Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIfunctionalapplicationsComputerVisionAugmentedReality

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

2.WO/2022/155555SYSTEMS AND METHODS FOR DERIVING HEALTH INDICATORS FROM USER-GENERATED CONTENT
WO 21.07.2022
Int.Class G16H 50/20
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
20for computer-aided diagnosis, e.g. based on medical expert systems
Appl.No PCT/US2022/012645 Applicant MY LUA LLC Inventor CONWARD, Michael
The present disclosure relates to systems and methods for generating priority lists and/or predictions or identifications of root causes of acute or chronic conditions. In one exemplary embodiment, a method comprises aggregating data corresponding to a plurality of individuals, the data comprising, for each individual, user-generated content and/or biometric data; generating, from a machine learning model that utilizes the aggregated user-generated content and/or biometric data as input, one or more of a priority list for the plurality of individuals, or, for each individual, a prediction, diagnosis, or identification of one or more root causes of one or more acute or chronic conditions of the individual.
3.12125146Multimodal 3D deep learning fusion system and method for reducing the need of 3D training dataset of 3D object tracking for enterprise digital twin mixed reality
US 22.10.2024
Int.Class G06T 19/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
19Manipulating 3D models or images for computer graphics
Appl.No 17575091 Applicant GridRaster, Inc. Inventor Yiyong Tan

A mixed reality (MR) system and method performs three dimensional (3D) tracking using 3D deep neural network structures in which multimodal fusion and simplified machine learning to only cluster label distribution (output of 3D deep neural network trained by generic 3D benchmark dataset) is used to reduce the training data requirements of to directly train a 3D deep neural network structures for non-generic user case. In one embodiment, multiple 3D deep neural network structures, such as PointCNN, 3D-Bonet, RandLA, etc., may be trained by different generic 3D benchmark datasets, such as ScanNet, ShapeNet, S3DIS, inadequate 3D training dataset, etc.

4.20190295282Stereo depth estimation using deep neural networks
US 26.09.2019
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 16356439 Applicant NVIDIA Corporation Inventor Nikolai Smolyanskiy

Various examples of the present disclosure include a stereoscopic deep neural network (DNN) that produces accurate and reliable results in real-time. Both LIDAR data (supervised training) and photometric error (unsupervised training) may be used to train the DNN in a semi-supervised manner. The stereoscopic DNN may use an exponential linear unit (ELU) activation function to increase processing speeds, as well as a machine learned argmax function that may include a plurality of convolutional layers having trainable parameters to account for context. The stereoscopic DNN may further include layers having an encoder/decoder architecture, where the encoder portion of the layers may include a combination of three-dimensional convolutional layers followed by two-dimensional convolutional layers.

5.20240079145SYSTEMS AND METHODS FOR DERIVING HEALTH INDICATORS FROM USER-GENERATED CONTENT
US 07.03.2024
Int.Class G16H 50/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
30for calculating health indices; for individual health risk assessment
Appl.No 18261194 Applicant MY LUA LLC Inventor Michael CONWARD

The present disclosure relates to systems and methods for generating priority lists and/or predictions or identifications of root causes of acute or chronic conditions. In one exemplary embodiment, a method comprises aggregating data corresponding to a plurality of individuals, the data comprising, for each individual, user-generated content and/or biometric data; generating, from a machine learning model that utilizes the aggregated user-generated content and/or biometric data as input, one or more of a priority list for the plurality of individuals, or, for each individual, a prediction, diagnosis, or identification of one or more root causes of one or more acute or chronic conditions of the individual.

