Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIfunctionalapplicationsComputerVisionImageAndVideoSegmentation

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

2.20210097682Disease characterization and response estimation through spatially-invoked radiomics and deep learning fusion
US 01.04.2021
Int.Class G06T 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
7Image analysis
Appl.No 17038934 Applicant Case Western Reserve University Inventor Anant Madabhushi

Embodiments discussed herein facilitate training and/or employing a combined model employing machine learning and deep learning outputs to generate prognoses for treatment of tumors. One example embodiment can extract radiomic features from a tumor and a peri-tumoral region; provide the intra-tumoral and peri-tumoral features to two separate machine learning models; provide the segmented tumor and peri-tumoral region to two separate deep learning models; receive predicted prognoses from each of the machine learning models and each of the deep learning models; provide the predicted prognoses to a combined machine learning model; and receive a combined predicted prognosis for the tumor from the combined machine learning model.

3.20140201126Method and system for feature detection
US 17.07.2014
Int.Class G06N 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
7Computing arrangements based on specific mathematical models
Appl.No 14218923 Applicant Lotfi A. Zadeh Inventor Lotfi A. Zadeh

Specification covers new algorithms, methods, and systems for artificial intelligence, soft computing, and deep learning/recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, facial, OCR (text), background, relationship, position, pattern, and object), Big Data analytics, machine learning, training schemes, crowd-sourcing (experts), feature space, clustering, classification, SVM, similarity measures, modified Boltzmann Machines, optimization, search engine, ranking, question-answering system, soft (fuzzy or unsharp) boundaries/impreciseness/ambiguities/fuzziness in language, Natural Language Processing (NLP), Computing-with-Words (CWW), parsing, machine translation, sound and speech recognition, video search and analysis (e.g. tracking), image annotation, geometrical abstraction, image correction, semantic web, context analysis, data reliability, Z-number, Z-Web, Z-factor, rules engine, control system, autonomous vehicle, self-diagnosis and self-repair robots, system diagnosis, medical diagnosis, biomedicine, data mining, event prediction, financial forecasting, economics, risk assessment, e-mail management, database management, indexing and join operation, memory management, data compression, event-centric social network, Image Ad Network.

4.WO/2023/059663SYSTEMS AND METHODS FOR ASSESSMENT OF BODY FAT COMPOSITION AND TYPE VIA IMAGE PROCESSING
WO 13.04.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2022/045706 Applicant THE BROAD INSTITUTE, INC. Inventor KHERA, Amit
The subject matter disclosed herein relates to utilizing the silhouette of an individual to measure body fat volume and distribution. Particular examples relates to providing a system, a computer-implemented method, and a computer program product to utilize a binary outline, or silhouette, to predict the individual's fat depot volumes with machine learning models.
5.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

6.20140188462System and method for analyzing ambiguities in language for natural language processing
US 03.07.2014
Int.Class G06F 17/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
17Digital computing or data processing equipment or methods, specially adapted for specific functions
Appl.No 14201974 Applicant Zadeh Lotfi A. Inventor Zadeh Lotfi A.

Specification covers new algorithms, methods, and systems for artificial intelligence, soft computing, and deep learning/recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, facial, OCR (text), background, relationship, position, pattern, and object), large number of images (“Big Data”) analytics, machine learning, training schemes, crowd-sourcing (using experts or humans), feature space, clustering, classification, similarity measures, optimization, search engine, ranking, question-answering system, soft (fuzzy or unsharp) boundaries/impreciseness/ambiguities/fuzziness in language, Natural Language Processing (NLP), Computing-with-Words (CWW), parsing, machine translation, sound and speech recognition, video search and analysis (e.g. tracking), image annotation, geometrical abstraction, image correction, semantic web, context analysis, data reliability (e.g., using Z-number (e.g., “About 45 minutes; Very sure”)), rules engine, control system, autonomous vehicle, self-diagnosis and self-repair robots, system diagnosis, medical diagnosis, biomedicine, data mining, event prediction, financial forecasting, economics, risk assessment, e-mail management, database management, indexing and join operation, memory management, and data compression.

