Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages en Stemming true Single Family Member false Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

AIapplicationfieldTelecommunications

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.20220180975METHODS AND SYSTEMS FOR DETERMINING GENE EXPRESSION PROFILES AND CELL IDENTITIES FROM MULTI-OMIC IMAGING DATA
US 09.06.2022
Int.Class G16B 40/30
GPHYSICS
16INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
40ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
30Unsupervised data analysis
Appl.No 17553691 Applicant The Broad Institute, Inc. Inventor Aviv Regev

The present disclosure relates to systems and method of determining transcriptomic profile from omics imaging data. The systems and methods train machine learning methods with intrinsic and extrinsic features of a cell and/or tissue to define transcriptomic profiles of the cell and/or tissue. Applicants utilize a convolutional autoencoder to define cell subtypes from images of the cells.

2.WO/2023/059663SYSTEMS AND METHODS FOR ASSESSMENT OF BODY FAT COMPOSITION AND TYPE VIA IMAGE PROCESSING
WO 13.04.2023
Int.Class A61B 5/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
Appl.No PCT/US2022/045706 Applicant THE BROAD INSTITUTE, INC. Inventor KHERA, Amit
The subject matter disclosed herein relates to utilizing the silhouette of an individual to measure body fat volume and distribution. Particular examples relates to providing a system, a computer-implemented method, and a computer program product to utilize a binary outline, or silhouette, to predict the individual's fat depot volumes with machine learning models.
3.20210097682Disease characterization and response estimation through spatially-invoked radiomics and deep learning fusion
US 01.04.2021
Int.Class G06T 7/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
7Image analysis
Appl.No 17038934 Applicant Case Western Reserve University Inventor Anant Madabhushi

Embodiments discussed herein facilitate training and/or employing a combined model employing machine learning and deep learning outputs to generate prognoses for treatment of tumors. One example embodiment can extract radiomic features from a tumor and a peri-tumoral region; provide the intra-tumoral and peri-tumoral features to two separate machine learning models; provide the segmented tumor and peri-tumoral region to two separate deep learning models; receive predicted prognoses from each of the machine learning models and each of the deep learning models; provide the predicted prognoses to a combined machine learning model; and receive a combined predicted prognosis for the tumor from the combined machine learning model.

4.12274503Myopia ocular predictive technology and integrated characterization system
US 15.04.2025
Int.Class A61B 3/14
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
3Apparatus for testing the eyes; Instruments for examining the eyes
10Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions
14Arrangements specially adapted for eye photography
Appl.No 18778027 Applicant COGNITIVECARE INC. Inventor Venkata Narasimham Peri

According to an embodiment, disclosed is a system comprising a processor wherein the processor is configured to receive an input data comprising an image of an ocular region of a user, clinical data of the user, and external factors; extract, using an image processing module comprising adaptive filtering techniques, ocular characteristics, combine, using a multimodal fusion module, the input data to determine a holistic health embedding; detect, based on a machine learning model and the holistic health embedding, a first output comprising likelihood of myopia, and severity of myopia; predict, based on the machine learning model and the holistic health embedding, a second output comprising an onset of myopia and a progression of myopia in the user; and wherein the machine learning model is a pre-trained model; and wherein the system is configured for myopia prognosis powered by multimodal data.

5.20200342307Swarm fair deep reinforcement learning
US 29.10.2020
Int.Class G06N 3/08
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
3Computing arrangements based on biological models
02Neural networks
08Learning methods
Appl.No 16395187 Applicant International Business Machines Corporation Inventor Aaron K. Baughman

Fair deep reinforcement learning is provided. A microstate of an environment and reaction of items in a plurality of microstates within the environment are observed after an agent performs an action in the environment. Semi-supervised training is utilized to determine bias weights corresponding to the action for the microstate of the environment and the reaction of the items in the plurality of microstates within the environment. The bias weights from the semi-supervised training are merged with non-bias weights using an artificial neural network. Over time, it is determined where bias is occurring in the semi-supervised training based on merging the bias weights with the non-bias weights in the artificial neural network. A deep reinforcement learning model that decreases reliance on the bias weights is generated based on determined bias to increase fairness.