6.20210183392PHONEME-BASED NATURAL LANGUAGE PROCESSING
US 17.06.2021
Int.Class G10L 15/26
GPHYSICS
10MUSICAL INSTRUMENTS; ACOUSTICS
LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
15Speech recognition
26Speech to text systems
Appl.No 17028361 Applicant LG ELECTRONICS INC. Inventor Kwangyong LEE

A natural language processing method and apparatus are disclosed. A natural language processing method according to an embodiment of the present disclosure includes extracting a phoneme string from a text corpus labeled with recognition information including at least one of one named entity (NE) or speech intention, generating a phoneme-based training data set by labeling the recognition information in the extracted phoneme string, and generating an artificial neural network-based learning model (LM) using the generated training data set. The natural language processing method of the present disclosure may be associated with an artificial intelligence module, a drone (Unmanned Aerial Vehicle, UAV), a robot, an AR (Augmented Reality) device, a VR (Virtual Reality) device, a device associated with 5G services, etc.

7.4163833DEEP NEURAL NETWORK MODEL DESIGN ENHANCED BY REAL-TIME PROXY EVALUATION FEEDBACK
EP 12.04.2023
Int.Class G06N 3/04
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
04Architecture, e.g. interconnection topology
Appl.No 22186944 Applicant INTEL CORP Inventor CUMMINGS DANIEL J
The present disclosure is related to artificial intelligence (AI), machine learning (ML), and Neural Architecture Search (NAS) technologies, and in particular, to Deep Neural Network (DNN) model engineering techniques that use proxy evaluation feedback. The DNN model engineering techniques discussed herein provide near real-time feedback on model performance via low-cost proxy scores without requiring continual training and/or validation cycles, iterations, epochs, etc. In conjunction with the proxy-based scoring, semi-supervised learning mechanisms are used to map proxy scores to various model performance metrics. Other embodiments may be described and/or claimed.
8.10970629Encodings for reversible sparse dimensionality reduction
US 06.04.2021
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 15442453 Applicant Amazon Technologies, Inc. Inventor Leo Parker Dirac

The present disclosure is directed to reducing model size of a machine learning model with encoding. The input to a machine learning model may be encoded using a probabilistic data structure with a plurality of mapping functions into a lower dimensional space. Encoding the input to the machine learning model results in a compact machine learning model with a reduced model size. The compact machine learning model can output an encoded representation of a higher-dimensional space. Use of such a machine learning model can include decoding the output of the machine learning model into the higher dimensional space of the non-encoded input.

9.11250637Multimodal 3D deep learning fusion system and method for reducing the need of 3D training dataset of 3D object tracking for enterprise digital twin mixed reality
US 15.02.2022
Int.Class G06T 19/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
19Manipulating 3D models or images for computer graphics
Appl.No 17320968 Applicant GridRaster, Inc. Inventor Yiyong Tan

A mixed reality (MR) system and method performs three dimensional (3D) tracking using 3D deep neural network structures in which multimodal fusion and simplified machine learning to only cluster label distribution (output of 3D deep neural network trained by generic 3D benchmark dataset) is used to reduce the training data requirements of to directly train a 3D deep neural network structures for non-generic user case. In one embodiment, multiple 3D deep neural network structures, such as PointCNN, 3D-Bonet, RandLA, etc., may be trained by different generic 3D benchmark datasets, such as ScanNet, ShapeNet, S3DIS, inadequate 3D training dataset, etc.

10.20220054850WEARABLE CARDIOVERTER DEFIBRILLATOR CARE SYSTEM WITH HEALTH AND EMOTIONAL COMPANION ACCESSORY
US 24.02.2022
Int.Class A61N 1/39
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
1Electrotherapy; Circuits therefor
18Applying electric currents by contact electrodes
32alternating or intermittent currents
38for producing shock effects
39Heart defibrillators
Appl.No 17246510 Applicant West Affum Holdings Corp. Inventor Traci Umberger

A wearable cardioverter defibrillator system supported with a customizable, goal-oriented, companion device. Functionality can be tailored to the goal for a user type. For a patient, the companion device can improve compliance with wear or prescription. Goals can include emotional support, or a specific health, including activity, support. The goal-oriented companion device can receive and process information using machine learning techniques, and interface with a user and other systems and devices.