7.20180204111System and method for extremely efficient image and pattern recognition and artificial intelligence platform
US 19.07.2018
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 15919170 Applicant Z Advanced Computing, Inc. Inventor Lotfi A. Zadeh

Specification covers new algorithms, methods, and systems for: Artificial Intelligence; the first application of General-AI (versus Specific, Vertical, or Narrow-AI) (as humans can do); addition of reasoning, inference, and cognitive layers/engines to learning module/engine/layer; soft computing; Information Principle; Stratification; Incremental Enlargement Principle; deep-level/detailed recognition, e.g., image recognition (e.g., for action, gesture, emotion, expression, biometrics, fingerprint, tilted or partial-face, OCR, relationship, position, pattern, and object); Big Data analytics; machine learning; crowd-sourcing; classification; clustering; SVM; similarity measures; Enhanced Boltzmann Machines; Enhanced Convolutional Neural Networks; optimization; search engine; ranking; semantic web; context analysis; question-answering system; soft, fuzzy, or un-sharp boundaries/impreciseness/ambiguities/fuzziness in class or set, e.g., for language analysis; Natural Language Processing (NLP); Computing-with-Words (CWW); parsing; machine translation; music, sound, speech, or speaker recognition; video search and analysis (e.g. tracking); image annotation; image or color correction; data reliability; Z-Number; Z-Web; Z-Factor; rules engine; playing games; control system; autonomous vehicles or drones; self-diagnosis and self-repair robots; system diagnosis; medical diagnosis; genetics; drug discovery; biomedicine; data mining; event prediction; financial forecasting (e.g., for stocks); economics; risk assessment; fraud detection (e.g., for cryptocurrency); e-mail management; database management; indexing and join operation; memory management; data compression; event-centric social network; social behavior; and Image Ad and Referral Networks.

8.20230419170SYSTEM AND METHOD FOR EFFICIENT MACHINE LEARNING
US 28.12.2023
Int.Class G06N 20/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
20Machine learning
Appl.No 17887056 Applicant Fractal Analytics Private Limited Inventor Abhishek Chopde

Systems and methods employ knowledge distillation for efficient machine learning. Systems and methods integrate self-supervised learning, supervised learning, semi-supervised learning and active learning, each of which learning is executed in an iterative fashion. The system comprises three main components: a database server, a data analytics system and a standard dashboard. The database server contains real-time inventory images as well as historical images of each product type. The data analytics system is executed by a computer processor configured to apply a multi-head self-supervised learning-based deep neural network. The standard dashboard is configured to output a report regarding the object information.

9.WO/2022/155555SYSTEMS AND METHODS FOR DERIVING HEALTH INDICATORS FROM USER-GENERATED CONTENT
WO 21.07.2022
Int.Class G16H 50/20
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
20for computer-aided diagnosis, e.g. based on medical expert systems
Appl.No PCT/US2022/012645 Applicant MY LUA LLC Inventor CONWARD, Michael
The present disclosure relates to systems and methods for generating priority lists and/or predictions or identifications of root causes of acute or chronic conditions. In one exemplary embodiment, a method comprises aggregating data corresponding to a plurality of individuals, the data comprising, for each individual, user-generated content and/or biometric data; generating, from a machine learning model that utilizes the aggregated user-generated content and/or biometric data as input, one or more of a priority list for the plurality of individuals, or, for each individual, a prediction, diagnosis, or identification of one or more root causes of one or more acute or chronic conditions of the individual.
10.20210397895INTELLIGENT LEARNING SYSTEM WITH NOISY LABEL DATA
US 23.12.2021
Int.Class G06K 9/62
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
9Methods or arrangements for recognising patterns
62Methods or arrangements for pattern recognition using electronic means
Appl.No 16946465 Applicant INTERNATIONAL BUSINESS MACHINES CORPORATION Inventor Yang SUN

Various embodiments are provided for providing machine learning with noisy label data in a computing environment using one or more processors in a computing system. A label corruption probability of noisy labels may be estimated for selected data from a dataset using temporal inconsistency in a machine model prediction during a training operation in a neural network.