6.3786855AUTOMATED DATA PROCESSING AND MACHINE LEARNING MODEL GENERATION
EP 03.03.2021
Int.Class G06N 5/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
5Computing arrangements using knowledge-based models
Appl.No 19290076 Applicant ACCENTURE GLOBAL SOLUTIONS LTD Inventor HIGGINS LUKE
A device may obtain first data relating to a machine learning model. The device may pre-process the first data to alter the first data to generate second data. The device may process the second data to select a set of features from the second data. The device may analyze the set of features to evaluate a plurality of types of machine learning models with respect to the set of features. The device may select a particular type of machine learning model for the set of features based on analyzing the set of features to evaluate the plurality of types of machine learning models. The device may tune a set of parameters of the particular type of machine learning model to train the machine learning model. The device may receive third data for prediction. The device may provide a prediction using the particular type of machine learning model.
7.20200272947Orchestrator for machine learning pipeline
US 27.08.2020
Int.Class G06F 15/173
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
FELECTRIC DIGITAL DATA PROCESSING
15Digital computers in general; Data processing equipment in general
16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
163Interprocessor communication
173using an interconnection network, e.g. matrix, shuffle, pyramid, star or snowflake
Appl.No 16284291 Applicant SAP SE Inventor Lukas Carullo

Provided is a system and method for training and validating models in a machine learning pipeline for failure mode analytics. The machine learning pipeline may include an unsupervised training phase, a validation phase and a supervised training and scoring phase. In one example, the method may include receiving an identification of a machine learning model, executing a machine learning pipeline comprising a plurality of services which train the machine learning model via at least one of an unsupervised learning process and a supervised learning process, the machine learning pipeline being controlled by an orchestration module that triggers ordered execution of the services, and storing the trained machine learning model output from the machine learning pipeline in a database associated with the machine learning pipeline.

8.20230132247APPARATUS AND METHODS FOR MACHINE LEARNING TO IDENTIFY AND DIAGNOSE INTRACRANIAL HEMORRHAGES
US 27.04.2023
Int.Class A61B 5/02
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
BDIAGNOSIS; SURGERY; IDENTIFICATION
5Measuring for diagnostic purposes ; Identification of persons
02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
Appl.No 17508993 Applicant Benjamin Steven Hopkins Inventor Benjamin Steven Hopkins

In some embodiments, an apparatus includes providing a representation of a set of digital medical images to a first machine learning model to define a feature vector associated with a presence of an intracranial hemorrhage. A representation of the set of digital medical images is provided to a second machine learning model to define a second feature vector associated with a volume of the intracranial hemorrhage. Using a third machine learning model, a set of EMRs associated with risk factors for a predefined indication is analyzed to define a third feature vector. The first, second and third feature vectors are provided as inputs to a fourth machine learning model to determine a metric associated with an applicability of a specific treatment associated with a predefined indication. An alert is sent to relevant healthcare providers and relevant tests, procedures or bloodwork are ordered for the predefined indication.

9.20210397895INTELLIGENT LEARNING SYSTEM WITH NOISY LABEL DATA
US 23.12.2021
Int.Class G06K 9/62
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
9Methods or arrangements for recognising patterns
62Methods or arrangements for pattern recognition using electronic means
Appl.No 16946465 Applicant INTERNATIONAL BUSINESS MACHINES CORPORATION Inventor Yang SUN

Various embodiments are provided for providing machine learning with noisy label data in a computing environment using one or more processors in a computing system. A label corruption probability of noisy labels may be estimated for selected data from a dataset using temporal inconsistency in a machine model prediction during a training operation in a neural network.

10.10127496System and method for estimating arrival time
US 13.11.2018
Int.Class G06E 1/00
GPHYSICS
06COMPUTING; CALCULATING OR COUNTING
EOPTICAL COMPUTING DEVICES
1Devices for processing exclusively digital data
Appl.No 15923329 Applicant BEIJING DIDI INFINITY TECHNOLOGY AND DEVELOPMENT CO., LTD. Inventor Kun Fu

Systems and methods are provided for estimating arrival time associated with a ride order. An exemplary method may comprise: inputting transportation information to a trained machine learning model. The transportation information may comprise an origin and a destination associated with the ride order, and the trained machine learning model may comprise a wide network, a deep neural network, and a recurrent neural network all coupled to a multilayer perceptron network. The method may further comprise, based on the trained machine learning model, obtaining an estimated time for arriving at the destination via a route connecting the origin and the destination.