Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldsTelecommunicationsVoip

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220139498APPARATUSES, SYSTEMS, AND METHODS FOR EXTRACTING MEANING FROM DNA SEQUENCE DATA USING NATURAL LANGUAGE PROCESSING (NLP)
US 05.05.2022
Int.Class G16B 40/00
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
Appl.No 17088734 Applicant BASF CORPORATION Inventor Erin Marie Davis

Apparatuses, systems, and methods are provided that may analyze deoxyribonucleic add (DNA) sequence data using a natural language processing (NLP) model to, for example, identify genetic elements such as known and/or novel cis-regulatory elements (e.g., known and/or putative novel drought-responsive cis-regulatory elements (DREs)). Apparatuses, systems, and methods are also provided that may identify transcriptional regulators (e.g., upstream transcriptional regulators of a novel putative DRE) based on natural language processing (NLP) model data and expression genome-wide association study (eGWAS) data. Apparatuses, systems, and methods are also provided that may verify putative novel cis-regulatory elements based on a comparison of natural language processing (NLP) model output data and other model output data.

2.20240071569APPARATUSES, SYSTEMS, AND METHODS FOR EXTRACTING MEANING FROM DNA SEQUENCE DATA USING NATURAL LANGUAGE PROCESSING (NLP)
US 29.02.2024
Int.Class G16B 40/00
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
Appl.No 18034417 Applicant BASF CORPORATION Inventor Erin Marie Davis

Apparatuses, systems, and methods are provided that may analyze deoxyribonucleic add (DNA) sequence data using a natural language processing (NLP) model to, for example, identify genetic elements such as known and/or novel cis-regulatory elements {e.g., known and/or putative novel drought-responsive cis-regulatory elements (DREs)). Apparatuses, systems, and methods are also provided that may identify transcriptional regulators {e.g., upstream transcriptional regulators of a novel putative DRE) based on natural language processing (NLP) model data and expression genome-wide association study (eGWAS) data. Apparatuses, systems, and methods are also provided that may verify putative novel cis-regulatory elements based on a comparison of natural language processing (NLP) model output data and other model output data.

3.WO/2022/098588APPARATUSES, SYSTEMS, AND METHODS FOR EXTRACTING MEANING FROM DNA SEQUENCE DATA USING NATURAL LANGUAGE PROCESSING (NLP)
WO 12.05.2022
Int.Class C12Q 1/68
CCHEMISTRY; METALLURGY
12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
1Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
68involving nucleic acids
Appl.No PCT/US2021/057491 Applicant BASF CORPORATION Inventor DAVIS, Erin, Marie
Apparatuses, systems, and methods are provided that may analyze deoxyribonucleic add (DNA) sequence data using a natural language processing (NLP) model to, for example, identify genetic elements such as known and/or novel cis-regulatory elements {e.g., known and/or putative novel drought-responsive cis-regulatory elements (DREs)). Apparatuses, systems, and methods are also provided that may identify transcriptional regulators {e.g., upstream transcriptional regulators of a novel putative DRE) based on natural language processing (NLP) model data and expression genome-wide association study (eGWAS) data. Apparatuses, systems, and methods are also provided that may verify putative novel cis-regulatory elements based on a comparison of natural language processing (NLP) model output data and other model output data.
4.20140180975INSTANCE WEIGHTED LEARNING MACHINE LEARNING MODEL
US 26.06.2014
Int.Class G06N 99/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
99Subject matter not provided for in other groups of this subclass
Appl.No 13725653 Applicant INSIDESALES.COM, INC. Inventor Martinez Tony Ramon

An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.

5.2013364041Instance weighted learning machine learning model
AU 09.07.2015
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No 2013364041 Applicant InsideSales.com, Inc. Inventor Martinez, Tony Ramon
An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.
6.WO/2014/100738INSTANCE WEIGHTED LEARNING MACHINE LEARNING MODEL
WO 26.06.2014
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No PCT/US2013/077260 Applicant INSIDESALES.COM, INC. Inventor MARTINEZ, Tony, Ramon
An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model to train a classifier may include determining a quality value that should be associated with each machine learning training instance in a temporal sequence of reinforcement learning machine learning training instances, associating the corresponding determined quality value with each of the machine learning training instances, and training a classifier using each of the machine learning training instances. Each of the machine learning training instances includes a state-action pair and is weighted during the training based on its associated quality value using a weighting factor that weights different quality values differently such that the classifier learns more from a machine learning training instance with a higher quality value than from a machine learning training instance with a lower quality value.
7.20140052678Hierarchical based sequencing machine learning model
US 20.02.2014
Int.Class G06E 1/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
EOPTICAL COMPUTING DEVICES
1Devices for processing exclusively digital data
Appl.No 13590000 Applicant Martinez Tony Ramon Inventor Martinez Tony Ramon

A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s).

8.20250053832Systems, Methods and Apparatus for Machine Learning Predictive Analytics
US 13.02.2025
Int.Class G06N 5/022
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
5Computing arrangements using knowledge-based models
02Knowledge representation; Symbolic representation
022Knowledge engineering; Knowledge acquisition
Appl.No 18448966 Applicant Ryan Newsome Inventor Ryan Newsome

Systems, methods and apparatus of machine-learning-predictive-analytics, the method performed by a predictive analytic control computer and including receiving from a second computer a training-profile data that describes one or more contributions of resources that are associated and identified with particular entities, receiving from a third computer a training-profile data that are associated and identified with the particular entities, that does not describe one or more contributions of resources the training-profile data, and that includes data that is that is received from additional computers that host websites and applications that focus on communication, community-based input, interaction, content-sharing and collaboration that describe a first set of features and representations of issues of interest of the particular entities, generating a machine-learning-predictive-analytic model by a machine learning-predictive-analytic trainer in reference to the training-profile data, generating predictions from the machine-learning-predictive-analytic model and from a second set of features and representations of issues of interest.

9.20140180978INSTANCE WEIGHTED LEARNING MACHINE LEARNING MODEL
US 26.06.2014
Int.Class G06N 99/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
99Subject matter not provided for in other groups of this subclass
Appl.No 14189669 Applicant INSIDESALES.COM, INC. Inventor Martinez Tony Ramon

An instance weighted learning (IWL) machine learning model. In one example embodiment, a method of employing an IWL machine learning model may include identifying a temporal sequence of reinforcement learning machine learning training instances with each of the training instances including a state-action pair, determining a first quality value for a first training instance in the temporal sequence of reinforcement learning machine learning training instances determining a second quality value for a second training instance in the temporal sequence of reinforcement learning machine learning training instances, associating the first quality value with the first training instance, and associating the second quality value with the second training instance. In this example embodiment, the first quality value is higher than the second quality value.

10.WO/2014/031683HIERARCHICAL BASED SEQUENCING MACHINE LEARNING MODEL
WO 27.02.2014
Int.Class G06F 15/18
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
18in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines
Appl.No PCT/US2013/055856 Applicant INSIDESALES.COM, INC. Inventor MARTINEZ, Tony, Ramon
A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s).