Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIfunctionalapplicationsNaturalLanguageProcessingInformationExtraction

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

2.08527432Semi-supervised learning based on semiparametric regularization
US 03.09.2013
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No 12538849 Applicant Guo Zhen Inventor Guo Zhen

Semi-supervised learning plays an important role in machine learning and data mining. The semi-supervised learning problem is approached by developing semiparametric regularization, which attempts to discover the marginal distribution of the data to learn the parametric function through exploiting the geometric distribution of the data. This learned parametric function can then be incorporated into the supervised learning on the available labeled data as the prior knowledge. A semi-supervised learning approach is provided which incorporates the unlabeled data into the supervised learning by a parametric function learned from the whole data including the labeled and unlabeled data. The parametric function reflects the geometric structure of the marginal distribution of the data. Furthermore, the proposed approach which naturally extends to the out-of-sample data is an inductive learning method in nature.

3.WO/2012/011940GENERATING PREDICTIVE MODELS ON SUPPLEMENTAL WORKBOOK DATA
WO 26.01.2012
Int.Class G06E 1/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
EOPTICAL COMPUTING DEVICES
1Devices for processing exclusively digital data
Appl.No PCT/US2011/001250 Applicant PREDIXION SOFTWARE, INC. Inventor MACLENNAN, James, C.
A method and system that generate a predictive model on supplemental workbook data are disclosed. A computer is used to provide a spreadsheet environment comprising data. Supplemental data is defined and stored in a non- worksheet format in the spreadsheet environment. A predictive analytic is performed on the supplemental data. A scalable predictive model is generated in the non-worksheet format. In this way, a greater number of users can create successful predictive analysis projects by providing various tools to create simple and accurate predictive models without requiring extensive training or specific knowledge of the methodologies that are currently required.
4.20160329044Semi-supervised learning of word embeddings
US 10.11.2016
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 14707720 Applicant International Business Machines Corporation Inventor Liangliang Cao

Software that trains an artificial neural network for generating vector representations for natural language text, by performing the following steps: (i) receiving, by one or more processors, a set of natural language text; (ii) generating, by one or more processors, a set of first metadata for the set of natural language text, where the first metadata is generated using supervised learning method(s); (iii) generating, by one or more processors, a set of second metadata for the set of natural language text, where the second metadata is generated using unsupervised learning method(s); and (iv) training, by one or more processors, an artificial neural network adapted to generate vector representations for natural language text, where the training is based, at least in part, on the received natural language text, the generated set of first metadata, and the generated set of second metadata.

5.20170162189Semi-supervised learning of word embeddings
US 08.06.2017
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 15437490 Applicant International Business Machines Corporation Inventor Liangliang Cao

Software that trains an artificial neural network for generating vector representations for natural language text, by performing the following steps: (i) receiving, by one or more processors, a set of natural language text; (ii) generating, by one or more processors, a set of first metadata for the set of natural language text, where the first metadata is generated using supervised learning method(s); (iii) generating, by one or more processors, a set of second metadata for the set of natural language text, where the second metadata is generated using unsupervised learning method(s); and (iv) training, by one or more processors, an artificial neural network adapted to generate vector representations for natural language text, where the training is based, at least in part, on the received natural language text, the generated set of first metadata, and the generated set of second metadata.

6.20160328388Semi-supervised learning of word embeddings
US 10.11.2016
Int.Class G06F 17/27
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
20Handling natural language data
27Automatic analysis, e.g. parsing, orthograph correction
Appl.No 14870204 Applicant International Business Machines Corporation Inventor Liangliang Cao

Software that trains an artificial neural network for generating vector representations for natural language text, by performing the following steps: (i) receiving, by one or more processors, a set of natural language text; (ii) generating, by one or more processors, a set of first metadata for the set of natural language text, where the first metadata is generated using supervised learning method(s); (iii) generating, by one or more processors, a set of second metadata for the set of natural language text, where the second metadata is generated using unsupervised learning method(s); and (iv) training, by one or more processors, an artificial neural network adapted to generate vector representations for natural language text, where the training is based, at least in part, on the received natural language text, the generated set of first metadata, and the generated set of second metadata.

