18.12.2025
Int.Class B25J 15/00
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
15Gripping heads
Appl.No PCT/CN2024/138817 Applicant HUNAN UNIVERSITY Inventor WANG, Yaonan
A modular variable stiffness pneumatic soft actuator, comprising a gas-driven bending member (1), a connecting mechanism (3), a variable stiffness mechanism (4), and a deformation limiting member (2). A cavity is formed inside the gas-driven bending member, and an external independent gas source is communicated with the cavity in the gas-driven bending member. The deformation limiting member is located on one side of the gas-driven bending member, and the connecting mechanism is located on the other side of the deformation limiting member. The variable stiffness mechanism comprises a plurality of variable stiffness members, and one of the plurality of variable stiffness members is mounted on the other side of the connecting mechanism. Further provided is a soft robot. By selecting the variable stiffness mechanism having different equivalent densities, the soft actuator changes the stiffness of the gas-driven soft actuator, achieves a variable stiffness design of the soft robot, and thereby achieves flexible control of the stiffness of the soft robot.
5.WO/2025/257872SYSTEM AND METHOD FOR GRASPING
WO 18.12.2025
Int.Class B25J 15/00
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
15Gripping heads
Appl.No PCT/IT2025/050141 Applicant G.D S.P.A Inventor SUMINI, Valentina
Grasp system and method (1) for an article, the system comprising a main body (2); at least two grasp devices (3) each comprising a first portion (4) movably fixed to the main body (2) and a second portion (5) movably fixed to the first portion (4); a drive system (7) connected to each first portion (4) and second portion (5) to move independently the first portion (4) with respect to the main body (2) and the second portion (5) with respect to the first portion (4); at least one between a first holding apparatus (8) for holding by means of vacuum suction and a second holding apparatus (10) for holding by means of electro- adhesion, the method for grasping comprising adapting a conformation of a first grasp device (3) to an outer shape of the article and clamping the article between two grasp devices (3) and/or activating the first holding apparatus (8) for holding and/or activating the second holding apparatus for holding (10).
6.WO/2025/259612MECHANICALLY PROGRAMMABLE CROSS-SECTIONAL SHAPE OF SOFT GROWING ROBOTS
WO 18.12.2025
Int.Class B25J 18/06
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
18Arms
06flexible
Appl.No PCT/US2025/032898 Applicant THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY Inventor OSELE, Obumneme, Godson
Inverting and everting flexible robotic limbs achieve growth at its tip through pressure-driven eversion of flexible, thin-walled membranes, transferring material from inside its tubular body to the outside. This allows for navigation through cluttered environments without external surface friction, navigation through gaps much smaller than its width and, high extension ratios. This invention extends the applications of soft everting robots (also known as vine robots) by introducing new fabrication methods and strategies for mechanically programming the cross-sectional shape of the flexible everting member of vine robots. By mechanically programming the cross-sectional shape, one would then be able to design soft everting robots for specific scenarios. This allows for inverting and everting flexible robotic limbs to evert under objects into a shape resembling an air mattress to deliver more even distribution of pressure on the object. This opens the opportunities to develop things like deployable mattress and deployable stretchers/litters.
7.102024123305NACHGIEBIGER MECHANISMUS MIT SCHWERKRAFTBEDINGTER SELBSTZENTRIERUNG
DE 18.12.2025
Int.Class B25J 15/04
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
15Gripping heads
04with provision for the remote detachment or exchange of the head or parts thereof
Appl.No 102024123305 Applicant GM Global Technology Operations LLC Inventor Abdallah Muhammad E.

