Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AItechniqueMachineLearningSupervisedLearning

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

2.WO/2023/059663SYSTEMS AND METHODS FOR ASSESSMENT OF BODY FAT COMPOSITION AND TYPE VIA IMAGE PROCESSING
WO 13.04.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2022/045706 Applicant THE BROAD INSTITUTE, INC. Inventor KHERA, Amit
The subject matter disclosed herein relates to utilizing the silhouette of an individual to measure body fat volume and distribution. Particular examples relates to providing a system, a computer-implemented method, and a computer program product to utilize a binary outline, or silhouette, to predict the individual's fat depot volumes with machine learning models.
3.20210397895INTELLIGENT LEARNING SYSTEM WITH NOISY LABEL DATA
US 23.12.2021
Int.Class G06K 9/62
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
9Methods or arrangements for recognising patterns
62Methods or arrangements for pattern recognition using electronic means
Appl.No 16946465 Applicant INTERNATIONAL BUSINESS MACHINES CORPORATION Inventor Yang SUN

Various embodiments are provided for providing machine learning with noisy label data in a computing environment using one or more processors in a computing system. A label corruption probability of noisy labels may be estimated for selected data from a dataset using temporal inconsistency in a machine model prediction during a training operation in a neural network.

4.WO/2023/141277SYSTEMS AND METHODS FOR SKIN BIOMOLECULAR PROFILE ASSESSMENT USING ARTIFICIAL INTELLIGENCE
WO 27.07.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2023/011249 Applicant VANDERBILT UNIVERSITY Inventor MARASCO, Christina, C.
Skin biomolecular profile assessment methods and systems that can analyze the molecular composition of the skin using molecular-level, user-specific data to assess an individual's skin state and/or disease state are described herein. An example method includes receiving skin data associated with a subject, where the skin data includes a biomolecular profile. The method also includes inputting the skin data into a trained artificial intelligence (AI) model and receiving, from the trained AI model, a skin care prediction.
5.20200342307Swarm fair deep reinforcement learning
US 29.10.2020
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 16395187 Applicant International Business Machines Corporation Inventor Aaron K. Baughman

Fair deep reinforcement learning is provided. A microstate of an environment and reaction of items in a plurality of microstates within the environment are observed after an agent performs an action in the environment. Semi-supervised training is utilized to determine bias weights corresponding to the action for the microstate of the environment and the reaction of the items in the plurality of microstates within the environment. The bias weights from the semi-supervised training are merged with non-bias weights using an artificial neural network. Over time, it is determined where bias is occurring in the semi-supervised training based on merging the bias weights with the non-bias weights in the artificial neural network. A deep reinforcement learning model that decreases reliance on the bias weights is generated based on determined bias to increase fairness.

6.08527432Semi-supervised learning based on semiparametric regularization
US 03.09.2013
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No 12538849 Applicant Guo Zhen Inventor Guo Zhen

Semi-supervised learning plays an important role in machine learning and data mining. The semi-supervised learning problem is approached by developing semiparametric regularization, which attempts to discover the marginal distribution of the data to learn the parametric function through exploiting the geometric distribution of the data. This learned parametric function can then be incorporated into the supervised learning on the available labeled data as the prior knowledge. A semi-supervised learning approach is provided which incorporates the unlabeled data into the supervised learning by a parametric function learned from the whole data including the labeled and unlabeled data. The parametric function reflects the geometric structure of the marginal distribution of the data. Furthermore, the proposed approach which naturally extends to the out-of-sample data is an inductive learning method in nature.

7.20210295045Automatic makeup transfer using semi-supervised learning
US 23.09.2021
Int.Class G09G 5/00
GPHYSICS
09EDUCATING; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
5Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
Appl.No 16822878 Applicant Adobe Inc. Inventor Yijun Li

The present disclosure relates to systems, computer-implemented methods, and non-transitory computer readable medium for automatically transferring makeup from a reference face image to a target face image using a neural network trained using semi-supervised learning. For example, the disclosed systems can receive, at a neural network, a target face image and a reference face image, where the target face image is selected by a user via a graphical user interface (GUI) and the reference face image has makeup. The systems transfer, by the neural network, the makeup from the reference face image to the target face image, where the neural network is trained to transfer the makeup from the reference face image to the target face image using semi-supervised learning. The systems output for display the makeup on the target face image.

8.20180165554Semisupervised autoencoder for sentiment analysis
US 14.06.2018
Int.Class G06K 9/62
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
9Methods or arrangements for recognising patterns
62Methods or arrangements for pattern recognition using electronic means
Appl.No 15838000 Applicant The Research Foundation for The State University of New York Inventor Zhongfei Zhang

A method of modelling data, comprising: training an objective function of a linear classifier, based on a set of labeled data, to derive a set of classifier weights; defining a posterior probability distribution on the set of classifier weights of the linear classifier; approximating a marginalized loss function for an autoencoder as a Bregman divergence, based on the posterior probability distribution on the set of classifier weights learned from the linear classifier; and classifying unlabeled data using the autoencoder according to the marginalized loss function.

9.4163833DEEP NEURAL NETWORK MODEL DESIGN ENHANCED BY REAL-TIME PROXY EVALUATION FEEDBACK
EP 12.04.2023
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 22186944 Applicant INTEL CORP Inventor CUMMINGS DANIEL J
The present disclosure is related to artificial intelligence (AI), machine learning (ML), and Neural Architecture Search (NAS) technologies, and in particular, to Deep Neural Network (DNN) model engineering techniques that use proxy evaluation feedback. The DNN model engineering techniques discussed herein provide near real-time feedback on model performance via low-cost proxy scores without requiring continual training and/or validation cycles, iterations, epochs, etc. In conjunction with the proxy-based scoring, semi-supervised learning mechanisms are used to map proxy scores to various model performance metrics. Other embodiments may be described and/or claimed.
10.20230419170SYSTEM AND METHOD FOR EFFICIENT MACHINE LEARNING
US 28.12.2023
Int.Class G06N 20/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
20Machine learning
Appl.No 17887056 Applicant Fractal Analytics Private Limited Inventor Abhishek Chopde

Systems and methods employ knowledge distillation for efficient machine learning. Systems and methods integrate self-supervised learning, supervised learning, semi-supervised learning and active learning, each of which learning is executed in an iterative fashion. The system comprises three main components: a database server, a data analytics system and a standard dashboard. The database server contains real-time inventory images as well as historical images of each product type. The data analytics system is executed by a computer processor configured to apply a multi-head self-supervised learning-based deep neural network. The standard dashboard is configured to output a report regarding the object information.