7.20190164164COLLABORATIVE PATTERN RECOGNITION SYSTEM
US 30.05.2019
Int.Class G06Q 20/40
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
QINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
20Payment architectures, schemes or protocols
38Payment protocols; Details thereof
40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check of credit lines or negative lists
Appl.No 16172751 Applicant Krishna Pasupathy Karambakkam Inventor Krishna Pasupathy Karambakkam

Apparatus and associated methods relate to a pattern recognition system configured to classify a transaction as anomalous or not anomalous as a function of a predictive analytic model configured to detect anomalies, generate a rule based on expert analysis of a limited number of data samples to classify as anomalous a transaction erroneously classified as not anomalous, augment the predictive analytic model with the generated rule, and deploy the augmented predictive analytic model to automatically identify an attack early in a live transaction stream. In some examples, the transaction may be a bank card purchase. Some transactions may be classified anomalous due to fraud, compliance violation such as money laundering, or terrorist funding. The predictive analytic model may be, for example, a decision tree followed by a regression model. Various embodiments may advantageously generate rules based on transaction criteria selected by human experts exploring and manipulating visually perceptible transaction representations.

8.20060106797System and method for temporal data mining
US 18.05.2006
Int.Class G06E 1/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
EOPTICAL COMPUTING DEVICES
1Devices for processing exclusively digital data
Appl.No 11199698 Applicant GM Global Technology Operations, Inc. Inventor Srinivasa Narayan

A system, method, and apparatus for signal characterization, estimation, and prediction comprising an integrated search algorithm that cooperatively optimizes several data mining sub-tasks, the integrated search algorithm including a machine learning model, and the method comprising processing the data for data embedding, data embedding the processed data for searching for patterns, extracting time and frequency patterns, and training the model to represent learned patterns for signal characterization, estimation, and prediction.

9.20190056715Framework for rapid additive design with generative techniques
US 21.02.2019
Int.Class G05B 19/4099
GPHYSICS
05CONTROLLING; REGULATING
BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
19Programme-control systems
02electric
18Numerical control , i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
4097characterised by using design data to control NC machines, e.g. CAD/CAM
4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
Appl.No 15678653 Applicant General Electric Company Inventor Arun Karthi Subramaniyan

According to some embodiments, a system may include a design experience data store containing electronic records associated with prior industrial asset item designs. A deep learning model platform, coupled to the design experience data store, may include a communication port to receive constraint and load information from a designer device. The deep learning platform may further include a computer processor adapted to automatically and generatively create boundaries and geometries, using a deep learning model associated with an additive manufacturing process, for an industrial asset item based on the prior industrial asset item designs and the received constraint and load information. According to some embodiments, the deep learning model computer processor is further to receive design adjustments from the designer device. The received design adjustments might be for example, used to execute an optimization process and/or be fed back to continually re-train the deep learning model.

10.20130332481Predictive analysis by example
US 12.12.2013
Int.Class G06F 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
7Methods or arrangements for processing data by operating upon the order or content of the data handled
Appl.No 13908228 Applicant International Business Machines Corporation Inventor Alex T. Lau

An illustrative embodiment of a computer-implemented method for predictive analytic queries includes creating a user-defined predictive analytics query using a set of syntactic grammar that defines a correct syntax of the user-defined predictive analytics query including a created set of predictive analytics by-example vocabularies and a set of subject-specific by-example vocabularies forming a set of by-example vocabularies, wherein the set of syntactic grammar defines semantics of each syntactically correct predictive analytics query using the by-example vocabularies such that predictive analytics queries can be expressed with semantic precision using this constrained Natural Language Processing (cNLP) approach. The computer-implemented method further generates a predictive analytic model and runtime query, using the user-defined predictive analytics query, executes the runtime query using the predictive analytic model to create a result, and returns the result to the user.