Ein Endeffektor-Tragelement für ein System enthält einen ersten nachgiebigen Mechanismus, der zwei Basisschienen enthält. Eine erste Basisschiene ist zu einer zweiten Basisschiene in einer ersten Bewegungsrichtung des Endeffektors versetzt. Jede Basisschiene weist das gleiche kurvenförmige Profil auf. Das Tragelement umfasst zwei nachgiebige Schienen, die jeweils mit einer entsprechenden Basisschiene der beiden Basisschienen betriebstechnisch verbunden sind. Zwischen jeder Basisschiene und jeder nachgiebigen Schiene sind mehrere Wälzelemente angeordnet, um die Basisschiene mit der nachgiebigen Schiene betriebstechnisch zu verbinden. An dem ersten nachgiebigen Mechanismus befindet sich ein Positionssensor, um eine Position der nachgiebigen Schienen relativ zu den entsprechenden Basisschienen zu detektieren. Jede nachgiebige Schiene ist konfiguriert, mit dem Endeffektor symmetrisch schwenkbar verbunden zu sein, um eine Bewegung des Endeffektors in der ersten Bewegungsrichtung zu ermöglichen. embedded image

8.WO/2025/257316ROBOTIC SURGICAL TOOL ALIGNMENT
WO 18.12.2025
Int.Class A61B 34/30
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
34Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
30Surgical robots
Appl.No PCT/EP2025/066394 Applicant LEM SURGICAL AG Inventor BAR, Yossi
A robotic surgical system includes multiple robotic arms which hold, place and/or manipulate surgical access tools, such as ports, for placing and positioning other surgical tools, such as end effectors, cameras, and markers or other navigation elements, for use in performing a robotic surgical procedure. The robotic system will reposition the ports as the surgical procedure progresses to optimize performance of the robotic surgical procedure.
9.WO/2025/256446FLEXIBLE JOINT, FLEXIBLE EQUIPMENT, FLEXIBLE DEVICE, MECHANICAL ARM AND SURGICAL ROBOT
WO 18.12.2025
Int.Class A61B 34/30
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
34Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
30Surgical robots
Appl.No PCT/CN2025/099046 Applicant PRECISION ROBOTICS (HONG KONG) LIMITED Inventor LO, Ping Lai Benny
The present application relates to the field of medical apparatus, in particular to a flexible joint, a flexible equipment, a flexible device, a mechanical arm and a surgical robot. The flexible joint includes an elastic body, a first support portion and a second support portion. The elastic body includes a first elastic portion, a first connection portion and a contact portion. The first elastic portion is a cylindrical helical structure, and two ends of the first elastic portion are connected to the first support portion and the second support portion respectively. A moving point of the first elastic portion at least corresponds to one first connection portion for every 2 π radians of rotation of the moving point of the first elastic portion. The first connection portion corresponds to the contact portion, and two ends of the first connection portion are respectively connected to the first elastic portion and the contact portion. The contact portion is located at a central axis of the first elastic portion, and when the first elastic portion is bent, adjacent contact portions are connected to each other in a rolling manner. The present application has two bending degrees of freedom and improves control accuracy and stability.
10.WO/2025/256086SHAPE-CUSTOMIZABLE PNEUMATIC SOFT ACTUATOR AND SOFT ROBOT
WO 18.12.2025
Int.Class B25J 9/02
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
02characterised by movement of the arms, e.g. cartesian co-ordinate type
Appl.No PCT/CN2024/138779 Applicant HUNAN UNIVERSITY Inventor FENG, Yun
A shape-customizable pneumatic soft actuator and a soft robot. The pneumatic soft actuator comprises a pneumatic deformable member (1), an embedded rod structure and several shape customization members (4), wherein a cavity is formed in the pneumatic deformable member (1), and an external independent air source is in communication with the cavity in the pneumatic deformable member (1); the embedded rod structure is mounted at the bottom of the pneumatic deformable member (1), and comprises a base body (2) and a plurality of insertion rods (3), the base body (2) being provided with a plurality of first through holes, and the plurality of insertion rods (3) being respectively embedded into the plurality of first through holes in the base body (2); and the several shape customization members (4) are mounted on at least two insertion rods (3), so as to constrain the deformation of the pneumatic deformable member (1) and the base body (2), thereby completing different grasping or operating tasks. The shape of the pneumatic soft actuator is reconfigured by means of the shape customization members (4), such that the grabbing effect of a soft robot on different target objects can be improved; and by means of the coupling effect of a rigid-flexible structure, the load capacity of the soft robot can be improved.